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Computing interval-valued reliability measures: application of optimal 

control methods 

The paper describes an approach to deriving interval-valued reliability measures 

given partial statistical information on the occurrence of failures. We apply 

methods of optimal control theory, in particular, Pontryagin’s principle of 

maximum to solve the non-linear optimisation problem and derive the 

probabilistic interval-valued quantities of interest. It is proven that the 

optimisation problem can be translated into another problem statement that can 

be solved on the class of piecewise continuous probability density functions 

(pdfs). This class often consists of piecewise exponential pdfs which appear as 

soon as among the constraints there are bounds on a failure rate of a component 

under consideration. Finding the number of switching points of the piecewise 

continuous pdfs and their values becomes the focus of the approach described in 

the paper. Examples are provided. 

Keywords: imprecise reliability, control theory, Pontryagin’s principle of 

maximum, bounded failure rate 

1. Introduction 

This paper is yet one more attempt to improve interval-valued reliability characteristics 

given imprecise or partial information on the occurrence of failures. Imprecise 

information in our context is antonymous to a point-valued quantity and basically 

means either an interval or an upper or lower bound for this quantity. Partial statistical 

information is a probabilistic statement that imposes constraints on the distribution of 

probability masses over the set of possible outcomes. For example, the probability of 

event A is as much as two times greater than the probability of event B; or the mean 

time to failure (MTTF) of component A is greater or equal to the MTTF of component 

B. This type of statements reduces the set of possible probability distributions over a 

possibility set. Complete information about a random value is provided by a precisely 

known distribution of probabilities over each possible state. 
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There exist a number of models that strive to build upon only available (though 

imprecise and partial) information avoiding introducing assumptions that are not 

supported by observation. The reader can find good overviews of such models of 

uncertainty representation in different sources, for example, in (Walley 1991), (Helton 

and Oberkampf 2004), (Helton et al. 2010) and (Ferson 2002). The theory of lower and 

upper previsions, as it was introduced in (Walley 1991) and (Kuznetsov 1991), has 

served as the theoretical basis for generalising a number of reliability models to 

interval-valued probability measures. For a brief overview of these models see, for 

example, (Utkin and Coolen 2007). More specifically, the reliability models of non-

reparable systems of general structures (series, parallel and complex connections) 

generalised to interval-valued probability measures are presented in (Kozine and 

Filimonov 2001) and (Kozine and Utkin 2005), generalised discrete Markov chains 

used to model repairable systems are described in (Kozine and Utkin 2002a) and (Skujl 

2009), stress-strength models for structural reliability are reported in (Utkin and Kozine 

2002, 2010). The theory of lower and upper previsions has been applied to other 

important issues for reliability and risk analyses like aggregation of imprecise data 

having different degrees of confidence to different pieces of evidence (Walley 1997) 

and (Kozine and Utkin 2002b), expert judgement elicitation procedures, and decision 

making based on imprecise probabilities (Utkin and Augustin 2005, 2007). 

In (Kozine and Krymsky 2007) the authors’ belief was that the main obstacle to 

the practical application of these models is a tangible imprecision in lower and upper 

probability bounds constructed from a set of imprecise probabilistic pieces of evidence 

or/and the rapid growth in imprecision that occurs when intervals are propagated 

through mathematical models.  
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Several attempts have been undertaken to introduce some extra judgements to 

the set of constraints to limit the set of admissible probability distributions on which a 

solution is sought and, in this way, to make the bounds tighter. That is, the desire was to 

remove from the admissible set the distributions that obviously cannot be regarded as 

reasonable probabilistic models of the phenomena and/or parameters of interest. The 

results of these studies can be found in (Utkin 2002) and (Kozine and Krymsky 2007, 

2009a, 2009b, 2012). The introduction of some of additional constraints complicates the 

optimisation problem making it nonlinear.  

To be able to solve the optimisation problem that becomes non-linear after 

introducing some meaningful extra constraints another approach was suggested in 

(Kozine and Krymsky 2007). It consists in employing the calculus of variations. As 

demonstrated in (Kozine and Krymsky 2007) and then in (Kozine and Krymsky 2009a, 

2009b), this way enables to utilise a broader spectrum of statistical judgements, which 

results in tighter bounds on probability measures. The introduction of direct constraints 

on probability distributions, like an upper bound on a probability density function (pdf) 

or/and on the absolute value of its derivative, turned to provide good improvements in 

precision.  This type of constraints is not possible to utilise if Walley’s and Kuznetsov’s 

approach (Walley 1991; Kuznetsov 1991) is used in the form of a linear program as a 

tool for the construction of interval-valued probability measures. In Walley’s words this 

tool is called natural extension. 

Despite the obvious improvements in the precision of the constructed measures 

there is yet one more obstacle on the way of applying the theory of lower and upper 

previsions to reliability calculations. This obstacle stems from the underlying constraint 

imposed on the values of random variables. The random variables are bounded, which is 

rather an unacceptable assumption in reliability modelling. In the cases where time to 
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failure is the random variable of interest, which often is, we have to impose an upper 

bound on it. This bound cannot be known in principle if the system is naturally ageing. 

That is to say, the necessity to choose this bound imposed by the modelling approach 

makes the reliability measures rather arbitrary values, as the upper bound is not known 

and has to be chosen casually.  

In (Kozine and Krymsky 2012) the calculus of variations is used again to 

construct interval-valued probability measures. New constraints are introduced that 

have relevance for reliability applications. They are upper and lower bounds on failure 

rate. This has the double effect: better precision in the results and avoidance of the 

troublesome parameter – the upper bound on time to failure. Another promising 

outcome of that study was the prospective to depart from the use of rather general and 

complicated mathematical tool, the calculus of variations. As it was proven, under the 

constraints on the failure rate, optimal solutions are sought on the class of piecewise 

exponential distributions. In this way, the problem statement can simply be changed to 

finding the breaking points at which the probability density function either abruptly 

jumps up or drops. 

Working directly with the class of piecewise exponential distributions may 

appear computationally easier compared to solving the non-linear optimisation problem. 

This gives a hope for developing a practical and operational method for constructing 

interval reliability models based on partial and imprecise data. On this way, we have 

found a solution to removing one more obstacle to an easier derivation of the solution. 

In this paper we prove how many switching points a piecewise pdf can have depending 

on the types of the pieces of information (constraints) we have at hand. To be able to 

prove this, we have employed methods of optimal control theory (the approach 

originally suggested in (Krymsky 2014)) and, in particular, Pontryagin’s maximum 
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principle (Pontryagin et al. 1962; Hestenes 1966). Adjusting the original problem 

statement to the problem of control theory, translating it into a problem on the class of 

piecewise continuous (in particular, piecewise exponential) probability distributions and 

providing a solution to defining the number of switching points for this class of 

distribution are the key points described in this paper.  

2. Deriving interval-valued probability measures: problem statement 

Let us formulate a rather general problem of computing bounds 𝑀𝑀 and 𝑀𝑀 on the 

expected value of an arbitrary function 𝑔𝑔(𝑡𝑡) over an interval [0,𝑇𝑇∗] that is a sample 

space of a random variable 𝑇𝑇 (time to failure), given the upper, 𝑎𝑎𝑖𝑖 = 𝑀𝑀�𝑓𝑓𝑖𝑖(𝑡𝑡)�, and 

lower, 𝑎𝑎𝑖𝑖 = 𝑀𝑀�𝑓𝑓𝑖𝑖(𝑡𝑡)�, bounds on the expected values of other arbitrary functions 𝑓𝑓𝑖𝑖(𝑡𝑡), 

 𝑖𝑖 ≤ 𝑛𝑛. As a particular case, the expected values can be known precisely meaning that 

for every 𝑖𝑖, the lower and upper bounds are equal to each other. If 𝑓𝑓𝑖𝑖(𝑡𝑡) = 𝑡𝑡, the 

expected value is the first moment. If 𝑓𝑓𝑖𝑖(𝑡𝑡) = 𝑡𝑡2, the expected value is the second 

moment, etc. In case 𝑓𝑓𝑖𝑖(𝑡𝑡) = 𝐼𝐼[𝑡𝑡1,𝑡𝑡2](𝑡𝑡), where 𝐼𝐼[𝑡𝑡1,𝑡𝑡2](𝑡𝑡) is an indicator function equal to 

1 when 𝑡𝑡 ∈ [𝑡𝑡1, 𝑡𝑡2], and equal to 0 otherwise, the expected value is the probability 

Pr(𝑇𝑇 ∈ [𝑡𝑡1, 𝑡𝑡2]).  

The problem is stated as follows: 

 𝑀𝑀(𝑔𝑔) = inf
{𝜌𝜌(𝑡𝑡)}

∫ 𝑔𝑔(𝑡𝑡)𝜌𝜌(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇∗

0 ,    𝑀𝑀(𝑔𝑔) = sup
{𝜌𝜌(𝑡𝑡)}

∫ 𝑔𝑔(𝑡𝑡)𝜌𝜌(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇∗

0 ,                      (1) 

subject to 

𝑎𝑎𝑖𝑖 ≤ ∫ 𝑓𝑓𝑖𝑖(𝑡𝑡)𝜌𝜌(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇∗

0 ≤ 𝑎𝑎𝑖𝑖,    𝑖𝑖 = 1,2, … , 𝑛𝑛,    𝜌𝜌(𝑡𝑡) ≥ 0,  and  ∫ 𝜌𝜌(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇∗

0 = 1,      (2) 
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where 𝜌𝜌(𝑡𝑡) is the pdf of a random variable 𝑇𝑇. Here the inf and sup are taken over the 

set {𝜌𝜌(𝑡𝑡)} of all pdfs matching constraints (2). Specifically, each constraint in (2) is 

associated with a subset of {𝜌𝜌(𝑡𝑡)}, and the intersection of these subsets, if not empty, 

defines the admissible set of distributions in which there are pdfs on which solutions of 

the optimization problems (1)-(2) are found.  

As shown in (Kozine and Krymsky 2007), imposing a direct constraint on 𝜌𝜌(𝑡𝑡) 

in the form of an upper bound, 𝜌𝜌(𝑡𝑡) ≤ 𝐾𝐾, makes the interval [𝑀𝑀(𝑔𝑔),𝑀𝑀(𝑔𝑔)] tighter. An 

additional improvement is achieved if bounds are imposed on pdf’s derivative (Kozine 

and Krymsky 2009b). A far reaching finding for reliability applications was to assume 

that an upper bound 𝜆𝜆 and a lower bound 𝜆𝜆 for a failure rate 𝜆𝜆(𝑡𝑡) are known. That is 

𝜆𝜆 ≤ 𝜆𝜆(𝑡𝑡) ≤ 𝜆𝜆 (Kozine and Krymsky 2012). Introducing this type of constraints in 

addition to (2) makes the problem nonlinear; the resulting problem can be solved with 

the calculus of variations (Kozine and Krymsky 2007, 2009a, 2009b).  

In this paper we undertake yet one more attempt to tackle the problem 

differently. We suggest employing optimal control theory (Pontryagin et al. 1962; 

Hestenes 1966) to solve the nonlinear program and eventually simplify the derivation of 

imprecise reliability assessments. We depart from the ideas described in (Krymsky 

2014) and derive a new optimization problem focusing on the search of ‘switching 

points’ in piecewise pdfs which provide min and max of the objective function, and we 

demonstrate how this approach may become a bridge to a smaller problem – solving 

complexity and an increased precision of interval-valued reliability assessments. 
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3. A reliability model based on optimal control theory 

A typical model in control theory describes the relations between ‘inputs’ (control 

signals) and ‘outputs’ (resulted parameters) of a dynamic process. The system dynamics 

is often described by the differential equations in a state space (Friedland 2005) 

𝑑𝑑𝑥𝑥𝑙𝑙(𝑡𝑡) 𝑑𝑑𝑡𝑡⁄ = 𝜙𝜙𝑙𝑙(𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡), … , 𝑥𝑥𝑟𝑟(𝑡𝑡),𝑢𝑢(𝑡𝑡), 𝑡𝑡), 𝑙𝑙 = 1,2, … , 𝑟𝑟.                          (3) 

Here 𝑢𝑢(𝑡𝑡) is a control (input) signal, 𝑥𝑥𝑙𝑙(𝑡𝑡),  𝑙𝑙 = 1,2, … , 𝑟𝑟, are state space 

coordinates and  𝜙𝜙𝑙𝑙(•), 𝑙𝑙 = 1,2, … , 𝑟𝑟, are the real-valued functions. 

Assume now that 𝜌𝜌(𝑡𝑡) is the control substituting 𝑢𝑢(𝑡𝑡) in (3) and  𝐹𝐹(𝑡𝑡) =

∫ 𝐼𝐼[0,𝑡𝑡](𝑦𝑦)𝜌𝜌(𝑦𝑦)𝑑𝑑𝑦𝑦𝑇𝑇∗

0  is a state space coordinate substituting 𝑥𝑥1(𝑡𝑡) in (3). 𝐹𝐹(𝑡𝑡)  is a 

cumulative distribution function (cdf), and 𝐼𝐼[0,𝑡𝑡](𝑦𝑦) equals 1 if 𝑦𝑦 ∈ [0, 𝑡𝑡], or equals 0 

otherwise. Such model works if 𝑇𝑇∗ → ∞. Note that in terms of control theory, the 

situation in which 𝑇𝑇∗ → ∞  is allowed, corresponds to the case of the so-called ‘infinite 

horizon control’ (Carlson et al. 1991). 

Similarly to (3) we can write 

𝑑𝑑𝐹𝐹(𝑡𝑡) 𝑑𝑑𝑡𝑡⁄ = 𝜙𝜙1(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡) = 𝜌𝜌(𝑡𝑡).                                        (4) 

In terms of control theory, we need to find the control functions 𝜌𝜌(𝑡𝑡) for which 

the expectation 𝑀𝑀(𝑔𝑔) (1) attains its maximum (minimum) subject to constraints on 𝜌𝜌(𝑡𝑡) 

and its functions. A solution to this ‘optimal control problem’ can be obtained by 

applying Pontryagin’s maximum principle (Pontryagin et al. 1962;  Hestenes 1966). Let 

us write the following set of equations (it is assumed that besides constraints (2) the 

other two, 𝜌𝜌(𝑡𝑡) ≤ 𝐾𝐾 and 𝜆𝜆 ≤ 𝜆𝜆(𝑡𝑡) ≤ 𝜆𝜆, are imposed): 

𝜙𝜙0(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡) = 𝑔𝑔(𝑡𝑡)𝜌𝜌(𝑡𝑡), 

ℎ𝑘𝑘(𝑡𝑡) = 𝑓𝑓𝑘𝑘(𝑡𝑡)𝜌𝜌(𝑡𝑡) if 𝑘𝑘 = 1,2, … ,𝑛𝑛 or ℎ𝑘𝑘(𝑡𝑡) = −𝑓𝑓𝑘𝑘−𝑛𝑛(𝑡𝑡)𝜌𝜌(𝑡𝑡)  
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if 𝑘𝑘 = 𝑛𝑛 + 1,𝑛𝑛 + 2, … ,2𝑛𝑛;ℎ2𝑛𝑛+1(𝑡𝑡) = 𝜌𝜌(𝑡𝑡),                                          (5) 

 𝑆𝑆𝑘𝑘 = −𝑎𝑎𝑘𝑘 if 𝑘𝑘 = 1,2, … ,𝑛𝑛 or 𝑆𝑆𝑘𝑘 = 𝑎𝑎𝑘𝑘 if 𝑘𝑘 = 𝑛𝑛 + 1,𝑛𝑛 + 2, … ,2𝑛𝑛, 

𝜉𝜉1(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡) = 𝜌𝜌(𝑡𝑡);   𝜉𝜉2(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡) = 𝐾𝐾 − 𝜌𝜌(𝑡𝑡),                (6) 

𝜉𝜉3(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡) = 𝜌𝜌(𝑡𝑡) �1 − 𝐹𝐹(𝑡𝑡)�⁄ − 𝜆𝜆,   𝜉𝜉4(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡) = 𝜆𝜆 − 𝜌𝜌(𝑡𝑡) �1 − 𝐹𝐹(𝑡𝑡)�⁄ .     (7) 

Assume the optimal solution of the formulated problem is 𝜌𝜌(𝑡𝑡) = 𝜌𝜌∗(𝑡𝑡) and, 

correspondingly, 𝐹𝐹(𝑡𝑡) = 𝐹𝐹∗(𝑡𝑡). Then, according to (Hestenes 1966) there exist the 

following functions H and L: 

𝐻𝐻(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡,𝛍𝛍) = 𝜓𝜓0𝜙𝜙0(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡) + 𝜓𝜓1(𝑡𝑡)𝜙𝜙1(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡) + � 𝜇𝜇𝑘𝑘ℎ𝑘𝑘(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡),
2𝑛𝑛+1

𝑘𝑘=1

 

               𝐿𝐿(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡,𝛍𝛍) = 𝐻𝐻(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡,𝛍𝛍) + �𝜈𝜈𝑗𝑗(𝑡𝑡)𝜉𝜉𝑗𝑗(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡),
4

𝑗𝑗=1

 
 

    (8) 

in which 𝛍𝛍 = (𝜇𝜇1,𝜇𝜇2, … , 𝜇𝜇2𝑛𝑛+1) is the vector of multipliers such that the following 

relations hold: 

 (a) The multiplier 𝜓𝜓1(𝑡𝑡) is continuous and satisfies the conjugate equation 

−𝑑𝑑𝜓𝜓1(𝑡𝑡) 𝑑𝑑𝑡𝑡⁄ = (𝜕𝜕 𝜕𝜕𝐹𝐹⁄ )𝐻𝐻(𝐹𝐹(𝑡𝑡),𝜌𝜌∗(𝑡𝑡), 𝑡𝑡,𝛍𝛍)|𝐹𝐹(𝑡𝑡)=𝐹𝐹∗(𝑡𝑡). 

In our case 𝑑𝑑𝜓𝜓1(𝑡𝑡) 𝑑𝑑𝑡𝑡⁄ = 0, so 𝜓𝜓1(𝑡𝑡) = 𝜓𝜓1 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡. 

(b) The multipliers 𝜓𝜓0, 𝜇𝜇𝑘𝑘,𝑘𝑘 = 1,2, … ,2𝑛𝑛 + 1, are also constants; 𝜓𝜓0 ≥ 0 and 

𝜇𝜇𝑘𝑘 ≥ 0, 𝑘𝑘 = 1,2, … ,2𝑛𝑛, with 

𝜇𝜇𝑘𝑘 �� ℎ𝑘𝑘(𝐹𝐹∗(𝑡𝑡),𝜌𝜌∗(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑡𝑡
𝑇𝑇∗

0
+ 𝑆𝑆𝑘𝑘� = 0, 𝑘𝑘 = 1,2, … ,2𝑛𝑛 + 1. 
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(c) The multipliers 𝜈𝜈𝑗𝑗(𝑡𝑡), 𝑗𝑗 = 1,2,3,4, are piecewise continuous over each 

interval of continuity of 𝜌𝜌∗(𝑡𝑡). Moreover for each 𝑗𝑗 = 1,2,3,4 we have 

𝜈𝜈𝑗𝑗(𝑡𝑡) ≥ 0 and 𝜈𝜈𝑗𝑗(𝑡𝑡)𝜉𝜉𝑗𝑗(𝐹𝐹∗(𝑡𝑡),𝜌𝜌∗(𝑡𝑡), 𝑡𝑡) = 0.                                             (9) 

The maximum principle is stated by the inequality 

𝐻𝐻(𝐹𝐹∗(𝑡𝑡),𝜌𝜌∗(𝑡𝑡), 𝑡𝑡,𝛍𝛍) ≥ 𝐻𝐻(𝐹𝐹∗(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡,𝛍𝛍), 

which holds for all [𝐹𝐹∗(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡] ∈ 𝐴𝐴, where 𝐴𝐴 is the set of admissible solutions, i.e., 

solutions that match the set of constraints. The principle implies that (Hestenes 1966) 

(𝜕𝜕 𝜕𝜕𝜌𝜌⁄ )𝐿𝐿(𝐹𝐹∗(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡,𝛍𝛍)|𝜌𝜌(𝑡𝑡)=𝜌𝜌∗(𝑡𝑡) = 0.                       (10) 

By substituting the expression (8) into (10) and, sequentially, substituting the 

other variables defined by the above formulas, we obtain the following equality: 

𝜓𝜓0𝑔𝑔(𝑡𝑡) + 𝜓𝜓1 + �(𝜇𝜇𝑘𝑘 − 𝜇𝜇𝑘𝑘+𝑛𝑛)𝑓𝑓𝑘𝑘(𝑡𝑡)
𝑛𝑛

𝑘𝑘=1

+ 𝜇𝜇2𝑛𝑛+1 + 𝜈𝜈1(𝑡𝑡) − 𝜈𝜈2(𝑡𝑡) +
𝜈𝜈3(𝑡𝑡) − 𝜈𝜈4(𝑡𝑡)

1 − 𝐹𝐹∗(𝑡𝑡)
= 0..  (11) 

Meanwhile, the equations (9) show that in each interval of 𝜌𝜌∗(𝑡𝑡) continuity at 

least one of the functions 𝜈𝜈𝑗𝑗(𝑡𝑡) or 𝜉𝜉𝑗𝑗(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡), 𝑗𝑗 = 1,2,3,4, equals zero. Assume 

first that 𝜈𝜈1(𝑡𝑡) = 𝜈𝜈2(𝑡𝑡) = 𝜈𝜈3(𝑡𝑡) = 𝜈𝜈4(𝑡𝑡) = 0, then the expression (11) is reduced to 

𝑔𝑔(𝑡𝑡) = 𝑐𝑐0 + �𝑐𝑐𝑘𝑘𝑓𝑓𝑘𝑘(𝑡𝑡)
𝑛𝑛

𝑘𝑘=1

,                                                 (12) 

where 𝑐𝑐0 = −𝜓𝜓1 + 𝜇𝜇2𝑛𝑛+1 𝜓𝜓0⁄ ; 𝑐𝑐𝑘𝑘 = −𝜇𝜇𝑘𝑘 − 𝜇𝜇𝑘𝑘+𝑛𝑛 𝜓𝜓0⁄ , 𝑘𝑘 = 1,2, … ,𝑛𝑛. 

The only special case in which the equality (12) is satisfied for reliability 

applications is when the objective function (1) and the constraints (2) correspond to the 

values of probabilities at different points of time. For instance, (12) can be satisfied if 

 𝑛𝑛 = 1, 𝑔𝑔(𝑡𝑡) = 𝐼𝐼[0,𝑡𝑡∗](𝑡𝑡), 𝑓𝑓1(𝑡𝑡) = 𝐼𝐼[0,𝑞𝑞](𝑡𝑡) and 𝑞𝑞 < 𝑡𝑡∗. The optimisation problem 
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corresponding to this case is to find min and max of  𝑀𝑀(𝑔𝑔) = 𝑀𝑀�𝐼𝐼[0,𝑡𝑡∗](𝑡𝑡)� = 𝐹𝐹(𝑡𝑡∗), 

which can be interpreted as the probability of failure at time 𝑡𝑡∗, subject to the known 

interval-valued probability of failure at time 𝑞𝑞 

𝑎𝑎1 ≤ ∫ 𝑓𝑓1(𝑡𝑡)𝜌𝜌(𝑡𝑡)𝑑𝑑𝑡𝑡 = ∫ 𝐼𝐼[0,𝑞𝑞](𝑡𝑡)𝜌𝜌(𝑡𝑡)𝑑𝑑𝑡𝑡∞
0 = 𝐹𝐹(𝑞𝑞) ≤ 𝑎𝑎1

∞
0 . 

Equation (12) is satisfied if 𝑐𝑐0 = 0.5 and 𝑐𝑐1 = 0.5, which is a rather trivial case giving 

us the solution for the probability of failure at time 𝑡𝑡∗ 

𝑎𝑎1 ≤ 𝑀𝑀(𝑔𝑔) = 𝑀𝑀�𝐼𝐼[0,𝑡𝑡∗](𝑡𝑡)� = 𝐹𝐹(𝑡𝑡∗) ≤ 1. 

Possible location of the curve 𝑦𝑦(𝑡𝑡) = 𝑔𝑔(𝑡𝑡) − 𝑐𝑐0 − 𝑐𝑐1𝑓𝑓1(𝑡𝑡) in the Cartesian plane for 

𝑐𝑐0 = 0.5; 𝑐𝑐1 = 0.5 is shown in Figure 1. 

 

Figure 1. Location of the curve 𝑦𝑦(𝑡𝑡) = 𝑔𝑔(𝑡𝑡) − 𝑐𝑐0 − 𝑐𝑐1𝑓𝑓1(𝑡𝑡) in case 𝑔𝑔(𝑡𝑡) =

𝐼𝐼[0,𝑡𝑡∗](𝑡𝑡) and 𝑓𝑓1(𝑡𝑡) = 𝐼𝐼[0,𝑞𝑞](𝑡𝑡) 

 

However, a majority of the reliability assessments of interest and available data cannot 

be expressed as linear combinations of the functions 𝑓𝑓𝑘𝑘(𝑡𝑡), 𝑘𝑘 = 1,2, … ,𝑛𝑛, so the 

condition (12) is normally not satisfied. Hence at least one of the functions 

−0.5 

𝑦𝑦(𝑡𝑡) 

0 𝑞𝑞 𝑡𝑡∗ 𝑡𝑡 

−1.0 
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𝜈𝜈1(𝑡𝑡), 𝜈𝜈2(𝑡𝑡), 𝜈𝜈3(𝑡𝑡), 𝜈𝜈4(𝑡𝑡)  in (11) is not equal to zero. If 𝜈𝜈𝑗𝑗(𝑡𝑡) ≠ 0 for any 𝑗𝑗 = 𝑗𝑗∗, then 

the corresponding 𝜉𝜉𝑗𝑗∗(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡) must be equal to zero in accordance with (9). This 

means that either 𝜌𝜌(𝑡𝑡) = 𝐾𝐾 or a failure rate 𝜆𝜆(𝑡𝑡) attains one of its boundary values 

𝜆𝜆 or 𝜆𝜆. This follows from the expressions (6), (7). As the bounds 𝜆𝜆 or 𝜆𝜆 are constants, 

the only probability distribution having as a parameter a constant failure rate is the 

exponential distribution. Thus we can conclude that the optimal pdf 𝜌𝜌(𝑡𝑡) = 𝜌𝜌∗(𝑡𝑡) is 

compounded of some intervals of continuity, and at each time interval (𝑡𝑡𝑖𝑖, 𝑡𝑡𝑖𝑖+1) either 

𝜌𝜌∗(𝑡𝑡) = 𝐾𝐾 or one of the following two equalities holds: 𝜌𝜌∗(𝑡𝑡) = 𝑝𝑝(𝑡𝑡𝑖𝑖)𝜆𝜆 exp �−𝜆𝜆(𝑡𝑡 −

𝑡𝑡𝑖𝑖)� or 𝜌𝜌∗(𝑡𝑡) = 𝑝𝑝(𝑡𝑡𝑖𝑖)𝜆𝜆exp�−𝜆𝜆(𝑡𝑡 − 𝑡𝑡𝑖𝑖)� . Here 𝑝𝑝(𝑡𝑡𝑖𝑖) and 𝑝𝑝(𝑡𝑡𝑖𝑖) are the survival 

probabilities that need to be computed.  

4. Number of continuity intervals of piecewise probability densities 

To estimate the number of continuity intervals for the pdfs at which 𝑀𝑀(𝑔𝑔) attains its 

maximum or minimum, we rewrite expression (8) by plugging into it expressions (4) 

and (5): 

𝐻𝐻(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡,𝜓𝜓1(𝑡𝑡),𝛍𝛍) = 𝜓𝜓0𝑔𝑔(𝑡𝑡)𝜌𝜌(𝑡𝑡) + 𝜓𝜓1𝜌𝜌(𝑡𝑡) 

+�𝜇𝜇𝑘𝑘𝑓𝑓𝑘𝑘(𝑡𝑡)𝜌𝜌(𝑡𝑡) − � 𝜇𝜇𝑘𝑘𝑓𝑓𝑘𝑘−𝑛𝑛(𝑡𝑡)𝜌𝜌(𝑡𝑡) + 𝜇𝜇2𝑛𝑛+1 𝜌𝜌(𝑡𝑡)
2𝑛𝑛

𝑘𝑘=𝑛𝑛+1

𝑛𝑛

𝑘𝑘=1

= 𝛾𝛾(𝑡𝑡)𝜌𝜌(𝑡𝑡), 

where 𝛾𝛾(𝑡𝑡) = 𝛾𝛾0𝑔𝑔(𝑡𝑡) + 𝛾𝛾1𝑓𝑓1(𝑡𝑡) + 𝛾𝛾2𝑓𝑓2(𝑡𝑡)+⋯+ 𝛾𝛾𝑛𝑛𝑓𝑓𝑛𝑛(𝑡𝑡) + 𝛾𝛾𝑛𝑛+1,  and 

𝛾𝛾0 = 𝜓𝜓0;  𝛾𝛾1 = 𝜇𝜇1 − 𝜇𝜇𝑛𝑛+1;  𝛾𝛾2 = 𝜇𝜇2 − 𝜇𝜇𝑛𝑛+2 ; … ; 𝛾𝛾𝑛𝑛 = 𝜇𝜇𝑛𝑛 − 𝜇𝜇2𝑛𝑛 ;   𝛾𝛾𝑛𝑛+1 = 𝜓𝜓1 + 𝜇𝜇2𝑛𝑛+1 . 

In some points 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, … , 𝑡𝑡𝑍𝑍 the function 𝛾𝛾(𝑡𝑡) changes its sign, so it becomes 

necessary to switch the value of 𝜌𝜌(𝑡𝑡) to provide the maximum value of 

𝐻𝐻(𝐹𝐹(𝑡𝑡),𝜌𝜌(𝑡𝑡), 𝑡𝑡,𝜓𝜓1(𝑡𝑡),𝛍𝛍) according to the maximum principle. In other words, we have 
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to select maximum values of 𝜌𝜌(𝑡𝑡) if 𝛾𝛾(𝑡𝑡) ≥ 0 and minimum values of 𝜌𝜌(𝑡𝑡) otherwise. 

This leads us to the conclusion that the number of the continuity intervals of the pdf 

𝜌𝜌∗ = 𝜌𝜌(𝑡𝑡) is equal to 𝑍𝑍 + 1, where 𝑍𝑍 is the number of real positive roots of the equation 

𝛾𝛾0𝑔𝑔(𝑡𝑡) + 𝛾𝛾1𝑓𝑓1(𝑡𝑡) + 𝛾𝛾2𝑓𝑓2(𝑡𝑡)+⋯+ 𝛾𝛾𝑛𝑛𝑓𝑓𝑛𝑛(𝑡𝑡) + 𝛾𝛾𝑛𝑛+1 = 0.                        (13) 

In the general case, the value of 𝑍𝑍 remains unknown. However, in the majority of 

practical situations, we can easily estimate the maximum number of the positive roots. 

Namely, if objective function 𝑀𝑀(𝑔𝑔) is a probability and the constraints are imposed on 

probabilities too (see (1) and (2)), i.e., if 𝑔𝑔(𝑡𝑡) and 𝑓𝑓𝑖𝑖(𝑡𝑡) are some indicator functions, 

then the number of roots 𝑍𝑍 is known precisely and is equal to 2. In other cases, where 

some of the functions 𝑔𝑔(𝑡𝑡) and 𝑓𝑓𝑖𝑖(𝑡𝑡)  are different from indicator functions, the 

maximal possible number of positive roots is equal to the order of the polynomial. 

However, an exact number 𝑍𝑍 is unknown.  

This conclusion gives us the key to understanding the shape of the pdfs for 

which 𝑀𝑀(𝑔𝑔) attains its lower bound 𝑀𝑀(𝑔𝑔) and its upper bound  𝑀𝑀(𝑔𝑔). 

5. Examples 

Example 1. Let us assume that we are interested in knowing bounds 𝑅𝑅(𝑡𝑡∗) and 𝑅𝑅(𝑡𝑡∗) 

on a system’s reliability at time 𝑡𝑡∗ 

𝑅𝑅(𝑡𝑡∗) = 1 −� 𝐼𝐼[0,𝑡𝑡∗](𝑡𝑡)𝜌𝜌(𝑡𝑡)𝑑𝑑𝑡𝑡
∞

0
. 

What is known are the constraints on the failure rate 𝜆𝜆 ≤ 𝜆𝜆(𝑡𝑡) ≤ 𝜆𝜆 and the reliability of 

this system 𝑅𝑅(𝑞𝑞) at another time 𝑞𝑞 < 𝑡𝑡∗. 

Kozine, I., & Krymsky, V. (2017). Computing interval-valued reliability measures: 
application of optimal control methods. International Journal of General Systems, 46(2), 
144-157. DOI: 10.1080/03081079.2017.1294167 



This is just a case for which the condition (12) can be satisfied (see also the 

corresponding Figure 1). The time 𝑡𝑡 = 𝑞𝑞 becomes the ‘switching point’ between the 

two continuity intervals of an optimal pdf. 

For 0 ≤ 𝑡𝑡 < 𝑞𝑞 we have an infinite number of admissible pdfs which can provide 

the reliability  𝑅𝑅(𝑞𝑞) = 1 − ∫ 𝐼𝐼[0,𝑞𝑞](𝑡𝑡)𝜌𝜌(𝑡𝑡)𝑑𝑑𝑡𝑡∞
0 . For 𝑞𝑞 ≤ 𝑡𝑡 < 𝑡𝑡∗ < ∞ we have to use the 

boundary values of the failure rate. If we are interested in 𝑅𝑅(𝑡𝑡∗) , then for 𝑡𝑡 > 𝑞𝑞, 

𝜆𝜆(𝑡𝑡) = 𝜆𝜆, otherwise 𝜆𝜆(𝑡𝑡) = 𝜆𝜆 . The shape of 𝜌𝜌∗(𝑡𝑡) for which 𝑅𝑅(𝑡𝑡∗)  attains its minimum 

is shown in Figure 2.  

 

 

Figure 2. Optimal pdf for which 𝑅𝑅(𝑡𝑡∗)  attains its minimum 

 

Finally, 𝑅𝑅(𝑡𝑡∗) = 𝑅𝑅(𝑞𝑞)exp �−𝜆𝜆(𝑡𝑡∗ − 𝑞𝑞)� ;  𝑅𝑅(𝑡𝑡∗) = 𝑅𝑅(𝑞𝑞)exp �−𝜆𝜆(𝑡𝑡∗ − 𝑞𝑞)� . 

Example 2. Now assume that we are interested in knowing the bounds  𝜏𝜏 and 𝜏𝜏 on the 

mean time to failure 𝜏𝜏 = ∫ 𝑡𝑡𝜌𝜌(𝑡𝑡)𝑑𝑑𝑡𝑡∞
0  given the same constraints as in the previous 

example: 𝜆𝜆 ≤ 𝜆𝜆(𝑡𝑡) ≤ 𝜆𝜆 and the reliability of the system 𝑅𝑅(𝑞𝑞) at time q. 

In this case we cannot find any continuity interval of 𝜌𝜌(𝑡𝑡) for which equality 

(12) is satisfied. So, the pdfs for which the value of  𝜏𝜏 attains its lower or upper bound 

0 

𝑅𝑅(𝑞𝑞)𝜆𝜆 

𝜌𝜌∗(𝑡𝑡) 

𝑡𝑡∗ 𝑡𝑡 

𝜆𝜆 

𝑞𝑞 

𝜆𝜆 𝜌𝜌(𝑡𝑡) = 𝑅𝑅(𝑞𝑞)𝜆𝜆 exp�−𝜆𝜆(𝑡𝑡 − 𝑞𝑞)�  Infinite number 
of acceptable pdf’s 
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may have the form of either an exponential or a piecewise exponential function with the 

failure rate 𝜆𝜆(𝑡𝑡) equal either to 𝜆𝜆 or 𝜆𝜆 within each continuity interval of 𝜌𝜌(𝑡𝑡). 

Equation (13) here looks as follows: 

𝛾𝛾(𝑡𝑡) = 𝛾𝛾0𝑔𝑔(𝑡𝑡) + 𝛾𝛾1𝑓𝑓1(𝑡𝑡) + 𝛾𝛾2 = 0, 

where 𝑔𝑔(𝑡𝑡) = 𝑡𝑡, 𝑓𝑓1(𝑡𝑡) = 𝐼𝐼[0,𝑞𝑞](𝑡𝑡). 

A few possible situations with location of 𝛾𝛾(𝑡𝑡) curve in the Cartesian plane are 

illustrated in Figure 3, a-d. 

 

 

Figure 3. Possible locations of the curve 𝛾𝛾(𝑡𝑡) = 𝛾𝛾0𝑔𝑔(𝑡𝑡) + 𝛾𝛾1𝑓𝑓1(𝑡𝑡) + 𝛾𝛾2 

 

The situation shown in Figure 3, a takes place if, for instance, 𝑅𝑅(𝑞𝑞) = exp�−𝜆𝜆𝑞𝑞�. The 

lower bound 𝜏𝜏 is simply attained on 𝜌𝜌(𝑡𝑡) = 𝜆𝜆 exp�−𝜆𝜆𝑞𝑞� without any ‘switching 

points’. So 𝜏𝜏 = 1/𝜆𝜆 . 

𝛾𝛾(𝑡𝑡) 

0 𝑞𝑞 𝑡𝑡 𝑞𝑞 0 𝑡𝑡 

𝛾𝛾(𝑡𝑡) 

𝛾𝛾(𝑡𝑡) 𝛾𝛾(𝑡𝑡) 

0 0 𝑞𝑞 𝑞𝑞 𝑡𝑡 𝑡𝑡 𝑡𝑡1 𝑡𝑡1 𝑡𝑡2 

𝑎𝑎) 𝑏𝑏) 

𝑐𝑐) 𝑑𝑑) 
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The disposition presented in Figure 3, b corresponds in particular to the 

following problem statement: we are interested in 𝜏𝜏  under the following constraint: 

𝑅𝑅(𝑞𝑞) = exp�−𝜆𝜆𝑞𝑞�. In this case the optimal pdf takes a piecewise exponential form with 

one ‘switching point’ at 𝑡𝑡 = 𝑞𝑞 (Figure 4). The lower bound of the mean time to failure 

is derived as follows:  

𝜏𝜏 = � 𝑃𝑃(𝑡𝑡)𝑑𝑑𝑡𝑡 =
1
𝜆𝜆
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Figure 4: Optimal pdf for which 𝜏𝜏 attains its minimum in case 𝑅𝑅(𝑞𝑞) = exp�−𝜆𝜆𝑞𝑞� 

 

The problem becomes more complicated if the following strong inequalities hold: 

exp�−𝜆𝜆𝑞𝑞� < 𝑅𝑅(𝑞𝑞) < exp (−𝜆𝜆𝑞𝑞). For this case, we may have two or three switching 

points (figure 3,c,d). Note that one of those switching points corresponds to 𝑡𝑡 = 𝑞𝑞. Let 

us start from the situation with two switching points (Figure 3,c) and find the value of 

 𝑡𝑡1 (Figure 5) for the case when we are searching for 𝜏𝜏.  

We have 𝑅𝑅(𝑞𝑞) = exp�−𝜆𝜆𝑡𝑡1� exp ��−𝜆𝜆(𝑞𝑞 − 𝑡𝑡1��, from which we obtain 

𝑡𝑡1 = −�ln𝑅𝑅(𝑞𝑞) + 𝜆𝜆𝑞𝑞�/(𝜆𝜆 − 𝜆𝜆). 
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Figure 5. Optimal pdf for which 𝜏𝜏 attains its minimum in case exp�−𝜆𝜆𝑞𝑞� < 𝑅𝑅(𝑞𝑞) <

exp (−𝜆𝜆𝑞𝑞) 

 

Hence 

𝜏𝜏 = 𝜏𝜏(2) = � exp (−𝜆𝜆𝑡𝑡)𝑑𝑑𝑡𝑡 + exp (−𝜆𝜆𝑡𝑡1)� exp �−𝜆𝜆(𝑡𝑡 − 𝑡𝑡1)� 𝑑𝑑𝑡𝑡
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=
�1 + 𝑅𝑅(𝑞𝑞) − exp�−𝜆𝜆𝑡𝑡1��

𝜆𝜆
+

1
𝜆𝜆
�1 − exp �−𝜆𝜆(𝑞𝑞 − 𝑡𝑡1)�� exp�−𝜆𝜆𝑡𝑡1�. 

Finally, consider the possibility of having three switching points 𝑡𝑡1, 𝑞𝑞, 𝑡𝑡2 (Figure 

3,d) provided that exp�−𝜆𝜆𝑞𝑞� < 𝑅𝑅(𝑞𝑞) < exp�−𝜆𝜆𝑞𝑞�. It can be derived that 𝜏𝜏(3) = 𝜏𝜏(2) +

(𝜆𝜆 − 𝜆𝜆)𝑅𝑅(𝑞𝑞)exp�−𝜆𝜆(𝑡𝑡2 − 𝑞𝑞)�/(𝜆𝜆𝜆𝜆), and consequently 𝜏𝜏(3) > 𝜏𝜏(2) for each 𝑡𝑡2 > 𝑞𝑞. This 

means that the pdf with the two switching points corresponds to the optimal solution. 

The derivation of a formula for 𝜏𝜏 is similar to that demonstrated above for 𝜏𝜏. The 

graph of the optimizing pdf for the two switching points is given in Figure 6.  
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Figure 6. Optimal pdf for which 𝜏𝜏 attains its maximum in case exp�−𝜆𝜆𝑞𝑞� < 𝑅𝑅(𝑞𝑞) <

exp (−𝜆𝜆𝑞𝑞) 

The switching point can now be obtained as 𝑡𝑡1∗ = �ln𝑅𝑅(𝑞𝑞) + 𝜆𝜆𝑞𝑞�/(𝜆𝜆 − 𝜆𝜆).  

The upper bound is computed as follows  
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Consider the case of an optimizing pdf with the three switching points. It can be derived 

that 𝜏𝜏(3) = 𝜏𝜏(2) − (𝜆𝜆 − 𝜆𝜆)𝑅𝑅(𝑞𝑞)exp�−𝜆𝜆(𝑡𝑡2 − 𝑞𝑞)�/(𝜆𝜆𝜆𝜆),  and consequently 𝜏𝜏(3) < 𝜏𝜏(2) 

for each 𝑡𝑡2 > 𝑞𝑞. So, the pdf with the two switching points just corresponds to the 

optimal solution. which 𝑀𝑀(𝑔𝑔) attains its lower bound 𝑀𝑀(𝑔𝑔) and its upper bound  𝑀𝑀(𝑔𝑔). 

6. Problem statement for the class of piecewise exponential distributions 

The two examples in the previous section are special cases for which it was possible to 

derive analytical expressions for the lower and upper bounds of the reliability 

characteristics. Perhaps other formulas for reliability applications can be derived 

assuming that time to failure is governed by a probability distribution confined to the 

class of piecewise exponential distributions. However, numerical values of the 

reliability measures of interest can always be derived as a solution to an optimisation 
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problem for a multivariate real function that, from the computational point of view, is 

usually not a difficult problem. 

As now the class of the optimizing pdfs is known, we can return to the 

optimization problems (1)-(2) where pdf 𝜌𝜌(𝑡𝑡) explicitly appears in the formulas (Kozine 

and Krymsky 2012). What is not yet known now are the moments 𝑡𝑡𝑖𝑖 at which failure 

rate 𝜆𝜆(𝑡𝑡) switches from one to the other value λ and λ. Let us denote the corresponding 

piecewise exponential pdf as 𝐸𝐸𝑥𝑥𝑝𝑝(λ,  λ, 𝑡𝑡1, … , 𝑡𝑡𝑚𝑚, 𝑡𝑡). 

The integral ∫ 𝑓𝑓𝑖𝑖(𝑡𝑡)𝜌𝜌(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇∗

0  for the expected value appearing in the constraints 

(2) as well as ∫ 𝑔𝑔(𝑡𝑡)𝜌𝜌(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇∗

0  appearing in (1) can now be rewritten for the case of 

𝑇𝑇∗ → ∞ as 

G(λ,  λ, 𝑡𝑡1, … , 𝑡𝑡𝑚𝑚) = � 𝑔𝑔(𝑡𝑡)𝜌𝜌(𝑡𝑡)𝑑𝑑𝑡𝑡 =
∞

0

� 𝑔𝑔(𝑡𝑡)𝐸𝐸𝑥𝑥𝑝𝑝(λ,  λ, 𝑡𝑡1, … , 𝑡𝑡𝑚𝑚, 𝑡𝑡)𝑑𝑑𝑡𝑡
∞

0

 

Φi(λ,  λ, 𝑡𝑡1, … , 𝑡𝑡𝑚𝑚) = � 𝑓𝑓𝑖𝑖(𝑡𝑡)𝜌𝜌(𝑡𝑡)𝑑𝑑𝑡𝑡 = � 𝑓𝑓𝑖𝑖(𝑡𝑡)𝐸𝐸𝑥𝑥𝑝𝑝(λ,  λ, 𝑡𝑡1, … , 𝑡𝑡𝑚𝑚, 𝑡𝑡)𝑑𝑑𝑡𝑡
∞

0

∞

0

  

Ρ(λ,  λ, 𝑡𝑡1, … , 𝑡𝑡𝑚𝑚) = � 𝜌𝜌(𝑡𝑡)𝑑𝑑𝑡𝑡 = � 𝐸𝐸𝑥𝑥𝑝𝑝(λ,  λ, 𝑡𝑡1, … , 𝑡𝑡𝑚𝑚, 𝑡𝑡)𝑑𝑑𝑡𝑡
∞

0

∞

0

 

Hence, the reformulated problem statement appears as follows: 

min
𝑡𝑡1,…,𝑡𝑡𝑚𝑚

G(λ,  λ, 𝑡𝑡1, … , 𝑡𝑡𝑚𝑚) 

max
𝑡𝑡1,…,𝑡𝑡𝑚𝑚

G(λ,  λ, 𝑡𝑡1, … , 𝑡𝑡𝑚𝑚) 

subject to 
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𝑎𝑎𝑖𝑖 ≤ Φi�λ,  λ, 𝑡𝑡1, … , 𝑡𝑡𝑚𝑚� ≤ 𝑎𝑎𝑖𝑖, 𝑖𝑖 ≤ 𝑛𝑛, 

and 

Ρ�λ,  λ, 𝑡𝑡1, … , 𝑡𝑡𝑚𝑚� = 1. 

As soon as the functions 𝑔𝑔(𝑡𝑡) and 𝑓𝑓𝑖𝑖(𝑡𝑡) are known, all the integrals can be expanded 

and the formula for 𝐸𝐸𝑥𝑥𝑝𝑝(λ,  λ, 𝑡𝑡1, … , 𝑡𝑡𝑚𝑚, 𝑡𝑡) can be explicitly written for all entries, then 

the optimization problems become manageable and solvable by standard numerical 

techniques such as gradient methods, simplex-based search methods, genetic 

algorithms, etc.  

7. Concluding notes 

The constructive finding from the previous study of Kozine and Krymsky (2012) was 

that possessing bounds on the failure rate of a system limits the class of probability 

distributions to piecewise exponential distributions. To be more precise, whatever 

partial and imprecise statistical information on a specific sample set is in possession 

and, if on top of it bounds on the failure rate are provided, the fitting probability density 

function belongs to the piecewise exponential class. 

The opportunistic benefit of dealing with this class of probability distributions is 

that the exponential distribution is perhaps the one most frequently used by reliability 

analysts. It has only one parameter, which is advantageous compared to few-parametric 

distributions when the samples of failure observations are scarce. It has an easy 

interpretation: it is simply the average observed number of failures within a certain time 

interval or, equivalently, the reciprocal of a mean time to failure, which is itself an 

informative reliability measure. It is also well known that a major part of the lifetime of 
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many systems, including human beings, is governed by a failure rate close to being a 

constant. In technical reliability, this period is called normal operation – in contrast to 

the wear-in and wear-out (ageing) period, for which the failure rate is clearly time-

dependent. 

Providing maximally and minimally observed number of failures within a 

certain time interval (often a year) is also feasible and practicable in reliability 

applications. Furthermore, to compensate for a lack of failure data, it is a normal 

practice to use generic reliability data sometimes from different sources, some of which 

can provide one type of measures while some other another type. Given an upper and 

lower bound on a failure rate are provided, possibly along with other measures, the 

described approach is an efficient tool to derive the reliability measures of interest.  

Except for the above-mentioned positive features of implicating a bounded 

failure rate there is one more that is of great importance for reliability applications: the 

sample space for time to failure, on which other reliability measures are derived, 

stretches from 0 to ∞. This is unlike many other imprecise reliability models for which 

the random variable time to failure is bounded from above by 𝑇𝑇∗ < ∞. This limitation 

appears very restrictive for reliability applications, as some reliability models explicitly 

contain an upper bound on time to failure which is in reality an arbitrary value.  

The obtained results call for an exponential-wise approximation of the 

probability function of time to failure if only partial failure information is available. We 

believe that the approach described in this paper brings us closer to the practical use of 

imprecise reliability models. 
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