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ABSTRACT	25	

Regional extreme value models for estimation of extreme rainfall intensities are widely applied, but 26	

their underlying assumption of stationarity is challenged. Many recent studies show that the rainfall 27	

extremes worldwide exhibit a non-stationary behavior. This paper presents a spatio-temporal model 28	

of extreme rainfall. The framework is built on a Partial Duration Series approach with a non-29	

stationary, regional threshold value. The model is based on Generalized Linear Regression solved 30	



	

2	
	

by Generalized Estimation Equations. It allows a spatial correlation between the stations in the 31	

network and accounts furthermore for variable observation periods at each station and in each year. 32	

Marginal regional and temporal regression models solved by Generalized Least Squares are used to 33	

validate and discuss the results of the full spatio-temporal model.  34	

The model is applied on data from a large Danish rain gauge network for four durations ranging 35	

from 10 minutes to 24 hours. The observation period differs between stations, and the number of 36	

stations with more than 10 years of observations has increased over the years. A spatio-temporal 37	

model for the threshold is suggested, applying the Mean Annual Precipitation and time as the 38	

explanatory variables in the regional and temporal domain, respectively. Further analysis of Partial 39	

Duration Series with non-stationary and regional thresholds shows that the mean exceedances also 40	

exhibit a significant variation in space and time for some rainfall durations, while the shape 41	

parameter is found to be constant. 42	

1 INTRODUCTION 43	

Non-stationary extreme value frameworks for estimation of design rainfall or design floods have 44	

received increased attention along with the numerous reports of observed trends in extreme rainfall 45	

and flood statistics [e.g. Min et al., 2011; Westra et al., 2013; Sun et al., 2015; Madsen et al., In 46	

Review]. Regional extreme value models for extreme rainfall have been applied in many countries, 47	

e.g. Denmark, Norway, UK, Canada and Australia [Madsen et al., 2002; Dyrrdal et al., 2014; 48	

Fowler and Kilsby, 2003; Wallis et al., 2007; Haddad et al., 2011]. Several frameworks for regional 49	

modelling exist, built on different principles. The most traditional is the index-flood model, which 50	

became widely applied after the advancement of the regional L-moment approach by Hosking and 51	

Wallis [1993]. In this framework the uncertainty of the estimated at-site design events is reduced by 52	

the estimation of regional extreme value distribution (EVD) parameters from a homogenous region. 53	
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The index-flood model was originally applied for annual maxima extremes in a stationary setting. 54	

Later advancements include an extension to Peak over Threshold (POT) data [Haddad et al., 2011; 55	

Madsen and Rosbjerg, 1997] based on Generalized Least Squares (GLS) estimation procedures 56	

[Stedinger and Tasker 1985] where the variability of the EVD parameters is modelled by regional 57	

covariates. This framework accounts for both at-site sampling uncertainty and spatial dependencies 58	

between the observations at different sites. Regarding non-stationarity of the parameters of the 59	

EVD, Gregersen et al. [2013a] presented a model for the spatio-temporal variation of the number of 60	

extreme events building on the framework of Generalized Linear Models (GLM), while Roth et al. 61	

[2012] used the POT-threshold as the index variable and allowed it to vary in both time and space. 62	

As discussed by Kyselý et al. [2010], a non-stationary threshold is crucial when having a non-63	

uniform distribution of extreme events over the observation period, because the otherwise variable 64	

intensity of the Poisson process will violate the asymptotic properties of the POT model. Suitable 65	

non-stationary threshold models are often found by quantile regression [Kyselý et al., 2010; Roth et 66	

al., 2012]. 67	

 68	

A drawback of the regression based index flood method is that inferences are made on statistics 69	

derived from the observations and not from the observations directly [Renard, 2011]. Some authors 70	

prefer another type of regional model based on hierarchical principles, which overcomes this 71	

problem. In the hierarchical model prior distributions are defined for each of the parameters in the 72	

EVD [e.g. Aryal et al., 2009; Dyrrdal et al., 2014; Ghosh and Mallick, 2011; Heaton et al., 2011; 73	

Renard, 2011; Sun et al., 2015]. From here there are numerous possibilities with regard to the 74	

specific model formulation and the parameter estimation algorithms. Hierarchical extreme value 75	

models are often solved by sampling algorithms like the Markov Chain Monte Carlo method 76	

[Cooley, 2007; Dyrrdal et al., 2014; Ghosh and Mallick, 2011; Renard, 2011]. Recently, an 77	
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alternative approach based on the max-stable framework solved by composite likelihood has gained 78	

attention [Thibaud et al., 2013; Westra and Sisson, 2011]. Roth et al. [2012] also applied composite 79	

likelihood but on an index-flood model derived from POT data. Like the hierarchical model, both 80	

models can include regional and temporal variability in a dataset with a spatial correlation structure.     81	

Regarding regional variations in the parameters some authors use a Kriging technique [Aryal et al., 82	

2009], a trivariate Gaussian process with an exponential, distance depending covariance function 83	

[e.g. Cooley, 2007; Heaton et al., 2011] or a combination of the latter and regression to regional 84	

covariates [e.g. Dyrrdal et al., 2014; Ghosh and Mallick, 2011; Renard, 2011). Temporal variations 85	

are also assessed together with their influence on the regionalization [e.g. Aryal et al., 2009; Ghosh 86	

and Mallick, 2011; Heaton et al., 2011; Renard, 2006; Roth et al., 2012; Sun et al., 2015; Westra 87	

and Sisson, 2011]. Some of these studies include spatial dependencies between the observations at 88	

different locations. This can be numerically and theoretically difficult, but with a dense network the 89	

uncertainty of the model parameters is greatly underestimated, if the joint probability of observing a 90	

given extreme at several sites is disregarded [Roth et al., 2012; Westra and Sisson, 2011]. Joint 91	

probabilities can be described by copula functions, which therefore can be included in the 92	

hierarchical models to account for the spatial dependencies [Ghosh and Mallick, 2011; Renard, 93	

2011]. Sun et al. [2015] developed a description applicable for a network of flow measurement 94	

stations along a branched river. In a max-stable process for extreme rainfall, spatial dependence on 95	

the data level is accounted for by a storm profile model, which is naturally incorporated in the 96	

framework [Thibaud et al., 2013; Westra and Sisson, 2011]. 97	

 98	

The salient point in all above-mentioned non-stationary approaches is the description of the spatial 99	

dependencies and, most importantly, the assumptions enforced to solve the complicated equation 100	
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structure it entails. This becomes particularly difficult for a model based on POT data from a rain 101	

gauge network with a varying number of annually active stations, though Ghosh and Mallick 102	

[2011], Roth et al. [2012] and Thibaud et al. [2013] show very promising results.  103	

The purpose of this paper is to extend the regression based index flood model solved by GLS 104	

[Madsen and Rosbjerg, 1997] that is currently applied in Denmark for regional estimation of 105	

extreme rainfall [Madsen et al., 2002; 2009; In Review) to include a temporal dimension. The 106	

procedure developed comprises a GLM solved by the Generalized Estimation Equations (GEE) 107	

approach applied by Gregersen et al. [2013a] but now extended to more parameters of the EVD. 108	

Preliminary analyzes of the temporal and regional variations are performed by marginal models as 109	

in Gregersen et al. [2013a]. The first analysis aims to formulate a non-stationary threshold model. 110	

The quantile regression approach is inapplicable due to the independence criteria traditionally 111	

applied for this type of rainfall data (see Section 3 for details). Subsequently, the threshold model is 112	

validated and applied. Finally, regional and temporal variations of EVD parameters are assessed. 113	

All calculations are performed for four different rainfall durations relevant for urban drainage 114	

design. 115	

2 METHODOLOGY 116	

2.1 PARTIAL DURATION SERIES AND REGIONAL ESTIMATION OF EXTREME RAINFALL 117	

The extreme value analysis follows the theory of Partial Duration Series (PDS) where the annual 118	

number of extreme events (N) is assumed to follow a Poisson distribution with rate parameter (λ),  119	

 
   ,      0,1, 2

!

n

P N n e N
n

      
 

(1) 

and the magnitude of the extreme events (z) is assumed to follow a Generalized Pareto Distribution 120	

(GPD) with a location (β), a scale (α) and a shape (κ) parameter  121	
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[Coles, 2001; Rosbjerg et al., 1992]. When sampling the extreme events from a time series, the PDS 122	

approach offers two censoring methods [Mikkelsen et al., 1995]. In type 1 censoring, the threshold 123	

(z0) over which an event is considered as extreme is pre-fixed. The method is also known as Peak 124	

over Threshold [Coles, 2001]. In this case z0 replaces β	 in the GPD in Eq. (2). All other parameters 125	

in Eq. (1) and Eq. (2) are estimated from the dataset.  In type 2 censoring, λ, and thereby the total 126	

number of extremes during the observation period, is pre-fixed. In this case all parameters in Eq. (2) 127	

are estimated from the dataset.   128	

 129	

The extreme events in the PDS are required to be independent [Coles, 2001]. In the literature there 130	

are at least two common ways of ensuring this. Many studies perform a declustering procedure 131	

based only on the time span between the extreme events [e.g. Ghosh and Mallick, 2011; Roth et al., 132	

2012], while Madsen et al. [2002] performed an event-based separation using information on the 133	

dry-weather period. This method is particularly useful for tipping bucket rainfall measurements, 134	

where the observations are stored as events (see Section 3).  135	

 136	

The procedures from Madsen et al., [2002] are applied here. Therefore, two rainfall events are 137	

independent if the dry weather period between them is longer than or equal to the analyzed rainfall 138	

duration. This event-based separation procedure is performed prior to the PDS approach and is 139	

therefore valid independent of the selected PDS censoring. Available for the extreme value analysis 140	

is therefore a series of independent events (Y) represented by the maximum mean intensity of the 141	

event (y) for a given duration, and the start and termination time (tstart , tend) for the event for each 142	
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site, s (see Madsen et al. [2002] for definition of event-based maximum mean intensity). The dataset 143	

includes in total K stations; 1,2s K  . Furthermore the dataset includes M years of 144	

measurements; 1,2i M  . Not all sites have measurements during the entire period; therefore K 145	

varies from year to year 1,2i is K  while M varies from site to site 1,2s si M  . In addition, li,s 146	

denotes number of observation days in year i at site s. 147	

In the regional model by Madsen et al., [2002, 2009, In Review] type 1 censoring is applied using 148	

the same z0 at all sites in the region. λ of the Poisson distribution is estimated from 149	

  s
s

s

N

l
    (3) 

where Ns is the total number of exceedances in the full observation period ls  at site s. The GPD 150	

parameters are estimated by the method of L-moments [Hosking, 1990]. From the first L-moment 151	

(b0), which corresponds to the mean, and the second L-moment (b1) the following parameters are 152	

defined 153	

 
 �

0b         and       
 1

0

cv
b

L
b

   (4) 

κ of the GPD is directly related to Lcv 154	

 
 


1

2
cvL

                 (5) 

while �   of the GPD is estimated from �   and CVL    [Hosking, 1990]. Madsen et al. (2002, 2009, 155	

In Review) showed that λ and μ exhibit significant regional patterns, while LCV and thereby κ is 156	

homogeneous over the region. This gives the following estimate of a regional T-year event 157	

 
 �



 
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
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 

          

   (6) 

where index s refers to a site-specific estimate and R to a regional estimate. As discussed in the 158	

introduction, a clear shortcoming of this model is that temporal variations are not accounted for.  159	
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The first step pursued in this paper is to develop a spatio-temporal model for β, which can be 160	

applied on the series of independent rainfall events. With a method to describe and evaluate this 161	

variability, it is possible to define a model for z0, which will ensure that λ does not exhibit 162	

significant variations over time and space. The second step is to apply the threshold model and 163	

analyze the remaining variability in the GDP parameters. 164	

 2.1.1	A	SPATIO‐TEMPORAL	MODEL	FOR	  	165	

A PDS is defined from Y using type 2 censoring, PDS2. The rate parameter of the Poisson 166	

distribution is prefixed (λ = 4 events/year). The choice of rate parameter is based on experience 167	

from earlier studies (Madsen et al., [2002, 2009]).]. Since the aim is to capture the regional and 168	

temporal variation, the censoring is performed for each year individually. From PDS2    is 169	

estimated for each year, i, and each site, s, as the minimum exceedance in a year. A regression 170	

model is constructed for � ,i s evaluating both regional and temporal variations, following the 171	

procedures described in Section 2.2 and 2.3. 172	

2.1.2	TYPE	1	CENSORING	APPLYING	A	TIME‐DEPENDENT	AND	REGIONAL	THRESHOLD	173	
The model for β found in the first step is applied as a deterministic model for z0 . On this basis a 174	

new PDS is defined from Y using type 1 censoring with a pre-fixed z0 that varies in time and space. 175	

In the following this PDS is denoted PDS1. The properties of PDS1 is validated by assessing the 176	

variability of λ. λ is a random variable in the model, but λ should not exhibit any significant 177	

variations in time and space, since this variability is explained by the variation in z0. Therefore a 178	

regional estimate of λ can be applied. μ and LCV are also estimated from PDS1 and their regional and 179	

temporal variation is assessed following the procedures described in Section 2.2 and 2.3.  180	

 181	

In each of the two steps marginal models are obtained by averaging over either time i or space s. 182	

After this a full spatio-temporal model is developed based on GLM solved by GEE as in Gregersen 183	
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et al. [2013a]. In both the full model and the marginal models knowledge on the correlation 184	

between the rain gauge stations is required.  185	

2.2 MARGINAL MODELS 186	

The general procedures behind the marginal GLS models are similar for all the analyzed GDP 187	

parameters: β from PDS2 and λ, μ and LCV from PDS1. The following description of the 188	

methodology applied to assess the variation in space and time, respectively, focuses on β. When 189	

relevant, conditions that make the approach different for one of the other variables are highlighted.    190	

2.2.1 MARGINAL MODEL FOR VARIATION IN SPACE 191	

Site specific estimates of β are obtained from an average over all years of observation at the site 192	

 
 

,1

sM

i si
s

sM


     (7) 

The average of a given quantity asymptotically follows a normal distribution, so analyzes of βs can 193	

be based on linear regression. GLS is applied to include a possible spatial correlation between the 194	

observations and a weighting that reflects the sampling uncertainty, which for a specific site s is 195	

related to the total period of observation ls or the total number of observations ns at that location.  196	

 197	

The following regression model is tested 198	

  
s  s XB    (8) 

where X is a matrix of regional covariates, Bβs is the regression parameters, and Σ is the variance-199	

covariance matrix of the model residuals ε. The following structure of Σ is assumed in the GLS 200	

model of s 201	
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  (9) 

In the matrix σε represents the sampling uncertainty, σδ the residual uncertainty in the regression 202	

model, and ρ the spatial correlation. σδ is assumed to be unknown and is estimated along with the 203	

other variables in the regression model. The estimation of ρ is described in the following section, 204	

while σε is a function of the variance of � s  and ls.  205	

 206	

A description of σε for each of the analyzed extreme value statistics is given in Appendix A.1. For 207	

βs, σε is estimated as  208	

 

 
2
s

s

c

l 
       where       

 2

,1

1

1

1

sM
K

i s si

s s

c
K M

 




     
 


   (10) 

where s  is the average over all sites. 209	

 210	

A similar procedure is applied for λs and μs, while for LCVs Monte Carlo simulations are applied (see 211	

Appendix A.1). All estimation procedures of σε assume stationarity over time.  212	

 213	

For comparison, ordinary linear regression (OLS) is also applied for the estimation of Bβs . In OLS 214	

both sampling uncertainty and spatial correlation are disregarded. Furthermore, the statistical 215	

significance of the explanatory variables is evaluated by a t-test on the ratio between the regression 216	

slope and its standard deviation. A similar quantity can be estimated for GLS, but here it is also 217	

important to assess σδ both in the regression model and in an intercept model, i.e. where only the 218	
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intercept is included in Eq.(8). If σδ is close to zero in the intercept model or negative, all variability 219	

is accounted for by the estimated sampling uncertainty, and explanatory variables cannot contribute 220	

to a further reduction. Likewise, the value of σδ in the regression model can be used to assess the 221	

amount of unexplained variability.     222	

2.2.2 CORRELATION BETWEEN RAIN GAUGE STATIONS 223	

A framework that estimates the spatial dependence between extreme rainfall events at individual 224	

rain gauge stations has been developed by Mikkelsen et al. [1996] for PDS. It is applied to obtain a 225	

robust, regional estimation of the correlation structure to be used in Σ, see Eq. (9).  To ensure this, 226	

the spatial correlation, ρ, of the GPD parameters is first estimated from the data, and subsequently, 227	

described by a parametric correlation model. For further discussion, see Madsen and Rosbjerg 228	

[1997]. 229	

For β and λ, ρ is estimated from annual time series of βi,s for all pairs of stations. If a rain gauge has 230	

long periods of malfunction during a year, it will affect the estimate of βi,s and hence ρ. Therefore 231	

individual station years are removed from the analysis if the total observation period in a given year 232	

is less than 300 days. For μ a method is used, which pairs events that in a physical sense can be 233	

regarded concurrent. This is done for each pair of stations, based on tstart of the events combined 234	

with a lag time, which accounts for the travelling time of the weather systems. For details the reader 235	

is referred to Gregersen et al. [2013b] and Mikkelsen et al. [1996]. Finally, the correlogram is 236	

estimated by averaging ρ over distance intervals and subsequently described by an exponential 237	

model. 238	

2.2.3 MARGINAL MODEL FOR VARIATION IN TIME 239	
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Annual estimates of β are obtained from an average over all stations. Due to the correlation between 240	

the stations in the network a weighted average is applied so the influence of station clusters with 241	

similar properties is reduced  242	

 
 

,1

iK

si ss
i

iK

w



    (11) 

The applied weights (ws) are estimated for each station as one minus the average correlation 243	

coefficient between the given station and all other stations in the network. High weights are given to 244	

stations with low average correlation, and all weights sum to one. 245	

    246	

As in Section 2.2.1, analyzes of βi can be based on linear regression, where GLS is applied to 247	

include a weighting that reflects the sampling uncertainty. Temporal correlation is discarded, as it is 248	

assumed that the estimates of i are independent from year to year. The sampling uncertainty of βi 249	

relates to the total period of observation li or the total number of observations at the active stations 250	

Ki in year i. 251	

	252	

The following regression model is tested  253	

  
i i  XB    (12) 

where the following structure of Σ is assumed in the GLS model of i 254	
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In the matrix σε represents the sampling uncertainty and σδ the residual uncertainty in the regression 255	

model. σδ is assumed to be unknown and is estimated along with the other variables in the 256	

regression model. σε is estimated as 257	
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where i  is the average over all sites. 258	

 259	

The correlation between the stations, which was accounted for in the estimation of i, also affects 260	

the variance of i as the amount of independent information in the dataset is reduced. This is 261	

accounted for by estimating the effective number of stations each year using [Madsen et al., 1994] 262	

 
    1

, 1 1i eff i i iK K K 


     (15) 

where i  is the average correlation between stations active in the given year. 263	

 264	

A description of σε for λi and μi is given in Appendix A.2. For comparison, ordinary linear 265	

regression (OLS) is also applied for the estimation of Bβi, where both sampling uncertainty and 266	

spatial correlation are disregarded.  267	

2.3 SPATIO-TEMPORAL MODELS 268	

The concept of GLM solved by GEE was applied by Gregersen et al. [2013a] for the number of 269	

extreme events, N, which follows a Poisson distribution. GLM applies to all distributions within the 270	

exponential family and also allows for the use of a link function (g) mapping the modelled variable 271	

(βi,s) and the linear relation to the explanatory variable (X) given by the regression parameters (Bη) 272	

   η XB ε         where       ( )g i,sβ η   (16) 

The link function can ensure that restrictions on the sample space are fulfilled, i.e. for βi,s, λi,s and 273	

μi,s only positive estimates are meaningful. The identity link, a log link and an inverse link are 274	

among the commonly used functions [Faraway, 2006].  275	
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Several of the probability distributions from the PDS and GLS frameworks belong to the 276	

exponential family, i.e. the Gaussian distribution, the Poisson distribution [Gregersen et al., 2013a] 277	

and the Gamma distribution, of which the exponential distribution is a special case. The choice of 278	

distribution in the GLM framework can be based on prior knowledge on the process generating the 279	

data or from standard evaluations of the data and the model residuals.  GLM is solved by maximum 280	

likelihood procedures. The log-likehood is derived from the density function, where the link 281	

function is included, before the values of Bη that optimize the likelihood are estimated, either 282	

directly or by an iteration scheme, Gregersen et al. [2013a]. 283	

 284	

With the GEE extension [Halekoh et al., 2006; Hardin and Hilbe, 2003] the GLM framework can 285	

account for spatial correlation between stations and a weight (wi,s) reflecting how many days during 286	

a specific year a given station has been active. Gregersen et al. [2013a] showed how the correlation 287	

matrix is included in the estimation equations for a Poisson model. The division of the observed 288	

variance into sampling uncertainty and model uncertainty done by the GLS model cannot be 289	

implemented in the same manner here, as σε in the marginal regional model is estimated from the 290	

temporal variability and vice versa. GLM with the GEE extension is solved by maximum likelihood 291	

procedures. 292	

 293	

All calculations are performed using the statistical software R, using the packages ‘geepack’ 294	

[Halekoh et al., 2006; Højsgaard et al., 2014], ‘doBy’ [Højsgaard and Halekoh, 2014] and ‘lmom’ 295	

[Hosking, 2014].   296	

3 DATA AND CASE STUDY 297	
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Rainfall series from 83 high-resolution tipping buckets are analyzed. The network was established 298	

in 1979 and has expanded since then, while a few stations are closed. All stations included in the 299	

present analysis have more than 10 years of measurements. When periods of rain gauge malfunction 300	

have been taken into account, the total dataset corresponds to 1881 station-years. The data 301	

resolution is one minute and 0.2 mm. Rainfall durations of 10, 60, 180 and 1440 minutes are 302	

analyzed.   303	

 304	

The network is operated by the Danish Water Pollution Committee and the Danish Meteorological 305	

Institute (DMI), who also conduct the quality-control. Data from this network has since 1998 been 306	

applied for estimation of design intensities for urban drainage design [Madsen et al., 2002], and the 307	

applied model has been updated twice [Madsen et al., 2009; In Review]. Analyzes of temporal 308	

variation of extreme rainfall by Gregersen et al. [2013a; 2013b] were also based on data from this 309	

network. 310	

	311	

The most recent model for regional variation of extreme rainfall over Denmark applied two 312	

explanatory variables [Madsen et al., In Review] derived from Climate Grid Denmark (CGD). Here 313	

λ varies with the Mean Annual Precipitation (MAP) [mm], while μ varies with the mean value of 314	

daily rainfall extremes (μCGD) [mm]. CGD is a gridded dataset of daily precipitation provided by 315	

DMI. It has a spatial resolution of 10x10 km2 and covers the period 1989-2010 [Scharling, 2012]. 316	

The grid values are estimated from point measurements obtained from the regional network of daily 317	

precipitation stations owned by DMI using an inverse distance weighting method. The documented 318	

link between λ and MAP is exploited in the present study; as we aim at having a constant λ over 319	

space z0 must vary with MAP.  320	

 321	
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Gregersen et al. [2013a] tested several teleconnections as explanatory variables for the temporal 322	

variation in N, while Gregersen et al. [2014] concluded that the natural variability induced by these 323	

teleconnections can appear as short term temporal trends that last a few decades.. As the aim of the 324	

present study is to evaluate the influence of non-stationary data on a regional extreme value model, 325	

time is used as the only temporal explanatory variable. In this relation time is defined as the number 326	

of years since 1978.  A year is defined as the calendar year January-December. The majority of 327	

extreme rainfall events occur in the period May-October [Gregersen et al., 2013b; Pedersen et al., 328	

2012]. Therefore, with the use of the calendar year estimated extreme rainfall statistics are 329	

independent from year to year; a necessary assumption as mentioned in Section 2.2.3. 330	

4 RESULTS 331	

4.1 SPATIO-TEMPORAL MODELS FOR  332	

From type 2 censoring PDS2 is defined as the fourth largest independent event at each site for each 333	

year. Subsequently, β is estimated and the regional and temporal variability are evaluated by the 334	

two marginal models and the full spatio-temporal model. All models take into account the spatial 335	

dependence between the PDS series, which is estimated first.  336	

4.1.1 CORRELATION BETWEEN RAIN GAUGE STATIONS 337	

The spatial correlation structure, applied in the three models of β is given in Figure 1. The shape of 338	

the correlogram depends on the rainfall duration. In general the correlation decreases with distance, 339	

but stations far away remains correlated. The shape of the curves corresponds well with the findings 340	

of Gregersen et al. [2013a] and Madsen et al. [In Review]. 341	

4.1.2 MARGINAL REGIONAL MODEL FOR  342	







	

17	
	

Initial analyzes of the intercept model (not shown) confirm that 2



 is positive for all durations. 343	

Hence regional variability exists, which potentially can be reduced by the introduction of 344	

explanatory variables. The following regression model is analyzed by GLS and for means of 345	

comparison by OLS: 346	

  s a b MAP       (17) 

The estimated model parameters are given in Table 1, while the observations and the modelled 347	

relation are shown in Figure 2 for all four durations. Accounting for spatial correlation and 348	

sampling uncertainty change the regression parameters and their uncertainty slightly (see Table 1). 349	

An influence of MAP is suggested for very long rainfall (1440 min) durations.  350	

 351	

As discussed in Madsen et al. [In Review], it is expected that the variability over time, when not 352	

accounted for, is introducing an additional uncertainty in the regional model. The length of 353	

observation period differs between stations. An effect of this can be seen from Figure 2 where 354	

stations, which have been active approximately during the entire period from 1979 to 2012, are 355	

marked with black. The variability in this subset of stations is remarkably lower than the variability 356	

of the entire sample. In Section 4.1.4, it is shown that the spatio-tempor al model accounts for 357	

this.  358	

4.1.3 MARGINAL TEMPORAL MODEL FOR  359	

For  the spatial correlation is relatively high, also for sites separated by long distances (see Section 360	

4.1.1). This has a substantial effect on the sampling uncertainty, because Ki,eff, despite the large 361	

number of stations in the network, is very small, s ee Eq.(15).  Still, initial analyzes of the 362	

intercept model (not shown) confirm that 2



 is positive for 10 and 60 minutes and is greatly 363	

reduced by the introduction of temporal regressors. Gregersen [2015] showed that when λ is 364	


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analyzed in a similar manner 2



 is positive for all durations. Therefore the analysis is continued for 365	

all durations and the following regression model is analyzed by GLS:  366	

  i a c time       (18) 

Again, parameter estimates from OLS regression are also assessed. Estimated model parameters are 367	

given in Table 2, while the observations and the modelled relations are shown in Figure 3 for all 368	

four durations. For all rainfall durations i increases over time. A comparison between OLS and 369	

GLS (not included) shows that the standard errors on the regression slopes for 10 and 60 minutes 370	

increase slightly when the sampling uncertainty is taken into account. Besides that the other 371	

parameter estimates are almost identical for the two methods.  372	

4.1.4 THE FULL SPATIAL AND TEMPORAL MODEL FOR  373	

The two marginal models show variability in both domains and thereby a need for the formulation 374	

of a spatio-temporal model. The following regression model is analyzed by GLM-GEE 375	

 
,i s a b MAP c time              where       

, ,( )i s i sg     (19) 

It must be evaluated which underlying probability distribution is best suited to describe i,s. A 376	

histogram combined with a kernel-approximation of the density function shows no large deviations 377	

from a Gaussian distribution, see Figure 4a. Furthermore, different distributions and link functions 378	

were tested in the GLM-GEE model. It was found that the parameter estimates varied little and that 379	

the residuals showed approximately the same behavior independent of the choice of model, see 380	

Figure 4b and Figure 4c. For the convenience of direct comparison with the parameter estimates 381	

from the two marginal GLS models, the subsequent analysis is based on a GLM-GEE model with a 382	

Gaussian distribution and an identity link function. 383	

 384	


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Table 3 shows the results for all four rainfall durations using the most complex GLM-GEE model 385	

with both weights and correlation. It has been evaluated how the assumption on the structure of the 386	

residuals (weights and correlation) affects the parameter estimates and their significance (not 387	

shown). The conclusion depends on the rainfall durations, but in general the variation of the 388	

parameter estimates and their significance are not substantially different from the variation between 389	

the OLS and the GLS estimates in the marginal models.   390	

 391	

For all durations the full model with weights and correlation reduces the parameter uncertainty on b 392	

compared to the marginal regional GLS model, see Table 3. This leads to a significant correlation to 393	

MAP for all durations but 60 minutes. The estimate of b has decreased for 10 min, but increased for 394	

180 and 1440 minutes. This corresponds well to the behaviour reported by Madsen et al. [In 395	

Review]. All in all it is confirmed that when the assumption of stationarity is not fulfilled the 396	

overall model uncertainty increases with the available information. The spatio-temporal model 397	

solves this issue. The estimates of c are also slightly different from the estimates of the marginal 398	

temporal model as an effect of the variability explained by MAP and the covariance between the 399	

parameter estimates. 400	

4.2 TYPE 1 CENSORING APPLYING A SPATIO-TEMPORAL THRESHOLD 401	

The spatio-temporal model of β is applied as a deterministic model for z0 to define a new PDS from 402	

Y using type 1 censoring (PDS1). When z0 varies in time and space, λ must not exhibit any 403	

significant variations over time and space. For a duration of 60 minutes a regression to MAP is 404	

included even though it is non-significant.  405	

	406	

From PDS1 the GPD parameters from Eq.(6) are estimated, and their variation over time and space 407	

is assessed including the spatial correlation structure.  408	
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4.2.1 CORRELATION BETWEEN RAIN GAUGE STATIONS 409	

The spatial correlation structure for λ and μ is given in Figure 5 and Figure 6, respectively. The 410	

shape of the correlogram depends on the rainfall duration. In general, the correlation decreases with 411	

distance, and this happens quickly for μ, while for λ stations far away remain correlated. A 412	

comparison with the findings by Madsen et al. [In Review] (not shown) indicates that when a non-413	

stationary threshold is applied the correlation decreases slightly.  414	

4.2.2 VARIATIONS OF λ OVER TIME AND SPACE 415	

The two following marginal regression models are analyzed 416	

  s a b MAP       (20) 

  i a c time       (21) 

to test that the application of the non-stationary and regional z0 leads to constant λ over time and 417	

space. This is confirmed. Furthermore, the variability of all data points and a subset of data points 418	

representing the stations with long records (black dots) are comparable, see Figure 7. This is not the 419	

case when the temporal variability is not accounted for, see Figure 2. Station outliers are observed 420	

for all durations. Two stations from suburbs west of Copenhagen recur as outliers. As they both are 421	

approved by the quality control, they are retained in the dataset. One of the stations was closed in 422	

1995.  423	

The following regression model is analyzed by GLM-GEE to estimate the constant λ and the 424	

uncertainty on the estimate: 425	

   , ,offset logi s i sa l          where       
, ,log ( )i s i sN    (22) 

Ni,s is assumed to follow a Poisson distribution, while the variability of λi,s can be modelled by 426	

including the observation period in the model as an offset. A Poisson model with a log-link function 427	

is applied following the approach by Gregersen et al. [2013a]. The results are given in Table 4.  428	
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The scale of the Poisson distribution is reported to evaluate if Ni,s shows overdispersion; values 429	

close to one indicate that this is not the case. The results are applied for estimation of design 430	

intensities in Section 4.3. 431	

4.2.3 VARIATIONS OF μ OVER TIME AND SPACE 432	

Initial analyzes of the marginal intercept models (not shown) confirm that 2



 is positive for all 433	

durations in both the temporal and regional domain. The following two marginal regression models 434	

are analyzed 435	

  s CGDa b        (23) 

  i a c time       (24) 

The regression between μ and time is positive, see Figure 8, and significant for all durations but 436	

1440 minutes, see Table 5. The regression between μ and μCGD is positive, see Figure 9, and 437	

significant on a 10% confidence level for 10, 180 and 1440 minutes, see Table 5. However, residual 438	

analysis (not shown) indicates that the marginal model for the variation in space is too simple, 439	

because the variance seemingly increases with the mean for both 60 and 180 minutes. This tendency 440	

can also be seen directly from Figure 9. The full spatio-temporal variation is described by the 441	

following model and analyzed by GLM-GEE 442	

 
,i s CGDa b c time              where       

, ,( )i s i sg     (25) 

A histogram of μi,s shows a distribution with a positive skew, which is suggesting the use of a 443	

Gamma distribution in the GLM-GEE, see Figure 10. A Gamma model is also suitable if the 444	

variance of the residuals increases with the mean. As potential link functions for the Gamma model, 445	

a log link and an inverse link are considered. Evaluations show that the significance of the 446	

regression parameters are almost identical for the two different link functions (not shown), but 447	

residual analysis suggests that the increase of the variance is captured best by the inverse link, see 448	

Figure 10. Therefore, the inverse link is applied. The estimated model parameters are given in Table 449	
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5. These show a difference between the significance of the regression coefficients in the marginal 450	

models and the full model. The reason is that the underlying model assumptions differ as the 451	

gamma model can account for an increase of the variance. This probably leads to the found 452	

difference in significance of μCGD for 10 and 180 minutes.    453	

4.2.4 VARIATIONS OF LCV OVER TIME AND SPACE 454	

Lcv exhibits no apparent variation over space and time (not shown). Estimation of the heterogeneity 455	

measure from Hosking and Wallis [1993] confirms that the parameter can be regarded as 456	

homogenous. Lcv is estimated following the method from Madsen et al. [2002], and results are given 457	

in Table 6. 458	

4.3 ESTIMATION OF DESIGN INTENSITIES 459	

Based on the results from the preceding sections the following model for the estimation of T-year 460	

events is suggested 461	

 
 , , 0, , ,

1 1
1T i s i s i sz z

T


 

       
   

  (26) 

z0i,s is fixed in the applied PDS procedure and hence by definition not uncertain. All other 462	

parameters estimated from PDS1 are predicted from the regional and temporal covariates, if these 463	

are found significant in the full model. By use of Eq.(26) the 10-year event (z10i,s) is predicted for 464	

two locations in Denmark and compared to the results from Madsen et al. [In Review], see Table 7. 465	

The uncertainty on z10i,s is approximated by a second order Taylor expansion of  Eq.(26) [Madsen et 466	

al., 2002].  467	

 468	

The temporal development of the 10-year event is strongest for 10, 60 and 180 minutes, where both 469	

λ and μ has a non-stationary component. For these three durations the estimate from Madsen et al. 470	
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[In Review] lies in between the two years for which predictions are made (see Table 7). This 471	

corresponds well with the data that the model by Madsen et al. [In Review] is built on. For 1440 472	

min the variability is strongest in the regional domain as both λ and μ has a regional component. A 473	

small temporal variability is seen due to the temporal development in λ.  Comparing the estimated 474	

uncertainties on the 10-year events, with the results from Madsen et al. [In Review] it is seen, that 475	

the proposed regional and non-stationary model for PDS successfully eliminates the uncertainty 476	

introduced when the assumption of stationarity is not fulfilled.  477	

5 DISCUSSION 478	

The identified model is primarily used for explorative purposes. Over the last 15 years the urban 479	

drainage engineering community has experienced increases of recommended design intensities of 480	

extreme precipitation of the ‘present’ (i.e. ‘stationary’) climate that by far exceeds the anticipated 481	

changes due to emissions of greenhouse gasses in any of the future scenarios foreseen by the 482	

climate change communities. The purpose of the model has been to validate that this process has 483	

taken place and to separate the process into a regional and a temporal component. Future work will 484	

focus on separating the temporal component into processes that can be validated and predicted, 485	

thereby distinguishing between observed dynamics in the past, present, and future, and anticipated 486	

climatic changes due to emissions of greenhouse gasses.  487	

 488	

Using the identified model it is in principle possible to obtain design values for infrastructure by 489	

extrapolating into the future and consider e.g. the maximum design values over the expected 490	

technical lifetime and using that in the design process. Procedures for making such projections 491	

(although for different variables than precipitation) are described in e.g. Larsen et al. [2003] and 492	

Arnbjerg-Nielsen [2011]. However, as pointed out in a commentary by Montanari and 493	
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Koutsoyiannis [2014] the practical application of statistical models with a time-dependent 494	

component can be questionable, which is why process-based models are preferable. This study has 495	

not addressed the physical processes which could lie behind the temporal variation. Several studies 496	

indicate that large scale climatic variables may influence extreme rainfall [e.g. Sun et al., 2014; 497	

Willems 2013], but even when the large scale physical drivers are known, several challenges still 498	

remain; first to predict their future states, secondly to select which state to apply when choosing the 499	

design intensity. Hence, the present study demonstrates the non-stationary model using time as 500	

covariate. Since all model applications are uncertain outside the range of the input variables we do 501	

not recommend to use the identified model in its present form for estimating design intensities for 502	

the future. 503	

 504	

As pointed out by Willems [2013] and Gregersen et al. [2014] there may be some cyclical processes 505	

occurring with low frequency that, once understood, can serve as a more suitable co-variate in the 506	

model. This would enable projections into the future that are more trust-worthy if future states of 507	

these co-variates can be obtained. If climate drivers replace the variable time, this will have an 508	

effect on the model residuals and the estimated uncertainty on the design intensities. This potential 509	

reduction in uncertainty is, based on earlier work using teleconnections, assumed to be minor in 510	

comparison to the difference between including and not including a temporal variable [Gregersen et 511	

al., 2013a]. 512	

6 CONCLUSION 513	

In conclusion, the suggested GLM-GEE procedure is shown to be highly qualified for modelling 514	

spatio-temporal variability in β, λ and μ and thereby for the construction of a non-stationary regional 515	

extreme value model, which can be used for the estimation of urban design rainfall.  516	
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 517	

The dataset is first assessed by type 2 PDS censoring to find a suitable model for the threshold. The 518	

model is subsequently used in type 1 PDS censoring to ensure that the occurrences of extreme 519	

events are identically distributed over the sample period. These PDS are analyzed for a temporal 520	

and regional development in the mean exceedances and the shape parameter. The GLM-GEE 521	

framework can include a spatial correlation between the measurements and a weight reflecting a 522	

possible difference in the observation period. However, it is not possible to include the sampling 523	

uncertainty of the observation directly. If the magnitude of the sampling uncertainty is equal to the 524	

total variability of the data, there is no reason to search for regional or temporal explanatory 525	

variables. It is therefore recommended to assess the marginal development in space and time, and 526	

the magnitude of sampling uncertainty in both domains before the full spatio-temporal model is 527	

applied. Thereby, model overfitting and underestimation of uncertainty are avoided. A GLS 528	

framework is well suited for evaluation of the marginal models.  529	

Rainfall duration of 10, 60, 180 and 1440 minutes were analyzed. For β, a spatio-temporal model is 530	

suggested, applying the Mean Annual Precipitation and time as the explanatory variables in the 531	

regional and temporal domain, respectively. This threshold model ensures a constant λ. A 532	

significant temporal increase in the mean of the extreme exceedences was found for 10, 60, 180 533	

minutes, while for 1440 minutes a significant regional variability was found. No significant 534	

temporal or regional variability of the shape parameter was found, and hence a regionally constant 535	

estimate was applied.  536	

 537	

Westra and Sisson [2011] and Roth et al. [2012] accessed the effect of spatial correlation on the 538	

identification of temporal trends by different methods. A comparison of methods is highly relevant. 539	

The next step is to evaluate the differences and similarities of the proposed model and the methods 540	
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of Ghosh and Mallick [2011], Roth et al. [2012] and Thibaud et al. [2013], in terms of spatial 541	

correlation, significance of spatial and temporal variables, and prediction of urban design 542	

intensities.  543	

 544	
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APPENDICES 675	

A.1 SAMPLING UNCERTAINTY FOR THE MARGINAL REGIONAL MODEL 676	

The applied procedure for estimation of the sample uncertainty on βs, λs, μs and LCVs are reviewed 677	

below, starting with βs. Unless specifically stated the procedures follow Madsen and Rosbjerg 678	

[1997]. 679	

 680	
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For any of the of the four GPD parameters the GLS procedure requires, that the at-site estimate of 681	

the sampling uncertainty (ߪොఌ௦) is nearly independent of the estimated parameter (ߠ෠௦) [Madsen and 682	

Rosbjerg, 1997]. Madsen and Rosbjerg [1997] and Madsen et al. [2002] therefore applied an 683	

estimation procedure based on sample estimates of the population parameters. 684	

 685	

A given site s has Ms observations of β; one for each year where the station has been active. On this 686	

basis the mean and variance of β are estimated for each site, and subsequently for the entire 687	

population by averaging over all K sites. A site specific estimation of the sampling uncertainty is 688	

obtained by accounting for the actual observation period at the site, ls: 689	
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where s  is the average over all sites. 690	

 691	
The sampling uncertainty of λs is estimated from a procedure identical to the one described for βs. In 692	

Madsen and Rosbjerg [1997] and Madsen et al. [2002] it is utilized that λs is the rate parameter of 693	

the Poisson distribution and hence the variance equals the mean. To ensure consistency between the 694	

sampling uncertainty estimates in the marginal regional and temporal model the approach from 695	

equation 1A is preferred. In the marginal temporal model correlation between stations is accounted 696	

for in the estimation of the variance. This procedure cannot be applied if the variance is assumed 697	

equal to the mean. 698	

 699	

The sampling uncertainty of μs is estimated from a procedure similar to the one described for βs. A 700	

given site s has ns observations of extreme rainfall with intensity y.  ns is indirectly related to how 701	

many years the station has been active. The mean and variance are estimated for each site, and 702	
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subsequently for the entire population by averaging over all K sites. A site specific estimation of the 703	

sampling uncertainty is obtained by accounting for the number of observations at the site, ns:  704	
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where ߤ௦ is the average over all sites.  705	

 706	

For higher moments the estimation of the sampling uncertainty cannot be based on the population 707	

parameters if the independence criteria should be fulfilled. Simulations are therefore required. A 708	

four parameter kappa distribution is suitable for this purpose because of its flexibility [Madsen et 709	

al., 2002].  710	

 711	

The sampling uncertainty of LCVs is estimated from Monto Carlo simulation using the kappa 712	

distribution with parameters estimated from regional estimates of the first four L-moments. In total 713	

500 series with sn  observations are generated from this distribution, and applied for estimation of 714	

Var( )cv mcL . Here sn  is the average number of events over all sites. A site specific estimation of the 715	

sample uncertainty is obtained accounting for the ratio between sn  and the actual number of 716	

observations at the site, ns: 717	
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A.2 SAMPLING UNCERTAINTY FOR THE MARGINAL TEMPORAL MODEL 718	

The applied procedure for estimation of the sampling uncertainty of βi, λi and μi is reviewed below, 719	

starting with βi.  720	

 721	
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The marginal temporal GLS model is similar to the marginal regional GLS model, just averaging 722	

over the regional domain instead. The considerations regarding appropriate estimators of the 723	

sampling uncertainty given for the regional GLS model therefore applies. With the important 724	

difference that the estimate of sampling uncertainty is affected by the correlation between sites, 725	

which reduces the amount of information in the data set and increases the sample estimate of the 726	

population variance.  727	

 728	

For β a given year i has Ki observations of β, one for each station active that year. On this basis the 729	

mean and variance are estimated for each year.  The variance is corrected for the correlation 730	

between stations by dividing the sum of squared differences with Ki,eff , which is estimated from: 731	

 
    1

, 1 1i eff i i iK K K 


     (4A) 

where i  is the average correlation between stations active in the given year. The mean and 732	

variance are estimated by averaging over all M years. A site specific estimation of the sampling 733	

uncertainty is obtained by accounting for the actual number of active stations in the given year and 734	

their breakdown periods, i.e. the number of station years li:  735	
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The sampling uncertainty of λi is estimated from a procedure identical to the one described for i. 736	

 737	

The sampling uncertainty of μi is also estimated from a procedure similar to the one described for 738	

i. A given year i has ni observations of extreme rainfall with intensity y. On this basis the mean and 739	

variance are estimated for each year.  The variance must again be corrected for the correlation 740	

between stations. However, as one site often has more than one observation and at-site observations 741	

are uncorrelated ,i effn  is estimated as:  742	
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  ,i eff i effn n K            (6A) 

where i  is the average correlation between stations active in the given year and ,i effK  is given by 743	

(4A). The mean and variance are estimated by averaging over all M years. A site specific estimation 744	

of the sampling uncertainty is obtained by accounting for the actual number of active observations 745	

that year: 746	
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Figure 1. The correlogram for the spatial variation of z0 for the four durations. Dots represent the 
observed correlation averaged in selected bins, the black line represents the fitted exponential model 
given in the top left of each graph.  
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Figure 2. The OLS and GLS regression, in grey and black, respectively, showing the variation of z0 as 
a function of MAP. The marked z0 values are from stations with more than 30 years of observation and 
thereby have a high weight in the GLS model. 
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Figure 3. The OLS and GLS regression (which are identical), showing the variation of z0 as a function 
of time.  

 

 

 

 
Figure 4. Evaluation of z0i,s to select the best underlying distribution for the GLMGEE model. b) and c) 
show the residuals of Eq.(18) assuming a Gaussian distribution with identity link and a Gamma 
distribution with log link, respectively. The graphs are for a duration of 180 minutes but similar results 
are obtained for the other three durations. 
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Figure 5. The correlogram for the spatial variation of λ. Blue dots represents the observed correlation 
averaged in selected bins, the black line represents the fitted exponential model given in the top left of 
each graphs.  

 

 
Figure 6. The correlogram for the spatial variation of μ. Blue dots represents the observed correlation 
averaged in selected bins, the black line represents the fitted exponential model given in the top left of 
each graphs.  
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Figure 7. Marginal regional variation of λ from a PDS sampling with a spatio-temporal z0. OLS and 
GLS regression are shown in grey and black, respectively. The marked λ values are from stations with 
more than 30 years of observation. 
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Figure 8. Marginal temporal variation of μ from a PDS sampling with a spatio-temporal z0. OLS (grey 
line) and GLS (black line) regression estimates are almost identical.  

 
Figure 9. Marginal regional variation of μ from a PDS sampling with a spatio-temporal z0. OLS and 
GLS regression are shown in grey and black, respectively.  
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Figure 10. Evaluation of μi,s to select the best underlying distribution for the GLMGEE model. b), c) 
and d) show the residuals of Eq.(24) assuming a Gaussian distribution with identity link, a Gamma 
distribution with log link and a Gamma distribution with inverse link, respectively. The graphs are for 
a duration of 180 minutes. 
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Table 1. The estimated GLS parameters in the marginal regional regression models for z0s 
a 

Duration 

[min] 

a 

[μm/s] 

b 

[μm/s/mm] 

pb 2



 MSEε MSEε 

reduction 

10 
4.61 

(1.102) 

0.0028 

(0.0015) 
0.07 0.248 

0.492 

(80) 
9.77% 

60 
1.71 

(0.346) 

6.5.10-4  

(4.8.10-4) 
0.18 0.022 

0.041 

(80) 
5.91% 

180 
0.83 

(0.158) 

3.6.10-4  

(2.2.10-4) 
0.10 0.0050 

0.0073 

(80) 
3.57% 

1440 
0.10 

(0.037) 

2.2.10-4 

(5.2.10-5) 
<0.01 2.8.10-4 

3.7.10-4 

(80) 
21.82% 

  apb measures the significance of b, which represents the regression to MAP [mm], see Eq.(16). MSEε 
denotes the Mean Squared Error of the residuals with degrees of freedom given in parenthesis. The 
MSEε reduction is estimated by comparison with an intercept model. For the regression parameters 
standard deviation is given in parenthesis.  

 

 

Table 2. The estimated GLS parameters in the marginal temporal regression models for z0i 
a 

Duration 

[min] 

a 

[μm/s] 

c 

[μm/s/year] 

pc 2



 MSEε MSEε 

reduction 

10 
4.95 

(0.40) 

0.085 

(0.018) 
<0.01 5.4.10-4 

0.726 

(31) 
47.43% 

60 
1.78 

(0.13) 

0.021 

(0.0059) 
<0.01 4.2.10-4 

0.073 

(31) 
35.07% 

180 
0.94 

(0.060) 

0.0078 

(0.0027) 
- 0 

0.014 

(31) 
28.74% 

1440 
0.21 

(0.017) 

0.0018 

(7.5.10-4) 
- 0 

7.9.10-4  
(31) 

26.56% 

  apc measures the significance of c, which represents the regression to time [year], see Eq.(17). MSEε 
denotes the Mean Squared Error of the residuals with degrees of freedom given in parenthesis. The 
MSEε reduction is estimated by comparison with an intercept model. For the regression parameters 
standard deviation is given in parenthesis.  

 

   



Table 3. The estimated parameters in the Gaussian GLMGEE models for z0i,s, compared to the two 
marginal GLS models from Table 1 and Table 2a 

Duration 

[min] 

 a 

[μm/s] 

b 

[μm/s/mm]

pb c 

[μm/s/year] 

pc MSEε 

reduction 

10 GLMGEE 
3.79 

(0.67) 

0.0021 

(0.0009) 
0.02 

0.080 

(0.014) 
<0.01 14.3% 

 marginal GLS  
0.0028 

(0.0015) 
0.07 

0.085 

(0.018) 
<0.01  

60 GLMGEE 
1.50 

(0.23) 

5.3.10-4 

(3.1.10-4) 
0.08 

0.018 

(0.005) 
<0.01 10.0% 

 marginal GLS  
6.5.10-4  

(4.8.10-4) 
0.18 

0.021 

(0.0059) 
0.01  

180 GLMGEE 
0.72 

(0.10) 

3.8.10-4 

(1.5.10-4) 
<0.01 

0.0060 

(0.0018) 
<0.01 7.10% 

 marginal GLS  
3.6.10-4  

(2.2.10-4) 
0.10 

0.0078 

(0.0027) 
-  

1440 GLMGEE 
0.044 

(0.024) 

2.6.10-4 

(3.0.10-5) 
<0.01 

0.0013 

(4.5.10-4) 
<0.01 9.7% 

 marginal GLS  
2.2.10-4 

(5.2.10-5) 
<0.01 

0.0018 

(7.5.10-3) 
-  

  apb measures the significance of b, which represents the regression to MAP [mm], see Eq.(18). pc 
measures the significance of c, which represents the regression to time [year], see Eq.(18). The MSEε 
reduction is estimated by comparison with an intercept model. For the regression parameters standard 
deviation is given in parenthesis.   



Table 4. The estimated parameters in the Poisson GLMGEE models for Ni,s with a log-link, see Eq. 
(21)a 

 10 min 60 min 180 min 1440 min 

a 
-4.65 

 (0.048) 

-4.63 

(0.054) 

-4.60 

(0.052) 

-4.62 

(0.055) 

scale of Poisson 1.22 1.26 1.23 1.15 

λ	[no./year] 
3.48 

(0.17) 

3.56 

(0.19) 

3.67 

(0.19) 

3.58 

(0.20) 
  aa represents the model intercept, see Eq.(21). The scale measures the dispersion of the Poisson 
distribution, see Gregersen et al. [2013a]. λ is predicted from the model using an observation period of 
one year (li,s = 365 days). Uncertainty on the estimates is given in parenthesis. 

   



Table 5. The estimated parameters in the Gamma GLMGEE models for μ0i,s, compared to the two 
marginal GLS modelsa 

Duration 

[min] 

 a 

 

b 

 

pb c 

 

pc Gamma 

scale 

MSEε 

reduction 

10 GLMGEE 
0.51 

(0.19) 
-7.0.10-3 
(7.1.10-3) 

0.32 
-2.4.10-3 
(5.8.10-4) 

<0.01 0.49  

 marginal GLS  
0.13 

(0.079) 
0.10 

0.035 

(9.8.10-3) 
<0.01   

 reduced GLMGEE 
0.32 

(0.016)
  

-2.4.10-3 
(5.8.10-4) 

<0.01 0.49 3.07% 

60 GLMGEE 
1.24 

(0.64) 
-0.020 
(0.024) 

0.93 
-0.014 

(2.6.10-3) 
<0.01 0.53  

 marginal GLS  
0.043 

(0.031) 
0.17 

0.018 
(3.7.10-3) 

<0.01   

 reduced GLMGEE 
1.19 

(0.064)
  

-0.014 
(2.6.10-3) 

<0.01 0.53 9.64% 

180 GLMGEE 
4.83 

(1.32) 
-0.084 
(0.051) 

0.10 
-0.026 

(6.0.10-3) 
<0.01 0.49 7.99% 

 marginal GLS  
0.027 

(0.012) 
0.02 

7.1.10-3 
(1.7.10-3) 

<0.01   

 reduced GLMGEE 
2.61 

(0.15) 
  

-0.026 
(5.9.10-3) 

<0.01 0.50 5.64% 

1440 GLMGEE 
47.77 

(7.76) 

-1.39 

(0.29) 
<0.01 

-0.019 
(0.052) 

0.71 0.53  

 marginal GLS  
0.013 

(2.6.10-3) 
<0.01 

2.9.10-4 

(5.6.10-4) 0.60 
 

 

 reduced GLMGEE 
47.65 

(7.79) 

-1.40 

(0.30) 
<0.01   0.53 17.8% 

  aDue to the inverse link function of the GLMGEE model, parameters cannot be directly compared but 
the significance can. In the reduced GLMGEE non-significant terms have been excluded. Uncertainty 
on the parameter estimates is given in parenthesis. MSEε denotes the Mean Squared Error of the 
residuals. The MSEε reduction is estimated by comparison with an intercept model. 

   



Table 6. Estimations of  Lcv and κa 

 10 min 60 min 180 min 1440 min 

Lcv 
0.53 

(7.1.10-5) 

0.55 

(2.7.10-4) 

0.54 

(4.0.10-4) 

0.54 

(1.5.10-4) 

κ 
-0.12 

(8.8.10-4) 

-0.19 

(2.9.10-3) 

-0.16 

(4.6.10-3) 

-0.15 

(1.8.10-3) 
  aUncertainty on the parameter estimates is given in parenthesis. 
 

 

 

 

Table 7. Estimations of design intensities with a return period of 10 years, uncertainty is given in 
parenthesisa 

 
MAP 

[mm] 

μCGD 

[mm] 
10 min 

[μm/s] 

60 min 

[μm/s] 

180 min 

[μm/s] 

1440 min 

[μm/s] 

Madsen et al. (in prep) 707 25.5 
21.30 

(1.83) 

6.91 

(0.94) 

2.99 

(0.35) 

0.61 

(0.052) 

Eq.(25) with i=1996 707 25.5 
20.00 

(0.90) 

6.59 

(0.50)

2.93 

(0.26) 

0.59 

(0.032)

Eq.(25) with i=2005 707 25.5 
21.90 

(0.97)

7.42 

(0.58)

3.20 

(0.29) 

0.60 

(0.032)

Madsen et al. (in prep) 660 27.4 
20.99 

(1.81) 

6.84 

(0.93) 

3.21 

(0.38) 

0.69 

(0.062) 

Eq.(25)  with i=1996 660 27.4 
19.93 

(0.90)

6.57 

(0.50)

3.05 

(0.28) 

0.68 

(0.045)

Eq.(25) with i=2005 660 27.4 
21.84 

(0.97)

7.39 

(0.58)

3.36 

(0.31) 

0.69 

(0.045)
  aThe selected locations correspond to the two largest cities in Denmark (Aarhus and Copenhagen). 
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