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a b s t r a c t 

A fully coupled three-dimensional finite-element model for hydraulic fractures in permeable rocks is pre- 

sented, and used to investigate the ranges of applicability of the classical analytical solutions that are 

known to be valid in limiting cases. This model simultaneously accounts for fluid flow within the frac- 

ture and rock matrix, poroelastic deformation, propagation of the fractures, and fluid leakage into the 

rock formation. The model is validated against available asymptotic analytical solutions for penny-shaped 

fractures, in the viscosity-dominated, toughness-dominated, storage-dominated, and leakoff-dominated 

regimes. However, for intermediate regimes, these analytical solutions cannot be used to predict the key 

hydraulic fracturing variables, i.e. injection pressure, fracture aperture, and length. For leakoff-dominated 

cases in permeable rocks, the asymptotic solutions fail to accurately predict the lower-bound for fracture 

radius and apertures, and the upper-bound for fracture pressure. This is due to the poroelastic effects 

in the dilated rock matrix, as well as due to the multi-dimensional flow within matrix, which in many 

simulation codes is idealised as being one-dimensional, normal to the fracture plane. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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. Introduction 

Hydraulic fracturing is the process by which one or more frac-

ures are propagated into a rock formation, driven by the internal

ow of a pressurised fluid. While fluid-driven fracturing can oc-

ur naturally, it is most often studied within the context of the

ngineering process of injecting fracturing fluid into a reservoir

ock, with the aim of increasing well productivity ( Adachi et al.,

007; Bazant et al., 2014 ). Although the hydraulic fracturing pro-

ess is currently often thought of in the context of shale gas reser-

oirs, in current industry practice, almost all oil and gas wells are

ydraulically fractured ( Economides and Nolte, 20 0 0 ). Hydraulic

racturing is a complex, multi-physics, multi-dimensional problem,

hich requires robust models that can simultaneously account for

atrix and fracture deformation, fluid flow through the matrix

nd fractures, fluid exchange between fractures and matrix, and

racture propagation and interaction, all in a fully-coupled, three-

imensional setting. 

Hydraulic fracturing protocols are designed to control the frac-

ure’s surface area and aperture distribution, and also aim to con-
∗ Corresponding author at: Centre for Oil and Gas, Technical University of Den- 

ark, Lyngby, Denmark. 
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rol injection pressure, and the dependence of these variables on

racturing fluid rheology, injection rate, and the hydro-mechanical

roperties of the rock ( Detournay and Peirce, 2014 ). Analytical

nd semi-analytical solutions have been developed to quantify hy-

raulic fracturing variables of interest, such as injection pressure,

racture aperture, and fracture length ( cf . Adachi et al., 2007 ).

hese solutions provide the foundation for hydraulic fracturing de-

ign ( e.g. Cleary, 1980; Cleary et al., 1988 ). These solutions are con-

tructed by combining the equations for laminar flow through the

racture, with the equations for elastic deformation of the adjacent

ock. Fluid flow through the fracture is commonly modelled us-

ng lubrication theory, which is derived from the general Navier–

tokes equation for flow of a fluid between two parallel plates

 Batchelor, 1967; Zimmerman and Bodvarsson, 1996 ), whereas the

racture aperture is calculated using linear elasticity in conjunc-

ion with Linear Elastic Fracture Mechanics (LEFM) to compute the

ode I stress intensity factor at the fracture tip ( Geertsma and de

lerk, 1969; Spence and Sharp, 1985 ). 

Based on the energy-dissipation mechanism, fracture propaga-

ion regimes can be classified as viscosity-dominated or toughness-

ominated ( Detournay, 2004 ). In the viscosity-dominated regime,

nergy dissipation is dominated by the flow of the viscous fluid,

hereas in the toughness-dominated regime, energy dissipated is

ominated by the creation of new fracture surfaces at the fracture
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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tip. Based on the ability of the rock matrix to dissipate fractur-

ing fluid, two other extremes can be defined: storage-dominated ,

in which the injected fluid remains mainly inside the fracture,

and leakoff-dominated , in which most of the injected fluid dis-

sipates into the surrounding medium. The four resulting com-

bined asymptotic regimes are therefore storage-viscosity, storage-

toughness, leakoff-viscosity , and leakoff-toughness ( Garagash et al.,

2011 ). Asymptotic solutions that are valid at the end-members

of the parameter space provide a fundamental understanding of

the hydraulic fracturing process, and provide benchmarking cor-

nerstones for numerical models. However, existing analytical so-

lutions are restricted to simplified fracture geometries in homoge-

neous rock masses, and are typically constrained to a set of fixed

boundary conditions. Standard geometries include the PKN frac-

ture ( Perkins and Kern, 1961; Nordgren, 1972; Mathias and van

Reeuwijk, 2009 ), the KGD fracture ( Geertsma and de Klerk, 1969;

Spence and Sharp, 1985; Adachi and Detournay, 2008 ), and radial

(penny-shaped) fractures ( Savitski and Detournay, 2002; Bunger

et al., 2005; Kovalyshen, 2010 ). Moreover, analytical solutions do

not exist for cases that are not at the corners of this parameter

space. 

Numerical models that attempt to simulate hydraulic fracturing

include the boundary integral method ( Peirce and Siebrits, 2001 ),

the boundary element method ( Simpson and Trevelyan, 2011 ), the

distinct element method ( Marina et al., 2014 ), the finite element

method ( Carrier and Granet, 2012 ), discrete fracture network ( Fu

et al., 2013 ), the embedded fracture model ( Norbeck et al., 2015 ),

the lattice approach ( Grassl et al., 2015 ) and the extended fi-

nite element method ( Dahi-Taleghani, 2009; Mohammadnejad and

Khoei, 2013; Salimzadeh and Khalili, 2015a ). However, in the ma-

jority of available models, flow through the rock matrix, and fluid

exchange between fracture and rock matrix, are either ignored

by assuming an impermeable rock formation ( e.g. Dahi-Taleghani,

2009 ), or simplified by using a one-dimensional analytical leakoff

model ( e.g. Zhou et al., 2015 ). Substantial field evidence has proven

the impermeable matrix assumption to be an unrealistic assump-

tion ( Economides and Nolte, 20 0 0; Adachi et al., 20 07 ). In one-

dimensional leakoff models ( Carter, 1957 ), fracture-to-matrix flow

is represented as a sink term in the mass balance equation for

fracture flow. This approach has several shortcomings, such as the

assumption of one-dimensional flow, time-dependency of flow in-

stead of pressure-dependency, and more importantly, this approach

cannot model matrix dilation. Although flow from the fracture into

the rock matrix is by definition locally one-dimensional at the

fracture wall, where the flux vector must be normal to the frac-

ture wall, in a global sense it is three-dimensional, unless the per-

meability in the direction normal to the fracture plane is signif-

icantly higher than in other directions ( Hagoort et al., 1980 ). As

time elapses, the leakoff rate predicted by Carter’s model, at each

position along the fracture, decreases proportionally to square-root

of time; consequently, a scenario of fracture arrest is not possible

( Mathias and van Reeuwijk, 2009 ). Finally, this model does not ac-

count for the fact that seepage of the fracturing fluid into the rock

formation increases the fluid pressure in the matrix, causing di-

lation of the rock matrix. A dilated matrix applies stresses back

onto the fracture, referred to as ‘back-stresses’ in the hydraulic

fracturing literature, which tend to close the fracture ( Kovalyshen,

2010 ). These factors also affect the available semi-analytical so-

lutions for leakoff-dominated regimes that use a simplified one-

dimensional leakoff model in their formulation. These solutions

therefore fail to accurately predict hydraulic fracturing parame-

ters in leakoff-dominated regimes, as shown by Carrier and Granet

(2012) , and Salimzadeh and Khalili (2015a) for single-phase flow,

and by Salimzadeh and Khalili (2015b) for two-phase flow in two

dimensions, as well as in the present study for three dimensions. 
v  
In addition to poroelastic effects due to the aforementioned

ack stress phenomenon, there is a further environmental conse-

uence of fluid seepage through the rock matrix, as it may pro-

ote the possible migration of injected fluid towards drinking wa-

er aquifers ( Birdsell et al., 2015 ). Therefore, robust modelling of

atrix flow is essential for both hydraulic fracture engineering

nd environmental aspects of subsurface fracturing. Only a few at-

empts have been made to incorporate flow in the rock matrix,

oupled to mechanical deformation and flow in fracture. Rethore

t al. ( 2008 ), Mohammadnejad and Khoei (2013) and Khoei et al.

2014) , using the extended finite element method, introduced en-

iched pressures at the fracture to capture the discontinuous flow

elocity at the fracture boundary. However, the enriched pressure

epresents the fluid pressure in the rock matrix near the fracture,

nd does not represent the pressure inside the fracture. Therefore,

hen coupled with mechanical deformation, the enriched pres-

ure will be scaled by the Biot coefficient, whereas the fracture

ressure actually does not require such scaling. Carrier and Granet

2012) introduced independent flow through the fracture and the

ock matrix into their hydraulic fracture model. Their model was

 combination of zero-thickness elements for the propagating frac-

ure, and conventional bulk finite elements with a cohesive zone

odel. The equality of pressure between fracture and matrix at the

racture walls was enforced in the numerical model using Lagrange

ultipliers. Salimzadeh and Khalili (2015a, b ) proposed an XFEM

odel that included two independent flow models in the fracture

nd the rock matrix, with a leakoff mass transfer between fracture

nd rock matrix to link the two. The leakoff depends on the pres-

ure gradient in the matrix adjacent to the fracture, as well as on

he fluid viscosity and matrix permeability. Norbeck et al. (2015) ,

sing an embedded fracture model, also considered two flow do-

ains for matrix and fracture in two dimensions, and linked them

hrough a similar mass transfer term. 

A three-dimensional fully coupled finite element model for

ydraulic fracturing is presented in the present paper, validated

gainst known analytical solutions, and subsequently applied to

tudy the influence of fluid exchange between fracture and ma-

rix on fracturing. In particular, 3D diffusion and its related poroe-

astic effects on the propagation of fractures are investigated. The

resent model accounts for fluid flow within fracture and matrix,

he propagation of the fracture, and fluid leakage into the forma-

ion rock. Fluid flow through the permeable rock matrix is mod-

lled using Darcy’s law, and is coupled with laminar flow within

he fracture. Fracture growth and the direction of growth are esti-

ated using an energy-based criterion that is based on the modal

tress intensity factors along the fracture tip ( Paluszny and Zim-

erman, 2013 ). This model is validated against available asymp-

otic solutions for penny-shaped hydraulic fractures. Fifteen cases

ith varying fluid and rock matrix properties are run, to investi-

ate the impact of fluid and rock matrix properties on the leakoff

nd fracturing. Numerical simulations conducted over a range of

arameter values delineate the limits of validity of the various

vailable asymptotic solutions. 

. Computational model 

Fractures are represented discretely using two-dimensional sur-

aces embedded in a three-dimensional domain. When deriving the

overning equations, each fracture is represented by a disconti-

uity �c in the domain � with boundary �, as shown in Fig. 1 .

he fully coupled model is constructed on three separate yet in-

eracting sub-models, including models for mechanical deforma-

ion, fracture flow, and matrix flow. The solid matrix is assumed

o be linear elastic, homogeneous, and isotropic, with flow mod-

lled using Darcy’s law. An independent fracture flow model is de-

eloped based on lubrication theory. The mechanical and fracture
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Fig. 1. Schematic representation of the problem with discrete fracture. 
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ow models are coupled through hydraulic loading on the frac-

ure walls, and by ensuring the compatibility of fracture volumetric

trains. The mechanical model is coupled to matrix flow through

he effective stress concept, and finally, the fracture flow and ma-

rix flow models are linked to each other through the leakoff mass

ransfer term. Tension and compression are assumed positive for

tresses and pressures, respectively. 

.1. Mechanical deformation model 

The mechanical deformation model is based on the condition of

tress equilibrium for a representative elementary volume of the

orous medium. For quasi-static conditions, the linear momentum

alance equation for this elementary volume may be written as 

iv σ + F = 0 (1) 

here F is the body force per unit volume, and σ is the total stress.

he effective stress is defined as the function of total stress and

atrix pressure, and controls the mechanical deformation. It is de-

ned exclusively within the rock matrix, linking a change in stress

o the change in strain. The effective stress for the rock matrix sat-

rated with a single-phase fluid is defined as ( Biot, 1941 ) 

′ = σ + αp m 

I (2) 

here σ′ is the effective stress, α is the Biot coefficient, p m 

is the

atrix fluid pressure and I is the second-order identity tensor. The

iot coefficient is defined as 

= 1 − K/ K s (3) 

here K and K S are the bulk modulus of the porous rock and

f the rock matrix material ( e.g. mineral grains), respectively

 Zimmerman, 20 0 0 ). The stress and strain relationship of the el-

ment is expressed as 

′ = D ε (4) 

n which D is the drained stiffness matrix, and ε is the strain ten-

or in the porous medium. Assuming infinitesimal deformations,

train is related to displacement by 

 = 

1 

2 

(∇u + ∇u 

T 
)

(5) 

here u denotes the displacement vector in the porous medium.

ydraulic loading on the fracture walls is applied as boundary

raction, as shown in Fig. 1 . Assuming negligible shear tractions

xerted from the fluid on the fracture walls, only tractions normal

o the fracture wall are considered. The tractions on the fracture

oundary �c are 

 c = −p f n C (6) 
here p f is the fracture pressure, and n C is the outward unit nor-

al to the fracture wall (on both sides of the fracture). Integrat-

ng Eq. (1) over the element, and after some manipulation, the dif-

erential equation describing the deformation field for a saturated

ock matrix is given by 
 

�
[ div ( D ε − αp m 

I ) + F ] d� −
∫ 
�c 

p f n c d� = 0 (7) 

.2. Fracture flow model 

An independent fracture flow model is considered for the hy-

raulic fractures. This model allows direct computation of fracture

uid pressure, and implicit application of hydraulic pressures onto

racture walls. The objective is to realistically represent fracture

ow, instead of smearing it with the flow through the neighbour-

ng matrix. Assuming a planar fracture, in which the area of the

racture plane is much larger than the fracture aperture, the av-

rage velocity of fluid along the fracture plane may be calculated

sing the cubic law as ( Witherspoon et al., 1980 ) 

 f = − a f 
2 

12 μ f 

∇ p f (8) 

here a f is the fracture aperture, μf is the fluid viscosity, and p f is

he fracture fluid pressure. The aperture is given by the differential

isplacement between two sides of the fracture, a f = ( u 

+ −u 

− ). n c ,

here u 

+ and u 

− are the displacements of the two opposing faces

f the fracture. The mass balance equation for a slightly compress-

ble fracture fluid may therefore be written as 

iv 
(
ρ f v f a f 

)
+ 

∂ 

∂t 

(
ρ f a f 

)
− L f = 0 (9) 

n which ρ f is the fluid density, and L f is the leakoff flow from the

racture to the matrix. This leakoff leads to mass transfer coupling

etween the fracture flow and rock matrix flow. Assuming that the

racture fluid is Newtonian, the leakoff flow per unit area of the

racture wall can be written, using Darcy’s law, as 

 f = ρ f 

k m 

μ f 

∂ p 

∂ n c 
(10) 

here k m 

is the intrinsic permeability of the rock matrix. Substi-

uting the fluid velocity into the mass balance equation, and after

ome manipulation, it is found that 

iv 

(
a f 

3 

12 μ f 

∇ p f 

)
= a f c f 

∂ p f 
∂t 

+ 

∂ a f 
∂t 

− k m 

μ f 

∂ p 

∂ n c 
(11) 

here c f is the fluid compressibility. Note that the term

 a f / ∂ t = ∂ ( u 

+ −u 

− ). n c / ∂ t provides direct coupling between the

isplacement field and the fracture flow field, which is symmetric

o the fracture pressure loading term, p f n C . For the case of one-

imensional incompressible flow with no leakoff, c f =0 and L f =0,

q. (11) reduces to the lubrication equation ( Batchelor, 1967 ), 

1 

12 μ f 

∂ 

∂s 

(
a f 

3 
∂ p f 
∂s 

)
= 

∂ a f 
∂t 

(12) 

.3. Matrix flow model 

The matrix flow model that represents flow through the porous

atrix is constructed by combining Darcy’s law with mass conser-

ation for the fluid. Neglecting inertial and viscous effects, Darcy’s

aw for matrix flow may be written as 

 r = − k m 

μ f 

( ∇ p m 

+ ρg ) (13) 

here v r is the relative velocity vector of the fluid in the matrix,

 m 

is the intrinsic permeability of the rock matrix, μf is the fluid
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viscosity, g is the vector of gravitational acceleration, and p m 

is the

matrix fluid pressure. The relative velocity of the fluid with respect

to the deforming rock matrix is given by 

v r = φ( v m 

− v s ) (14)

where v s is the rock matrix velocity, defined as 

v s = 

∂u 

∂t 
(15)

where u is the displacement vector of the rock matrix. The mass

balance equation for the fluid in the rock matrix may be written

as 

div 
(
ρ f φv m 

)
+ 

∂ 

∂t 

(
ρ f φ

)
+ δ( x − x c ) L f = 0 (16)

where ρ f is the fluid density, φ is the rock matrix porosity, and

v m 

is the matrix fluid velocity. Note that the leakoff only occurs

on the boundary of the volume element that is connected to a

fracture ( �c ). Therefore, a Dirac delta function is applied, where

x c represents the position of the fracture. Integrating over the ele-

ment and after some manipulation, the governing equation for the

flow model may be expressed as ∫ 
�

div 

[
k m 

μ f 

( ∇ p m 

+ ρg ) 

]
d�

= 

∫ 
�

[
α

∂ ( di v u ) 

∂t 
+ 

(
φc f + 

α−φ

K s 

)
∂ p m 

∂t 

]
d� + 

∫ 
�c 

k m 

μ f 

∂ p 

∂ n c 
d�

(17)

where c f is the fluid compressibility. The Biot coefficient α appears

in Eqs. (7) and ( 17 ), whereas it does not appear in the fracture

flow model ( Eq. 11 ), as the fracture itself is not a “porous medium”.

Setting α=0 will decouple the mechanical deformation model and

the matrix flow model, in which case mechanical loading will have

no direct effect on the matrix pressures, and vice versa . In contrast,

fracture pressures will always be coupled to the mechanical defor-

mation model, irrespective of the value of the Biot coefficient. 

2.4. Finite element approximation 

The governing equations are solved numerically using the fi-

nite element method. Spatial and temporal discretisation are ac-

complished using the Galerkin method and finite difference tech-

niques, respectively. Displacements (three displacements for three

dimensions) and fluid pressures (fracture and matrix) are defined

as the primary variables. Using the standard Galerkin method, the

displacements and pressures within an element may be approxi-

mated from the nodal values as 

u = N ̂  u (18)

p m 

= N ̂  p m 

(19)

p f = N c ̂  p f (20)

where N and N c are the standard shape functions vector for vol-

ume and surface elements, respectively. ˆ u , ˆ p m 

and ˆ p f are vectors of

nodal values of displacement, matrix pressure, and fracture pres-

sure, respectively. Fracture pressures are only defined for the nodes

on the fractures. 

Using the finite difference technique, the set of discretised

equations can be written as ⎡ 

⎣ 

−K C m 

C f 

C 

T 
m 

H m 

d t + M m 

+ L d t −L dt 

C 

T 
f 

−L dt H f d t + M f + L d t 

⎤ 

⎦ 

⎧ ⎨ 

⎩ 

ˆ u 

t+
t 

ˆ p 

t+
t 
m 

ˆ p 

t+
t 
f 

⎫ ⎬ 

⎭ 
= 

{ −F 

C 

T 
m ̂

 u 

t + M m ̂

 p 

t 
m 

+ Q m 

dt 

C 

T 
f ̂

 u 

t + M f ̂  p 

t 
f 
+ Q f dt 

} 

(21)

here 

 = 

∫ 
�

B 1 
T D B 1 d� (22)

 m 

= 

∫ 
�

B 2 
T αN d� (23)

 f = 

∫ 
�c 

N 

T n c N c d� (24)

 m 

= 

∫ 
�

B 3 
T k m 

μ f 

B 3 d� (25)

 f = 

∫ 
�c 

∇ N c 
T a f 

3 

12 μ f 

∇ N c d� (26)

 m 

= 

∫ 
�

N 

T 

(
φc f + 

α − φ

K s 

)
N d� (27)

 f = 

∫ 
�c 

N c 
T a f c f N c d� (28)

 = 

∫ 
�c 

N c 
T k m 

μ f 

∂ N c 

∂ n c 
d� (29)

here K is the mechanical stiffness matrix, C f and C m 

are hydro-

echanical and poroelastic coupling matrices, respectively, H is

he conductance matrix, M is the capacitance mass matrix, L

s the leakoff mass matrix, F is the applied load vector, Q is

he fluid flux, and ˆ u and ˆ p are the vectors of nodal values

f displacement and fluid pressure, respectively. [ B 1 ] 6 ×3 n = ∇̄ N ,

 B 2 ] 1 ×3 n =δT B 1 , and, [ B 3 ] 3 ×n =∇N are derivatives of the shape

unction, δ = { 1 1 1 0 0 0 } T , and ∇ is the gradient

perator. Superscript t represents the time at the current step, su-

erscript t + dt represents time at the next step, and dt is the time

tep. The non-diagonal components of the stiffness matrix are pop-

lated with the coupling matrices C f for hydro-mechanical cou-

ling, C p for poroelastic coupling, and L for fracture-matrix flow

oupling. The operator ∇̄ for three-dimensional displacement field

s defined as 

¯
 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂ 

∂x 
0 0 

0 

∂ 

∂y 
0 

0 0 

∂ 

∂z 

0 

∂ 

∂z 

∂ 

∂y 

∂ 

∂z 
0 

∂ 

∂x 

∂ 

∂y 

∂ 

∂x 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(30)

The components of the stiffness matrix depend on the primary

nknown variables, i.e. permeability of the fracture depends on the

racture aperture; therefore, an iterative procedure is required to

each the correct solution within acceptable tolerance. The discre-

ised coupled equations are implemented as part of the Imperial

ollege Geomechanics toolkit ( Paluszny and Zimmerman, 2011 ),

hich interacts with an octree volumetric mesher and the Com-

lex Systems Modelling Platform (CSMP ++ , also known as CSP),

n object-oriented application programme interface (API), for the
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imulation of complex geological processes and their interactions

formerly CSP, cf. Matthäi et al., 2001 ). The set of linear algebraic

quations are solved with the algebraic multigrid method for sys-

ems, SAMG ( Stüben, 2001 ). Two types of discretisation are used:

uadratic tetrahedra for volume elements, and quadratic triangles

or surface elements (fractures). The triangles on two opposite sur-

aces of a fracture are matched with each other, but they don’t

hare nodes, and duplicate nodes are defined for two sides of a

racture. The triangles are matched with faces of the tetrahedra

onnected to the fractures. Therefore, they share the same nodes.

owever, the model presented in this study can also be applied to

on-matching elements. Fracture flow equation ( Eq. 17 ) is solved

nly on one-side of fracture ( i.e. matrices H f and M f are accumu-

ated over triangle elements on one side of the fracture); however,

he coupling matrices ( C f and L ) are accumulated on both sides

f the fracture. Mechanical deformation and matrix flow equations

re accumulated over the volume elements. 

.5. Stress intensity factors and growth model 

The mechanical deformation of the rock matrix leads to concen-

rations of stress around the fracture tips, which can be quantified

ocally at each tip by the stress intensity factors (SIFs). The SIFs

re key parameters in evaluating and predicting fracture growth,

nd take into account the effects of fluid pressure and rock prop-

rties on the growth of the fracture. The state of stress immedi-

tely ahead of the fracture front is known to be singular. There-

ore, in contrast to conventional linear polynomial interpolation,

uadratic elements are used so as to better approximate the stress

ip singularity ( Nejati et al., 2015a ). Two methods for the SIF ex-

raction from the FE solution can be employed. Direct approaches,

ased on the correlation of the displacements over the crack sur-

ace are simple, straightforward, and computationally inexpensive,

ut require very refined meshes around the crack front in order to

ield low approximation errors. Alternatively, energy-based meth-

ds that integrate stresses over the region ahead of the crack tip

re less prone to numerical error, and yield better approximations,

ith significantly coarser meshes. Three stress intensity factors for

he three modes of fracture opening are computed by computing

he energy-based interaction integral ( Yau et al., 1980 ), modified

n the present paper for poroelastic media by using the effective

tresses in place of the usual stresses, over a set of virtual disk do-

ains distributed along the fracture tip ( Nejati et al., 2015b ). The

hree SIFs are K I for opening due to tensile loading, K II for in-plane

hearing due to sliding, and K III for out-of-plane shearing due to

earing. The crack grows once the equivalent stress intensity factor

 Ieq , overcomes the material toughness ( k ic ). The equivalent SIF in

he direction of propagation ( θp ), is calculated as ( Schöllmann et

l., 2002; Paluszny and Zimmerman, 2013 ) 

 Ieq = 

1 

2 

cos 

(
θp 

2 

){ 

K cs + 

√ 

K 

2 
cs + 4 K 

2 
I I I 

} 

(31) 

here K cs = K I cos 2 ( 
θp 

2 ) − 3 
2 K II sin ( θp ) , and θp is the propagation

ngle. By setting K III =0 in the above equation, the equivalent stress

ntensity factor for two-dimensional space are recovered ( Erdogan

nd Sih, 1963 ) 

 Ieq = K I cos 3 
(

θp 

2 

)
− 3 K I cos 2 

(
θp 

2 

)
sin 

(
θp 

2 

)
(32) 

The propagation angle ( θp ) is determined using a modified

aximum circumferential stress method that takes into account

odal stress intensity factors. The equivalent stress intensity fac-

ors are computed locally at 100 locations along the fracture front,

.e . tips, and are used to determine if the fracture will or will

ot advance. Fractures are extended by deforming their geometry,
nd the mesh is regenerated and optimised at every growth step

 Paluszny and Zimmerman, 2011 ). 

. Simulation results: penny-shaped hydraulic fracture 

Fluid is injected through a horizontal well that perforates the

entre of a vertical penny-shaped fracture. The size of the well

s assumed to be negligible with respect to the size of the frac-

ure, and so the wellbore is modelled as a point source bound-

ry condition in the simulations. Asymptotic solutions available for

his geometric case, under storage regimes (viscosity-storage and

oughness-storage), are used to validate the presented numerical

odel. Further simulations, in which leakoff is modelled by con-

idering a permeable matrix, are performed to investigate the lim-

ts of validity of asymptotic solutions under leakoff regime, and to

ighlight the effects of poroelasticity and the three-dimensionality

f flow within the matrix. 

A single penny-shaped fracture of initial radius 1 m is located

n the centre of a 90 × 90 × 60 m model. The model is spatially

iscretised using 17,441 tetrahedra and triangles. Convergence is

chieved using an average of four iterations to reach a tolerance of

%. Fracturing fluid is injected at a constant rate of Q = 0.01 m 

3 /s

nto the centre of the fracture. A total of fifteen cases are simu-

ated (seven cases in the viscosity regime, and eight cases in the

oughness regime), with varying fluid and matrix properties, in-

luding four extreme regimes as well as intermediate cases. The

roperties for these cases (cases 1–15) are defined in Table 1 . The

oung’s modulus and Poisson’s ratio for all cases are set to 17 GPa

nd 0.2, respectively. The minimum in situ stress acting in the

irection normal to the fracture plane for each case is given in

able 1 , and the in situ stresses in the other two directions are set

o 1 × 10 7 Pa. 

Savitski and Detournay (2002) derived solutions for a penny-

haped hydraulic fracture in an impermeable elastic rock. They de-

ned three hydraulic fracturing variables, fracture aperture a f , frac-

ure net pressure p fnet , and fracture radius R f , as functions of the

imensionless parameters �, � and γ , as: 

 f = εL � (33) 

p f = εE ′ � (34) 

 f = Lγ (35) 

here ε is a small number, L is a length scale, E ′ = E /(1 − ν2 ) is

he plane-strain elastic modulus, E is the Young’s modulus, and

is Poisson’s ratio, respectively. Fracture net pressure is defined

s the difference between fracture pressure and the in situ stress

ormal to the fracture plane. The solution was given for viscosity-

ominated and toughness-dominated regimes for storage cases

impermeable rock matrix). It is worth mentioning that in the

iscosity-dominated regime, the rock toughness has a negligible

ffect on hydraulic fracture growth, whereas in the toughness-

ominated regime the influence of the fluid viscosity is negligi-

le. In this latter case, the fracture pressure is essentially uni-

orm within the fracture, and the fracture’s mode I stress inten-

ity factor is equal to the fracture toughness, K I = K ic . To distinguish

etween viscosity and toughness regimes, Savitski and Detournay

2002) defined a dimensionless viscosity as 

 = μ′ 
(

Q 

3 E ′ 13 

K 

′ 18 t 2 

)1 / 5 

(36) 

Cases in which M � 1 are viscosity-dominated, whereas

 � 1 represents toughness-dominated cases. In this equa-

ion, μ′ =12 μf , and K 

′ =4(2/ π ) 1/2 K ic . Note that the dimension-

ess viscosity is time-dependent, and so the behaviour moves

rom viscosity-dominated towards toughness-dominated as time 

ncreases. 
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Table 1 

Material properties of the penny-shaped fractures, “1D” refers to the cases in which the flow through matrix is allowed only in the direction perpendicular to the fracture. 

Case no. Fluid viscosity 

(Pa s) 

Fracture toughness 

(Pa m 

0.5 ) 

Matrix 

permeability (m 

2 ) 

In-situ 

stress (Pa) 

Biot 

coefficient 

Growth 

increment (m) 

Propagation regime 

1 0 .1 1 × 10 6 0 7 × 10 6 – 0 .5 Storage-viscosity 

2 0 .1 1 × 10 6 0 7 × 10 6 – 1 .0 Storage-viscosity 

3 0 .1 1 × 10 6 0 7 × 10 6 – 0 .25 Storage-viscosity 

4 0 .1 1 × 10 6 1 × 10 −13 7 × 10 6 1 0 .5 Intermediate 

5 0 .1 1 × 10 6 1 × 10 −12 (1D) 7 × 10 6 0 1 .0 Leak-off-viscosity 

6 0 .1 1 × 10 6 1 × 10 −12 7 × 10 6 0 1 .0 Leak-off-viscosity 

7 0 .1 1 × 10 6 1 × 10 −12 7 × 10 6 1 1 .0 Leak-off-viscosity 

8 0 .0 0 01 2 × 10 6 0 7 × 10 6 – 1 Storage-toughness 

9 0 .0 0 01 2 × 10 6 1 × 10 −16 7 × 10 6 0 1 Intermediate 

10 0 .0 0 01 2 × 10 6 1 × 10 −15 (1D) 7 × 10 6 0 1 Leak-off-toughness 

11 0 .0 0 01 2 × 10 6 1 × 10 −15 7 × 10 6 0 .1 0 .25 Leak-off-toughness 

12 0 .0 0 01 2 × 10 6 1 × 10 −16 0 1 1 Intermediate 

13 0 .0 0 01 2 × 10 6 1 × 10 −15 0 1 1 Intermediate 

14 0 .0 0 01 2 × 10 6 1 × 10 −16 7 × 10 6 0 .5 1 Intermediate 

15 0 .0 0 01 2 × 10 6 1 × 10 −16 7 × 10 6 1 1 Intermediate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Net injection pressure (a), fracture aperture (b), and fracture radius (c) versus 

injection time in viscosity-dominated cases. 
3.1. Viscosity-dominated regime 

The fluid viscosity and fracture toughness values for viscosity-

dominated cases are set to μf = 0.1 Pa s, and K ic = 1 ×10 6 Pa m 

0.5 ,

respectively. For storage-dominated cases, the permeability of

the matrix is assumed to be negligible ( k m 

=0), whereas for

leakoff dominated cases the matrix permeability is taken to be

1 × 10 −12 m 

2 . The Biot coefficient α is varied between 0 and 1, cor-

responding to uncoupled and fully coupled poroelasticity scenarios,

respectively, although 0 is an unrealistic value, as the Biot coeffi-

cient is bounded below by the porosity ( Zimmerman, 20 0 0 ). For

the given parameters, the dimensionless viscosity is M = 39, which

corresponds to a viscosity-dominated case ( M � 1). 

The simulation results for injection pressure, fracture aperture

at the well, and fracture length (radius) for viscosity-dominated

cases 1–7 are shown in Fig. 2 . Included in these figures are the

asymptotic solutions for reference cases. Cases 1–3 with zero ma-

trix permeability correspond to the storage-dominated regime, and

cases 5–7 with matrix permeability 1 × 10 −12 m 

2 , correspond to

leakoff-dominated regime. Case 4 is an intermediate case. The sim-

ulation time for leakoff dominated cases 5–7 is increased to 200 s. 

Fig. 2 a shows the net injection pressure versus time when in-

jecting a viscous fluid. Good agreement is found between the an-

alytical solution for the storage case and the present model with

an impermeable matrix (case 1). The growth increment in case

1 is 0.5 m, and it has been changed to 1.0 and 0.25 m in cases

2 and 3, respectively. Results show a negligible effect due to the

growth increment. When leakoff is allowed by assuming a per-

meable rock matrix in cases 4–7, the injection pressure increases,

compared with the no leakoff cases 1–3. The leakoff is increasing

by increasing the permeability, resulting in higher injection pres-

sure, lower fracture aperture, and lower fracture radius. In case 5,

the permeability in the matrix is assumed to be “one-dimensional”,

such that the permeability in direction normal to the fracture is

10 0 0 times higher than the other two directions (one-dimensional

leakoff). This case is used for validation against the analytical solu-

tion. A very good match is observed between present model re-

sults and the analytical solution for the fracture radius for case

5. In case 6, the permeability in all three directions is assumed

equal to 10 −12 m 

2 (three-dimensional leakoff). Leakoff is also in-

creased by allowing the flow within the matrix to be globally

three-dimensional, rather than one-dimensional. Increasing leakoff,

again, leads to higher injection pressure, lower fracture aperture,

and lower fracture radius. In case 7, the Biot coefficient is increased

to 1. Injection pressure increases substantially with increasing Biot

coefficient. This is due to the poroelastic coupling, which results
in a back-stress on the fracture due to the dilated matrix. The frac- 
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Fig. 3. Spatial discretisation of the fracture: (a) coarse mesh, (b) fine mesh. 
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u  
ure aperture at the injection well is shown in Fig. 2 b as a function

f time. For the storage cases 1–3, the results of the present model

atch the analytical solution very well, whereas for the permeable

ases 4–7, the fracture aperture has been reduced, due to the in-

reased leakoff from the increase in matrix permeability. Further-

ore, the fracture aperture reduces when considering poroelastic

oupling, through the Biot coefficient in case 7. Included in this

gure is the simulation of case 5 with a coarser mesh. Very good

greement is found between the results for two different meshes,

onfirming that the leakoff is mesh-independent (38,142 elements

or the fine mesh, versus 20,342 elements for the coarse mesh). The

wo discretisations for the fracture are shown in Fig. 3. 

The fracture radii predicted from the present model are com-

ared with available solutions in Fig. 2 c. Again, good agreement

s found between analytical solutions and the present model, for

torage cases 1–3. The fracture radius decreases with increasing

ermeability in cases 4–7. A similar trend is observed between the

racture radius and the Biot coefficient. Increasing the permeabil-
ty and the Biot coefficient increases leakoff, and reduces fracture

olume. The increase in fracture pressure and decrease in fracture

perture and radius are due to leakoff, which causes dilation of the

ock matrix. Good agreement is also found between the present

odel results in case 5 and the analytical solution for fracture ra-

ius. In cases 6 and 7, the present model predicts lower fracture

rowth than the leakoff-viscosity asymptotic solution; this is due

o the combined effects of poroelasticity and multi-dimensional

ow through the matrix. The analytical solution applies for one-

imensional leakoff without poroelastic effects. 

.2. Toughness-dominated regime 

The fluid viscosity and fracture toughness values for toughness-

ominated cases are set to μf = 0.0 0 01 Pa s, and K ic = 2 ×10 6 

a m 

0.5 , respectively. Again, for storage-dominated cases, the per-

eability of the matrix is assumed to be negligible ( k m 

=0),

hereas for leakoff dominated cases the matrix permeability is

aken to be 1 × 10 −15 m 

2 . The Biot coefficient α is varied between

 and 1, corresponding to uncoupled and fully coupled poroe-

asticity scenarios, respectively. The dimensionless viscosity for

iven parameters is M = 0.003, which corresponds to a toughness-

ominated case ( M � 1). 

In toughness-dominated cases, the effects of matrix permeabil-

ty, minimum in situ stress normal to the fracture plane, and Biot

oefficient on the injection pressure, fracture aperture and frac-

ure radius are illustrated in Figs. 4–6 . Fig. 4 a shows the net in-

ection pressure versus injection time for cases 8–11. These cases

how the effect of changing the matrix permeability. Good agree-

ent is found between the present model and the analytical so-

ution for storage case 8. In permeable cases 9 −11, the injection

ressure increases. Bunger et al. (2005) proposed solutions for a

enny-shaped hydraulic fracture in the leakoff-toughness domi-

ated regime. In their solution, leakoff is modelled using Carter’s

quation ( Carter, 1957 ). The asymptotic solution for the leakoff-

ominated regime also shows an increase in the injection pres-

ure. In case 10, the flow through the matrix is considered one-

imensional along the direction normal to the fracture. Good

greement is found between the present model results and the an-

lytical solution for this case, validating the present model. Leakoff

ncreases by increasing the flow dimensions within the matrix, as

ell as by considering poroelasticity effects through the Biot co-

fficient. Therefore, in case 11, the present model predicts higher

eakoff than does the analytical solution. This is due to multidi-

ensional flow in the rock matrix, a feature that is not captured

n the analytical solution. In case 11, the growth increment has

een reduced to 0.25 m. A smaller growth increment corresponds

o more growth steps and more computational time. 

In Fig. 4 b, the fracture aperture at the well versus injection time

s shown for cases 8–11. Again, good agreement is found between

urrent model’s results and the analytical solution for both stor-

ge case 8 and one-dimensional leakoff case 10. As permeability

ncreases in cases 9–11, leakoff increases, and the fracture aper-

ure reduces. Similar trends are observed for the graph of fracture

adius versus injection time, as shown in Fig. 4 c. In cases 12 and

3, the in situ normal stress is set to zero, which substantially re-

uces the leakoff, as shown in Fig. 5 . Again, the injection pressure

ncreases with increasing permeability, whereas fracture aperture

nd radius both decrease. However, the effect of changing the per-

eability in the absence of an in situ stress is not as significant

s changing the permeability in the presence of an in situ stress

 Fig. 4 ). Therefore, the in situ stress has a significant impact on

eakoff; meaning that the leakoff could still be important in low

ermeability reservoirs provided that the minimum in situ stress

s high enough. As the fracture pressure is not explicitly computed

sing Carter’s model, but is often approximated as being equal to
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Fig. 4. Effect of matrix permeability in the presence of in situ stresses on the net 

injection pressure (a), fracture aperture (b), and fracture radius (c) in toughness- 

dominated cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Effect of matrix permeability, in absence of in situ stresses, on the net in- 

jection pressure (a), fracture aperture (b), and fracture radius (c) in toughness- 

dominated cases. 
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the minimum in situ stress, Carter’s model predicts lower leakoff

when the in situ stress is reduced. The fracture net pressure in the

present simulations varies between 1 to 10 MPa (higher values for

the viscosity-dominated regime, and lower values for toughness-

dominated regime), which could be considerable compared to the

actual minimum in situ stress. 

The effect of poroelasticity on leakoff is investigated through

cases 14 and 15, in which the Biot coefficient is increased to 0.5

and 1.0, respectively. The results for net injection pressure, fracture

aperture at the well, and fracture radius versus injection time, are

shown in Fig. 6 . The increase in injection pressure is more domi-

nant when the poroelastic coupling between the matrix fluid and

mechanical deformation is considered, as shown in Fig. 6 a for cases

14 and 15. This is due to the back-stress from the dilated rock ma-

trix. Increased fracture pressure increases leakoff, which in turn

reduces fracture aperture and radius, as shown in Fig. 6 b and c,

respectively. Included in Fig. 6 c is the simulation of case 15 with
tress intensity factors computed using displacement correlation

DC) method. Good agreement is found between the two results,

hich validates the computation of stress intensity factors. Fig. 7

hows the fracture pressure distribution over the fracture surface,

ogether with matrix pressure contours over a cut plane perpen-

icular to the fracture plane for cases 7 ( Fig. 7 a), 11 ( Fig. 7 b) and

3 ( Fig. 7 c) in the viscosity, toughness, and intermediate regimes,

espectively. Higher viscosity of the injected fluid results in a non-

niform fracture pressure distribution. The matrix pressure distri-

ution in all cases illustrates the three-dimensional nature of flow

hrough the matrix. The time-step shown in Fig. 7 a is the imme-

iate step prior to growth-step 7. However, the minimum fracture

ressure is less than the in situ stress, which means that the frac-

ure growth is controlled by the flow of the viscous fluid; the frac-

ure toughness has negligible effect. 
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Fig. 6. Effect of the Biot coefficient on the net injection pressure (a), fracture aper- 

ture (b), and fracture radius (c) in toughness-dominated cases. Case 15 is also sim- 

ulated using Displacement Correlation (DC) method for computing stress intensity 

factors. 
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Fig. 7. Fracture pressure distribution (solid surface) and matrix pressure con- 

tours on a cut-plane perpendicular to the fracture. (a) Case 7 ( σ =7 × 10 6 Pa; 

k m =1 × 10 −12 m 

2 ; α = 1) in leak-off-viscosity. (b) Case 11 ( σ =7 × 10 6 Pa; 

k m = 1 × 10 −15 m 

2 ; α = 0.1) in leak-off-toughness. (c) Case 13 ( σ =0 Pa; 

k m = 1 × 10 −15 m 

2 ; α = 1). Fracture pressure distribution represents the viscos- 

ity/toughness regime, while matrix pressure contours shows the multi-dimensional 

nature of the flow within the matrix. 
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In the viscosity-dominated regime, the fracture propagates as

oon as the fluid reaches the fracture tip. The distance between the

uid front and the fracture tip is called the fluid lag. The size of the

uid lag depends on the in situ stress, and it reduces by increasing

he in situ stress. The fracture and matrix pressure distribution for

oughness-dominated case 11 is shown in Fig. 7 b. Fracture pressure

istribution in this case is almost uniform compared to the frac-

ure pressure distribution in the viscosity-dominated case shown

n Fig. 7 a. This is due to the negligible energy required to move the

ow-viscosity fluid (case 11). This result supports the assumption

f a uniform pressure distribution in the fracture in the toughness-

ominated regimes. The minimum fracture pressure is above the in

itu normal stress in the time-step shown in Fig. 7 b; indicating that

he flow has reached the fracture tips, but the fracture is not grow-

ng, as its equivalent stress intensity factor is less than the fracture

oughness of the rock formation. This verifies the fact that the frac-
ure growth is controlled by fracture toughness, as is expected for

he toughness-dominated regime. For case 13, the matrix pressure

istribution is totally different than its distribution in the previous

ases 5 and 10. Negative matrix pressures are observed in front

f the fracture tips, where the tensile stresses develop matrix ex-

ansion. The Biot coefficient is set to 1 in this case, so matrix ex-

ansion develops negative matrix pressures due to poroelastic cou-

ling. Zero in situ stress significantly reduces leakoff, such that the

eakoff flow cannot compensate the negative pressures due to the

atrix expansion. 

Effective normal stress contours in a cut-plane perpendicular to

he fracture surface for cases 6 and 7 are shown in Fig. 8 . Whereas

or uncoupled case 6, the effective normal stress contours follow

he fracture pressure pattern shown in Fig. 7 , in coupled case 7,
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Fig. 8. Effective normal stress contours in a cut-plane perpendicular to the frac- 

ture. (a) case 5 ( σ =7 × 10 6 Pa; k m = 1 × 10 −12 m 

2 ; α = 1). (b) case 7 ( σ = 7 × 10 6 Pa; 

k m = 1 × 10 −12 m 

2 ; α=0). Fracture radius is 4 m for both cases. Poroelastic coupling 

influences the stress distribution around the fracture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Convergence test for Case 2 with three different meshes. Error is calculated 

for injection pressure at time of 20.85 s. 
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the increased matrix pressure alters the effective stress, so that the

contours in the vicinity of the fracture are parallel to the fracture.

In the uncoupled case, the maximum effective stress is located at

the injection point, and is equal to the maximum fracture pres-

sure, whereas in the coupled case, the maximum effective stress

is less than the maximum fracture pressure, and is located away

from the fracture. The results shown in Figs. 7 and 8 are for one

timestep prior to growth occurrence. In this step, the fluid pres-

sure at the fracture tips is almost equal in magnitude to the in

situ stress (7 MPa), and so the stress singularity is very weak, and

does not show up at the scale at which the stresses are plotted. In

summary, the simulation results show that leakoff increases with

increasing the permeability of the rock matrix, in situ stress, the

Biot coefficient of poroelasticity, and the dimensionality of the flow

within matrix. 

Available asymptotic solutions for the leakoff regime do not ac-

count for the effects of poroelasticity and multidimensional flow

within the matrix, and consequently they predict lower leakoff.

Lower leakoff is associated with lower fracture pressure, and

higher fracture aperture and radius. Actual field cases may not

correspond to any of the extreme cases for which asymptotic so-

lutions are available, warranting the need for a robust numerical

model that accounts for all the processes that occur during hy-

draulic fracturing. Convergence tests has been also performed to

investigate the robustness of the model. For this test, the case 2
s considered with three types of mesh: coarse (9540 elements),

edium (17,441 elements) and fine (29,080 elements). The error

etween injection pressures calculated from the present simula-

ions and from the analytical solution at a time of 20.85 s is com-

uted and shown for different meshes in Fig. 9 . The error reduces

rom 5% for the coarse mesh to close to 1% for the fine mesh. 

. Conclusions 

A fully coupled three-dimensional finite element model has

een presented for the simulation of hydraulically driven fractures

n poroelastic rocks. The model was validated against available an-

lytical solutions for penny-shaped fractures in different regimes

f propagation. The simultaneous impact of fluid and rock matrix

arameters on the hydraulic fracturing variables such as injection

ressure, fracture aperture, and fracture length, has been studied.

t was shown that leakoff increases with increasing matrix perme-

bility, increasing in situ stresses, increasing Biot coefficient, and

ncreasing flow dimensions. The analytical asymptotic solutions for

ydraulic fracturing in an impermeable rock matrix provide an

pper-bound for fracture radii and apertures, and a lower-bound

or fracture pressure. For leakoff-dominated cases in a permeable

ock matrix, the analytical asymptotic solutions cannot represent

 lower bound for fracture radii and apertures, or an upper bound

or fracture pressure. This is because the analytical solutions do not

apture the effect of the fracture being compressed by the dilated

oroelastic matrix, and underestimate the leakoff due to their ne-

lect of global flow in directions parallel to the fracture wall. For

ntermediate cases, which are most likely to arise in actual reser-

oirs, there are currently no analytical solutions available. The ex-

ent of leakoff is also important when evaluating environmental

mpact. In summary, this work has delineated the range of appli-

ability of the available asymptotic analytical solutions, identified

he trends (in fracture aperture, fracture length, and injection pres-

ure) due to deviations of the input parameters from the values

ssumed in the asymptotic analytical solutions, and demonstrated

 new code that can, for example, be used for more complex ge-

metries, such as multiple fractures and/or multiple wells (work in

rogress). 
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