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Abstract
Electronic	telemetry	is	frequently	used	to	document	animal	movement	through	time.	
Methods	that	can	 identify	underlying	behaviors	driving	specific	movement	patterns	
can	help	us	understand	how	and	why	animals	use	available	space,	thereby	aiding	con-
servation	and	management	efforts.	For	aquatic	animal	tracking	data	with	significant	
measurement	error,	a	Bayesian	state-space	model	called	the	first-Difference	Correlated	
Random	Walk	with	Switching	(DCRWS)	has	often	been	used	for	this	purpose.	However,	
for	aquatic	animals,	highly	accurate	tracking	data	are	now	becoming	more	common.	
We	developed	a	new	hidden	Markov	model	(HMM)	for	identifying	behavioral	states	
from	animal	tracks	with	negligible	error,	called	the	hidden	Markov	movement	model	
(HMMM).	We	implemented	as	the	basis	for	the	HMMM	the	process	equation	of	the	
DCRWS,	but	we	used	the	method	of	maximum	likelihood	and	the	R	package	TMB	for	
rapid	model	fitting.	The	HMMM	was	compared	to	a	modified	version	of	the	DCRWS	
for	highly	accurate	tracks,	the	DCRWSNOME,	and	to	a	common	HMM	for	animal	tracks	
fitted	with	the	R	package	moveHMM.	We	show	that	the	HMMM	is	both	accurate	and	
suitable	for	multiple	species	by	fitting	it	to	real	tracks	from	a	grey	seal,	lake	trout,	and	
blue	shark,	as	well	as	to	simulated	data.	The	HMMM	is	a	fast	and	reliable	tool	for	mak-
ing	meaningful	inference	from	animal	movement	data	that	is	ideally	suited	for	ecologists	
who	want	to	use	the	popular	DCRWS	implementation	and	have	highly	accurate	tracking	
data.	It	additionally	provides	a	groundwork	for	development	of	more	complex	modeling	
of	animal	movement	with	TMB.	To	facilitate	its	uptake,	we	make	it	available	through	the	
R	package	swim.

K E Y W O R D S

behavioral	states,	Great	Lakes	Acoustic	Telemetry	Observation	System,	movement	ecology,	
Ocean	Tracking	Network,	TMB,	swim

1  | INTRODUCTION

Animals	move	to	maximize	 their	growth	and	to	enhance	their	prob-
ability	of	survival	and	reproduction.	Movement	is	therefore	a	critical	

animal	behavior	that	reflects	an	animal's	response	to	its	current	bio-
logical	 and	physical	needs	and	 to	 its	environment.	 Identifying	 these	
underlying	drivers	of	animal	movement	(behavioral	states)	is	required	
for	understanding	how	and	why	animals	use	available	space,	and	this	
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knowledge	informs	the	management	and	conservation	of	both	species	
and	ecosystems.	In	aquatic	environments,	where	direct	observation	of	
animal	movement	and	behavioral	states	is	often	impossible,	research-
ers	are	rapidly	expanding	the	use	of	electronic	telemetry	for	document-
ing	animal	movement	through	time	(Hussey	et	al.,	2015).

Satellite	telemetry	and	acoustic	positioning	systems	are	common	
types	of	telemetry	technology	for	estimating	an	aquatic	animal's	loca-
tion	 in	continuous	space	and	yield	time	series	of	 locations	along	an	
animal's	path,	usually	referred	to	as	tracks.	Inferring	behavioral	states	
from	animal	tracks	is	possible	by	assuming	that	different	types	of	move-
ment,	and	therefore	behavioral	states,	can	be	reflected	by	changes	in	
characteristics	 of	 an	 animal's	 path.	 For	 example,	while	 foraging	 can	
often	be	characterized	by	a	tortuous	track,	a	more	directed	path	may	
suggest	 traveling	 between	 habitats	 (e.g.,	 Jonsen,	Mills	 Flemming,	 &	
Myers,	2005).

Hidden	Markov	models	(HMMs)	are	a	popular	tool	used	to	iden-
tify	behavioral	states	from	animal	telemetry	data	with	negligible	error	
(e.g.,	 Morales,	 Haydon,	 Frair,	 Holsinger,	 &	 Fryxell,	 2004;	 Langrock,	
King,	Matthiopoulos,	Thomas,	Fortin,	&	Morales,	2012).	HMMs	are	a	
large	class	of	models	distinguished	in	the	most	general	case	by	a	set	
of	 observations	 that	 depend	 on	 an	 unobserved,	 underlying	Markov	
process	 (Zucchini,	MacDonald,	&	Langrock,	2016).	 In	 the	context	of	
animal	movement,	 the	 latent	Markov	 process	 is	 used	 to	model	 the	
discrete	 behavioral	 states	 of	 interest,	while	 the	 set	 of	 observations	
follow	a	movement	process	 that	can	also	be	Markovian.	The	obser-
vations	can	consist	of	either	 location	data	 (e.g.,	Jonsen	et	al.,	 2005)	
or	metrics	 derived	 from	 the	 observed	 track,	 such	 as	 turning	 angles	
and	 step	 lengths	 (e.g.,	 Morales	 et	al.,	 2004;	 Langrock	 et	al.,	 2012).	
While	current	HMMs	can	be	fitted	rapidly	using	maximum-likelihood	
(ML)	 methods,	 with	 the	 exception	 of	 the	 formulation	 of	 Pedersen,	
Patterson,	Thygesen	and	Madsen	(2011),	they	are	unable	to	account	
for	measurement	error	associated	with	the	technology	used	to	obtain	
animal	tracks.	For	those	tracks	measured	with	error,	state-space	mod-
els	 (SSMs)	 provide	 a	more	 accurate	 and	 reliable	method	 for	 identi-
fying	 behavioral	 states,	 but	 are	 typically	 fitted	 using	 comparatively	
slow	Bayesian	methods	such	as	Markov	chain	Monte	Carlo	(MCMC)	
sampling	 because	 of	 large	 numbers	 of	 random	 effects	 (e.g.,	 Jonsen	
et	al.,	2005;	McClintock,	King,	Thomas,	Matthiopoulos,	McConnell,	&	
Morales,	2012;	Jonsen,	2016).	Therefore,	the	ideal	tool	for	identifying	
behavioral	 states	 from	 animal	 tracks	 should	 incorporate	 features	 of	
both	HMM	and	SSM	implementations,	such	that	measurement	error	
can	be	accounted	for	within	a	ML	framework	that	keeps	the	computa-
tional	burden	of	estimation	relatively	small.

One	particular	SSM	that	has	proven	its	utility	through	a	wide	range	
of	 applications	 on	 different	 species	 is	 the	 Bayesian	 first-Difference	
Correlated	 Random	Walk	 with	 Switching	 (DCRWS)	 SSM	 of	 Jonsen	
et	al.	(2005).	This	model	has	been	previously	used	to	quantify	foraging	
behavior	in	cetaceans	(Bailey,	Mate,	Palacios,	Irvine,	Bograd,	&	Costa,	
2009;	Irvine	et	al.,	2014),	pinnipeds	(Breed,	Jonsen,	Myers,	Bowen,	&	
Leonard,	 2009;	Harwood,	 Smith,	Auld,	Melling,	&	Yurkowski,	 2015),	
turtles	 (González	Carman	et	al.	2012;	Hart,	Lamont,	Fujisaki,	Tucker,	
&	Carthy,	2012),	 sea	birds	 (Reid,	Ronconi,	Cuthbert,	&	Ryan,	2014),	
and	manta	rays	(Graham	et	al.,	2012).	Furthermore,	it	has	been	used	

to	determine	migration	corridors	(Prieto,	Silva,	Waring,	&	Gonçalves,	
2014),	to	estimate	intraspecific	competition	(Breed,	Bowen,	&	Leonard,	
2013),	predator–prey	relationships	(Fitzpatrick,	Thums,	Bell,	Meekan,	
Stevens,	 &	Barnett,	 2012),	 and	 site	 fidelity	 (Block	 et	al.,	 2011),	 and	
to	inform	management	and	conservation	of	protected	regions	(Block	
et	al.,	2011;	Maxwell	et	al.,	2011;	Graham	et	al.,	2012).

Here,	we	introduce	a	new	HMM	for	estimating	behavioral	states	
from	highly	accurate	animal	tracks	which	is	similar	to	the	DCRWS,	but	
does	not	account	for	measurement	error.	We	directly	implement	the	
process	equation	of	 the	DCRWS	as	the	basis	 for	our	HMM,	but	we	
adjust	the	model	for	fitting	within	a	ML	framework	to	allow	for	rapid	
estimation.	 Model	 fitting	 and	 parameter	 estimation	 are	 performed	
using	the	R	package	TMB	(Kristensen,	Nielsen,	Berg,	&	Skaug,	2016),	
which	has	previously	shown	great	promise	for	analyzing	animal	track-
ing	data	(Albertsen,	Whoriskey,	Yurkowski,	Nielsen,	&	Mills	Flemming,	
2015;	Auger-Méthé	et	al.	2017).	We	make	this	model,	which	we	enti-
tle	the	hidden	Markov	movement	model	(HMMM),	available	through	
the	 R	 package	 swim	 (see	 supplementary	 material).	 To	 demonstrate	
the	 accuracy	 and	 applicability	 of	 the	HMMM,	we	 apply	 it	 to	 simu-
lated	animal	 tracks	and	to	 real	 tracks	 from	multiple	aquatic	species.	
We	additionally	compare	our	HMMM	results	to	those	obtained	using	
its	Bayesian	 counterpart	 and	 to	 results	 from	 the	moveHMM	 package	
(Michelot,	 Langrock,	&	Patterson,	 2016).	We	 assess	 the	 advantages	
and	 disadvantages	 of	 each	 approach	 by	 comparing	 their	 computa-
tional	efficiency,	accuracy,	and	sequences	of	behavioral	states.

2  | METHODS

2.1 | The DCRWS movement process

The	DCRWS	 is	 a	 SSM	 that	 estimates	 the	 true	 locations,	 behavioral	
states,	and	parameters	of	a	movement	process	from	an	Argos	satellite	
system	track	(Jonsen	et	al.,	2005).	Given	the	true	location	xt	at	time	t,	
the	process	equation	of	the	DCRWS	is	a	correlated	random	walk	on	
the	first	differences	of	the	true	locations,	dt=xt−xt−1:

The	 stochastic	 term	 in	 the	 movement	 process	 is	 a	 bivariate	
Gaussian	(N2)	with	mean	0	and	covariance	matrix	Σ,	where	σlat	and	σlon 
are	the	standard	deviations	in	the	latitude	and	longitude	axes,	respec-
tively,	and	ρ	is	the	correlation	between	the	two	axes.	Like	Breed	et	al.	
(2012),	we	assume	here	that	ρ	=	0,	 implying	that	the	stochasticity	in	
the	 longitudinal	 and	 latitudinal	 axes	 are	 independent	of	 each	other.	
The	 parameter	 γbt−1	 describes	 the	 autocorrelation	 in	 both	 direction	
and	 speed,	 and	T(θbt−1 )	 is	 the	 rotational	matrix	 through	 space	 given	
the	 turning	angle	θbt−1.	Multiple	values	are	possible	 for	γbt−1	 and	θbt−1
,	and	these	parameter	values	are	dependent	on	the	behavioral	state	
at	 time	 t−1,	 that	 is,	bt−1.	This	 dependence	 provides	 the	mechanism	

(1)dt=γbt−1T(θbt−1 )dt−1+N2(0,Σ)

T(θbt−1 )=

(
cos (θbt−1 ) − sin (θbt−1 )

sin (θbt−1 ) cos (θbt−1 )

)
Σ=

(
σ2
lon

ρσlonσlat

ρσlonσlat σ2
lat

)
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for	 distinguishing	 between	multiple	 behavioral	 states	 at	 each	 loca-
tion.	Typically	 of	 interest	 are	 two	 states:	 the	first	 is	 directed	move-
ment	 characterized	by	 traveling	 in	 the	 same	direction	 (θ	≈	0)	 and	at	
a	similar,	high	speed	(γ	>	0.5),	and	the	second	is	tortuous	movement	
characterized	by	frequent	course	reversals	(θ	≈	π)	at	dissimilar,	slower	
speeds	(γ	<	0.5).	Parameter	sets	for	each	state	are	identified	with	the	
appropriate	subscript,	either	1	or	2.

2.2 | The HMMM

Our	HMMM	uses	the	movement	process	described	by	(1),	but	instead	
of	using	a	Bayesian	framework	like	Jonsen	et	al.	(2005),	we	employ	a	
ML	framework	and	fit	the	process	equation	as	a	HMM	via	TMB,	which	
requires	 that	 the	 likelihood	 function	be	coded	 in	 the	C++	program-
ming	language.	The	probability	distribution	of	the	movement	process	
is	conditional	on	the	assumed	behavioral	states	bt	and	is	given	by

The	likelihood	of	the	HMMM	is	that	of	a	HMM	(Zucchini	et	al.,	2016):

Assuming	two	behavioral	states,	the	2×1	vector	δ	contains	the	ini-
tial	probabilities	of	being	in	each	state.	A	is	a	2×2	transition	probabil-
ity	matrix	containing	the	switching	probabilities	αi,j	that	describe	the	
probability	of	 switching	 from	state	 i	 at	time	 t−1	to	state	 j	 at	time	 t. 
Because	the	rows	of	A	sum	to	1,	we	need	only	estimate	two	switching	
probabilities	 instead	 of	 four;	we	 choose	 to	 estimate	α1,1	 and	α2,1. P 
is	a	2×2	diagonal	matrix	with	diagonal	entries	equal	to	(f(dt|bt−1=1),	
f(dt|bt−1=2)),	that	is,	the	probabilities	of	being	at	the	observed	loca-
tions	given	each	behavioral	state	as	described	by	the	movement	pro-
cess.	1	 is	 a	2×1	vector	of	ones.	We	estimate	 the	parameters	of	 the	
movement	process	directly	 from	the	 likelihood	within	TMB	 and	 then	
use	the	Viterbi	algorithm	to	estimate	the	unobserved	behavioral	states	
(Zucchini	et	al.,	2016).

2.3 | Data analysis and simulation study

To	evaluate	the	performance	of	the	HMMM,	we	compared	it	with	two	
other	approaches	for	estimating	behavioral	states	from	animal	tracks	
with	negligible	measurement	error.	The	first	was	the	switching	move-
ment	process	described	by	(1),	fitted	using	a	Bayesian	framework	and	
Markov	 chain	Monte	Carlo	 (MCMC)	 sampling	 via	rjags	 (Plummer,	
2015).	This	first	model	is	the	DCRWS	of	Jonsen	et	al.	(2005)	modified	
such	that	it	does	not	include	a	measurement	equation,	and	therefore	
differs	 from	 the	HMMM	solely	 in	 implementation	 (i.e.,	 Bayesian	 vs.	
ML	inference).	Hereafter,	we	refer	to	it	as	the	DCRWSNOME.	Although	
the	DCRWSNOME	has	not	been	fitted	before,	 implementations	of	the	
DCRWS	for	tracking	data	with	minimal	errors	do	exist	(Jonsen,	2016),	
and	the	DCRWSNOME	is	the	most	direct	implementation	of	the	DCRWS	
when	no	measurement	error	is	assumed.	To	fit	the	DCRWSNOME,	we	
used	 a	 burn-in	 period	 of	 40,000	 samples	 and	 then	 sampled	20,000	

from	the	posterior	distribution	but	only	kept	every	20th	sample	(thin-
ning).	We	 fitted	 and	 compared	 two	MCMC	 chains	 to	 each	 track	 to	
check	for	convergence.	All	prior	distributions	were	specified	as	in	the	
R	 package	bsam	 (Jonsen	 et	al.,	 2005)	 that	 fits	 the	 original	 DCRWS	
model,	with	the	exception	of	those	for	the	error	covariance	matrix	Σ. 
Instead,	 by	 setting	ρ	=	0,	which	we	believe	 is	more	 appropriate,	we	
were	 able	 to	 specify	 separate	 vague	 uniform	 priors	 on	σlon	 and	σlat 
as	 opposed	 to	 using	 the	 original	Wishart	 prior	 on	 the	 entire	matrix	
(Jonsen	et	al.,	2005).	Parameters	and	behavioral	states	were	estimated	
as	 the	 posterior	medians	 of	 the	 samples	 from	 the	 two	 chains	 com-
bined.	We	additionally	fitted	a	HMM	to	the	turning	angles	 (rad)	and	
step	 lengths	 (km)	of	the	animal	 tracks	with	the	R	package	moveHMM 
(Michelot	et	al.,	2016),	using	a	von	Mises	(mean	μ	and	concentration	
parameter	c)	and	Weibull	(shape	λ	and	scale	parameter	k)	distribution,	
respectively.	 Behavioral	 states	 were	 again	 identified	 via	 the	 Viterbi	
algorithm,	using	functions	from	moveHMM.

We	fitted	 these	 three	models	 to	 three	 animal	 tracks:	 (1)	 a	 GPS	
track	 collected	 by	 a	 Sea	 Mammal	 Research	 Unit	 head-mounted	
Satellite	Relay	Data	Logger	(accurate	GPS	positions	acquired	when	the	
head	surfaces)	deployed	on	an	adult	male	grey	seal	 (Halichoerus gry-
pus)	at	Kouchibouguac	National	Park,	New	Brunswick,	in	2013;	(2)	an	
acoustic	Vemco	Positioning	System	(VPS;	positions	from	triangulation	
of	detections	from	multiple	receivers	in	known	locations;	Smith,	2013)	
track	 of	 an	 adult	male	 lake	 trout	 (Salvelinus namaycush)	 in	 northern	
Lake	Huron	in	2014;	and	(3)	a	light-based	geolocation	track	recorded	
by	 an	 immature	 female	 blue	 shark	 (Prionace glauca)	 tagged	 near	
Halifax,	Nova	Scotia,	with	a	Wildlife	Computers	miniPAT	tag	in	2014.	
Because	geolocation	data	can	be	error-prone,	the	track	was	processed	
with	the	Wildlife	Computers	(2015)	GPE3	software	(a	SSM)	to	improve	
positioning	accuracy	by	estimating	 the	 true	blue	 shark	 locations,	 as	
suggested	by	the	manufacturers.	Although	a	SSM	for	geolocation	data	
would	have	been	the	ideal	approach	for	analyzing	the	blue	shark	data,	
our	 approach	 of	 fitting	 HMMs	 to	 true	 location	 SSM	 estimates	 has	
been	previously	adopted	 (e.g.,	Eckert	et	al.,	2008).	Because	the	data	
were	collected	in	continuous-time	but	all	three	models	assume	under-
lying	 discrete-time	 Markov	 processes,	 we	 had	 to	 approximate	 the	
locations	 in	discrete-time	and	 then	assume	 that	 these	were	known.	
We	linearly	interpolated	the	data	sets	over	time	using	a	6-hr,	15-min,	
and	12-hr	time	step	for	the	grey	seal,	lake	trout,	and	blue	shark	data,	
respectively,	yielding	data	sets	with	1,227,	2,187,	and	393	locations.	
Different	time	 steps	were	 required	based	on	 the	different	 temporal	
resolutions	of	the	tracks.

Additionally,	 using	 the	 parameter	 estimates	 from	 the	 grey	 seal	
HMMM	 and	 DCRWSNOME	 fits	 (Table	1),	 we	 conducted	 a	 simulation	
study	to	formally	compare	the	accuracy	of	the	HMMM	and	DCRWSNOME 
and	compare	their	results	with	those	obtained	using	moveHMM.	We	sim-
ulated	50	tracks	corresponding	to	the	HMMM	from	a	known	parameter	
set	with	turning	angles	θ1 = 0	and	θ2 = π;	autocorrelation	γ1 = 0.8	and	
γ2 = 0.05;	process	error	standard	deviations	σlon = 0.07	and	σlat = 0.05;  
and	 switching	 probabilities	 α1,1 = 0.89	 and	 α2,1 = 0.20.	 These	 two	
behavioral	states	are	classically	interpreted	as	transiting	(θ1,	γ1)	and	forag-
ing	(θ2,	γ2).	We	then	fitted	the	HMMM,	moveHMM,	and	the	DCRWSNOME 
to	 each	 simulated	 track	 and	 calculated	 the	 parameter	 estimates	 and	

(2)f(dt|bt−1)∼N2(γbt−1T(θbt−1 )dt−1,Σ).

(3)δ�P(d1)AP(d2)A⋯P(dt−1)AP(dt)1.
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interval	measures	of	uncertainty	for	these	estimates.	For	the	HMMM	
and	moveHMM,	this	consisted	of	the	95%	confidence	interval	based	on	
the	standard	error	estimates.	For	the	DCRWSNOME,	we	determined	the	
95%	credible	interval	as	the	2.5%	and	97.5%	quantiles	of	the	posterior	
samples.	We	found	the	behavioral	state	error	rate,	that	is,	the	proportion	
of	states	that	were	incorrectly	identified,	for	each	model,	and	addition-
ally	calculated	the	root	mean	squared	error	(RMSE)	for	each	parameter	
estimate	Θ̂	from	the	HMMM	and	DCRWSNOME	fits	as

We	were	unable	to	calculate	the	RMSE	for	the	moveHMM	fits	because	
the	data	were	simulated	according	to	the	HMMM	movement	process	and	
the moveHMM	implementation	does	not	involve	the	same	parameters.

3  | RESULTS

3.1 | Identifying behavioral states

We	applied	 the	HMMM,	 the	DCRWSNOME,	 and	moveHMM	 to	 a	 grey	
seal,	lake	trout,	and	blue	shark	track	estimated	with	negligible	meas-
urement	error.	All	three	models	performed	similarly	and	identified	two	
clearly	distinct	behavioral	states	for	the	grey	seal	and	lake	trout	tracks	
(Figures	1	and	2).	For	both	animals,	HMMM	and	DCRWSNOME	param-
eter	estimates	were	similar	except	for	the	tortuous	turning	angle	θ2
,	which	was	estimated	at	a	similar	distance	from	the	number	π	but	in	
the	opposite	direction	(i.e.,	while	one	was	estimated	turning	slightly	
to	the	left,	the	other	was	estimated	turning	to	the	right;	Tables	1	and	
2).	This,	along	with	the	relatively	large	confidence	intervals	for	θ2,	 is	
not	unusual	because	together	with	small	γ2,	 it	suggests	that	the	ani-
mal	 is	exhibiting	 tortuous	movement,	 in	which	case	 the	mean	 turn-
ing	 angle	 does	 not	 have	 as	 much	 influence	 because	 the	 animal	 is	
more	equally	 likely	to	travel	 in	any	direction.	Switching	probabilities	
(α1,1	and	α2,1)	were	similar	among	all	three	models	for	the	seal	track.	

moveHMM	estimated	switching	probabilities	for	the	lake	trout	track	dif-
ferent	 from	 the	 HMMM	 and	DCRWSNOME,	 although	 the	 estimated	
parameters	 of	 the	 three	 models	 led	 to	 similar	 decoded	 behavioral	
state	sequences.	For	the	seal	track,	the	DCRWSNOME	took	6.4	hr	to	fit,	
moveHMM	took	0.9	s,	and	the	HMMM	took	0.06	s.	For	the	lake	trout	
data,	the	DCRWSNOME	took	9.4	hr	to	fit,	moveHMM	took	1.8	s,	and	the	
HMMM	took	0.16	s.

All	 three	models	 identified	two	states	 from	the	blue	shark	 track,	
although	half	of	the	switching	probabilities	estimated	by	moveHMM	dif-
fered	greatly	from	those	estimated	by	the	HMMM	and	DCRWSNOME 
(Table	3),	and	this	led	to	different	state	sequences	(Figure	3).	Specifically,	
all	three	models	estimated	a	high	probability	of	remaining	in	state	1,	
α1,1,	but	moveHMM	estimated	a	low	probability	of	switching	from	state	
2	 to	 state	 1,	α2,1,	 while	 the	 DCRWSNOME	 and	 HMMM	 estimated	 a	
high α2,1.	The	switching	probabilities	of	the	HMMM	and	DCRWSNOME 
therefore	led	to	state	sequences	containing	long	stretches	of	state	1	
interspersed	with	short	(length	1	or	2)	stretches	of	state	2.	By	contrast,	
moveHMM	 estimated	 a	 state	 sequence	with	 longer	 stretches	 of	 both	
behavioral	states.	While	the	DCRWSNOME	took	1.7	hr	to	fit	to	the	blue	
shark	track,	moveHMM	took	1.2	s,	and	the	HMMM	took	0.02	s.

3.2 | Simulation Study

We	simulated	50	tracks	 from	the	HMMM	with	a	set	of	parameters	
representative	of	the	grey	seal	track.	The	HMMM	and	DCRWSNOME 
provided	accurate	estimates	of	the	model	parameters	(Figure	4),	but	
the	DCRWSNOME	had	a	smaller	average	(over	the	parameters)	RMSE	
(0.120	vs.	0.140;	Table	4).	The	RMSEs	for	individual	parameters	were	
similar	(within	0.01)	between	the	two	models	with	the	exception	of	θ2
,	where	the	RMSE	of	the	DCRWSNOME	was	smaller	by	0.149	(Table	4).	
The	 DCRWSNOME	 additionally	 had	 the	 smallest	 behavioral	 state	
error	rate	(0.175)	which	differed	from	the	HMMM	and	moveHMM	by	
approximately	1.5%	(0.189)	and	18.7%	(0.362),	 respectively.	Finally,	
the	average	time	needed	 to	fit	 the	DCRWSNOME	was	5.10	hr,	while	
moveHMM	took	1.2	s	and	the	HMMM	took	0.08	s.

(4)RMSEΘ =

(
1

n

n∑

j=1

(Θ̂−Θ)2

)1∕2

TABLE  1   Parameter	estimates	from	three	models	fitted	to	a	grey	seal	track.	The	Lower	and	Upper	columns	are	the	lower	and	upper	bounds	
of	95%	uncertainty	intervals	around	the	estimates.	These	correspond	to	95%	confidence	intervals	for	the	HMMM	and	moveHMM,	and	95%	
credible	intervals	for	the	DCRWSNOME.	The	only	two	parameters	in	common	among	all	three	models	are	the	switching	probabilities,	α1,1	and	α2,1

Parameter

HMMM DCRWSNOME

Parameter

moveHMM

Estimate Lower Upper Estimate Lower Upper Estimate Lower Upper

θ1 0.022 −0.023 0.066 −0.017 −0.060 0.027 �1 −0.010 −0.058 0.038

θ2 4.662 2.441 5.835 1.831 0.275 5.980 �2 0.495 −0.358 1.348

γ1 0.805 0.753 0.848 0.805 0.759 0.849 c1 0.685 0.640 0.730

γ2 0.055 0.013 0.201 0.048 0.003 0.128 c2 0.069 0.002 0.135

σlon 0.071 0.068 0.074 0.071 0.068 0.074 λ1 2.185 1.977 2.393

σlat 0.050 0.048 0.053 0.050 0.048 0.053 λ2 0.816 0.757 0.875

k1 15.342 14.381 16.304

k2 3.487 2.878 4.097

α1,1 0.890 0.827 0.932 0.885 0.835 0.929 0.876 0.842 0.910

α2,1 0.198 0.133 0.285 0.204 0.141 0.292 0.111 0.090 0.158



     |  5WHORISKEY Et al.

4  | DISCUSSION

We	have	shown	that	the	HMMM	is	a	fast	and	reliable	tool	for	esti-
mating	 behavioral	 states	 from	 animal	 tracking	 data	 that	 contain	

negligible	error.	Our	simulation	study	demonstrated	the	accuracy	of	
the	HMMM	for	estimating	both	the	states	and	model	parameters.	Our	
use	of	data	from	different	species	and	derived	by	different	telemetry	

F IGURE  1 Behavioral	states	as	obtained	by	fitting	the	HMMM	
(panel	a),	DCRWSNOME	(panel	b),	and	moveHMM	(panel	c)	models	to	
the	grey	seal	track.	Different	behavioral	states	are	indicated	by	grey	
(state	1)	and	blue	(state	2)
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F IGURE  2 Behavioral	states	as	obtained	by	fitting	the	HMMM	
(panel	a),	DCRWSNOME	(panel	b),	and	moveHMM	(panel	c)	models	to	
the	lake	trout	track.	Different	behavioral	states	are	indicated	by	grey	
(state	1)	and	blue	(state	2)
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systems	demonstrated	the	wide-ranging	applicability	of	the	HMMM.	
Coupled	with	the	existing	documentation	of	the	DCRWS	(more	than	
45	papers	using	this	model),	we	suspect	that	the	HMMM	will	be	an	
easily	 interpretable	tool	 for	ecologists	who	are	 interested	 in	 imple-
menting	the	DCRWS	and	have	highly	accurate	data,	which	has	the	
advantage	over	current	methods	with	the	DCRWS	of	being	fast	 to	
fit	 (on	the	order	of	seconds)	and	avoiding	convergence	 issues	with	
MCMC	samplers.	HMMM	implementation	is	available	through	the	R	
package	swim.

The	 HMMM,	 DCRWSNOME,	 and	 moveHMM	 all	 identified	 two	
behavioral	 states	 from	 the	 grey	 seal	 track,	 consistent	with	 previous	
analyses	 (Jonsen	 et	al.,	 2005;	 Breed	 et	al.,	 2009;	 Breed,	 Bowen,	 &	

Leonard,	2011).	Grey	seal	tracks	from	Atlantic	Canada	typically	show	
clear	bouts	of	directed	and	tortuous	movement	and	have	been	previ-
ously	analyzed	with	the	DCRWS	(e.g.,	Jonsen	et	al.,	2005);	therefore,	
an	Atlantic	Canada	grey	seal	GPS	track	provided	an	ideal	test	for	our	
study.	 For	 grey	 seals,	 tortuous	 movement	 is	 classically	 interpreted	
as	 foraging,	while	directed	movement	 is	often	 regarded	as	 traveling	
between	 foraging	 patches.	 The	 models	 identified	 several	 bouts	 of	
foraging	behavior	 in	the	Northwest	Atlantic	and	 in	the	Gulf	of	Saint	
Lawrence,	 specifically	 off	 the	 coasts	 of	Nova	 Scotia,	 Prince	 Edward	
Island,	New	Brunswick,	and	Gaspésie,	areas	of	high	biological	produc-
tivity	that	are	consistent	with	those	previously	identified	as	grey	seal	
foraging	areas	(Breed	et	al.,	2009).

TABLE  2 Parameter	estimates	from	three	models	fitted	to	a	lake	trout	track.	The	Lower	and	Upper	columns	are	the	lower	and	upper	
bounds	of	95%	uncertainty	intervals	around	the	estimates.	These	correspond	to	95%	confidence	intervals	for	the	HMMM	and	moveHMM,	and	
95%	credible	intervals	for	the	DCRWSNOME.	The	only	two	parameters	in	common	among	all	three	models	are	the	switching	probabilities,	α1,1 
and	α2,1

Parameter

HMMM DCRWSNOME

Parameter

moveHMM

Estimate Lower Upper Estimate Lower Upper Estimate Lower Upper

θ1 −0.118 −0.155 −0.082 0.119 0.084 0.155 �1 0.021 −0.041 0.083

θ2 2.687 2.277 3.113 3.603 3.206 4.088 �2 −0.746 −2.042 0.447

γ1 0.821 0.786 0.851 0.821 0.788 0.853 c1 3.123 2.488 3.763

γ2 0.128 0.083 0.191 0.123 0.075 0.177 c2 0.113 0.033 0.238

σlon 0.001 0.001 0.001 0.001 0.001 0.001 λ1 2.324 2.119 2.550

σlat 0.001 0.001 0.001 0.001 0.001 0.001 λ2 0.838 0.786 0.894

k1 16.128 15.274 17.029

k2 4.084 3.621 4.606

α1,1 0.645 0.578 0.707 0.643 0.576 0.705 0.853 0.811 0.887

α2,1 0.288 0.212 0.377 0.289 0.214 0.384 0.102 0.077 0.132

TABLE  3 Parameter	estimates	from	three	models	fitted	to	a	blue	shark	track.	The	Lower	and	Upper	columns	are	the	lower	and	upper	
bounds	of	95%	uncertainty	intervals	around	the	estimates.	These	correspond	to	95%	confidence	intervals	for	the	HMMM	and	moveHMM,	and	
95%	credible	intervals	for	the	DCRWSNOME.	The	only	two	parameters	in	common	among	all	three	models	are	the	switching	probabilities,	α1,1 
and	α2,1.	Because	this	track	had	some	step	lengths	equal	to	zero,	the	two	parameters	ζ1	and	ζ2	were	used	to	estimate	zero-inflation	for	each	
behavior	when	using	moveHMM

Parameter

HMMM DCRWSNOME

Parameter

moveHMM

Estimate Lower Upper Estimate Lower Upper Estimate Lower Upper

θ1 −0.021 −0.070 0.027 0.013 −0.040 0.062 �1 −0.003 −0.025 0.019

θ2 0.528 0.232 1.131 −0.881 −0.006 0.157 �2 0.013 −0.273 0.300

γ1 0.923 0.846 0.963 0.932 0.873 0.987 c1 40.323 30.556 50.107

γ2 0.289 0.199 0.400 0.303 0.188 0.423 c2 0.949 0.616 1.302

σlon 0.045 0.042 0.049 0.046 0.043 0.049 λ1 1.806 1.608 2.029

σlat 0.042 0.039 0.045 0.042 0.038 0.045 λ2 1.069 0.927 1.232

k1 11.816 10.872 12.842

k2 6.610 5.255 8.314

ζ1 0.029 0.014 0.059

ζ2 0.035 0.013 0.091

α1,1 0.904 0.794 0.958 0.880 0.732 0.955 0.841 0.778 0.888

α2,1 0.722 0.385 0.915 0.742 0.437 0.925 0.320 0.211 0.454



     |  7WHORISKEY Et al.

With	the	HMMM,	DCRWSNOME,	and	moveHMM,	we	identified	two	
behavioral	 states	within	 the	 lake	 trout	 track.	The	Drummond	 Island	
lake	trout	population	spawn	primarily	at	nighttime	on	rock	rubble	reefs	

in	 association	 with	 submerged	 drumlins	 (Riley	 et	al.,	 2014;	 Binder	
et	al.,	 2015).	 Lake	 trout	 show	 multiple	 behaviors	 characterized	 by	
tortuous	movement,	 including	 spawning	 on	 the	 reefs.	 For	 example,	
lake	trout	(particularly	males)	often	aggregate	on	the	spawning	reefs	
in	 the	weeks	 leading	 up	 to	 spawning,	 a	 behavior	 known	 as	 staging	
(Muir,	Blackie,	Marsden,	&	Krueger,	2012).	Because	egg	surveys	have	
verified	that	no	spawning	occurs	in	some	locations	where	our	models	
identified	tortuous	behavior	(T.	Binder,	unpublished	observations),	we	
believe	the	models	are	distinguishing,	more	generally,	 reef	and	non-
reef	behaviors.	Being	able	to	mathematically	distinguish	between	reef	
and	non-reef	behaviors	can	allow	for	 identification	of	key	 lake	trout	
habitats	for	conservation	such	as	spawning	sites	in	places	where	direct	
observation	is	difficult.	Furthermore,	by	building	a	dependence	of	the	
HMMM	on	one	or	more	covariates,	it	may	be	possible	to	more	acutely	
identify	 spawning	 behavior.	 For	 example,	 because	 the	 Drummond	
Island	lake	trout	tend	to	spawn	at	night	close	to	the	substrate,	time	of	
day	and	lake	trout	depth	(which	is	often	recorded	by	positioning	sys-
tems	such	as	the	VPS)	may	provide	sufficient	additional	 information	
for	the	HMMM	to	distinguish	spawning	behavior	from	other	reef-as-
sociated	behaviors.	One	possible	way	 to	 achieve	 this	 is	 by	 allowing	
the	switching	probabilities	of	the	HMMM	to	depend	on	these	covari-
ates	in	a	linear	fashion	(as	in,	e.g.,	Bestley,	Jonsen,	Hindell,	Guinet,	&	
Charrassin,	2012;	Michelot	et	al.,	2016).	Additionally,	an	extension	to	
the	HMMM	which	 could	 estimate	more	 than	 two	behavioral	 states	
may	be	able	to	distinguish	reef	from	spawning	behavior.	We	chose	to	
model	only	two	states	so	that	we	could	more	directly	compare	results	
of	 the	 HMMM	 to	 our	 implementation	 of	 the	 original	 DCRWS	 (the	
DCRWSNOME);	however,	the	HMMM	should	be	directly	extendible.

When	fitted	to	the	blue	shark	track,	moveHMM	produced	different	
state	sequences	than	the	HMMM	and	DCRWSNOME,	as	moveHMM	esti-
mated	longer	stretches	of	behavioral	state	2	than	either	of	the	other	
models.	This	is	likely	because	moveHMM	models	the	distributions	of	the	
turning	angles	and	step	lengths	calculated	from	an	animal	path,	which	
is	fundamentally	different	from	the	movement	process	of	the	HMMM	
and	DCRWSNOME.	Furthermore,	McClintock	et	al.	(2014)	showed	that	
the	continuous-time	analog	to	the	movement	process	introduced	by	
Jonsen	et	al.	(2005)	and	modeled	by	the	HMMM	has	step	lengths	and	
bearings	 that	are	correlated,	whereas	 the	step	 lengths	and	bearings	
of	the	process	modeled	by	McClintock	et	al.	 (2012)	 (close	to	that	of	
moveHMM)	 are	uncorrelated.	moveHMM	 identified	 two	behaviors	 that	
were	distinguished	primarily	by	different	step	 lengths,	and	therefore	
traveling	speeds,	with	state	1	characterized	by	longer	step	lengths	and	
faster	 speeds,	 and	 state	 2	 characterized	 by	 slower	 movement.	 The	
HMMM	and	DCRWSNOME	 identified	two	behaviors	that	were	distin-
guished	by	high	 (state	1)	 and	 low	 (state	2)	 autocorrelations,	or	how	
related	the	speed	at	time	t	was	to	the	speed	at	time	t−1.	By	modeling	
autocorrelation,	 the	HMMM	and	DCRWSNOME	were	able	 to	directly	
estimate	persistence	in	animal	movement,	which	reflected	an	animal's	
choice	to	move.	However,	it	is	possible	that	the	shorter	sequences	of	
state	2	were	identified	by	the	HMMM	and	DCRWSNOME	because	the	
behaviors	they	were	trying	to	estimate	occurred	on	a	finer	timescale	
than	was	modeled,	which	could	make	biological	interpretation	of	these	
states	difficult.

F IGURE  3 Behavioral	states	as	obtained	by	fitting	the	HMMM	
(panel	a),	DCRWSNOME	(panel	b),	and	moveHMM	(panel	c)	models	to	
the	blue	shark	track.	Different	behavioral	states	are	indicated	by	grey	
(state	1)	and	blue	(state	2)
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Our	simulation	study	results	suggested	that	while	the	DCRWSNOME 
was	slightly	more	accurate	than	the	HMMM,	the	difference	was	mar-
ginal.	 The	 two	 models	 performed	 similarly	 while	 estimating	 model	
parameters	 with	 the	 exception	 of	 θ2,	 which	 the	 DCRWSNOME more 
accurately	 estimated.	 This	 result	 is	 likely	 explained	 by	 the	 rather	
informative	 priors	 on	 θ1	 and	 γ1	 when	 fitting	 the	 DCRWSNOME. The 
DCRWSNOME	also	more	accurately	estimated	the	behavioral	states,	an	
unsurprising	 result	because	while	 the	DCRWSNOME	directly	estimates	
these	random	effects	 from	the	posterior	 likelihood,	 the	HMMM	uses	

a	post	hoc	global	decoding	algorithm	(the	Viterbi	algorithm)	to	identify	
the	most	likely	sequence	of	states	given	the	ML	parameter	estimates.	
Predictably,	moveHMM	had	the	highest	behavioral	state	error	rate	of	the	
three	approaches,	likely	because	it	was	fitted	to	simulated	data	from	a	
movement	process	not	equivalent	to	its	own.	Finally,	the	HMMM	was	
the	fastest	model	to	fit,	with	moveHMM	and	the	DCRWSNOME	taking	on	
average	15	times	 and	229,500	times	 longer	 to	fit	 than	 the	HMMM,	
respectively.	Quicker	fits	of	the	DCRWSNOME	may	be	achieved	by	reduc-
ing	burn-in	and	sampling	sizes	of	the	MCMC,	but	they	would	still	take	

F IGURE  4 Boxplots	of	parameter	estimates	obtained	from	fitting	the	HMMM	and	the	DCRWSNOME	to	50	simulated	tracks

−0.04

–0.02

0.00

0.02

0.04

θ1

HMMM DCRWSNOME

0
1
2
3
4
5
6

θ2

HMMM DCRWSNOME

0.70

0.75

0.80

0.85

γ1

HMMM DCRWSNOME

0.00

0.05

0.10

0.15

0.20

0.25

γ2

HMMM DCRWSNOME

0.066

0.068

0.070

0.072

0.074

σlon

HMMM DCRWSNOME

0.046

0.048

0.050

0.052

0.054

σlat

HMMM DCRWSNOME

0.80

0.85

0.90

0.95
α1

HMMM DCRWSNOME

0.10

0.15

0.20

0.25

0.30

0.35
α2

HMMM DCRWSNOME



     |  9WHORISKEY Et al.

orders	of	magnitude	longer	and	may	be	less	accurate.	We	chose	these	
sizes	based	on	prior	experience	with	fitting	the	DCRWS,	and	to	try	to	
ensure	convergence	of	the	MCMC	chains	during	the	simulation	study.

Our	HMMM	is	a	major	advance	in	using	TMB	to	solve	animal	move-
ment	problems.	Highly	accurate	data	are	becoming	more	common	in	
the	marine	 realm,	 and	 the	HMMM,	 as	 implemented	 through	 the	 R	
package	swim,	provides	a	fast	and	reliable	tool	for	making	meaning-
ful	inference	from	animal	movement	data.	Fast	methods	for	analyzing	
data	will	become	more	important	as	larger	data	sets	are	collected.	The	
HMMM	therefore	additionally	provides	a	baseline	method	for	move-
ment	modeling	 in	TMB	 that	can	be	 further	developed	 for	more	spe-
cific	 and	nontrivial	 animal	movement	problems	 such	as	determining	
relationships	 between	 movement	 and	 environmental	 covariates,	 or	
accounting	for	measurement	error.
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