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Abstract

A 3D elastoplastic phase-field model is used to study the effect of thermal

cycling on martensitic transformation as well as on mechanical strengthening

of both austenite and martensite in stainless steel. The results show that with

an increasing number of thermal cycles, martensite becomes more stable.

Increase in strain, plastic strain and strain hardening lead to strengthening

of austenite.

Keywords: phase-field model, martensitic transformation, reversion,

microstructure, thermal cycling, steels

1. Introduction

Phase transformations play an important role in enhancing the mechan-

ical properties of stainless steels. The solid state phase transformation of

austenite to martensite, known as martensitic transformation, occurs during
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quenching and imparts significant strength to steels. Reverse phase transfor-

mation of martensite to austenite occurs during intercritical annealing and

has been reported to improve the yield strength, by grain refinement, and

the ductility of steels [1–3].

Reversion of martensite can occur either by a shear mechanism or a

diffusion-controlled mechanism. During reversion by a shear mechanism, dis-

locations from martensite are inherited into reversed austenite and thereby

increase the ductility of steels [1, 4]. Morevoer, reversion of martensite leads

to grain refinement [1, 2, 5, 6] and grain boundary strengthening [7], which

are reported to be effective strengthening mechanisms. Grain refinement can

lead to reduction of Ms temperature [8], increased retained austenite [9, 10]

and dislocation density [11].

Owing to the importance of martensite formation, reverse phase trans-

formation and grain refinement in enhancing the mechanical properties of

steels, several thermo-mechanical processing methods have been developed

[1, 6, 12]. Thermal cycling, i.e. repeated quenching and subsequent heating,

has proved to be an effective way of grain refinement and strengthening of

steels [10]. Durlu reported an increase in dislocation density and strength

after thermal cycling of Fe-Ni-C single cystals [13]. Alaei et al. have recently

showed that dislocations are inherited from martensite to reversed austenite

and that the dislocation density as well as the yield strength increase with in-

creasing number of thermal cycles in an Fe-Ni-C TRIP steel [14]. Although

the experimental studies showed that thermal cycling leads to strengthen-

ing of steels [10, 13, 14], it is essential to study the role of austenite and

martensite in mechanical strengthening due to thermal cycling.
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Several constitutive and phenomenological models have been proposed to

study martensite formation and the relation between phase transformation

and plasticity [15–17]. The phase-field approach [18, 19] has been success-

fully applied to study martensitic transformation and other solid state phase

transformations [20–27] as well as the reversion of martensite to austenite by

a shear mechanism [26, 28, 29]. In the present work, the effect of thermal

cycling on martensite formation and reversion of martensite by a shear mech-

anism as well as on mechanical strengthening of stainless steel is studied, by

using a 3D elastoplastic phase-field model [20, 28].

2. Phase-field model

The phase-field equation governing the microstructure evolution is given

by:

∂ηp
∂t

= −
q=v∑
q=1

Lpq
δG

δηq
(1)

where ηq is the phase field variable that tracks the evolution of martensite,

v is the total number of martensite variants and Lpq is a matrix of kinetic

parameters. Martensite variants (laths), which form in 24 different crystal-

lographic orientations according to the Kurdjumov-Sachs (K-S) orientation

relationship (OR), can be grouped into three basic variants known as Bain

variants [30–32]. In order to simulate 24 different martensite variants, the

model needs to consider 24 phase-field variables, which increases the com-

putational complexity of the model. Therefore in the present work three

phase-field variables (η1, η2, η3) that correspond to the three Bain variants,

which form the basis for the K-S OR, are considered [24].
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The Gibbs energy of a system undergoing athermal martensitic transfor-

mation can be expressed as:

G =

∫
V

(
Gchem
v +Ggrad

v +Gel
v

)
dV (2)

where Gchem
v corresponds to the chemical part of the Gibbs energy density,

Ggrad
v is the gradient energy term, Gel

v is the elastic strain energy density.

Gchem
v is expressed as a Landau-type polynomial [20, 21]:

Gchem
v (η1, η2, η3) =

1

Vm

[
1

2
A
(
η21 + η22 + η23

)
−1

3
B
(
η31 + η32 + η33

)
+

1

4
C
(
η21 + η22 + η23

)2] (3)

where Vm is the molar volume and the coefficients A,B,C are expressed in

terms of Gibbs energy barrier and the driving force [20].

Ggrad
v is expressed as [20, 21]:

Ggrad
v =

1

2

p=3∑
p=1

βij(p)
∂ηp
∂ri

∂ηp
∂rj

(4)

where r(x,y,z) is the position vector expressed in Cartesian coordinates. βij

is the gradient coefficient matrix expressed in terms of the interfacial energy,

molar volume and the Gibbs energy barrier.

Gel
v can be expressed as:

Gel
v =

∫ εij(r)

ε0ij(r)

cijkl

(
εkl(r) − ε0kl(r) − εplkl(r)

)
dεij(r) (5)

where cijkl is the tensor of elastic constants, εij(r) is the total strain, εplkl(r) is

the plastic strain and ε0ij(r) is the stress-free transformation strain expressed

in terms of ηq and Bain strains (ε00ij ).
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The material undergoes plastic deformation when the internal stress ex-

ceeds the yield limit. The evolution of plastic strain εplij(r) is governed by

[20, 23]:

∂εplij(r)

∂t
= −kijkl

δGshear
v

δεplkl(r)
(6)

where Gshear
v is the shear energy density and kijkl is the plastic kinetic coef-

ficient.

Linear isotropic strain hardening is considered by using the following

expression [33]:

σy = σ0
y +Hεpl(r) (7)

where σy is yield stress of the material that depends on plastic strain, σ0
y is

initial yield stress, H is hardening modulus and εpl(r) is von Mises equivalent

plastic strain.

Finally the total strain is calculated by solving the mechanical equilibrium

equation:

cijkl

(
∂εkl
∂rj

−
p=v∑
p=1

ε00kl (p)
∂ηp(r)

∂rj
− ∂εplkl(r)

∂rj

)
= 0 (8)

The following input simulation data corresponding to stainless steels with

a composition of Fe-17 wt %Cr-7 wt %Ni are acquired from different sources,

such as CALPHAD, ab initio calculations and experiments [25, 28]: A =1188

J/mol, B = 3564 J/mol, C = 2376 J/mol, β = 0.1061 x 10−10 J/m; Bain

strains are ε1 = 0.1316, ε3 = −0.1998; elastic constants of austenite are

C11 = 209 GPa, C12 = 133 GPa and C44 = 121 GPa; elastic constants of

martensite are C11 = 248 GPa, C12 = 110 GPa and C44 = 120 GPa; σ0
y

(austenite) = 500 MPa, σ0
y (martensite) = 800 MPa, H = 738 MPa, k = 0.2

GPa−1s−1, driving force = –3600 and +150 J/mol at T= 263 K and 975 K,
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respectively.

A single crystal of austenite of 1 µm grain size is subjected to several

thermal cycles with temperature varying between 263 K and 975 K as shown

in Fig. 1a. The same process is repeated under two different conditions, viz.

(a) with and (b) without strain hardening in order to study its effect on the

transformation. A pre-existing martensite embryo is considered in the center

of the grain, in order to maintain the symmetry in the cubic grain. Dirichlet

(clamped) boundary conditions are considered. Simulations are performed

on a 50 x 50 x 50 mesh by using FemLego software [34]. Due to the lack

of available experimental data on the kinetics of lath martensite, Lpq in Eq.

(1) is considered to be unity and the microstructure evolution is discussed in

terms of dimensionless time, t*.

3. Results and discussion

Fig. 1b (side view) and 1c-f (top view) shows the microstructures ob-

tained during different stages of thermal cycling shown in Fig. 1a. Martensite

laths (variants), plotted in red, blue and green, are formed during quench-

ing (Fig. 1b). The regions where martensite has formed during quenching

are marked by a boundary on the (111)γ plane (Fig. 1c and e) and these

boundaries are superimposed on the microstructures obtained after the cor-

responding thermal cycles (Fig. 1d and f), i.e. microstructure boundary in

Fig. 1c is superimposed on Fig. 1d and the boundary in Fig. 1e is su-

perimposed on Fig. 1f. The regions in white that lie inside the boundary

in Fig. 1d and f correspond to reversed austenite, whereas the regions in

white that lie outside the boundary correspond to retained austenite. Fig.
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1d shows that martensite units revert to austenite (circles, rectangles and

arrows) during heating. Some martensite units (compare Fig. 1c and d)

completely revert (rectangles), whereas some partially revert to austenite

(circles). Reversion initiates at lath boundaries, where a low nucleation en-

ergy is sufficient to overcome the transformation barrier (Fig. 1d and f) [28].

Reversion proceeds by interface migration, which is in good agreement with

Durlu’s experimental study on Fe-Ni-C alloy [13]. Martensite units that are

surrounded by retained austenite (arrows in Fig. 1d and f) offer less resis-

tance to reversion and hence revert more compared to the martensite units

that are surrounded by other martensite units (big variant in red at the cen-

ter). Reversion of martensite is prominent during early stages of thermal

cycling (compare Fig. 1c and d), whereas less volume fraction of martensite

reverts to austenite during the later stages of thermal cycling (compare Fig.

1e and f). Fig. 1g shows the von Mises equivalent plastic strain plot cor-

responding to the microstructure shown in Fig. 1d. Although some regions

in the microstructure have reversed to austenite (Fig. 1d), plastic strains

created during martensite formation are retained in the reversed austenite

[28]. This plot also shows that a martensitic lath-like structure is inherited

by the reversed austenite.

Fig. 2 shows variations in volume fraction of martensite with dimension-

less time t*. During the heating stage of each thermal cycle, the martensite

volume fraction decreases due to reversion of martensite to austenite. The

volume fraction of martensite that reverts to austenite decreases with in-

creasing number of thermal cycles, as also observed in microstructures (Fig.

1), and suggests an increased stability of martensite. It also suggests that the
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Figure 1: (a) Schematic of the simulated thermal cycling process. Microstructures at (b)

t*= 80 (side view) (c) t* = 80 (top view) (d) t* = 85 (e) t* = 190 and (f) t* = 195 and (g)

von Mises equivalent plastic strain plot of the microstructure in (d). Martensite variants

are shown in red, blue and green. Austenite on the (111)γ plane is shown in white. Arrows

point towards the areas where reversion occurs.
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Figure 2: Variation in martensite volume fraction.

surrounding retained austenite resists the reversion of martensite, suggesting

an increased strength and stability of austenite.

Fig. 3 shows variations of the mean von Mises equivalent stress, strain

and plastic strain in austenite and martensite, with the number of thermal cy-

cles. The mean von Mises equivalent stress (Fig. 3a) in martensite decreases

with increasing number of thermal cycles, due to the relaxation provided by

reversion during heating. The internal stresses in martensite can add to the

driving force for formation of austenite and can lead to reversion of marten-

site [28]. However, in the present case the equivalent stress in martensite

decreases, which implies less driving force for formation of austenite. Hence

martensite becomes more stable with increasing number of thermal cycles

(Fig. 2). The von Mises equivalent stress in austenite does not show signif-

icant variations, although it slightly increases compared to the as-quenched

case (cycle-0).

The mean von Mises equivalent strain (Fig. 3b) in martensite decreases

with increasing number of thermal cycles, due to stress relaxation as ex-
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Figure 3: Variation of mean von Mises equivalent (a) stress (b) strain (c) plastic strain

with thermal cycles (d) variation of mean von Mises equivalent plastic strain with volume

fraction. 10



plained above. However, von Mises equivalent strain in austenite increases

significantly. The increased strain in austenite increases the strain energy,

which opposes the chemical energy (thermodynamic driving force for marten-

site formation) and thus martensite formation becomes more difficult. This

requires an increased driving force, which implies a decrease in Ms tempera-

ture. This is in good agreement with the experimental study of Hidalgo and

Santofimia, who observed that Ms temperature of Fe-C-Si steel decreases

with increasing number of thermal cycles due to strengthening of austen-

ite [10]. Lee has also observed that the Ms temperature of an Fe-Mn alloy

decreases with increasing number of thermal cycles [35].

In the experimental work presented in Ref. [10], the strengthening of

austenite is mainly attributed to grain refinement. In the present simula-

tions the prior austenite grain size is kept constant during thermal

cycling. Although some regions in the prior austenite grain trans-

form to martensite and back to reversed austenite (Fig. 1d) and

give rise to finer austenite grains (grain refinement), the variations

in austenite strength due to grain refinement is not considered

in this work. Hence grain refinement can not be the reason for

strengthening of austenite. Alternatively, plasticity and strain hardening

contribute to the strengthening of austenite. The mean von Mises equivalent

plastic strains (dislocation density) in both austenite and martensite increase

with increasing number of thermal cycles (Fig. 3c). Hidalgo and Santofimia

observed that dislocation density increases with decreasing grain size due to

thermal cycling of an Fe-C-Si steel [10]. Several other experimental studies

also showed that dislocation density increases with thermal cycling of steels

11

majs
Cross-Out

majs
Cross-Out

majs
Inserted Text
 the



[13, 14, 35]. Lee [35] has reported that the increase in dislocation density

increases the shear stress, which requires larger driving force for martensite

formation and thereby decreases the Ms temperature.

The increase in plastic strains, i.e. dislocation density, leads to strain

hardening and therby contributes to the strengthening of austenite. The ef-

fect of strain hardening on strength of austenite can be seen in Fig. 2. In

the absence of strain hardening, the ‘weaker’ austenite facilitates reversion

of martensite more easily compared to the ‘stronger’ strain hardened austen-

ite. In the absence of strain hardening, several thermal cycles are needed for

accumulation of plastic strains and for the material to be strong enough to

resist reversion of martensite. In the presence of strain hardening, the strain

hardening of the material provides an extra resistance to reversion of marten-

site already from the initial stages of thermal cycling. Thus during the initial

stages of thermal cycling, there is a visible difference between the martensite

volume fractions obtained in the two cases (Fig. 2). However, during the

later stages of thermal cycling, the material in both cases is strong enough

to resist reversion and hence the difference in volume fractions obtained in

the two cases decreases.

During reversion in a given thermal cycle, the equivalent plastic strain

in austenite increases more compared to that in martensite (Fig. 3d). In

the 301-type steel studied in the present work, reversion occurs through a

shear mechanism and therefore dislocations are inherited from martensite to

reversed austenite [2, 5, 28]. Moreover, since the highly dislocated martensite

is less effective in accommodating plastic strains during reversion, austenite

deforms more compared to martensite, which is in agreement with Ref. [10].

12
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4. Conclusions

The phase-field simulations show that martensite becomes more stable

with increasing number of thermal cycles, due to decreasing stresses in marten-

site and due to strengthening of austenite. Austenite strengthening is due

to increase in plastic strain, i.e. dislocation density, which leads to strain

hardening of the material. The strain in austenite increases with increasing

number of thermal cycles and increases the energy barrier for martensitic

transformation, implying a decreased Ms temperature. The results are in

good agreement with experimental observations, such as increase in disloca-

tion density and strengthening of austenite with increasing number of thermal

cycles [10, 35]. Lee [35] has reported that the increase in dislocation density

increases the shear stress and thereby decreases the Ms temperature.

In reality, austenite grains (typically around 10 – 50 µ) contain lath

martensite that forms in blocks and packets, which also act as barriers for

dislocation motion. It is not possible to observe this hierarchic pattern for-

mation in the simulated microstructures, due to the small grain size of 1 µ.

Nevertheless, an encouraging correlation between the trends in the present

simulations and experimental works is obtained, which highlights the effect

of thermal cycling on strengthening of stainless steels. In the future, it would

be interesting to model the effect of thermal cycling on martensitic transfor-

mation in polycrystalline steels.
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