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ABSTRACT   

Multi-Watt efficient compact green laser sources are required for a number of applications e.g. within biophotonics, laser 
pumping and laser displays. We present generation of 3.5 W of diffraction-limited green light at 515 nm by second 
harmonic generation (SHG) of a tapered diode laser, itself yielding more than 9 W at 1030 nm. SHG is performed in 
single pass through a cascade of two nonlinear crystals with re-focusing and dispersion compensating optics between the 
two nonlinear crystals. The laser is single-frequency and the output power is stabilized to better than ±0.4%.  

Keywords: tapered diode laser, second harmonic generation, visible lasers, 515 nm 

1. INTRODUCTION  
Lasers in the blue-green spectral range are used in many applications within biophotonics and as pump sources for 
Ti:sapphire lasers 1,2. Traditionally this spectral range was covered by argon-ion lasers with direct emission at several 
lines in the blue and green spectral range including 488 nm and 515 nm. Argon lasers, however, are very power 
consuming with a very low overall efficiency. They have in many applications been replaced by frequency doubled 
diode pumped solid state lasers (DPSSL) with higher efficiency and good stability. Some applications still rely on the 
exact wavelengths of the argon-ion laser. For instance, have fluorophores used in fluorescence spectroscopy been 
developed specifically for excitation at 515 nm. Lasers at 515 nm are also widely used within Raman scattering and for 
instrumentation. Pumping of Ti:sapphire lasers are also performed with 515 nm lasers, which is beneficial over 532 nm 
pumping because of the higher absorption cross section at 515 nm. 

Frequency doubled DPSSLs at 532 nm are available in many power levels with the possibility of having high output 
power, narrow spectral linewidth and excellent beam quality. DPSSLs rely on intracavity frequency doubling of the 
infrared light generated by the neodymium doped solid state laser crystals. The use of a cavity puts strict demands on the 
exact alignment and mechanical stability of the cavity components in order to ensure proper operation. This leads to high 
costs as they are expensive to manufacture. Alternatives to DPSSLs are frequency doubled fibre or diode lasers or diode 
lasers emitting directly in the visible spectral range.  

Direct green light emitting diode lasers have emerged in the recent years and up to 1 W output power is available from a 
broad area diode laser3. The use of broad area structures increases the available output power but at significantly lower 
beam quality.  

Near infrared fibre lasers are available with high output power and narrow spectral linewidth in a diffraction limited 
output beam. Efficient frequency doubling of fibre lasers have been demonstrated in a single pass through a nonlinear 
crystal or using external enhancement cavities4–6. The high cost of frequency doubled fibre lasers limit their adoption in 
cost sensitive applications. 

Diode lasers are good candidates for frequency doubling but until recently the efficiency has been limited by the low 
power of single-mode lasers or the poor beam quality of broad area lasers. The introduction of tapered diode lasers has 
enabled generation of high output power in a near diffraction limited beam and the use of internal Bragg gratings ensures 
a narrow linewidth7. Such tapered lasers have been frequency doubled with visible output power levels in the watt range 
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with good spectral and spatial characteristics8. In order to further enhance the conversion efficiency cascaded frequency 
doubling has been introduced resulting in up to 39 % optical to optical conversion efficiency9. Frequency doubling of 
tapered lasers has until now concentrated on generation of light at 488 nm, 532 nm and 562 nm10–12.  

515 nm laser emission is still in use for certain applications and this wavelength is not easily reached by DPSSL laser 
although frequency doubling of Yb:YAG lasers has shown good results13. The extended wavelength selectivity of diode 
enables targeting any wavelength in the blue-green spectral range. 

Here, we present efficient generation of 515 nm light by cascaded frequency doubling of a tapered diode laser. More 
than 3.5 W output power is generated by use of a cascade consisting of a periodically poled MgO-doped lithium niobate 
(PPMgLN) and a MgO-doped stoichiometric lithium tantalate (PPMgSLT) crystal. The linewidth of the 515 nm light is 
less than 2 pm and it has an excellent beam quality with M2 < 1.1. This laser source could benefit applications still 
relying on argon-ion lasers as a possible substitution with significantly less power consumption and greatly reduced foot 
print. 

2. EXPERIMENTAL SETUP
The diode laser is a 6 mm long distributed Bragg reflector (DBR) tapered diode laser. The ridge waveguide is 2 mm long 
split between a 1 mm long third order DBR grating and a 1 mm long ridge waveguide section. The tapered section is 4 
mm long and has a taper angle of 6°. The ridge section and tapered sections have separate electrical contacts for 
individual control of the injection currents. The DBR tapered laser was mounted on a 25 x 25 mm2 conduction cooled 
package for efficient cooling. 

Such a diode laser has previously been shown capable of emitting more than 12 W output power around 1030 nm with 
narrow linewidth and good spatial properties14. Here, we operated the laser with 300 mA injection current to the ridge 
waveguide section and up to 14 A injection current to the tapered section and with a heatsink temperature of 20°C. At 
14 A injection current to the tapered section an output power of 9.7 W was achieved as shown in Figure 1. The spectral 
width of the laser was investigated using an optical spectrum analyzer (OSA) (Advantest Q8347) and a spectral 
linewidth of 6 pm was measured limited by the OSA resolution. The measured spectrum is shown in Figure 2. 

Figure 1. Output power vs injected current to the tapered section of the DBR tapered laser. The laser is operated at a temperature 
of 20°C and with 300 mA current to the ridge waveguide section. 
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1030 nm and 515 nm from the first crystal was collimated and refocused into the second nonlinear crystal using two 
curved mirrors with 100 mm radius of curvature. Both mirrors were highly reflecting at 515 nm and 1030 nm. The phase 
delay between fundamental and second harmonic beams was adjusted with a plane-parallel 3 mm thick BK7 plate 
inserted at Brewsters angle between the two curved folding mirrors. This allowed for constructive interference between 
the second harmonic light generated in the first nonlinear crystal and the second nonlinear crystal15,16. A dichroic filter 
was inserted to separate the light at 1030 nm from the light at 515 nm. A spherical lens was inserted to collimate the 515 
nm beam to a diameter of approximately 1.5 mm. In order to enable active stabilization of the 515 nm output power, a 
small fraction of the green light was directed to a photodiode. The entire optical setup was mounted in a compact laser 
module with dimensions of 183 x 114 x 50 mm3. 

The nonlinear crystals used in the cascade was a 2 x 0.5 x 40 mm (width x height x length) PPMgLN crystal poled with a 
period of 6.25 µm and a 2 x 0.5 x 30 mm PPMgSLT crystal poled with a period of 7.21 µm. The crystals were 
antireflection coated at 1030 nm and 515 nm and temperature stabilized in ovens at approximately 60°C to ensure proper 
phase matching. The main reason for choosing two different crystals were the high nonlinearity of PPMgLN and the 
superior power handling capability of PPMgSLT. 

Figure 4. Principle sketch of the experimental setup used for cascaded frequency doubling of a DBR tapered diode laser. 

3. EXPERIMENTAL RESULTS
9.3 W of 1030 nm laser light was available before the PPMgLN crystal. Approximately 70 % of this power was 
contained in the central lobe of the beam. The majority of the second harmonic light is generated by the power contained 
in the central lobe as the intensity in this part of the beam is highest and that it can be optimally phase matched in the 
nonlinear crystal. In the phase matched PPMgLN crystal, up to 2.35 W of output power was generated at 515 nm. A 
conversion efficiency of 25.3% and 3.3%/W nonlinear conversion efficiency was achieved. If only the power contained 
in the central lobe is considered, the conversion efficiency and nonlinear conversion efficiency were 36% and 7.4%, 
respectively. When the PPMgSLT crystal is phase matched and the PPMgLN crystal is not phase matched, it was 
possible to generate 760 mW at 515 nm in the PPMgSLT crystal alone at 8.2% conversion efficiency and 0.93%/W 
nonlinear conversion efficiency. When considering only the central lobe power an efficiency of 12% was achieved and 
the nonlinear conversion efficiency was 2.0%/W. With both nonlinear crystals optimally phase matched and the phase 
plate rotated for optimum constructive interference, up to 3.58 W was generated at 515 nm. A conversion efficiency of 
38.5% and a nonlinear conversion efficiency of 5.7%/W was achieved in the cascade and when only considering the 
power contained in the central lobe, the conversion efficiency was 55% and the nonlinear conversion efficiency was 
14%/W. The second harmonic output power vs the input power at 1030 nm is shown in Figure 5. The generated second 
harmonic power does not follow the expected development for depleted SHG (shown by the lines). This is because the 
laser power is changed by changing the current to the tapered section of the laser. This results in changed beam profile 
and astigmatism and thus less optimum focusing in the nonlinear crystals. The electrical to optical efficiency of the laser 
system including the power used for temperature control was 7%. This high efficiency makes such a laser system more 
efficient than most solid state lasers and far more efficient than argon ion lasers. The efficiency of the cascading concept 
is underlined by the fact that the cascaded second harmonic power is larger than the sum of the second harmonic powers 
generated in the individual crystals.  
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Figure 5. Second harmonic output power with only the first crystal (PPLN) phase matched, only the second crystal phase matched 
(PPSLT) and with both crystals in the cascade phase matched (Cascade). The crystal temperatures were optimized at every 
measurement point. Calculated second harmonic power based on the expression for depleted second harmonic generation and the 
nonlinear conversion efficiencies at maximum input power are included as lines. 

 
A small fraction of the second harmonic power is send onto a photodiode. By providing feedback to the laser it was 
possible to stabilize the output power. A measurement of the second harmonic power over a duration of 2 hours was 
performed and the result is shown in Figure 6. The power was stabilized to approximately 3.2 W and the maximum 
power fluctuations are less than ±0.4% over the two-hour experiment. 

 
Figure 6. Second harmonic output power measured over a period of two hours using feedback to the laser. 

 

The spectrum of the generated green light was centered at 515.4 nm as shown in Figure 7. The linewidth of the green 
light was measured to 0.002 nm limited by the resolution of the optical spectrum analyzer.  

The generated second harmonic beam is improved in quality compared to the incoming infrared light by the nonlinear 
process17. A nearly Gaussian beam profile is generated and the beam propagation parameter was measured to M2

x = 1.08 
and M2

y = 1.07 with a Spiricon M2-200s profiler following the ISO 11146 standard. The caustic curve is shown in Figure 
8 and the beam profile in the focus is shown in Figure 9. A slight ellipticity is seen in the second harmonic beam.  
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Figure 7. Measured spectrum of the second harmonic light measured at maximum output power. 

 
Figure 8. Measured beam diameter at different positions when focusing the second harmonic light with a 300 mm focal length 
lens. 
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