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Preface

This thesis is submitted in candidacy for the PhD degree from the Technical
University of Denmark. The research has been carried out in the Nanophotonics
Theory and Signal Processing Group at DTU Fotonik - Department of Photon-
ics Engineering from 2012-2015, under the supervision of Jesper Mørk, Philip
T. Kristensen, Dara P. S. McCutcheon, and Per Kær Nielsen. In July-October
2014 I visited the Quantum Photonics Group at Massachusetts Institute of
Technology lead by Prof. Dirk Englund. The main purpose of the visit was to
add an experimental point of view to the structures considered in this thesis
and to discuss possible implementations of few-photon non-linearities.
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Abstract
In this thesis we investigate few-photon non-linearities in all-optical, on-chip
circuits, and we discuss their possible applications in devices of interest for
quantum information technology, such as conditional two-photon gates and
single-photon sources.

In order to propose efficient devices, it is crucial to fully understand the
non-equilibrium dynamics of strongly interacting photons. Employing both
numerical and analytical approaches we map out the full scattering dynamics
for two photons scattering on a two-level emitter in a one-dimensional waveg-
uide. The strongest non-linear interaction arise when the emitter is excited
the most, which occurs for incoming photon pulses with a spectral bandwidth
comparable to the emitter linewidth. For two identical, counter-propagating
photons, the emitter works as a non-linear beam splitter, as the emitter induces
strong directional correlations between the scattered photons. Even though the
non-linearity also alters the pulse spectrum due to a four-wave mixing process,
we demonstrate that input pulses with a Gaussian spectrum can be mapped to
the output with up to 80 % fidelity.

Using two identical two-level emitters, we propose a setup for a deterministic
controlled-phase gate, which preserves the properties of the two incoming pho-
tons with almost 80 %, limited by spectral changes induced by the non-linearity
and phase modulations upon scattering. Another setup for a controlled-phase
operation is suggested with two coupled ring resonators exploiting a strong
second-order material non-linearity. By dynamically trapping the first of two
temporally separated photons in the non-linear resonator, the scattering of the
second photon is altered. Due to the trapping, the undesired aforementioned
non-linear effects are avoided, but the gate performance is now limited by the
capturing process.

Semiconductor quantum dots (QDs) are promising for realizing few-photon
non-linearities in solid-state implementations, although coupling to phonon
modes in the surrounding lattice have significant influence on the dynamics.
By accounting for the commonly neglected asymmetry between the electron
and hole wavefunction in the QD, we show how the phonon-assisted transition
rate to a slightly detuned optical mode may be suppressed. This is achieved
by properly matching the electrical carrier confinement with the deformation
potential interaction, where the suppression only occurs in materials where the
deformation potential interaction shifts the electron and hole bands in the same
direction. We demonstrate also how the phonon-induced effects may be altered
by placing the QD inside an infinite slab, where the confinement of the phonons
is modified instead. For a slab thickness below ∼ 70 nm, the bulk description
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of the phonon modes may be insufficient. The QD decay rate may be strongly
increased or decreased, depending on how the detuning between the QD and
the optical mode matches the phonon modes in the slab.

Anders Nysteen February 14th, 2015
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Resumé
I denne afhandling undersøges få-foton ikke-lineariteter i integrerede optiske
kredsløb, og vi diskuterer muligheder for at anvende ikke-lineariteterne i kom-
ponenter til kvanteinformatik, såsom betingede to-foton–porte og enkeltfo-
tonkilder.

For at kunne foreslå effektive komponenter er det vigtigt at forstå ikke-
ligevægtsdynamikken for stærkt vekselvirkende fotoner fuldt ud. Ved at benytte
både numeriske og analytiske tilgange beskriver vi den fulde spredningsdy-
namik for to fotoner, der spreder på en to-niveau-emitter i en en-dimensionel
bølgeleder. Den største interaktion opnås, når emitteren er mest eksiteret,
hvilket sker når de indkomne foton-pulser har en spektral linjebredde i samme
størrelsesorden som emitterens. For to identiske, mod-propagerende fotoner
fungerer emitteren som en ikke-lineær beam-splitter, idet emitteren inducerer
stærke korrelationer imellem de to fotoners spredningsretning. Selvom ikke-
lineariteten også ændrer fotonernes spektrum på grund af fire-bølge-blanding,
da vil indkomne pulse med et Gaussisk spektrum blive mappet til output-porten
med helt op til næsten 80 % fidelity.

Ved at benytte to identiske to-niveau emittere foreslår vi et setup for en de-
terministisk kontrolleret fase-port, som bevarer egenskaberne af de to indkomne
fotoner med næsten 80 %, begrænset af spektrale ændringer induceret af ikke-
lineariteten og fasemodulationer ved spredningen. Vi foreslår også et andet
setup til en kontrolleret fase-port, som består af to koblede ring-resonatorer
som har en kraftig anden-ordens materiale-ikke-linearitet. Ved dynamisk at
fange den første af de to tidsligt adskildte fotoner i den ikke-lineære resonator,
vil spredningen af den anden foton påvirkes. Ved denne dynamiske indfangsme-
tode undgås de omtalte uønskede effekter fra ikke-lineariteterne, men i stedet
vil effektiviteten af porten være begrænset af usikkerhederne ved den dynamiske
indfangningsproces.

Halvleder kvantepunkter er lovende kandidater i realiseringen af enkelt-
foton ikke-lineariteter i faststof-implementationer, selvom kobling til fonon-
tilstande i det omkringliggende gitter kan have stor indflydelse på dynamikken.
Ved at tage højde for den typisk ignorerede asymmetri imellem elektron- og
hulbølgefunktionen i kvantepunktet viser vi, hvordan den fonon-assisterede
overgangsrate til en nær-resonant optisk tilstand kan blive undertrykt. Dette
opnås ved at tilpasse begrænsningen af de elektroniske ladningsbærere med
deformationspotentiale-interaktionen, og denne undertrykkelse finder kun sted
i materialer hvor deformationspotentiale-interaktionen rykker elektron og hul-
bånd i samme retning. Vi demonstrerer også, hvordan fonon-inducerede ef-
fekter kan ændres ved at placere kvantepunktet inden i en uendelig plade,
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hvor begrænsningen af fononerne i stedet er ændret. For pladetykkelser un-
der ∼ 70 nm vil beskrivelsen af fononerne som rumligt ubegrænsede ikke være
tilstrækkelig længere. I det tilfælde vil henfaldsraten af kvantepunktet kunne
være både stærkt øget eller formindsket, afhængig af hvordan energiforskellen
imellem kvantedotten og den optiske tilstand matcher med fonon-tilstandene i
den uendelige plade.
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Chapter 1

Introduction

The fundamentals of quantum mechanics were developed in the beginning of
the 20th century in an attempt to explain the spectral properties of thermal ra-
diation, as none of the current theories were sufficient. The first model that was
able to explain experimental results was proposed by Max Planck, by assuming
that the thermal radiation was in equilibrium with a set of harmonic oscillators
with discrete energy levels [1]. Albert Einstein followed up by claiming that
a beam of light actually consists of individual packets, which were later to be
called photons [2]. This quantization of the light lead to major discussions of
the particle-wave duality of light, but it were also able to explain a yet un-
resolved problem regarding interaction between light and matter, namely the
photoelectric effect. These early achievements form the basis of a quantum
mechanical description of the world with a fundamentally probabilistic nature,
where a single particle has a probability of being in one of multiple states at a
given time, in a quantum superposition. And where multiple particles may be
in a quantum state where each particle cannot be described independently as
they are quantum mechanically entangled.

This quantum mechanical understanding of the fundamental interaction be-
tween light and matter has been of crucial importance in the development of
several important components in our daily life such as lasers, diodes, and mag-
netic resonance imaging. Quantum mechanics also paves the way for a new
era in computational schemes, which has been a hot topic in the last couple
of decades [3]. New functionalities have been made possible by encoding infor-
mation into quantum mechanical superpositions called quantum bits (qubits).
In contrast to classical bits are is in one of two states at a specific time, the
quantum mechanical nature of qubits may be in a superposition of each bit
state at the same time until the state of the qubit is measured.

This relatively new field of quantum information technology promises secure
communication by quantum cryptography [4, 5, 6]. The quantum encoding also
allows new computational algorithms in the field of quantum computation [3],
which promise exponentially faster operation times for specific tasks such as
searching databases and factorizing, with the latter having been demonstrated
experimentally by an implementation of Shor’s algorithm [7].
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Chapter 1. Introduction

In order to realize quantum circuits and quantum networks [8, 9, 10], pho-
tons are promising candidates as carriers of the quantum-encoded information
[11]. As flying qubits, the information carried in the photons is not easily af-
fected by the surrounding environment due to the non-interacting nature of the
photons. The qubit states may be encoded in various degrees of freedom, for
example polarisation states, temporal displacements, and spatial modes (such
as the dual-rail representation) etc. [12, 13].

Realizations of the quantum computation schemes rely on the possibility
of initializing, processing/interacting and measuring qubits efficiently, but as
photons do not mutually interact due to their bosonic nature, advanced ap-
proaches must be employed. Using only linear optical elements such as beam
splitters, phase shifters and mirrors, Knill, Laflamme, and Milburn demon-
strated in 2001 that it was possible to do quantum computation using single-
photon sources and photo-detectors [14]. This so-called KLM scheme exploits
feedback from the detectors and use several ancilla photons. Suggestions for ef-
ficient non-linear gates are proposed, but they are all probabilistic as they only
work successfully when a specific combination of detection events is obtained
in ancillary arms. This results in scalability-issues when employing multiple
gates, although this may be dealt with using quantum teleportation [15]. Ex-
perimental implementations of these probabilistic gates have been carried out
with high success rates [16].

1.1 Few-photon non-linearities

In contrast to the probabilistic KLM-scheme, which uses several ancillary pho-
tons and detectors, few-photon non-linearities [17] open up for possibilites of
creating deterministic gate structures without additional ancillary photons and
detectors. Material non-linearities such as the Kerr effect is one example, where
the photon interaction stems from induced changes in the refractive material.
It is, however, an ongoing challenge to find materials with a sufficient non-linear
coefficient in order to work in the single-photon regime. For this, single atoms
prove viable candidates as few-photon non-linearities due to their discrete en-
ergy levels. These few-photon non-linearities are also existing in so-called ”arti-
ficial atoms” such as semiconductor quantum dots (QDs) [18, 19, 20], nitrogen
vacancy (NV) centres in diamonds [21, 22], or superconducting circuits [23],
which are all physical objects with bound, discrete electronic states.

The atom–light interaction in these systems may be enhanced by placing
the emitter inside an optical cavity, such that the light passes through the
atom repediatly. If the rate at which energy oscillates between the atom and
the cavity modes exceeds loss of excitation in the system to external reser-
voirs, the atom–cavity system is said to be in the strong coupling regime [24].
In this regime, the atom dresses the energy levels of the optical cavity to an
an-harmonic energy ladder. Thus, for an incoming beam of photons matching
the lowest energy level of the dressed state, the strong atom–cavity coupling
only allows a single electron to couple through the cavity at a time – an effect
known as the photon blockade. Experimental demonstrations of this possibility
of controlling the reflectivity of a cavity with a single atom have been carried
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All-optical integrated circuits

out e.g. by trapping Caesium atoms in a Fabry–Perot cavity [25]. The con-
tinuous improvement of micro- and nanofabrication allows precise control of
the electronic and electromagnetic confinement, and has made it possible to
observe strong coupling even in solid-state system, with a QD coupling to a
photonic crystal cavity [26, 27].

1.2 All-optical integrated circuits

There is currently a great deal of interest on schemes that integrate photonic
gates and non-linearities together with photon sources and detectors, on a
single on-chip platform in an all-optical circuit [28, 29, 30]. As the quantum
schemes rely on minimal decoherence and losses of the information, it is of high
importance to minimize the losses caused by coupling the different functional-
ities together. Coupling losses may be minimized by integrating photon cre-
ation, processing and detection on-chip [31]. Promising single-photon sources
have been demonstrated using QDs in nanowires and photonic crystal cavities
[32, 33], and several designs for efficient few-photon detection exist, e.g. using
superconducting nanowires [34, 35, 36, 37]

For processing, both single- and two-photon gates are required to make a
quantum computer [3, 38], and finding efficient conditional two-photon gates is
still a pressing challenge. Here few-photon non-linearities are promising candi-
dates, and demonstrations of several gate functionalities have been developed.
By externally changing the state of an atom trapped in the proximity of an op-
tical cavity, the scattering direction/phase of a signal beam through the cavity
may be controlled solely by whether the single atom is able to couple the the
cavity or not [39, 40]. Alternatively, by trapping single photons or using multi-
level emitters, it is possible to switch a multi-photon beam with only a single
control excitation [41, 42, 43]. The dressed cavity–QD system may also be em-
ployed in conditional gates for two impinging single-photons of different color,
due to the anharmonic energy ladder of the dressed cavity [44]. The structures
mentioned above are all viable candidates for conditional phase gates, but they
all rely on external manipulations to trap atoms or photons or to manipulate
the state of the atom.

Solid-state implementations of the non-linearities such as QDs have been
demonstrated to couple with very high efficiency to confined propagating pho-
ton modes [45], and they are promising candidates for on-chip integrated non-
linearities. However, the solid state implementation also introduce decoherence
due to coupling between the electrical carriers and the vibrational modes in the
solid-state environment, with the latter being quantized as phonons. When ex-
citing a QD optically, acoustic phonons may assist in the coupling and enhance
the coupling rate [46, 47, 48]. The phonons do, however, also introduce dephas-
ing, which e.g. in a single-photon source would decrease the indistinguishability
of the emitter photons [49].

The main purpose of this thesis is to investigate the possibility of integrat-
ing the non-linearities and functionalities in an all-optical, deterministic on-chip
configuration, with a specific focus on the few-photon non-linear processes. In
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Chapter 1. Introduction

order to propose efficient structures, it is crucial to understand the non-trivial
dynamics of strongly interacting photons fully. Using both numerical and ana-
lytical approaches we map out the non-linearity-induced correlations in detail,
and we discuss how the non-linearity may be exploited in deterministic quan-
tum gates. By treating the electron-phonon interaction as a non-Markovian
coupling to a large phonon bath, we examine in detail how both the electronic
and phononic confinement affect the dynamics related to the QD. We describe
how the confinement of both the electrical carriers and the phonons may be
engineered in order to optimize the performance of the quantum systems.

1.3 Thesis outline

In Chapter 2 the governing Hamiltonians are introduced by specifically con-
sidering the individual contributions from the different particles present in a
quantum system and their mutual interaction.

Chapter 3 treats scattering of a single-photon wavepacket on a two-level
emitter in a one-dimensional waveguide. We describe the fundamental theory of
single-photon scattering, with focus on the emitter dynamics and the properties
of the scattered state. Additionally we introduce a numerical approach to
determine the dynamics of photon scattering in waveguide systems interacting
with localized scatterers in general.

We perform a full numerical calculation of the scattering of two-photon
pulses on a two-level emitter in Chapter 4. From the numerics we are able
map out the full scattering dynamics. Specifically we demonstrate that for two
initially counter-propagating photons, the emitter acts like a non-linear beam
splitter by imposing strong directional correlations in the scattered state. This
only occurs when the bandwidths of the incoming pulses are identical to the
emitter linewidth, as the emitter is excited the most in this pulse regime.

In Chapter 5 we exploit the scattering matrix formalism to determine an-
alytical expressions for the post-scattering state in Chapter 4. The analytical
approach allows us to investigate the correlations in the scattered state that are
specifically caused by the emitter non-linearity. Fidelity measurements are in-
troduced to describe the scattering-induced correlations, which may take both
the photon spectrum, phase and propagating direction into account. For the
case of two counter-propagating photons, the fidelity of the non-linear beam
splitter is almost 80 %, even when taking all scattering-induced changes in the
spectrum and phase of the photons into account.

We discuss direct exploitation of few-photon non-linearities in two theoret-
ical proposals of a deterministic controlled-phase gate in Chapter 6 and 7. We
specifically focus on the possibility of integrating the gate in a larger optical
circuit by imposing requirements on the temporal and spectral properties of
the scattered state compared to the input state, as it may be undesirable if
the photon properties are altered by the gate. For a passive gate consisting of
phase shifters, beam splitters and two emitters, we demonstrate a gate fidelity
of almost 80 %. The theoretical fidelity may be increased using a gate scheme
which employs dynamical capture of the control photon in the gate, although
this scheme relies on very precise experimental manipulations.
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Thesis outline

In Chapter 8–10 we investigate the influence of phonon coupling in semi-
conductor QD systems. A description of the phonon modes and interaction
mechanisms with the electronic carriers is provided in Chapter 8. By including
the phonons as a non-Markovian reservoir, we introduce the reduced density
matrix formalism in order to describe the system dynamics.

The possibility of engineering the electronic confinement in order to affect
the phonon-induced effects is examined in Chapter 9. We show how the elec-
tronic confinement may affect the decay rate of an emitter inside a slightly
detuned optical cavity by balancing the deformation potential coupling be-
tween the electrons and the phonons. Furthermore we discuss perspective to
improve the indistinguishability of the emitted photons by engineering the elec-
tronic confinement. Lastly, we apply our theory to map out the existing phonon
density from an experimental setup with a QD inside a photonic crystal cavity.

Chapter 10 considers how confinement of the phonons affect the dynamics.
We specifically consider a QD placed inside an optical cavity in an infinite
slab, and we show how the phonon-assisted coupling may be either suppressed
or enhanced, depending on the phonon modes in the slab. Furthermore, we
estimate the bulk description to be sufficient when the slab thickness is more
than ∼ 70 nm.

Finally, we highlight the important results from the thesis in Chapter 11.
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Chapter 2

Governing Hamiltonians

To fully understand the dynamics in a many-body quantum system, the interac-
tion mechanisms between the different quantum particles must be understood
in detail. In this chapter sketch the derivation of the governing Hamiltoni-
ans needed to describe the interaction between light and matter in few-photon
optical structures. The interaction between the electromagnetic field and the
electrical carriers will be treated in the dipole approximation, valid when the
spatial extent of the carrier wavefunction is much smaller than the wavelength
of the light. For the phonon-related terms in the Hamiltonian, we specifically
consider atoms placed in a rigid periodic lattice, and assume that the external
perturbations, which displaces the ions, are small. The assumptions are ex-
plained in detail below, where we derive the Hamiltonians expressed in second
quantization.

2.1 Many-body Hamiltonian

A system consisting of electrons in a rigid periodic lattice coupled to a electro-
magnetic field is described by the many-body Hamiltonian [50, 51, 52, 53],

𝐻 =
∑︁
𝑗

1

2𝑚𝑙
[p𝑙 − 𝑞𝑙A(r𝑙)]

2
+

1

2

∫︁
dr

[︂
𝜖0|E(r, 𝑡)|2 +

1

𝜇0
|B(r, 𝑡)|2

]︂
. (2.1)

The sum describes the kinetic energy of particle 𝑙 (being either an electron or
ion) with momentum operator p𝑙 and a term −𝑞𝑙A(r𝑙) which is the change
of energy due to the presence of an electromagnetic field, introduced by the
Coulomb gauge [52]. The integral represents the energy of the total electro-
magnetic field, containing operators for the electrical field, E, and the magnetic
field, B, and lastly the vacuum permittivity is 𝜖0, and the vacuum permeability
is 𝜇0.

The sum in Eq. (2.1) may be split up into separate contributions from the
electrons and the ions [52],∑︁

𝑖,ions

𝑝2𝑖
2𝑚𝑖

+
∑︁
𝑗,elec

[︃
𝑝2𝑗

2𝑚𝑗
+

𝑒

𝑚𝑗
A(r𝑗 , 𝑡) ·p𝑗

]︃
, (2.2)
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Chapter 2. Governing Hamiltonians

where the spin index of the electron for simplicity has been absorbed into the
summation index, 𝑗, and with −𝑒 denoting the charge of an electron. Fur-
thermore, in deriving Eq. (2.2), low field intensities were assumed by which
the A2-term may be neglected. Due to the high mass of the ions compared to
the electron, the response to the electromagnetic field is low and the ion-field
interaction terms may be neglected. Lastly, we exploit that p ·A = A ·p in
the Coulomb gauge.

According to Maxwell’s equations, B is purely transverse. The integral in
Eq. (2.1) may be divided into a transverse and a longitudinal contribution,

𝐻trans =
1

2

∫︁
dr

[︂
𝜖0|E⊥(r, 𝑡)|2 +

1

𝜇0
|B(r, 𝑡)|2

]︂
, (2.3a)

𝐻long =
1

2

∫︁
dr 𝜖0|E‖(r, 𝑡)|2, (2.3b)

In the Coulomb gauge, 𝐻long simplifies to the electrostatic Coulomb energy
plus a Coulomb self-energy of each particle [51, 52], whereas the latter shift
does not affect the dynamics and thus is omitted in the following. In a system
of point charges, the Coulomb interaction may be split into contributions from
interaction between the individual particle types1

𝑉Coulomb =
1

2

∑︁
𝑖 ̸=𝑖′

ion-ion

𝑞𝑖𝑞𝑖′

4𝜋𝜖0

1

|R𝑖 −R𝑖′ |
+

1

2

∑︁
𝑗 ̸=𝑗′

elec-elec

𝑒2

4𝜋𝜖0

1

|r𝑗 − r𝑗′ |

+
∑︁
𝑗 ̸=𝑖

elec-ion

(−𝑒)𝑞𝑖
4𝜋𝜖0

1

|r𝑗 −R𝑖|
, (2.4)

with R𝑖 and r𝑗 being the position of the 𝑖’th ion and the 𝑗’th electron, respec-
tively.

If the ions are in a static latterice, the last term in Eq. (2.4) may be simpli-
fied by introducing displacements of the ions, u𝑖, relative to their equilibrium
position, R(0)

𝑖 , giving R𝑖 = R
(0)
𝑖 + u𝑖. Assuming small relative displacements,

a Taylor expansion around u𝑖 ≈ 0 gives

∑︁
𝑗 ̸=𝑖

(−𝑒)𝑞𝑖
4𝜋𝜖0

1

|r𝑗 −R𝑖|
≈
∑︁
𝑗 ̸=𝑖

(−𝑒)𝑞𝑖
4𝜋𝜖0

[︃
1

|r𝑗 −R
(0)
𝑖 |

− u𝑖 ·∇r𝑗

(︃
1

|r𝑗 −R
(0)
𝑖 |

)︃]︃
,

where terms of second or higher order in the displacement are neglected. The
first term describes the potential of electrons in a static lattice, which usually
is described by a potential for the electrons, 𝒱(r𝑗).

Summing up, the Hamiltonian in Eq. (2.1) consists of the following contri-

1No factor of 1/2 appears in the electron–ion sum, as no double-counting occurs.
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Many-body Hamiltonian

butions

𝐻0,elec{r𝑗} =
∑︁
𝑗,elec

[︃
𝑝2𝑗

2𝑚𝑗
+ 𝒱(r𝑗)

]︃
, (2.5a)

𝐻0,rad =
1

2

∫︁
dr

[︂
𝜖0|E⊥(r, 𝑡)|2 +

1

𝜇0
|B(r, 𝑡)|2

]︂
, (2.5b)

𝐻0,ion{r𝑖} =
∑︁
𝑖,ion

[︂
𝑝2𝑖

2𝑚𝑖

]︂
, (2.5c)

𝐻elec-rad{r𝑗} =
∑︁
𝑗,elec

𝑒

𝑚𝑗
A(r𝑗 , 𝑡) ·p𝑗 , (2.5d)

𝐻elec-ion{r𝑗} =
∑︁
𝑗 ̸=𝑖

u𝑖 ·∇r𝑗

(︃
𝑒𝑞𝑖

4𝜋𝜖0

1

|r𝑗 −R
(0)
𝑖 |

)︃
, (2.5e)

𝐻elec-elec{r𝑗} =
1

2

∑︁
𝑗′ ̸=𝑗,elec-elec

𝑒2

4𝜋𝜖0

1

|r𝑗 − r𝑗′ |
, (2.5f)

𝐻ion-ion{R𝑖} =
1

2

∑︁
𝑖′ ̸=𝑖,ion-ion

𝑞𝑖𝑞𝑖′

4𝜋𝜖0

1

|R𝑖 −R𝑖′ |
. (2.5g)

In the following we write the different term of the total Hamiltonian, Eqs.
(2.5a)-(2.5g), in second quantization, following Refs. [53, 54]. This is carried
out by determining the matrix elements of the operators in a basis spanned by
a complete orthonormal set of single-particle states, see e.g. Refs. [55, 52, 56]
for further details. We denote the bosonic creation and annihilation operators
for photons by 𝑎† and 𝑎, the bosonic operators for the phonons by 𝑏† and 𝑏,
and the fermionic operators describing the electron by 𝑐† and 𝑐.

Non-interacting parts of the Hamiltonian

By non-interacting parts of the Hamiltonian we refer to the terms containing
products of two bosonic or fermionic operators, and these terms have to be
time-independent in the Schrödinger picture. The non-interacting part of 𝐻
consists of an electronic, a photonic, and a phononic part:

Electrons The non-interacting electron part of the Hamiltonian from Eq. (2.5a)
may be written as 𝐻0,elec({r𝑗}) =

∑︀
𝑗 𝐻0,elec(r𝑗). In second quantization a

preferred basis for electrons is the eigenstates of 𝐻0,elec, where each electron
wavefunction obeys the Schrödinger equation 𝐻0,elec(r)𝜓𝜈(r) = ~𝜔𝜈𝜓𝜈(r), with
𝜓𝜈(r) being the single-particle wavefunction of an electron. In this basis the
Hamiltonian Eq. (2.5a) is diagonal,

𝐻0,elec =
∑︁
𝜈

~𝜔𝜈𝑐
†
𝜈𝑐𝜈 . (2.6)

where the number operator 𝑐†𝜈𝑐𝜈 counts the number of electrons in the state 𝜈,
being either 0 or 1 due to Pauli’s exclusion principle.
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Chapter 2. Governing Hamiltonians

Photons The non-interacting photonic Hamiltonian stems from the energy
of the transverse electromagnetic field, Eq. (2.5b). The electric field may be
expanded as a weighted sum of orthonormal mode functions {w𝑛(r)} which are
determined by the boundary conditions of the specific problem [52, 56]. The
quantum number 𝑛 is combined of both the spatial and polarization quantum
numbers. The total quantized, transverse electric field is obtained by treating
each mode of the electric field as a harmonic oscillator, and by summing over
all modes

E𝑡(r, 𝑡) = i
∑︁
𝑛

ℰ𝑛[𝑎†𝑛(𝑡) − 𝑎𝑛(𝑡)]w𝑛(r), (2.7)

where the time-dependence of the photonic annihilation and creation operators
𝑎†𝑛(𝑡) and 𝑎𝑛(𝑡) are described in the Heisenberg picture. The weight factor
ℰ𝑛 =

√︀
~𝜔𝑛/(2𝜖0𝑉𝑃 ) describes the electric field „per photon” of energy ~𝜔𝑛,

with 𝑉𝑃 being the quantization volume of the photon mode.
By the quantized electric field from Eq. (2.7) in Eq. (2.5b), and relating the

B-field to the quantized E-field through Maxwell’s equations,

𝐻0,rad =
∑︁
𝑛

~𝜔𝑛

(︂
𝑎†𝑛𝑎𝑛 +

1

2

)︂
, (2.8)

where
∑︀

𝑛 ~𝜔𝑛/2 constitutes the zero-point energy [56].

Phonons The non-interacting part describing the phonons stems from the
kinetic energy of the ions in Eq. (2.5c) and the Coulomb-interaction between
the ions in Eq. (2.5g). Due to the heavy masses of the ions compared to the
electron, the ions react slower to external perturbations. Furthermore, the
ions sit in a static lattice, and under the harmonic approximation, as we will
introduce below, the ion-ion interaction may be approximately described by a
quadratic term in the bosonic operators, which is why it treated as a "non-
interaction" term here [53, 55].

We consider the displacement of an ion, Q𝑖, from its equilibrium position
in the static lattice, R(0)

𝑖 , such that R𝑖 = R
(0)
𝑖 + Q𝑖. In the same way as

done for the electron-ion interaction in Eq. (2.5) a Taylor-expansion of 𝐻ion-ion

is carried out around Q𝑖 = 0. The zeroth order term becomes a constant
which does not affect the dynamics, and this is neglected. Furthermore the
equilibrium position may be defined such that the first order term is zero [55].
The first actual contribution comes from the second order term. The harmonic
approximation states that due to the heavy ion masses and the static lattice,
it is reasonable only to include the second order term in the Hamiltonian, in
which case the quantized Hamiltonian describing the non-interacting part of
the phonon Hamiltonian becomes2 [53, 58]

𝐻0,ph =
∑︁
𝜇

~𝜔𝜇

(︂
𝑏†𝜇𝑏𝜇 +

1

2

)︂
. (2.10)

2What is excluded in the harmonic approximation are terms of third or higher order in
the displacement. These are the so-called anharmonic effects, where the first term has the
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Many-body Hamiltonian

The quantum number 𝜇 is a combination of the wavevector k, restricted to
the first Brillouin zone, and the phonon branch 𝜆 dictating the polarization
of the phonon. The term corresponding to q = 0 corresponds to a uniform
translation of the crystal and should formally not be included in the sum [55].

Interaction parts of the Hamiltonian

Electron-photon The interaction of the electrons with the electromagnetic
field Eq. (2.5d) is in the literature denoted the A ·p-interaction. It is well-
known that in the dipole approximation the A ·p-interaction may be replaced
by a d ·E⊥-interaction, where d𝑗 = −𝑒r𝑗 is the electric dipole operator describ-
ing the interaction of light with an electron at r𝑗 , [59]. The dipole approxima-
tion is valid when the wavelength of the radiation field is much larger than the
characteristic size of the atoms in the solid. For optical wavelengths ∼ 400−700
nm are used, and the size of the atoms are on the order of a few ångströms, and
the requirement is fulfilled3, and the vector field may be considered spatially
uniform across the atom. In this case, the interaction Hamiltonian becomes
[56],

𝐻elec-rad = −
∑︁
𝑗

d𝑗 ·E⊥(𝑡). (2.11)

The electric field may consist both of a quantized field as in Eq. (2.7) and an
external driving field, Eclas. The contribution from the quantized field becomes
in second quantization

𝐻elec-rad =
∑︁
𝜈𝑎𝜈𝑏𝑛

~𝑔𝑛𝜈𝑎𝜈𝑏
𝑐†𝜈𝑎

𝑐𝜈𝑏
(𝑎†𝑛 + 𝑎𝑛), (2.12)

where ~𝑔𝑛𝜈𝑎𝜈𝑏
describes the electron-photon coupling strength,

~𝑔𝑛𝜈𝑎𝜈𝑏
= ℰ𝑛

∫︁
dr𝜓*

𝜈𝑎
(r)𝑒r ·w𝑛𝜓𝜈𝑏

(r)𝛿𝜈𝑎𝜈𝑏
. (2.13)

The contribution from the external (time-dependent) driving field, 𝑊 (𝑡), is
evaluated in the same manner by expanding the operators onto the single-
particle basis states, giving

𝑊 (𝑡) = 𝐸clas(𝑡)
∑︁
𝜈𝑎𝜈𝑏

𝑑𝜈𝑎𝜈𝑏
𝑐†𝜈𝑎

𝑐𝜈𝑏
, (2.14)

form ∑︁
kq

𝜆1𝜆2𝜆3

𝑄k,𝜆1
𝑄q,𝜆2

𝑄−k−q,𝜆3
𝑀kq,𝜆1𝜆2𝜆3

, (2.9)

with 𝑄𝑖 = |Q𝑖| and where 𝑀kq,𝜆1𝜆2𝜆3
describes the interaction strength. The anharmonic

effects include the possibility of one phonon decaying into two or more phonons vice versa.
It is reasonable to neglect the anharmonic terms when considering the phonon dispersion
relation, but they has to be included when looking at decay of phonon modes [57].

3If "artificial atoms" such as quantum dots are used, the dipole approximation may break
down, if the quantum dots are too large compared to the wavelength [60]. As an example,
InGaAs/GaAs QDs typically have dimensions of 5-70 nm [61].
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Chapter 2. Governing Hamiltonians

where the projected dipole matrix element is defined,

𝑑𝜈𝑎𝜈𝑏
=

∫︁
dr𝜓*

𝜈𝑎
(r)𝑒r · 𝜉Eclas

𝜓𝜈𝑏
(r)𝛿𝜈𝑎,𝜈𝑏

. (2.15)

The polarization vector of Eclas is denoted 𝜉Eclas
, and again the spin dependence

has been absorbed into the summation index.

Electron-phonon The electron-phonon interaction is described by the inter-
action of the electrons with the ion displacements in the lattice and is given
by Eq. (2.5e), which may be written as 𝐻elec-ph({r𝑖}) =

∑︀
𝑖𝐻elec-ph(r𝑖), where

𝐻elec-ph(r𝑖) contains the quantized ionic displacement operator u. Following a
standard derivation [53, 55], the form of the quantized displacement vector is

u(r) = i
∑︁
𝜇

√︃
~

2𝜌𝑉 𝜔𝜇(k)
𝜉𝜇

(︁
𝑏†𝜇 + 𝑏𝜇

)︁
eik · r, (2.16)

where 𝜇 = (−k, 𝜆) with 𝜆 being the polarization quantum number. Here u(r)

has to be evaluated from the equilibrium points of the ions, r = R
(0)
𝑗 . Fur-

thermore 𝜌 is the crystal density, 𝑉 is the normalization volume of the phonon
modes, 𝜉𝜇 is the polarization vector4, and 𝜔𝜇(k) is the phonon frequency.

Using Eq. (2.5e) we may express the interaction using the second quantiza-
tion formalism,

𝐻elec-ph =
∑︁

𝜈𝑎𝜈𝑏,𝜇

𝑀𝜇
𝜈𝑎𝜈𝑏

𝑐†𝜈𝑎
𝑐𝜈𝑏

(︁
𝑏𝜇 + 𝑏†𝜇̄

)︁
, (2.17)

where the coupling strength is given by

𝑀𝜇
𝜈𝑎𝜈𝑏

= i

√︃
~

2𝜌𝑉 𝜔𝜇(k)

∑︁
𝑗

eik ·R
(0)
𝑗

×
∫︁

dr𝜓*
𝜈𝑎

(r)𝜉𝜇 ·∇r

[︃
𝑒𝑞𝑗
4𝜋𝜖

1

|r−R
(0)
𝑗 |

]︃
𝜓𝜈𝑏

(r)𝛿𝜈𝑎𝜈𝑏
. (2.18)

Electron-electron The electron-electron interaction given by Eq. (2.5f) and
may be written as 𝐻elec-elec({r𝑗}) = 1

2

∑︀
𝑗′ ̸=𝑗 𝐻elec-elec(r𝑗′ − r𝑗). In second

quantization this may be expressed as

𝐻elec-elec =
1

2

∑︁
𝜈𝑖𝜈𝑗𝜈𝑘𝜈𝑙

𝑉𝜈𝑖𝜈𝑗 ,𝜈𝑘𝜈𝑙
𝑐†𝜈𝑖
𝑐†𝜈𝑗
𝑐𝜈𝑙
𝑐𝜈𝑘

, (2.19)

with 𝑉𝜈𝑖𝜈𝑗 ,𝜈𝑘𝜈𝑙
being the Coulomb intercation matrix element [53].

4The polarization vector has the property 𝜉𝜇 = −𝜉𝜇, as u(r) must be Hermitian [53].
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Summary

We have sketched the derivation of a Hamiltonian describing a quantum system
of interacting light and matter, which is summarized by

Non-interacting part Interacting part

𝐻0 = 𝐻0,elec +𝐻0,rad +𝐻0,ph 𝐻int = 𝐻elec-elec +𝐻elec-rad +𝐻elec-ph

𝐻0,elec =
∑︀

𝜈 ~𝜔𝜈𝑐
†
𝜈𝑐𝜈 𝐻elec-elec = 1

2

∑︀
𝜈𝑖𝜈𝑗𝜈𝑘𝜈𝑙

𝑉𝜈𝑖𝜈𝑗 ,𝜈𝑘𝜈𝑙
𝑐†𝜈𝑖
𝑐†𝜈𝑗
𝑐𝜈𝑙
𝑐𝜈𝑘

𝐻0,rad =
∑︀

𝑛 ~𝜔𝑛

(︀
𝑎†𝑛𝑎𝑛 + 1

2

)︀
𝐻elec-rad =

∑︀
𝜈𝑎𝜈𝑏,𝑛

~𝑔𝑛𝜈𝑎𝜈𝑏
𝑐†𝜈𝑎

𝑐𝜈𝑏
(𝑎†𝑛 + 𝑎𝑛)

𝐻0,ph =
∑︀

𝜇 ~𝜔𝜇

(︀
𝑏†𝜇𝑏𝜇 + 1

2

)︀
𝐻elec-ph =

∑︀
𝜈𝑎𝜈𝑏,𝜇

𝑀𝜇
𝜈𝑎𝜈𝑏

𝑐†𝜈𝑎
𝑐𝜈𝑏

(︁
𝑏𝜇 + 𝑏†𝜇̄

)︁
External classical field 𝑊 (𝑡) = 𝐸clas(𝑡)

∑︀
𝜈𝑎𝜈𝑏

𝑑𝜈𝑎𝜈𝑏
𝑐†𝜈𝑎

𝑐𝜈𝑏

These Hamiltonians constitute the main building blocks in analyzing the
dynamics of different quantum systems in the next chapters. In Chapter 3-5
we focus on coupling between a two-level emitter and a quantized electromag-
netic field in a one-dimensional waveguide, where we only treat coupling to
the environment by a loss rate of the emitter. In Chapter 8-10 we specifically
consider interaction between the electronic states of a semiconductor quantum
dot and a cavity field, specifically focussing on the contributions from phonons.
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Chapter 3

Single-photon scattering

One of the simplest systems in which to investigate the coupling between a
few-photon non-linearity and a propagating photon pulse, is a two-level emit-
ter (TLE) coupling to an infinite one-dimensional waveguide. A physical re-
alization of such a system has e.g. been demonstrated by A. Goban et al.
[62] by trapping a Caesium atom in the vicinity of a photonic crystal waveg-
uide, demonstrating a coupling efficieny of the TLE to the waveguide modes
of 32 %. A much higher coupling efficiency may, however, be achieved in solid
state systems, in which the TLE is placed inside the high-index materials. A
recent experiment by M. Arcari et al. [45] demonstrates a coupling efficiency
of 98 % between a semiconductor quantum dot and a line defect in a photonic
crystal slab, as sketched in Fig. 3.1. A higher coupling for the quantum dot is
achieved as the emitter is inside the high-index material, although the solid en-
vironment also introduce additional scattering processes from phonons, which
we will elaborate on in Chapter 8–10. The purpose of this chapter is to clarify
the dynamics of a single photon scattering on the TLE, as it is an important
building block for a solid understanding of two-photon scattering, where the
non-linearity of the TLE is addressed.

The scattering of an incoming single-photon wavepacket on the TLE will
depend strongly on the spectral and spatial properties of the photon relative to
the TLE. Pulses with a very narrow bandwidth have a very small probability
of exciting the TLE, as the energy of the pulse is spread across a wide spatial
range. In this regime, the TLE is well-known to behave as a linear scatterer in
the few-photon limit with the transmission spectrum sketched in Fig. 3.2(a). If
the narrow-spectrum photon is resonant with the emitter transition, the pulse
is fully reflected. The reason for this is explained in Fig. 3.2(b), by expanding a
right-propagating photon in an equal superposition of even and odd waveguide
modes. While the even modes has an anti-node at the emitter position, the
odd modes has a node and thus does not interact with the emitter. As the field
scattered from a dipole will be out of phase with the incoming light, the even
mode attains a phase shift of 𝜋, whereas the odd modes propagates past the
emitter. Thus, by summing up the contributions, the scattered even and odd
mode interfere destructively in the right (transmitted) port, and thus the
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Figure 3.1: (Left) Illustration of a TLE embedded in a one-dimensional waveg-
uide, exemplified by a line defect in a photonic crystal slab containing a quan-
tum dot. (Right) Schematic illustration of the corresponding band diagram
showing the slab modes (green area) with a bandgap (yellow area) containing
a line defect mode (red line). The resonance frequency of the emitter, 𝜔0, lies
inside the bandgap, and we consider only propagating modes below the light
cone (shaded grey).
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Figure 3.2: (a) Transmission spectrum of a lossless TLE with transition fre-
quency 𝜔0 inside the waveguide for a continuous wave with frequency 𝜔. The
spectral width of the transmission dip is proportional to the decay rate of the
emitter. (b) Interference effects for a continuous wave in the case 𝜔 = 𝜔0, with
the incoming field (left column) and the scattered field (right column). The
incoming field (top row) may be expanded as a sum of and even mode (middle
row) and an odd mode in the waveguide (bottom row), with the red and blue
colors indication fields which are out of phase. The even mode has an anti-node
at the emitter position and gains a phase shift of 𝜋 upon scattering, whereas
the odd mode has node and thus passes the emitter without interacting.
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resonant photon pulse is fully reflected. If the emitter has a non-zero loss rate
to other modes than the waveguide modes, the reflection is no longer perfectly
100 % [63].

For single-photon pulses with spectral linewidths comparable to that of
the TLE, the TLE still behaves linearly, as the saturation of the TLE first
plays a role if a second photon is present. Following different approaches to
describe the single-photon scattering [64, 65, 66, 67], we calculate the excitation
dynamics of the TLE for input single-photon pulses with different spectra, and
we determine the resulting scattering probabilities. We demonstrate how the
incoming pulse is mostly affected by the emitter when the pulse spectrum is as
narrow as possible for resonant excitation, as this would reflect the pulse fully.
The emitter, however, is populated the most when the bandwidth of the pulse
and the emitter linewidth are comparable, making this regime interesting for
investigating the emitter non-linearity.

Lastly, we introduce a numerical scheme for solving the single-photon scat-
tering for arbitrary pulses, which Chapter 4 will be generalized to two-photon
scattering. A full understanding of the mathematical approaches and results
in the single-photon case is thus important when expanding the model to con-
sidering two-photon scattering, as will be done in the next chapters.

3.1 The model

The system Hamiltonian in the Schrödinger picture for a single TLE interacting
with a quantized electromagnetic field is given by Eqs. (2.6), (2.8), and (2.12),
neglecting the contribution to the energy from the vacuum field, as this does
not affect the system dynamics,

𝐻 = ~𝜔0𝑐
†𝑐+

∑︁
𝜆

~𝜔𝜆𝑎
†
𝜆𝑎𝜆 + ~

∑︁
𝜆

[𝑔𝜆𝑎𝜆𝑐
† + 𝑔*𝜆𝑎

†
𝜆𝑐]. (3.1)

Here 𝜆 is a generalised quantum number describing polarisation and propaga-
tion degrees of freedom, and each mode is described by creation and annihila-
tion operators 𝑎†𝜆 and 𝑎𝜆, respectively. Furthermore 𝑐† = 𝑐†𝑒𝑐𝑔 is the creation
operator for an excitation of the TLE, moving an electron from the ground state
to the excitated state. The transmission frequency of the emitter is denoted
𝜔0, and the coupling between the TLE and the optical mode 𝜆 is described
by the dipole interaction by the strength 𝑔𝜆 from in Eq. (2.13). In Eq. (3.1)
the rapidly-oscillation interaction terms containing 𝑎†𝜆𝑐

† and 𝑎𝜆𝑐 have been ne-
glected by the rotating wave approximation, valid when the electromagnetic
field has frequencies close to the emitter resonance, with low field intensities
[68].

We assume that the waveguide is sufficiently small, such that it only sup-
ports a single mode (for each direction of propagation) at a specific frequency, as
sketched for the photonic crystal waveguide in Fig. 3.1. In this case, the mode
index 𝜆 corresponds to the continuous-mode variable 𝑘, being the wavenumber
of the plane wave modes. Here 𝑘 > 0 or 𝑘 < 0 implies a waveguide mode
propagating in the forward or backward direction, respectively. For the infinite
waveguide, these modes will be plane wave modes.
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With these assumptions, the sum over all modes in the waveguide reduces
to
∑︀

𝜆 = lim𝐿→∞(𝐿/2𝜋)
∫︀∞
−∞ d𝑘 , with 𝐿 being the length of the 1D waveguide,

and 2𝜋/𝐿 the spacing between the modes in reciprocal space. Continuous mode
operators are defined as 𝑎(𝑘) = lim𝐿→∞

√︀
(𝐿/2𝜋)𝑎𝜆, preserving the commu-

tator relationship [𝑎(𝑘), 𝑎†(𝑘′)] = 𝛿(𝑘 − 𝑘′) [69, 50]. Moreover, the continuous
version of the waveguide mode frequencies and coupling strength is defined as
𝜔(𝑘) = 𝜔𝜆 and 𝑔(𝑘) = lim𝐿→∞

√︀
(𝐿/2𝜋)𝑔𝜆, respectively. The system Hamil-

tonian becomes

𝐻 = ~𝜔0𝑐
†𝑐+

∫︁ ∞

−∞
d𝑘 ~𝜔(𝑘)𝑎(𝑘)†𝑎(𝑘) + ~

∫︁ ∞

−∞
d𝑘
[︀
𝑔(𝑘)𝑎(𝑘)𝑐† + h.c.

]︀
, (3.2)

with h.c. indicating a term which is the Hermitian conjugate of the previous
term.

The calculations are most easily carried out in a frame rotating with a
carrier frequency of the emitter, 𝜔0, described by the transformation 𝑇 (𝑡) =

exp[−i𝜔0𝑡(𝑐
†𝑐 +

∑︀
𝜆 𝑎

†
𝜆𝑎𝜆)]. The transformed Hamiltonian is given by 𝐻̃ =

𝑇 †(𝑡)𝐻𝑇 (𝑡) + i~𝜕𝑇 †

𝜕𝑡 𝑇 (𝑡) = 𝐻̃0 +𝐻𝐼 , resulting in

𝐻̃ =

∫︁ ∞

−∞
d𝑘 ~(𝜔(𝑘) − 𝜔0)𝑎(𝑘)†𝑎(𝑘) + ~

∫︁ ∞

−∞
d𝑘
[︀
𝑔(𝑘)𝑎(𝑘)𝑐† + h.c.

]︀
. (3.3)

The incoming photon wavepackets are assumed to have a small bandwidth (on
the order of 109 rad s−1) compared to the QD transition frequency (∼ 1015 rad
s−1). This allows a linearization of the dispersion relation (for each direction
of propagation), obtained by a Taylor expansion of the dispersion relation 𝜔(𝑘)
around 𝜔0, see Fig. 3.1,

𝜔(𝑘) − 𝜔0 =
𝜕𝜔

𝜕𝑘

⃒⃒⃒⃒
𝑘=±𝑘0

(𝑘 ∓ 𝑘0) = 𝑣𝑔(|𝑘| − 𝑘0), (3.4)

valid for photons propagating in both directions, with 𝑘0 > 0 defined such that
𝜔(𝑘0) = 𝜔0, and with the group velocity 𝑣𝑔 = 𝜕𝜔

𝜕𝑘 |𝑘=𝑘0
.

3.2 A single system excitation

We consider a single excitation in the emitter-waveguide system, assuming no
losses of the excitation to external reservoirs1, which would be a reasonable
approximation for the QD–photonic crystal waveguide coupling demonstrated
in Ref. [45]. The system state may at all times be written as a superposition of
the excitation being in one of the waveguide modes or as an electronic excitation
in the emitter,

|𝜓(𝑡)⟩ =

∫︁ ∞

−∞
d𝑘 𝐶𝑔(𝑘, 𝑡)𝑎†(𝑘)|𝜑⟩ + 𝐶𝑒(𝑡)𝑐†|𝜑⟩, (3.5)

1For non-negligible loss, e.g. due to the presence of other modes or due to scattering with
phonons, external reservoirs to which the system couples may be introduced. In the limit of
weak coupling to a reservoir of harmonic oscillators, dissipation rates of the system states
may be derived [70]. Alternatively, the dynamics may be treated using a quantum jump
approach [71] or reduced density matrices [72, 73], which however are computationally more
challenging.
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A single system excitation

with |𝜑⟩ being the quantum state with the emitter in its ground state and no
photons in the waveguide. The wavefunction is normalized such that ⟨𝜓(𝑡)|𝜓(𝑡)⟩ =∫︀∞
−∞ d𝑘 |𝐶𝑔(𝑘, 𝑡)|2 + |𝐶𝑒(𝑡)|2 = 1 at all times, in the loss-free case.
The system dynamics are calculated by applying the time-dependent Schrödinger

equation, i~𝜕𝑡|𝜓(𝑡)⟩ = 𝐻|𝜓(𝑡)⟩, and projecting onto the orthogonal states 𝑐†|𝜑⟩
and 𝑎†(𝑘′)|𝜑⟩, giving a system of coupled differential equations for the expan-
sion coefficients,

𝜕𝑡𝐶
𝑒(𝑡) = −i

∫︁ ∞

−∞
d𝑘 𝑔(𝑘)𝐶𝑔(𝑘, 𝑡), (3.6a)

𝜕𝑡𝐶
𝑔(𝑘, 𝑡) = −i[𝜔(𝑘) − 𝜔0]𝐶𝑔(𝑘, 𝑡) − i𝑔*(𝑘)𝐶𝑒(𝑡). (3.6b)

By formally integrating Eq. (3.6b) from an initial time 𝑡𝑖 to 𝑡, and inserting
the expression for 𝐶𝑔(𝑘, 𝑡) back into Eq. (3.6a), we obtain

𝜕𝑡𝐶
𝑒(𝑡) = −i

∫︁ ∞

−∞
d𝑘 𝑔(𝑘)𝐶𝑔(𝑘, 𝑡𝑖)e

−i[𝜔(𝑘)−𝜔0](𝑡−𝑡𝑖)

−
∫︁ ∞

−∞
d𝑘 |𝑔(𝑘)|2

∫︁ 𝑡

𝑡𝑖

d𝑡′ 𝐶𝑒(𝑡′)e−i[𝜔(𝑘)−𝜔0](𝑡−𝑡′). (3.7)

The intergrand in the last term of Eq. (3.7) may be simplified by using the
assumption from the previous section that the decay rate of the emitter is much
lower than the carrier frequency of the pulse. In that case, 𝐶𝑒(𝑡′) varies slowly
compared to the exponential and may be pulled outside the integral, as the
integral only has non-zero contributions for 𝑡′ ≈ 𝑡. By this, the lower limit of
the integration may also be expanded to 𝑡𝑖 → −∞ without changing the value
of the integral. This is well-known as the Wigner-Weisskopf approximation [74],
by which the system does not have any memory of the past (also sometimes
called the Markov approximation).

By complex integration, the remaining integral reduces to∫︁ 𝑡

−∞
d𝑡′ e−i[𝜔(𝑘)−𝜔0](𝑡−𝑡′) = −i𝒫

{︂
1

𝜔(𝑘) − 𝜔0

}︂
+ 𝜋𝛿(𝜔(𝑘) − 𝜔0), (3.8)

with 𝒫 indicating the principal value. The first term induces a frequency shift,
commonly known as the Lamb shift [50], which is omitted by including this
as a re-normalization of the basic transition frequency of the emitter, 𝜔0. By
defining the constant Γ = 2𝜋

∫︀ −∞
−∞ d𝑘 |𝑔(𝑘)|2𝛿(𝜔(𝑘) − 𝜔0), we arrive at

𝜕𝑡𝐶
𝑒(𝑡) = −i

∫︁ ∞

−∞
d𝑘 𝑔(𝑘)𝐶𝑔(𝑘, 𝑡𝑖)e

−i[𝜔(𝑘)−𝜔0](𝑡−𝑡𝑖) − Γ

2
𝐶𝑒(𝑡). (3.9)

Hence, Γ is spontaneous decay rate of the emitter population, |𝐶𝑒(𝑡)|2, into
both propagation directions of the waveguide. Under the narrow bandwidth
assumptions, 𝑔(𝑘) is approximately contrant, 𝑔(𝑘) ≈ 𝑔(𝑘𝑝) =

√︀
Γ𝑣𝑔/(4𝜋) [43].

3.2.1 Input state

To solve Eq. (3.9) we consider a incident, forward-propagating single photon
as the initial condition. A single-photon state existing in a 1D continuum is in
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Figure 3.3: (a) Intensity spectra, |𝜉(𝑘)|2, for the three single-photon wavepackets
in Eqs. (3.12a)-(3.12c), here plotted for 𝜎 = Γ/𝑣𝑔. (b) Corresponding spatial pulse
profiles, |𝜉(𝑧)|2, where large values of 𝑧 correspond to the front part of the pulse,
arriving first at the position of the emitter.

general described by the state

|𝜉⟩ =

∫︁ ∞

−∞
d𝑘 𝜉(𝑘)𝑎†(𝑘)|𝜑⟩. (3.10)

The state describes a superposition of excited states in the 1D continuum with
the photon wavepacket 𝜉(𝑘), seen by applying ⟨𝜑|𝑎(𝑘′) from the left

⟨𝜑|𝑎(𝑘′)|𝜉⟩ =

∫︁ ∞

−∞
d𝑘 𝜉(𝑘)𝛿(𝑘 − 𝑘′) = 𝜉(𝑘′), (3.11)

We consider three transform-limited incoming pulse shapes propagating in the
forward direction, being a Lorentzian, a Gaussian, and a step-function [75, 76]
pulse, which are given by the wavepackets

𝜉Lor(𝑘) =

√︀
𝜎/(2𝜋)

𝑘 − 𝑘𝑝 − i𝜎/2
e−i𝑍0(𝑘−𝑘𝑝), (3.12a)

𝜉Gauss(𝑘) = (𝜋𝜎′2)−1/4e−(𝑘−𝑘𝑝)
2/(2𝜎′2)e−i𝑍0(𝑘−𝑘𝑝), (3.12b)

𝜉square(𝑘) = 𝜎−1/2𝜃(𝜎/2 − |𝑘 − 𝑘𝑝|)e−i𝑍0(𝑘−𝑘𝑝), (3.12c)

all with the carrier frequency 𝑣𝑔𝑘𝑝, and where 𝜎′ = (2
√︀

ln(2))−1𝜎 for the
Gaussian wavepacket, with 𝜃(𝑘) is the Heaviside step function. All wave packets
have a full width–half maximum (FWHM) of the intensity spectrum of 𝜎, and
the wavepackets are normalised such that

∫︀∞
−∞ d𝑘 |𝜉(𝑘)|2 = 1. Additionally,

𝑍0 < 0 is the position at which the pulse starts behind the emitter at 𝑡 = 𝑡𝑖,
with the origo of the spatial axis being at the emitter position. The intensity
spectra of the input pulses are shown in Fig. 3.3 together with the spatial pulse
profiles, defined as the Fourier transform 𝜉(𝑧) = (2𝜋)−1/2

∫︀∞
−∞ d𝑘 𝜉(𝑘) exp[i𝑘𝑧].

3.2.2 Dynamics

Assuming that the incoming single-photon wavepacket has a carrier frequency
which is resonant with the emitter, and that the pulses starts infinitely far away
from the pulse 𝑍0 → −∞, the QD excitation probability, 𝑃𝑒(𝑡) = |𝐶𝑒(𝑡)|2, may
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Figure 3.4: (a) Emitter excitation probability for an incoming single-photon
wavepacket starting in 𝑧 = 𝑍0 < 0 with 𝜎 = 2Γ/𝑣𝑔, for the wavepackets in Eqs.
(3.13a)-(3.13c), resonant with the emitter, 𝑘𝑝 = 𝑘0. (b) Maximal emitter excitation
during the scattering event for incoming pulses with different values of 𝜎, also with
𝑘𝑝 = 𝑘0. (c) Excitation density in the waveguide for light propagating in the forward
(yellow) and backward (blue) direction for a Gaussian pulse scattering on the emitter
at 𝑧 = 0 (red). Figure (c) is reproduced from [77].

be determined by solving Eq. (3.9) with the initial conditions 𝐶𝑔(𝑘, 𝑡𝑖) = 𝜉(𝑘)
and 𝐶𝑒(𝑡𝑖) = 0 for the pulse shapes in Eqs. (3.12a)-(3.12c),

𝑃Lor
𝑒 (𝑡) =

2Γ𝑣𝑔𝜎

(𝜎𝑣𝑔 + Γ)2

[︂
e𝜎𝑣𝑔𝜏𝜃(−𝜏) + e−Γ𝜏𝜃(𝜏)

]︂
, (3.13a)

𝑃Gauss
𝑒 (𝑡) =

√
𝜋Γ

4𝑣𝑔𝜎′ e
−Γ𝜏+Γ2/(4𝜎′2𝑣2

𝑔)

[︃
1 − erf

(︃
Γ − 2𝑣2𝑔𝜎

′2𝜏

2
√

2𝜎′𝑣𝑔

)︃]︃2
, (3.13b)

𝑃 square
𝑒 (𝑡) =

Γ

4𝜋𝑣𝑔𝜎
e−Γ𝜏

⃒⃒⃒⃒
𝐸1

(︂
i𝜎𝑣𝑔 − Γ

2
𝜏

)︂
− 𝐸1

(︂
−i𝜎𝑣𝑔 − Γ

2
𝜏

)︂ ⃒⃒⃒⃒2
, (3.13c)

with 𝜏 = 𝑡+𝑍0/𝑣𝑔 being the time in a frame relative to the initial position of
the pulse. Additionally, the error function is defined as erf(𝑥) = 2√

𝜋

∫︀ 𝑥

0
d𝑞 e−𝑞2 ,

and 𝐸1 is the exponential integral defined as 𝐸1(𝑧) =
∫︀∞
1

d𝑞 e−𝑞𝑧𝑞−1.
The excitation probabilities are illustrated in Fig. 3.4(a) for 𝜎 = 2 Γ/𝑣𝑔.

Especially from the Lorentzian pulse it is apparent that the rate of dot excita-
tion depends on the linewidth of the emitter, whereas the rate of the emitter
de-excitations is determined by Γ - see also Eq. (3.13a). The maximal emit-
ter excitation sketched in Fig. 3.4(b). The emitter is maximally excited for
a Lorentzian input with 𝜎 = Γ/𝑣𝑔, as the Lorentzian spectrum exactly cor-
responds to the spectrum of pulse emitter from the emitter by spontaneous
emission (although time-reverted). As the square pulse has the largest mis-
match between the spectrum of the emitter and the photon, the pulse energy
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can never efficiently couple to the emitter and thus results in the lowest maxi-
mal emission probability for the square pulse. The maximal attainable emitter
population of 1/2 stems from the phenomenon in Fig. 3.2, as only maximally
half of the photon energy may couple to the emitter.

The properties of the scattered pulse may be examined by calculating the
energy distribution across the waveguide at a time 𝑡 during the scattering event.
We describe it by the waveguide excitation density, 𝑁𝑧(𝑧, 𝑡), measured in units
of of inverse length. It is calculated using Eq. (3.6b), and is defined as

𝑁𝑧(𝑧, 𝑡) = ⟨𝜓(𝑡)|𝑎(𝑧)𝑎†(𝑧)|𝜓(𝑡)⟩ (3.14)

=
1

2𝜋

⃒⃒⃒⃒ ∫︁ ∞

−∞
d𝑘 𝐶𝑔(𝑘, 𝑡)ei𝑘𝑧

⃒⃒⃒⃒2
. (3.15)

The excitation density is sketched in Fig. 3.4(c) for scattering of a Gaussian
pulse. Due to the finite spatial width of the pulse (and thus non-zero band-
width), there is a probability that the pulse scatters in both directions, and
moreover the spatial pulse profile may be significantly changed by the scatter-
ing.

The scattered state may be obtained by calculating 𝐶𝑔(𝑘, 𝑡) for 𝑡 → ∞.
An easier way to obtain the scattered state is, however, by exploiting that
the emitter acts as linear scatterer for a single-photon packet, and thus the
scattered wavepacket may be calculated by treating each frequency component
of the incoming pulse individually. For an input pulse as in Eq. (3.10) which
propagates in the forward direction, the wavepacket of the scattered state is

𝜉scat(𝑝) =

∫︁ ∞

−∞
d𝑘 𝜉(𝑘) [𝑡(𝑘)𝛿(𝑝− 𝑘) + 𝑟(𝑘)𝛿(𝑝+ 𝑘)]

= 𝜉(𝑝)𝑡(𝑝) + 𝜉(−𝑝)𝑟(−𝑝), (3.16)

where the transmission and reflection coefficients for scattering on the emitter
is [66],

𝑡(𝑘) =
𝑘 − 𝑘0

𝑘 − 𝑘0 + iΓ̃/2
, 𝑟(𝑘) =

−iΓ̃/2

𝑘 − 𝑘0 + iΓ̃/2
, (3.17)

with Γ̃ = Γ/𝑣𝑔. The spectrum for the transmitted part, |𝜉(𝑝)𝑡(𝑝)|2, and for the
reflected part, |𝜉(−𝑝)𝑟(−𝑝)|2, is shown in Fig. 3.5(a). The frequency compo-
nents of the pulse closest to the transition energy of the emitter interact most
strongly, and those at the exact frequency of the emitter (𝑘 = 𝑘0) are perfectly
reflected [64]. The probability the photon is scattered is obtained by integrat-
ing over all pulse frequencies, 𝑃r =

∫︀∞
−∞ d𝑝 |𝜉(−𝑝)𝑟(−𝑝)|2. For a Lorentzian

input, the reflection probability becomes

𝑃r,Lor(∆) =
(Γ̃ + 𝜎)Γ̃

(Γ̃ + 𝜎)2 + 4∆2
, (3.18a)

with the detuning between the emitter and the pulse defined as ∆ = 𝑘𝑝 − 𝑘0.
For a resonant Gaussian pulse, ∆ = 0,

𝑃r,Gauss(∆ = 0) =
Γ̃
√
𝜋

2𝜎′ eΓ̃
2/(2𝜎′)2

[︃
1 − erf

(︃
Γ̃

2𝜎′

)︃]︃
, (3.18b)
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Figure 3.5: (a) Intensity spectra of an incoming Gaussian pulse, |𝜉Gauss(𝑘)|2 , and the
resulting spectra of the transmitted and reflected field, assuming resonant excitation
of the emitter, Δ = 0, and 𝜎 = 1Γ/𝑣𝑔. (b) Reflection probabilities as a function of
the bandwidth, 𝜎, for the three pulses in Eqs. (3.12a)-(3.12c).

and for a square pulse

𝑃r,square(∆) =
Γ̃

2𝜎

[︂
arctan

(︂
2∆ + 𝜎

Γ̃

)︂
− arctan

(︂
2∆ − 𝜎

Γ̃

)︂]︂
. (3.18c)

A comparison of the resulting reflection probabilities is shown in Fig. 3.5(b)
for each of the three single-photon wavepackets in Eqs. (3.12a)-(3.12c). As 𝜎
decreases, a larger part of the pulse interacts strongly with the emitter, increas-
ing the reflection probability, and 𝑃r reaches unity for resonant monochromatic
pulses (𝜎 → 0). In the opposite limit of 𝜎 → ∞, only a vanishing fraction of
frequency components overlap with the spectrum of the emitter, resulting in
complete transmission since the pulse does not interact with the emitter. Since
the Lorentzian has the largest spread of frequency components for a given
FWHM, it interacts least with the emitter and correspondingly results in the
lowest reflection probability for a given 𝜎 for the three considered pulses.

3.3 Numerical Implementation

In order to calculate the dynamics for an arbitrary input, we propose a scheme
to solve Eqs. (3.6a) and (3.6b) numerically, see Appendix B for details. The
continuum of waveguide modes is discretized into 𝑁 discrete plane wave modes
divided into two sub-intervals; with 𝑁/2 of the points centered around −𝑘0
and the other half around 𝑘0. This is sufficient as only modes with |𝑘| close
to 𝜔0/𝑣𝑔 interacts with the emitter. In these sub-intervals, the grid points
are equidistantly with the spacing 𝑑𝑘. With this discretization, Eqs. (3.6a)
and (3.6b) now constitute a system of coupled linear differential equations.

Several numerical approaches exits to solve a large systems of coupled linear
differential equations. When determining the full temporal evolution of the
system, we implement a standard explicit Runge–Kutta (4,5) stencil [78]. In
order to obtain the long-time dynamics of the state without being concerned
about the intermediate dynamics, the Arnoldi method is useful, which is an
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Figure 3.6: Each column correspond to a solution with𝑁 and 𝑑𝑘 (in units of Γ̃) shown
above each column. (Top row) Discretized spectral wavepacket of the input pulse.
(Bottom row) Calculated emitter excitation using the Runge–Kutta stencil (solid line)
and the analytical solution from Eq. (3.13b) (dashed line). In all simulations, 𝜎 = 1 Γ̃,
Δ = 0.

iterative technique used to approximate the eigenvalues of large sparse matrices
[79, 80].

An example calculation of the emitter excitation probability is sketched in
Fig. 3.6 for various choices of 𝑁 and 𝑑𝑘, where 𝑑𝑘 at least must be smaller than
the bandwidth of the pulse to resolve it properly. In the first column of Fig. 3.6
we see that only a few points in 𝑘-space (𝑁 = 30) actually catches the dynamics
quite well at small times. At higher times, the QD is re-excited in the numerical
simulation, due to an insufficient calculation domain: When discretizing the 𝑘-
modes in an infinite waveguide, this corresponds to chopping the waveguide
down to a finite length of 𝑙 = 2𝜋/𝑑𝑘 with periodic boundary conditions. The
pulses emitted by the QD has propagated through the numerical boundaries
and reappears at the QD after a time 𝑡reapp = 2𝜋/(𝑑𝑘 · 𝑣𝑔), which gives an
indication of the upper time limit for which the numerical simulations are
valid. In the second column of Fig. 3.6, 𝑑𝑘 is decreased while keeping 𝑁 · 𝑑𝑘
constant, i.e. doubling 𝑡reapp, and thus the numerical result is valid within the
shown temporal domain.

A deviation appears between the numerical and the analytic result in the
first two examples in Fig. 3.6 due to numerical inaccuracies. By keeping 𝑑𝑘
constant but increasing 𝑁 , the width of the calculation domain increases, as
from the second to the third column in Fig. 3.6, and we get a result closer to
the analytic expression for the emitter excitation. This is analyzed in detail
in Fig. 3.7, which illustrates the relative deviation in the maximal emitter
population between the numerical result and the analytic from Eq. (3.13b)
for varying 𝑁 and 𝑑𝑘. It is clearly seen that the error is minimized when
the product 𝑁 · 𝑑𝑘 is maximized, i.e. when maximizing the span of 𝑘-modes.
This is due to the fact that the discretized 𝑘-array has a finite span, and
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Figure 3.7: Relative deviation between the maximum emitter excitation ob-
tained by the numerical and analytical solution for simulations with varying
𝑁 and 𝑑𝑘. The black lines are contours for constant values the span of the
calculation domain which is ∼ 𝑁 · 𝑑𝑘.

thus we numerically omit modes, into which the emitter could decay. This is
also explains why the numerical result always gives a higher maximal emitter
excitation compared to the analytic value, as some decay channels are "missing"
in the numerical implementation.

Thus, the choice of 𝑁 and 𝜎 has to be with a sufficiently high 𝜎 to resolve
the temporal dynamics properly, but this also implies a high 𝑁 such that the
normalization condition is obeyed.

3.4 Summary

In this chapter we have described the dynamics of a quantum system in which
a single-photon pulse scatters on a lossless, two-level emitter inside an infi-
nite one-dimensional waveguide using standard approaches [64, 66, 67]. The
results are valid under the rotating wave approximation and under the Wigner–
Weisskopf approximation, by which the emitter is assumed to have no memory
of its past.

We have demonstrated how to determine analytical expression for the tem-
poral evolution of the emitter population for input photons with a Gaussian, a
Lorentzian and a square-shaped intensity spectrum. With the transmission and
reflection matrix elements for a single emitter [66], we determined analytic ex-
pressions for the transmission and reflection probabilities. The pulse is affected
the most by the emitter, if the linewidth of the pulse is much smaller than the
emitter linewidth, in which case a resonant pulse would be fully reflected by
the emitter. The emitter is, however, exited the most, when the bandwidth of
the input pulse matches the linewidth of the emitter. This becomes important
in system where the emitter non-linearity is to be exploited. One downside
with this setup is, however, that these pulses have a non-zero probability of
propagating being scattered into both directions of the waveguide, which may
complicate implementation in optical gates. But, as we will demonstrate later
in the thesis, there are different ways to circumvent this, e.g. by placing the
emitter close to the end facet of a waveguide [64].
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Chapter 3. Single-photon scattering

The possibilities with the emitter–waveguide systems are rich, and several
functionalities of emitter–waveguide systems have been discussed, such as a
single-photon router by using multiple emitters and waveguides [81]. For emit-
ters with more than two energy levels [82], proposals have been made using
the waveguide–emitter systems as single-photon frequency converters [83] and
single-photon transistors [43, 84]. Furthermore the approaches demonstrated
in this chapter may also be used to analyze more advanced scatterers such as
waveguides interacting with emitters inside optical cavities [85, 86].

With this detailed understanding of the single-photon scattering, we pro-
ceed to considering two-photon scatting in the following chapters. Due to the
saturability of the emitter, the two-photon scattering dynamics becomes much
more complex. In Chapter 4 the scattering is examined using the numerical
scheme from Section 3.3, supported by analytical calculations of the emitter
excitation for two uncorrelated, Gaussian pulses, using an approach similar
to the approach in Section 3.2. The transmission properties are specifically
considered in Chapter 5, using the scattering matrix formalism [66], in which
non-linear two-photon scattering matrix elements are introduced.
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Chapter 4

Two-photon scattering —

Wavefunction approach

4.1 Introduction

A model for describing two-photon scattering on a two-level emitter is de-
veloped in this chapter, as an extension of the single-excitation results from
Chapter 3. The dynamics of two-photon scattering is, however, much more
complex than the single-photon case, as the non-linear emitter can induce cor-
relations between the photons caused by elastic multi-photon scattering pro-
cesses [66, 87]. Existing methods for analyzing the multiple-photon scatter-
ing problem — such as the input-output formalism [66], the real-space Bethe
ansatz [87, 88], or the Lehmann-Symanzik-Zimmermann formalism [89] — focus
on the long-time limit of the scattered state [67] and necessitate the compu-
tation of complicated scattering elements or Laplace transforms [90]. Another
recent approach demonstrates a master equation formalism derived by starting
from the Itō Langevin equation, where also the emitter excitation is calcu-
lated [72], although without relating the emitter excitation to the scattering-
induced correlations. Some specific considerations have been demonstrated
using a wavefunction description of the system [91], e.g. the demonstration of
stimulated emission of an emitter inside a waveguide [92], and scattering of a
two-photon wavepacket in a photonic tight-binding waveguide [93, 94, 95]. Ap-
plications which utilize a TLE nonlinearity have been proposed, such as photon
sorters and Bell state analyzers [96]. In all these cases the non-linearity of the
emitter leads to rich scattering dynamics and scattering-induced correlations.
It is the interplay between these highly non-trivial scattering properties and
the excitation dynamics of the emitter which we seek to clarify in this chapter.

To do so we study two-photon scattering on a quantum emitter in a one-
dimensional waveguide using a wavefunction approach as introduced in Chap-
ter 3, in which the entire system state is explicitly calculated at all times
during the scattering process, and which therefore provides a detailed picture
of the scattering dynamics. This approach relies on a direct solution of the
Schrödinger equation by expanding the complete state in a basis formed by
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Chapter 4. Two-photon scattering — Wavefunction approach

the TLE and the optical waveguide modes. This allows us to explore varying
widths and separations of the incoming photons, and provides a convenient
and detailed visualization of the temporal dynamics of the scattering process.
As a special case, we show that the approach agrees with the above-mentioned
methods in the post-scattering limit, discussed further in Chapter 5. For co-
propagating pulses, we find that the transmission properties of the emitter
depend crucially on the pulse width and separation, with closer spaced pulses
giving rise to a larger proportion of scattered light. For counter-propagating
coincident pulses we find that the non-linearity of the emitter can give rise to
significant pulse-dependent directional correlations in the scattered photonic
state. These correlations can be detected by a reduction in coincident clicks
in a Hong-Ou-Mandel measurement setup, analogous to a linear beam splitter.
Thus, the emitter may act as a non-linear beam-splitter, but only in the regime
where the spectral width of the photon pulses is similar to the emitter decay
rate.

This chapter is structured as follows: In Section 4.2 we introduce the two-
excitation model and formalism as an extension of the model in Chapter 3. In
Section 4.3 we analyse the scattering dynamics for two co-propagating photon
pulses; we examine how the properties of the scattered state depend on the
emitter excitation and consider the scattering-induced correlations between the
photons. In Section 4.4 we study scattering of counter-propagating pulses,
elucidating the analogy of the quantum emitter and a non-linear beam-splitter.

The chapter is based on the journal publication Scattering of two photons
on a quantum emitter in a one-dimensional waveguide: exact dynamics and
induced correlations. New Jour. Phys. 17, 023030 (2015) by A. Nysteen, P. T.
Kristensen, D. P. S. McCutcheon, P. Kaer, and J. Mørk.

4.2 Two-excitation model

The model dynamics are described by the Hamiltonian derived in Eq. (3.3) in
a frame rotating with the carrier frequency of the emitter,

𝐻̃ =

∫︁ ∞

−∞
d𝑘 ~(𝜔(𝑘) − 𝜔0)𝑎(𝑘)†𝑎(𝑘) + ~

∫︁ ∞

−∞
d𝑘
[︀
𝑔(𝑘)𝑎(𝑘)𝑐† + h.c.

]︀
, (4.1)

where 𝜔(𝑘) is given by the Taylor expansion in Eq. (3.4), with 𝑘 > 0 (𝑘 <
0) describing propagating in the forward (backward) direction which in this
example is the right (left) direction in the waveguide. As discussed in Chapter 3,
experimentally high coupling rates between a QD a photonic crystal waveguide
makes it reasonable to omit losses in the calculations [45]. This allows us to
expand a general state of the system in a basis spanned by all the possible
system states containing two excitations. The two-excitation basis states are
𝑎†(𝑘1)𝑎†(𝑘2)|𝜑⟩ and 𝑎†(𝑘)𝑐†|𝜑⟩, with the former describing two excited plane
wave modes with wavevectors 𝑘1 and 𝑘2, and the latter describing the states
where the emitter is in its excited state and a single waveguide mode with
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wavevector 𝑘 is excited. The total state at time 𝑡 is written as

|𝜓(𝑡)⟩ =
1√
2

∫︁ ∞

−∞
d𝑘1

∫︁ ∞

−∞
d𝑘2 𝐶

g(𝑘1, 𝑘2, 𝑡)𝑎
†(𝑘1)𝑎†(𝑘2)|𝜑⟩

+

∫︁ ∞

−∞
d𝑘 𝐶𝑒(𝑘, 𝑡)𝑎†(𝑘)𝑐†|𝜑⟩ (4.2)

where the expansion coefficients 𝐶g(𝑘1, 𝑘2, 𝑡) and 𝐶𝑒(𝑘, 𝑡) are in the rotat-
ing frame, and |𝜑⟩ indicates the emitter ground state and vacuum state of
the waveguide. We note that since the photons are fundamentally indistin-
guishable, [𝑎†(𝑘), 𝑎†(𝑘′)] = 0, (and indeed 𝑎†(𝑘1)𝑎†(𝑘2)|𝜑⟩ = 𝑎†(𝑘2)𝑎†(𝑘1)|𝜑⟩),
the coefficients of the two-photon terms must be symmetric, 𝐶g(𝑘1, 𝑘2, 𝑡) =
𝐶g(𝑘2, 𝑘1, 𝑡). Normalization of the state requires

⟨𝜓(𝑡)|𝜓(𝑡)⟩ =

∫︁ ∞

−∞
d𝑘1

∫︁ ∞

−∞
d𝑘2 |𝐶g(𝑘1, 𝑘2, 𝑡)|2 +

∫︁ ∞

−∞
d𝑘 |𝐶𝑒(𝑘, 𝑡)|2 = 1, (4.3)

and we can interpret
∫︀∞
−∞ d𝑘 |𝐶𝑒(𝑘, 𝑡)|2 as the probability that the TLE is

measured in its excited state, while the probability of measuring two photons
in modes of index 𝑘1 and 𝑘2 for 𝑘1 ̸= 𝑘2 is 2|𝐶g(𝑘1, 𝑘2, 𝑡)|2, and |𝐶g(𝑘1, 𝑘1, 𝑡)|2
for 𝑘1 = 𝑘2.

Inserting Eq. (4.2) into the time-dependent Schrödinger equation, and using
the Hamiltonian in Eq. (4.1) leads to a system of coupled differential equations
for the expansion coefficients, analogously to the single photon case in Eqs.
(3.2),

𝜕𝑡𝐶
e(𝑘, 𝑡) = −i∆𝜔(𝑘)𝐶e(𝑘, 𝑡) − i

√
2

∫︁ ∞

−∞
d𝑘′ 𝑔(𝑘′)𝐶g(𝑘, 𝑘′, 𝑡), (4.4a)

𝜕𝑡𝐶
g(𝑘1, 𝑘2, 𝑡) = −i[∆𝜔(𝑘1) + ∆𝜔(𝑘2)]𝐶g(𝑘1, 𝑘2, 𝑡)

− i√
2

[︀
𝑔*(𝑘1)𝐶e(𝑘2, 𝑡) + 𝑔*(𝑘2)𝐶e(𝑘1, 𝑡)

]︀
. (4.4b)

By discretizing the 𝑘-continuum of modes as described in Section 3.3, Eqs. (4.4a)
and (4.4b) become a system of coupled linear differential equations. In general
we solve Eqs. (4.4a) and (4.4b) numerically using the scheme in Section 3.3 –
see Appendix B for details about the numerical implementation. In specific
cases, Eqs. (4.4a) and (4.4b) may be solved analytically, e.g. when examining
stimulated emission from a TLE [92, 97].

We note that in contrast to the linear nature of the discretized equations,
the Heisenberg equations of motion for the system operators used in the scatter-
ing matrix approach result in a set of coupled nonlinear differential equations,
whose solution must instead be obtained using e.g. the input–output formal-
ism [66].

4.2.1 Two-photon input state

Eqs. (4.4a) and (4.4b) can in principle be solved for any initial state of the
total system containing two excitations. We build onto the aforementioned
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Chapter 4. Two-photon scattering — Wavefunction approach

models for investigating stimulated emission [92, 97] by employing two single-
photon pulses in the waveguide as the initial condition, and we investigate
their scattering on the TLE for various pulse widths and separations. The
two-photon input states can be experimentally produced using, for example,
parametric down-conversion, as has been demonstrated [98, 99, 100]. In general,
such a process creates two correlated photons, but the properties of the down-
conversion crystal can be modified in such a way that uncorrelated photons are
produced [101].

The general form of a two-photon state is written as

|𝛽⟩ =
1√
2

∫︁ ∞

−∞
d𝑘
∫︁ ∞

−∞
d𝑘′ 𝛽(𝑘, 𝑘′)𝑎†(𝑘)𝑎†(𝑘′)|0⟩, (4.5)

with 𝛽(𝑘, 𝑘′) the two-photon wavepacket given in two-dimensional 𝑘-space. The
bosonic nature of the photons implies symmetry of the two-photon wavepacket,
𝛽(𝑘, 𝑘′) = 𝛽(𝑘′, 𝑘), and the normalisation condition is then

⟨𝛽|𝛽⟩ =

∫︁ ∞

−∞
d𝑘
∫︁ ∞

−∞
d𝑘′ |𝛽(𝑘, 𝑘′)|2 = 1. (4.6)

If we assume an initial condition corresponding to two photons described by
Eq. (4.5), by comparison with Eq. (4.2), we find the corresponding initial condi-
tions for the wavefunction coefficients 𝐶e(𝑘, 0) = 0 and 𝐶g(𝑘, 𝑘′, 0) = 𝛽(𝑘, 𝑘′).

We define a general symmetric two-photon Gaussian state as 𝛽(𝑘, 𝑘′) =
𝐾 [𝛽0(𝑘, 𝑘′) + 𝛽0(𝑘′, 𝑘)] with

𝛽0(𝑘, 𝑘′) = 𝑓
(︀
𝑘 − 𝑘p,1 + 𝑘′ − 𝑘p,2

)︀
𝜉1(𝑘)𝜉2(𝑘′), (4.7)

where 𝜉𝑖(𝑘) = 𝜎′
𝑖
−1/2

𝜋−1/4 exp
[︁
−i𝑍0,𝑖(𝑘 − 𝑘p,𝑖) − (𝑘 − 𝑘p,𝑖)

2/(2𝜎′
𝑖
2
)
]︁
is a Gaus-

sian single-photon wavepacket as defined in Eq. (3.12b). It has a FWHM of the
intensity spectrum of 𝜎𝑖 = 2

√︀
ln(2)𝜎′

𝑖, 𝑍0,𝑖 as the initial position of the pulse
center, and where positive or negative 𝑘p,𝑖 corresponds to a wavepacket propa-
gating to the right (forward) or left (backward), respectively. 𝐾 is a normaliza-
tion parameter, and 𝑓(𝑘, 𝑘′) is a function describing phase matching, which for

simplicity may be assumed to be a Gaussian, 𝑓(𝑘) = exp
[︁
−𝑘2/(2𝜎′

𝑝
2
)
]︁
[102].

The correlation between the two photons is described by the parameter 𝜎′
𝑝,

which for parametric down-converted photons corresponds to the bandwidth
of the pump laser [102]. The correlation parameter 𝜎′

𝑝 is inversely proportional
to the correlation length between the photons, and thus 𝜎′

𝑝 → ∞ corresponds
to fully uncorrelated photons, and in such a case 𝛽0(𝑘, 𝑘′) factorizes into two
single-photon wavepackets. We also define the real-space representation of the
two-photon wave-packet by the Fourier transform

𝛽(𝑧, 𝑧′) =
1

2𝜋

∫︁ ∞

−∞
d𝑘
∫︁ ∞

−∞
d𝑘′ 𝛽(𝑘, 𝑘′)ei𝑘𝑧+i𝑘′𝑧′

. (4.8)

In addition to the two-photon wavepacket, described by the functions 𝛽(𝑘, 𝑘′)
and 𝛽(𝑧, 𝑧′), it is also useful to define the expectation value of the photon
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Figure 4.1: Absolute value of the two-photon wavepacket in real space,
|𝛽(𝑧, 𝑧′)| (upper row), in reciprocal space, |𝛽(𝑘, 𝑘′)| (middle row), and the pho-
ton density 𝑁(𝑧, 𝑡) (lower row) for three different two-photon states, and with
no emitter positioned in the waveguide. The three columns correspond to ini-
tial photonic states which are co-propagating coincident uncorrelated pulses of
equal width (𝜎′

1 = 𝜎′
2 = 2, 𝑍0,1 = 𝑍0,2 = −2, and 𝜎′

p → ∞, column (a)),
uncorrelated spatially separated pulses of unequal widths (𝜎′

1 = 2, 𝜎′
2 = 4,

𝑍0,1 = −2, 𝑍0,2 = −4, and 𝜎′
p → ∞, column (b)), and coincident highly corre-

lated pulses of equal width (𝜎′
1 = 𝜎′

2 = 2, 𝑍0,1 = 𝑍0,2 = −2, and 𝜎′
p = (3/4)𝜎′

1,
column (c)).
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density at a time 𝑡 and position 𝑧 as 𝑁𝑧(𝑧, 𝑡) = ⟨𝜓(𝑡)|𝑎†(𝑧)𝑎(𝑧)|𝜓(𝑡)⟩, where
𝑎(𝑧) = (2𝜋)−1/2

∫︀
d𝑘 𝑎(𝑘)ei𝑘𝑧 annihilates a photon at position 𝑧, equivalent

to the single-photon definition in Eq. (3.15). In terms of the wavefunction
coefficients, the explicit form of 𝑁𝑧(𝑧, 𝑡) is given by

𝑁𝑧(𝑧, 𝑡) = 2

∫︁ ∞

−∞
d𝑘

⃒⃒⃒⃒
1√
2𝜋

∫︁ ∞

−∞
d𝑘′ 𝐶g(𝑘, 𝑘′, 𝑡)ei𝑘

′𝑧

⃒⃒⃒⃒2
+

⃒⃒⃒⃒
1√
2𝜋

∫︁ ∞

−∞
d𝑘 𝐶e(𝑘, 𝑡)ei𝑘𝑧

⃒⃒⃒⃒2
. (4.9)

Since a lossless system is assumed, the number of excitations is conserved,
implying

∫︀∞
−∞ d𝑧 𝑁(𝑧, 𝑡) = 2 at all times.

To gain some intuition as to how these three descriptions of the two-photon
state appear, we first consider three different input states in the waveguide
containing no TLE (such that wavepackets propagate along the waveguide but
no other dynamics are present). The three rows in Fig. 4.1 correspond to the
absolute value of the initial real-space photon wavepacket |𝛽(𝑧, 𝑧′)|, the initial
𝑘-space wavepacket |𝛽(𝑘, 𝑘′)|, and the photon density as a function of time
𝑁(𝑧, 𝑡), for input states which correspond to two coincident uncorrelated pho-
tons of equal width column (a), two spatially separated uncorrelated photons of
different width column (b), and two coincident highly-correlated photons col-
umn (c). We note that in comparing columns (a) and (b), the separated nature
of the two pulses in (b) is clearly visible, as too is the inequality of the two pulse
widths, as is evident from the elliptical shape of the wavepactet amplitudes in
the top row. We also see oscillations appearing the 𝑘-space representation for
the spatially separated pulses in column (b). These oscillations have a period
|𝑍0,1 − 𝑍0,2|−1 and are a signature of interference between the two separated
pulses. For the correlated pulses in column (c) we see that the wavepacket is
elongated along the diagonal line 𝑧 = 𝑧′ in real-space, and along the 𝑘 = −𝑘′
direction in frequency space. This means that position measurements of the
two photons will share positive correlations, whereas frequency measurements
will be anti-correlated. Finally, we note that the photon density plots in the
lower row provide us with an overall picture of the dynamics for all times, but
do not capture all the features present in the photon wavepackets.

4.3 Co-propagating pulses

We now turn to the main focus of this chapter, and consider the evolution of
the two photon state as it scatters on a TLE placed inside the waveguide. In
order to solve Eqs. (4.4a) and (4.4b), we discretize the continuum of waveguide
modes and numerically solve the resulting finite set of differential equations, as
described in Appendix B. In the following calculations we assume frequency-
independent coupling constants, 𝑔(𝑘) = 𝑔, which is well justified owing to the
assumption that the TLE linewidth is narrow compared to the carrier frequency
of the wavepackets, as discussed in Chapter 3; in general, the numerical ap-
proach employed here may handle frequency dependent coupling constants and
more complex dispersion relations.
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Figure 4.2: Illustration of the three possible scattering outcomes for the propagations
of the scattered photons, where each pulse may propagate either in the right, “𝑅", or
left, “𝐿", direction.

Convergence tests were carried out by comparison with the scattering prop-
erties of a single photon from the previous chapter for two temporally separated
photons. For two identical coincident photons, we determine an analytical ex-
pression for the emitter population at all times. The approach is similar to
the analytical approach in Chapter 3, and exploits distinguishing slowly and
fast oscillating terms in the differential equations for the expansion coefficients
as in the Wiegner–Weisskopf approximation. The derivation is based on a
method presented in Refs. [91, 92] but is rather lengthy, so we refer to Ap-
pendix A for further details. We determine the emitter population for two
co-propagating Gaussian pulses analytically, and this results is used to per-
form convergence-checks of the numerical implementation, see Section B.2 for
details. In the long-time limit our results agree with the scattering matrix
approach of Refs. [66, 67], which we describe in detail in Chapter 5.

In all plots, parameters with units of time or length are normalized to
Γ−1 and 𝑣g/Γ respectively. A pulse with a spectral width of 𝜎′ = 1 thus
corresponds to a spatial width of 𝜎′ = 𝑣g/Γ.Finally, for plotting in 𝑧-space, we
used a frequency of 𝜔0 = 1015 s−1.

4.3.1 Scattering dynamics

As an illustrative example of two-photon scattering, we first consider the scat-
tering of two identical, coincident and uncorrelated single-photon pulses with
carrier frequencies resonant with the TLE. Except for the inclusion of a TLE
here, the input is identical to that of column (a) in Fig. 4.1; both photons are
initially located left of the TLE, 𝑍0,1 = 𝑍0,2 < 0, and propagate to the right,
𝑘𝑝,1 = 𝑘𝑝,2 > 0. The scattered states are divided into three sub-categories:
both being in the region right of the TLE, “𝑅𝑅", one on each side, “𝐿𝑅", and
both photons to the left of the TLE, “𝐿𝐿", as sketched in Fig. 4.2.

The resulting dynamics are shown in Fig. 4.3. The spatial photon density,
𝑁𝑧(𝑧, 𝑡), is illustrated in the left of Fig. 4.3, and it represents the expectation
value of position measurements of the two photons over many scattering events.
We see that part of the energy is transmitted, and part is reflected. On the
incoming side of the emitter (𝑧 < 0), a standing wave pattern is clearly visible,
which is a result of interference between the incoming and reflected part of the
pulse.

The upper row on the right shows the evolution of the spatial wavepacket at
three representative times, corresponding to the onset of the scattering 𝑡 = 3.0,
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Figure 4.3: Left: Photon density, 𝑁𝑧(𝑧, 𝑡) for an initially uncorrelated (𝜎′
p →

∞) coincident two-photon state scattering on an emitter placed at 𝑧 = 0, using
widths 𝜎′

1 = 𝜎′
2 = 1 and initial centre positions 𝑍0,1 = 𝑍0,2 = −3. The position

of the emitter at 𝑧 = 0 is indicated by the black solid line. Right: Absolute
value of the two-photon wavepacket shown at three representative times during
the scattering event, both in 𝑧-space (upper row) and 𝑘-space (lower row). In
the 𝑘-space plots, we show only the regions centred around 𝑘, 𝑘′ = ±𝑘0, which
we label 𝐿𝐿 (origin (−𝑘0,−𝑘0)), 𝑅𝑅 (origin (𝑘0, 𝑘0)), 𝐿𝑅 (origin (−𝑘0, 𝑘0)),
and 𝑅𝐿 (origin (𝑘0,−𝑘0)).

during the scattering 𝑡 = 4.7, and in the post-scattering long-time limit 𝑡 =
10.0. We notice that after the scattering event, both photons clearly propagate
away from the TLE as expected. An equivalent conclusion may also be drawn
from the wavepacket in 𝑘-space as shown in the lower row of Fig. 4.3, where
the scattered field has components propagating in the “𝑅𝑅", “𝐿𝑅", or “𝐿𝐿"
directions. Due to the bosonic nature of the photons, the configurations “𝐿𝑅"
and “𝑅𝐿" cannot be distinguished. At early times, e.g. at 𝑡 = 3.0 in Fig. 4.3,
the scattering is dominated by single photon processes, which can be seen by
the fact that the two-photon wavepacket is elongated along the 𝑘 and 𝑘′ axes.
This means that only a single photon has been broadened by its interaction
with the TLE emitter, whilst the other remains unchanged. At larger times,
features of two-photon scattering processes appear, which can be seen by the
more complex shapes of the two-photon wavepackets. We discuss these features
in more detail below.

It is interesting to compare the scattering dynamics in Fig. 4.3 with the
case of two pulses which are sufficiently separated in space such that the TLE
excitation induced by the first pulse has essentially decayed before the arrival
of the second pulse. This is shown in Fig. 4.4, and in this case the scattering
behaviour resembles two ‘copies’ of the single-photon scattering case [64]. Even
though the carrier frequency of the pulse is resonant with the TLE, a non-zero
transmission is obtained in this single-photon scattering limit because of the
finite temporal widths of the input pulses. These features are in contrast to
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Figure 4.4: Left: Photon density, 𝑁𝑧(𝑧, 𝑡) for an uncorrelated (𝜎′
p → ∞) two-

photon state scattering on the emitter placed at 𝑧 = 0, using widths 𝜎′
1 =

𝜎′
2 = 1 and initial centre positions 𝑍0,1 = −3 and 𝑍0,2 = −9. The position

of the emitter at 𝑧 = 0 is indicated by the black solid line. Right: Absolute
value of the two-photon wavefunction shown at three different times during the
scattering event, both in 𝑧-space (upper row) and 𝑘-space (lower row). In the
𝑘-plots, only the regions centred around 𝑘, 𝑘′ = ±𝑘0 are shown.

the case in which a spectrally narrow continuous wave pulse is incident on the
emitter, which gives zero transmission on resonance because of destructive in-
terference between the scattered and input fields [70, 85]. In this single-photon
scattering limit, the TLE fully reflects frequency components of the incoming
pulse which are close to the TLE resonance, as no two-photon processes are
apparent. Hence, the spectrum of the transmitted pulse does not contain com-
ponents at these frequencies, see e.g. the spectrum in Fig. 4.4 at 𝑡 = 11.9. This
is in contrast to the coincident case in Fig. 4.3, where two-photon processes
allow for transmission of pulse components close to the TLE resonance.

During the initial phase of the scattering, the 𝑘-space wavefunctions in both
Fig. 4.3 and Fig. 4.4 broaden and demonstrate interaction with states which
are detuned from the TLE by several TLE linewidths. This may be seen at
times 𝑡 = 3.0 and 𝑡 = 4.7 in Fig. 4.3, but these frequencies do not appear in
the final scattered state at 𝑡 = 10.0. This phenomenon may be understood
as arising from the energy-time uncertainty relation, as processes taking place
at short times allow for larger uncertainties in energy. Lastly, for the case
of spatially separated pulses in Fig. 4.4, a dip is present in the transmitted
waveguide excitation. This feature is a consequence of destructive interference
between the initial photon wavepacket and the emitted photon, and manifests
in the form of a dip in the spectrum of the transmitted pulse at the emitter
transition frequency [64]. This dip is not apparent in the plot of 𝑁(𝑧, 𝑡) for
the case of two initially coincident pulses in Fig. 4.3, but is present in the two-
photon wavepacket in 𝑧-space as indicated for 𝑡 = 10.0. Physically, it means
that a photon may be detected at a position corresponding to the dip, but
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if the first photon is detected there, the probability of detecting the second
photon at that position is zero, exemplifying that the single-photon scattering
features manifest themselves in two-photon scattering, although they may not
be apparent from the photon density 𝑁(𝑧, 𝑡).

To summarise, we have illustrated the full scattering dynamics of two pho-
tons on a TLE by calculating the total system state at all times. For well-
separated uncorrelated single-photon pulses, the dynamics may be well ap-
proximated by the single-photon results [64]. As the displacement between the
pulses becomes smaller, non-trivial dynamics can be induced due to the sat-
uration of the TLE. The approach we use here naturally accommodates this
regime of two photon scattering.

4.3.2 Transmission and reflection properties

In order to investigate the transmission properties of the TLE, we consider
the relative number of photons propagating to the left and right during the
scattering process. We can calculate the total number of photons propagating
to the right as

𝑁R(𝑡) =

∫︁ ∞

0

d𝑘 ⟨𝜓(𝑡)|𝑎†(𝑘)𝑎(𝑘)|𝜓(𝑡)⟩ (4.10)

= 2

∫︁ ∞

0

d𝑘

∫︁ ∞

−∞
d𝑘′ |𝐶g(𝑘, 𝑘′, 𝑡)|2 +

∫︁ ∞

0

d𝑘 |𝐶e(𝑘, 𝑡)|2, (4.11)

while the total number propagating to the left, is given by a similar expression
with the integration range over 𝑘 changed to ] −∞, 0],

𝑁L(𝑡) =

∫︁ 0

−∞
d𝑘 ⟨𝜓(𝑡)|𝑎†(𝑘)𝑎(𝑘)|𝜓(𝑡)⟩. (4.12)

The excitation probability of the TLE is given by

𝑃e(𝑡) = ⟨𝜓(𝑡)|𝑐†𝑐|𝜓(𝑡)⟩ =

∫︁ ∞

−∞
d𝑘
⃒⃒
𝐶e(𝑘, 𝑡)

⃒⃒2
, (4.13)

and normalization of the total state ensures 𝑁R(𝑡) + 𝑁L(𝑡) + 𝑃e(𝑡) = 2; there
is a total of two excitations in the system at all times. We therefore define
the relative transmission to the right and left as 𝑇R(𝑡) = 𝑁R(𝑡)/2 and 𝑇L(𝑡) =
𝑁L(𝑡)/2.

In Fig. 4.5(a) we show the left and right transmission coefficients, together
with the TLE excitation as a function of time, for the two cases of perfectly
overlapping (solid) and non-overlapping pulses (dashed) introduced in Figs. 4.3
and 4.4 respectively. From these plots a clear reduction in the reflective nature
of the TLE when the two pulses are coincident is evident, clearly illustrating
that the first photon induces partial transparency in the TLE, minimising the
interaction between the TLE and the second photon1. Also evident is a tempo-
ral delay between excitation of the TLE and the accumulation of the reflected

1Due to the symmetry, the maximum achievable TLE excitation for a single-pulse excita-
tion from a single side is 1/2, as discussed with Fig. 3.2(b). A value of 1/2 is only obtained
for a pulse with a temporal shape which is exactly the inverse of a pulse emitted by the
TLE [103]. Such a pulse would render the TLE completely transparent.
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Figure 4.5: (a) Transmission 𝑇R(𝑡) (blue) and reflection 𝑇L(𝑡) (green), together
with relative TLE excitation, 𝑃e(𝑡)/2 (red), for parameters corresponding to
the two cases of perfectly overlapping (solid) and non-overlapping (dashed)
pulses shown in Figs. 4.3 and 4.4 respectively. (b) Maximum TLE excitation
and the directional scattering probabilities as a function of the wavepacket 𝑘-
space width, 𝜎′, for two coincident but uncorrelated, single-photon pulses with
the same width and carrier frequency, resonant with the TLE transition.

field, demonstrating non-instant scattering due to the finite decay rate of the
TLE.

The transmission and reflection coefficients do not contain information re-
garding scattering-induced correlations between the photons, and to that end
we define scattering probabilities for the three possible directional outcomes
of the scattering process. In the long-time limit, the probability that both
photons propagate to the right is given by

𝑃𝑅𝑅 =
1

2
lim
𝑡→∞

∫︁ ∞

0

d𝑘
∫︁ ∞

0

d𝑘′ ⟨𝜓(𝑡)|𝑎†(𝑘)𝑎†(𝑘′)𝑎(𝑘′)𝑎(𝑘)|𝜓(𝑡)⟩ (4.14)

= lim
𝑡→∞

∫︁ ∞

0

d𝑘
∫︁ ∞

0

d𝑘′ |𝐶g(𝑘, 𝑘′, 𝑡)|2, (4.15)

while 𝑃𝐿𝐿 is given by a similar expression with the integration ranges changed
to [−∞, 0]. The probability of having one photon travelling in each of the two
directions is

𝑃𝐿𝑅(𝑡) = 2 lim
𝑡→∞

∫︁ 0

−∞
d𝑘
∫︁ ∞

0

d𝑘′ |𝐶g(𝑘, 𝑘′, 𝑡)|2. (4.16)

The scattering probabilities 𝑃𝑅𝑅, 𝑃𝐿𝑅, and 𝑃𝐿𝐿 are thus obtained by integrat-
ing the two-photon wavepacket over the corresponding quadrant(s) in Fig. 4.3
or Fig. 4.4 in either 𝑧- or 𝑘-space.

At long times well past the scattering event, when the TLE has fully decayed
to its ground state, the probabilities we have defined satisfy 𝑃𝑅𝑅 + 𝑃𝐿𝐿 +
𝑃𝐿𝑅 = 1. In contrast to the quantities 𝑇𝑅 and 𝑇𝐿, the probabilities 𝑃𝑅𝑅, 𝑃𝐿𝐿,
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and 𝑃𝐿𝑅 contain information regarding the directional correlation between the
individual photons. The correlations depend crucially on the width of the
photon wavepacket, as well as the initial emitter excitation. To investigate this,
Fig. 4.5(b) shows the directional scattering probabilities as a function of the
width of two equal coincident input pulses, together with the maximal emitter
excitation, 𝑃e,max. The scattering of monochromatic pulses (infinitely small
𝜎′) is well-known from Chapter 3 ; all of the pulse is reflected when the carrier
frequency is resonant with the emitter transition, agreeing with our results here
in the limit of a small 𝜎′. Here the TLE excitation remains low due to the low
optical power in the pulse. Spectrally broad pulses have a small overlap with
the TLE in 𝑘-space, resulting in a small degree of interaction and thus also a
low value of 𝑃e,max and a high value of 𝑃𝑅𝑅. The largest 𝑃e,max is obtained
for 𝜎′ ∼ Γ/𝑣g which is also the parameter regime where 𝑃𝐿𝑅 dominates. This
occurs when the spectral overlap between the wavepacket of the input state
and the TLE emission spectrum is large.

4.4 Counter-propagating pulses

We now turn to the case where the TLE is illuminated by two counter-propagating
single-photon pulses, one photon from each side of the TLE. The correspond-
ing waveguide excitation dynamics is shown in Fig. 4.6, for excitation pulses
with a carrier frequency resonant with the TLE transition energy. Due to the
symmetry of the scattering problem around 𝑧 = 0, the expectation value of the
photon density is the same for the left and right propagating components of
the pulse.

Closer inspection of the two-photon wavepacket on the right of Fig. 4.6 re-
veals interesting features regarding the induced correlations. We see that 𝑃𝐿𝑅 is
much smaller than 𝑃𝑅𝑅 and 𝑃𝐿𝐿. This indicates a strong directional correlation
between the two scattered photons as the final state suggests both photons will
be measured propagating in the same direction with high probability. We note
that this property cannot be inferred from the photon density plot. This phe-
nomenon is analogous to the well-known two-photon interference which gives
rise to the Hong-Ou-Mandel dip, wherein two identical photons impinging from
opposite sides of an optical beam-splitter coalesce and are measured in the same
output arm [104]. In the present case, however, the effect is only partial due to
the non-zero spectral width of the input pulses and the TLE saturation, and as
a consequence 𝑃𝐿𝑅 is not zero. This beam splitter-like effect has been observed
in Ref. [105] for coupled optical waveguides described by a tight-binding model
between the individual sites.

4.4.1 Induced correlations

We now turn our attention to the correlations induced in the two-photon-state
as a result of the scattering process. First, it is important to establish in which
degrees of freedom the photons can be correlated. We distinguish between two
correlation types, which we refer to as ‘directional’ and ‘modal’. Directional
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Figure 4.6: Left: Photon density, 𝑁𝑧(𝑧, 𝑡) for an initially uncorrelated (𝜎′
p →

∞) two-photon state scattering on the emitter placed at 𝑧 = 0, using pulse
widths 𝜎′

1 = 𝜎′
2 = 0.5 and initial centre positions 𝑍0,1 = 𝑍0,2 = −6. The

position of the emitter at 𝑧 = 0 is indicated by the black line. Absolute
value of the two-photon wavefunction shown at three different times during the
scattering event, both in 𝑧-space (upper row) and 𝑘-space (lower row). In the
𝑘-space plots, only the intervals centred at 𝑘, 𝑘′ = ±𝑘0 are shown.

correlations are those present in measurement statistics acquired from detect-
ing the direction of propagation of each of the two photons, and are captured
by the quantities 𝑃𝑖𝑗 for {𝑖, 𝑗} ∈ {R,L}. If the propagation direction of one
photon depends on the measured propagation direction of the other, the two
are said to have directional correlations. Modal correlations, on the other hand,
are concerned with measurement statistics obtained when detecting the posi-
tion of each photon, assuming a given configuration of propagation directions.
These modal correlations are contained in the correlation parameter 𝜎′

p, defined
for the input state in Eq. (4.7). Modal correlations are more traditionally de-
scribed in terms of the well-known second order 𝑔(2) correlation function [106],
which is typically employed when describing intensity correlations. A generic
two-photon state may be correlated according to one of these measures, but
fully uncorrelated in the other. Fig. 4.1(c) shows an example of such a state.
The elliptical shape of the wavepacket in real-space is a signature of modal cor-
relations, but the state can have no directional correlations, since both photons
are propagating to the right.

The scattering of co-propagating photons shown in Fig. 4.6 induces strong
directional correlations. Modal correlations are also induced, as can be seen
from the elliptical shape of the wavefunction in 𝑧-space and 𝑘-space, meaning
that the emitted photons are anti-correlated in 𝑘-space and correlated in 𝑧-
space. This can be further appreciated by comparison with the state shown in
Fig. 4.1(c), which was defined to have modal correlations. These correlations
have been demonstrated in previous works both theoretically [91] and exper-
imentally [107] for co-propagating photons. The induced anti-correlation in
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𝑘-space can be understood as a four-wave mixing process, where elastic scat-
tering of two photons of almost identical energy results in one photon with
higher energy and one with lower energy. This gives rise to the elliptical shape
of the wavefunction in 𝑘-space, cf. the spectrum in Fig. 4.6 at 𝑡 = 12.0. The
correlation in 𝑧-space implies a larger probability of detecting the second pho-
ton spatially close to the first, i.e. photon bunching. Modal correlations such
as these are not present in the scattered state from a conventional linear optical
beam splitter; the modal entanglement observed here is caused by a non-linear
scattering process between the incoming and emitted photons, which is medi-
ated by the excitation of the TLE.

In order to relate the induced quantum correlations in the photonic state
to the TLE excitation dynamics, we require a measure of the induced cor-
relations, which can be facilitated by entanglement theory. There are several
proposals in the literature of how to quantify the degree of entanglement (quan-
tum correlations) between individual subsystems [108, 109, 110], particularly
for distinguishable systems each of which may be in one of only two states,
e.g. two spatially separated spin-half particles. These measures include the
fidelity, the concurrence, the negativity, and the entropy of entanglement [38],
each of which has a different operational meaning, and may be more or less
appropriate given the problem at hand. For two indistinguishable particles e.g.
two bosons in the same two-photon Hilbert space, extensions to the distin-
guishable case have to be made [111, 112, 113]. If the indistinguishable bosons
can each occupy more than two states, as is the case for the state expressed
by Eq. (4.5) (where the number of states is equal to the dimension of each
particle sub-Hilbert space), there are fewer ways to quantify the entanglement.
Among these is the von Neumann entropy of the reduced single-particle density
matrix [112, 114], which quantifies the modal entanglement by the degree to
which the state of the second photon is affected by a 𝑘-space measurement on
the first.

In order to explore the extent to which our system behaves as a beam-
splitter, we quantify the amount of directional entanglement present in the
scattered state. To do this, the two-photon state may be projected onto a
two-dimensional Hilbert space with each photon being in either a left or a
right propagating state, giving three basis states, |𝐿𝐿⟩, |𝐿𝑅⟩, and |𝑅𝑅⟩. This
projected system is identical to the case of two indistinguishable two-state
particles discussed above, for which the entanglement may be quantified by the
fidelity, i.e. by comparison to a maximally entangled state. We focus here only
on entangled states with a different number of particles in each direction and
thus compare to two of the four Bell-states only,

|Φ±⟩ =
1√
2

[|𝐿𝐿⟩ ± |𝑅𝑅⟩] . (4.17)

Here |𝐿𝐿⟩ and |𝑅𝑅⟩ are states with the same modal correlations as the parts
of the calculated scattered state where both photons propagate to the left or
both to the right, respectively. For pure states as in Eq. (4.5), the fidelities
with respect to the maximally entangled states projected onto the |𝐿⟩ and |𝑅⟩
basis are defined as the overlap between the scattered state and the maximally
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entangled state, 𝐹±
prob = |⟨Φ±|𝜓⟩|2 [38], With this definition of |𝐿𝐿⟩ and |𝑅𝑅⟩

as stated above, the fidelity solely measure the directionally induced correla-
tions, whereas a perfect 50-50 beam splitter would have a fidelity of 1. The
fidelities exceed 1/2 only if |𝜓⟩ is a non-classical state, and can therefore be
interpreted as a measure of the directional entanglement.
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Figure 4.7: Directional entanglement, quantified by 𝐹prob, plotted versus the
spectral width of the photon wavepacket. Here we consider two identical, single-
photon wavepackets impinging on the TLE from each side, initially equidistant
from the TLE, and both being resonant with the TLE transition (i.e. the
conditions are the same as those of Fig. 4.6 for which 𝜎′

1 = 𝜎′
2 = 0.5 and 𝜎′

𝑝 →
∞). Cases of initially uncorrelated states, 𝜎′

p → ∞, and spatially correlated
states, 𝜎′

p = 𝜎′
1/2 are shown, and the wavepacket widths are always equal

𝜎′
1 = 𝜎′

2 = 𝜎′.

For two identical photons scattering on the TLE from each side, as in
Fig. 4.6, the input state has 𝐹±

prob = 0, as the overlap with the initial state
|𝐿𝑅⟩ is zero. The fidelity for the scattered state is shown in Fig. 4.7 for varying
widths of the input pulses. 𝐹−

prob is zero for the scattered state, at both |𝐿𝐿⟩
and |𝑅𝑅⟩ in Eq. (4.17) are obtain by a single-photon reflection in the input
|𝐿𝑅⟩, by which the resulting phase on |𝐿𝐿⟩ and |𝑅𝑅⟩ has to be the same.

The correlated input state, where both photons have a larger probability of
scattering on the TLE at the same time, leads to a smaller fidelity at the output
than for two uncorrelated photons at the input. For the initially correlated
states, such as that shown in in Fig. 4.1(c), the spectrum of the photons is
tighter than the uncorrelated case in Fig. 4.1(a), but the spatial distribution
is broadened, resulting in a lower probability of having both of the photons
at the TLE at the same time; this decreases the induced correlations and
correspondingly leads to a smaller fidelity.

In the limit of large 𝜎′, only a small fraction of the pulse interacts with
the TLE, giving a fidelity which approaches zero. In the small 𝜎′ limit, the
incoming pulse is temporally broad, resulting in a low light intensity at the TLE
position at all times, and hence, to a good approximation, the TLE remains in
its ground state. As the TLE only induces non-linearities when it is excited, a
two-photon packet with small 𝜎′ scatters as if the two photons were scattering
individually on the TLE, giving the scattered state |𝐿𝑅⟩. We note that the
maximum fidelity is obtained when the linewidth of the Gaussian input pulses
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is comparable with the decay rate of the TLE, i.e. for full-width half maximum
of the incoming pulse on the order 𝜎 = 2

√︀
ln(2)𝜎′ ≈ 1.0. In this case excitation

of the TLE is high, and a highly directionally entangled state is produced.

4.5 Summary

In conclusion, we have developed a wavefunction approach to study the scat-
tering of two photons on a two-level emitter in a one-dimensional waveguide.
Our method benefits from the simple mathematical form, and provides the
full temporal dynamics of the scattering event, as well as a detailed descrip-
tion of the scattering-induced correlations. For co-propagating pulses, we saw
that the excitation of the emitter strongly influences its transparency. This re-
sults in transmission and reflection coefficients which depend sensitively on the
separation between the two input pulses. For counter-propagating pulses, the
emitter–waveguide system shows beam-splitter like features, generating direc-
tional correlations in the scattered two-photon state, occurring most strongly
when the emitter excitation is largest. Unlike a conventional linear optical
beam-splitter, however, the finite decay rate of the emitter introduces non-
linearities which manifest as additional bunching effects. Finally, we note that
our model could be extended to more complicated scattering scenarios, such
as several quantum dots with possibly additional levels [115, 82, 116]. The nu-
merical approach we use also allows for the investigation of the role of waveg-
uide dispersion, as well as non-Markovian coupling to the scattering object by
including frequency-dependent coupling coefficients in the system. Lastly, an-
other strength of this numerical approach is the possibility of several, spatially
separated emitters. Other approaches such as the scattering matrix formalism
becomes very complex for two-photon scattering, due to recursive terms where
energy may oscillate back and forth between the scatterers [116], which we plan
to look into in future studies.
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Two-photon scattering —

Scattering matrix approach

In this chapter we discuss another approach to analyse two-photon scattering on
a non-linearity, namely the scattering matrix formalism. For typical scattering
experiments where an input state is sent toward a scattering region, the problem
is often treated mathematically by the scattering matrix formalism. The state
of the photon pulse long after the scattering process is related to the to the
initial state through the scattering matrix operator 𝑆, which is equal to the
evolution operator in the interaction picture from time −∞ to ∞. For non-
linear scatterers, the scattering matrix will in general be frequency dependent,
and is given by

𝑆 = lim
𝑡𝑖→−∞
𝑡𝑒→∞

ei𝐻0𝑡𝑒e−i𝐻(𝑡𝑒−𝑡𝑖)e−i𝐻0𝑡𝑖 (5.1)

with 𝐻0 being the non-interaction part of the system Hamiltonian, 𝐻 [66].
Thus, if the scattering matrix elements for a specific scatterer has been de-
termined, the post-scattering may be determined using standard algebra. It
is, however, not trivial to determine the scattering matrix elements for few-
photon non-linearities, due to possible non-linear scattering processes where
the energy between multiple input photons may be changed, as demonstrated
in the previous chapter.

The scattering elements may be determined by various methods, such as
the input-output formalism [66], the Bethe Ansatz [87, 88], and the Lehmann-
Symanzik-Zimmermann formalism [89]. These approaches have been exploited
to calculate the scattering matrix elements for two-photon states in various
systems such as a single emitter [66, 67], an emitter inside an optical cavi-
tiy [117], an emitter coupled to a ring resonator [118], and a non-linear op-
tical cavity [119]. In contrast to the numerical approach in Chapter 4, the
scattering matrix calculations complicate when considering scatterers which
consist of multiple elements, and also for spatially separated scatterers due to
recursive terms, corresponding to energy bounding back and forth between the
scatterers. The two-photon scattering matrix for spatially separated two-level
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emitters1 was, however, recently determined [116]. The evaluated scattering
matrix elements are usually evaluated by assuming no excitation losses to ex-
ternal reservoirs, but dissipation may be included according to the description
in Rephaeli et al. [63].

Until now, a big focus has been on considering scattering of co-propagating
two-photon pulses using the scattering matrix formalism. We employ in this
chapter the scattering matrix formalism to examine the case of counter-propa-
gating photons, as we saw in the previous chapter that this could lead to very
strong correlations between the photons. By this mathematical approach we
may exactly address the correlations induced specifically by the emitter non-
linearity. We obtain very simple expressions for the scattering probabilities of
a two-photon pulse with a Lorentzian spectrum, despite the complex scattering
dynamics. Furthermore we define suitable fidelity measurements to quantify
the induced correlations, taking into account both the induced changes in the
propagation direction, spectrum and phase of the photons.

If the non-linearities are to be implemented in larger optical circuits with
various photon gates, it may be of high importance for the overall effectiveness
that the properties of the photons does not change through a gate, as this
may devour the photon manipulations subsequent gates. This raises questions
regarding the feasibility of integrating a large number of photonic gates needed
to create complex optical circuits. The purpose of this work is to explore how
two-photon pulses are altered by the scattering process, and investigate how
these alterations depend on the level of induced non-linearities. Interestingly,
we find that non-linearaties can actually suppress spectral and phase changes,
thereby increasing the similarity of the scattered and input photons. As such,
even when correctly accounting for all properties of the scattered photonic state,
fidelities between the scattered and a desired directionally entangled state as
high as 80% can still be achieved.

This chapter is organized as follows: In Section 5.1 we introduce our model
system. In Section 5.2 we review the scattering of a single-photon pulse on a
two-level-emitter, and we introduce fidelity measures to quantify the similarity
between the incoming and scattered photons. In Section 5.3 the formalism is
applied to scattering of two counter-propagating single-photon pulses, where
our fidelity measures are used to analyse induced correlations and spectral
changes, and how these relate to the level of non-linearities.

The chapter is based on the submitted publication Strong non-linearity-
induced correlations for counter-propagating photons scattering on a two-level
emitter. arXiv:1502.04729 (2015) by A. Nysteen, D. P. S. McCutcheon, and J.
Mørk.

1For scatterers spaced by only a few wavelengths, the rotating wave approximation may
however not be valid, as virtual photons may be exchanged between the atoms [120].
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5.1 General theory

In contrast to the previous sections, we specifically distinguish the different
propagating modes by dividing the waveguide modes into two subsets, be-
ing the right (mode index 1) and left (mode index 2) propagating modes, see
Fig. 5.1. Each of the subsets describe a chiral waveguide, i.e. where propa-
gation is only allowed in one direction, and we choose the orientation of the
spatial axis in each subsets such that all modes have a positive wavevector,
𝑘. In the following we limit ourselves to lossless systems, though we note that
this assumption could be relaxed by coupling our system to additional exter-
nal reservoirs [70, 63]. Additionally, we neglect waveguide dispersion in the
considered frequency interval, and we assume a localized scatterer (dipole ap-
proximation), i.e. that the scattering occurs only at a single point in space, all
as discussed in Chapter 3. Instead of describing the Hamiltonian in a frame
rotating with the emitter frequency as in the previous chapters, we follow the
notation of Fan et. al [66] and use the carrier frequency of the pulse, 𝜔p, to
describe the rotating frame, when employing the scattering matrix approach.
With this, the system dynamics are given by the Hamiltonian from Eq. (3.3),
given in a frame rotating with the pulse frequency, 𝜔p,

𝐻̃ = ~∆𝑐†𝑐+

2∑︁
𝑖=1

∫︁ ∞

0

d𝑘 ~(𝜔(𝑘) − 𝜔p)𝑎̃𝑖(𝑘)†𝑎̃𝑖(𝑘),

+

2∑︁
𝑖=1

~𝑔
∫︁ ∞

0

d𝑘
[︁
𝑎̃𝑖(𝑘)𝑐† + h.c.

]︁
(5.2)

Here each mode in subsystem 1 and 2 is characterized by a wavevector 𝑘 > 0,
annihilation operator 𝑎̃𝑖(𝑘) and energy ~𝜔(𝑘). By writing the Hamiltonian in
this way we implicitly consider a single polarization of the waveguide modes,
and we assume a direction and frequency-independent coupling strength be-
tween the emitter and waveguide, 𝑔, as discussed in Section 3.2. The emitter
excitation is described by the fermionic creation operator 𝑐† = 𝑐†𝑒𝑐𝑔, and the
emitter frequency detuning from the pulse is ∆.

We limit ourselves to consider input pulses where the two photon pulses
have the same carrier frequency. We relate the frequencies of the waveguide
modes 𝜔(𝑘) by a linearization in similarity with Eq. (3.4),

𝜔(𝑘) ≈ 𝜔𝑝 + 𝑣𝑔(𝑘 − 𝑘𝑝) (5.3)

with 𝑘𝑝 is the carrier wavevector of the pulses, and 𝑣𝑔 = (𝜕𝜔/𝜕𝑘)|𝑘̃=𝑘𝑝
the

group velocity.
As each of the subsystems are chiral, no absolute value of 𝑘 appears in

Eq. (5.3), by which we may introduce annihilation and creation operators di-
rectly in the moving frame, 𝑎𝑖(𝑘) = 𝑎̃(𝑘 + 𝑘𝑝), with 𝑘 = 𝑘 − 𝑘𝑝 being the
wavevector in the rotating frame [66]. The resulting Hamiltonian is

𝐻 = ~∆𝑐†𝑐+ ~𝑣𝑔
2∑︁

𝑖=1

∫︁ ∞

−∞
d𝑘 𝑘 𝑎†𝑖 (𝑘)𝑎𝑖(𝑘) + ~𝑔

2∑︁
𝑖=1

∫︁ ∞

−∞
d𝑘[𝜎+𝑎𝑖(𝑘) + h.c.]

(5.4)
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Figure 5.1: (a) Two counter-propagating single-photon pulses propagate toward
a two-level system in its ground state. (b) The post-scattering state may be
measured by detectors in each chiral waveguide mode sub-group.

We note that in obtaining Eq. (5.4) we have extended the lower limits of in-
tegration from −𝑘𝑝 to −∞. This approximation is justified since we will be
interested in pulses with wavevectors centered around 𝑘 = 𝑘 − 𝑘𝑝 = 0, where
the bandwidth of the pulses is much smaller than 𝑘𝑝, as discussed in Chapter 3.

5.2 Single-photon scattering

Before we consider the scattering of two photons, we first review the single-
photon scattering case and introduce the scattering matrix formalism for an
arbitrary, localized quantum scatterer. We consider cases for which the scat-
terer initially is in its ground state. Following Fan et al. [66], the single-photon
scattering matrix for a localized scatterer is given by the matrix elements

1⟨𝑝|𝑆(1)|𝑘⟩1 = 2⟨𝑝|𝑆(1)|𝑘⟩2 = 𝑡(𝑘)𝛿(𝑝− 𝑘), (5.5)

2⟨𝑝|𝑆(1)|𝑘⟩1 = 1⟨𝑝|𝑆(1)|𝑘⟩2 = 𝑟(𝑘)𝛿(𝑝− 𝑘). (5.6)

Here we use the shorthand notation, |𝑘⟩𝑖 = 𝑎†𝑖 (𝑘)|𝜑⟩, with |𝜑⟩ being the sys-
tem state corresponding to no excitations in the waveguide and the emitter
in its ground state. Furthermore, 𝑡(𝑘) and 𝑟(𝑘) are the frequency-dependent
single-photon transmission and reflection coefficients, respectively2. The delta-
functions reflect momentum conservation, and as no external loss channels are
present, |𝑡(𝑘)|2 + |𝑟(𝑘)|2 = 1.

An arbitrary single photon state propagating in subsystem 1 is written

|𝜉0⟩ =

∫︁ ∞

−∞
d𝑘 𝜉(𝑘)𝑎†1(𝑘)|𝜑⟩, (5.7)

2The scattering matrix element deviates slightly from Eq. (3.16) by the sign in the 𝛿-
functions, which is due to the choice in this chapter that all waveguide modes have positive
𝑘 (with the direction being given by the subset number).
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where 𝜉(𝑘) is the wavepacket in momentum space. The post-scattering state
corresponding to the incoming state expressed in Eq. (5.7) is defined as |𝜉⟩𝑡→∞ =
𝑆(1)|𝜉0⟩. It is obtained by inserting the identity operator

ℐ =
∑︁
𝑖=1,2

∫︁ ∞

−∞
d𝑝 |𝑝⟩𝑖𝑖⟨𝑝|, (5.8)

from which we find

|𝜉⟩𝑡→∞ =

∫︁ ∞

−∞
d𝑝 𝑡(𝑝)𝜉(𝑝)|𝑝⟩1 +

∫︁ ∞

−∞
d𝑝 𝑟(𝑝)𝜉(𝑝)|𝑝⟩2. (5.9)

The two terms above reflect the fact that the photon can be transmitted or
reflected. The scattering probabilities are defined as

𝑃𝑖 = 𝑡→∞⟨𝜉|
∫︁ ∞

−∞
d𝑝 |𝑝⟩𝑖𝑖⟨𝑝|𝜉⟩𝑡→∞, (5.10)

with the transmission and reflection probabilities corresponding to 𝑖 = 1 and
𝑖 = 2 respectively. These probabilities are

𝑃1 =

∫︁ ∞

−∞
d𝑝 |𝑡(𝑝)𝜉(𝑝)|2, 𝑃2 =

∫︁ ∞

−∞
d𝑝 |𝑟(𝑝)𝜉(𝑝)|2. (5.11)

The theory above applies to any localized scatterer interacting with two
chiral waveguide modes. We now specifically consider the emitter-waveguide
system sketched in Fig. 5.1 and described by the Hamiltonian Eq. (5.4). In
this system the reflection and transmission coefficients may be found through
calculation of the single-photon scattering matrix elements [66], which gives

𝑡(𝑘) =
𝑘 − ∆

𝑘 − ∆ + iΓ/(2𝑣𝑔)
, 𝑟(𝑘) =

−iΓ/(2𝑣𝑔)

𝑘 − ∆ + iΓ/(2𝑣𝑔)
, (5.12)

where Γ = 4𝜋𝑔2/𝑣𝑔 is the decay rate of the emitter as derived in Section 3.2.
The matrix elements were used to calculate the single-photon scattering prob-
abilities in Section 3.2.1 for incoming single photons with various spectral
wavepackets. In this chapter we will consider the Lorentzian and Gaussian
single-photon spectral wavepackets3, Eqs. (3.12a)-(3.12b). All wave packets
are normalised such that

∫︀∞
−∞ d𝑘 |𝜉(𝑘)|2 = 1, and have a bandwidth (full width–

half maximum of the intensity spectrum) of 𝜎.

5.2.1 Scattering fidelities

If many emitters are to be implemented in a larger sequence of photonic de-
vices or gates, it may be of importance that scattered photons maintain their
spectral properties, i.e. the pulse shape and phase variation across the pulse.
We therefore seek to define measures to compare the scattered state with some

3As the scattering matrix formalism maps an input state at 𝑡 → −∞ to 𝑡 → ∞, the
spatial origin of the pulses in Eqs. (3.12a)-(3.12b) does not affect the dynamics, and we may
set 𝑍0 = 0 without loss of generality.
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desired output state, given e.g. as the ideal output in a specific photon gate.
We define three measures for this purpose, each with a different physical sig-
nificance. We use the quantum state fidelity [38] as a measure of the degree
to which the scattered state is quantum mechanically identical to the desired
state (neglecting overall phase differences),

𝐹full = |⟨𝜉des|𝜉⟩𝑡→∞|2, (5.13)

where |𝜉des⟩ is the desired state. To exemplify the fidelity calculations in the
single-excitation case, we assume that the desired state is identical to the input
state. Physically, this could correspond to a system where two identical photons
are created, after which one of them is reflected from scattering on an emitter
and then is to interfere with the second photon at 50-50 beam splitter. In this
Hong-Ou-Mandel-type interference experiment, the photons will exit the beam
splitter in the same arm, but only if the arrive at the beam splitter at the same
time and they have the same photon properties, i.e. that 𝐹full = 1. With this
example, we find

𝐹full =

⃒⃒⃒⃒ ∫︁ ∞

−∞
d𝑝 𝑟(𝑝)|𝜉(𝑝)|2

⃒⃒⃒⃒2
. (5.14)

For cases in which the phase of the scattered state is unimportant, but we only
have interest in how the intensity in the pulses are distributed spectrally, the
similarity between the scattered and the desired pulse may be characterized by

𝐹int =

(︂∫︁ ∞

−∞
d𝑝 |𝑟(𝑝)||𝜉(𝑝)|2

)︂2

. (5.15)

This fidelity measure would be relevant when comparing the energy distribu-
tions in the scattered and desired pulse, which could be achieved by introducing
spectrometers in a setup as sketched in Fig. 5.1(b), but disregarding the ar-
rival times at the detectors. It can be seen to be the limiting form of a spatial
definition of a fidelity measure, defined as

𝐹spat(𝛿𝑧) =

⃒⃒⃒⃒ ∫︁ ∞

−∞
d𝑧 𝜉*(𝑧)𝜉scat(𝑧 − 𝛿𝑧)

⃒⃒⃒⃒2
, (5.16)

where 𝜉scat(𝑧) is the spatial representation of the scattered wavepacket, which
after the scattering may be displaced by 𝛿𝑧 in the rotating frame due to a delay
caused by the absorption in the emitter. Using the defined Fourier transform
and Hölder’s inequality, we find 𝐹int is an upper bound for this spatial fidelity,

max
𝛿𝑧

𝐹spat(𝛿𝑧) = max
𝛿𝑧

⃒⃒⃒⃒ ∫︁ ∞

−∞
d𝑝 |𝜉(𝑝)|2𝑟(𝑝)ei𝛿𝑧 · 𝑝

⃒⃒⃒⃒2
≤ 𝐹int. (5.17)

Thus, if it for some systems is too complicated to evaluate 𝐹spat at each detun-
ing, 𝐹int provides a good upper bound for 𝐹spat.

Finally, when neither the phase nor the spectral distribution are important,
the scattered state may be projected onto a basis which merely counts the
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Figure 5.2: The three fidelity measures from Eqs. (5.14), (5.15), and (5.18) for
scattering of a single-photon pulse on a resonant emitter, using the Lorentzian
pulse spectrum from Eq. (3.12a).

number of photons in each waveguide mode, e.g. as in Fig. 5.1(b). The fidelity
in this case simply becomes the probability of detecting a photon in the desired
output mode (being the reflected field in the considered example),

𝐹prob = 𝑃𝑟. (5.18)

analogous to the definition in Eq. (4.17).
We evaluate 𝐹full, 𝐹int, and 𝐹prob for a resonant Lorentzian input, and show

the results in Fig. 5.2. For 𝐹full and 𝐹prob we find the exact expressions

𝐹full =
(Γ̃)2

(Γ̃ + 𝜎)2 + 4∆2
, (5.19)

𝐹prob =
(Γ̃ + 𝜎)Γ̃

(Γ̃ + 𝜎)2 + 4∆2
, (5.20)

where Γ̃ = Γ/𝑣𝑔. From Fig. 5.2 we see that 0 ≤ 𝐹full ≤ 𝐹int ≤ 𝐹prob ≤ 1. This
reflects the progressively less stringent criteria of these three measures. As the
desired state in each case is a fully reflected state as discussed in Chapter 3,
the fidelities are largest for small FWHMs.

5.3 Two-photon scattering

We now turn to the main focus of this chapter and extend our formalism to
describe the scattering of two-photon states, first generalizing to an arbitrary lo-
calized scatterer. In the single-photon case, energy conservation implied that an
approximately monochromatic single-photon wavepacket would scatter without
changing its frequency. In the two-photon case, energy conservation only de-
mands that the sum of the energies of the two incoming and two scattered
photons is conserved. According to Fan et al. [66], we can define a two-photon
scattering matrix, 𝑆(2), in a similar way to 𝑆(1), which contains terms describing
single-photon scattering, and also additional terms stemming from two-photon
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scattering processes. The additional terms involve four-wave mixing mecha-
nisms between the two incoming and two scattered photons [66, 121].

In the rotating frame, a general two-photon state in the momentum repre-
sentation is written as

|𝛽⟩ = 1√
2

∫︁ ∞

−∞
d𝑘
∫︁ ∞

−∞
d𝑘′ 𝛽11(𝑘, 𝑘′)𝑎†1(𝑘)𝑎†1(𝑘′)|𝜑⟩

+ 1√
2

∫︁ ∞

−∞
d𝑘
∫︁ ∞

−∞
d𝑘′ 𝛽22(𝑘, 𝑘′)𝑎†2(𝑘)𝑎†2(𝑘′)|𝜑⟩

+

∫︁ ∞

−∞
d𝑘
∫︁ ∞

−∞
d𝑘′ 𝛽12(𝑘, 𝑘′)𝑎†1(𝑘)𝑎†2(𝑘′)|𝜑⟩, (5.21)

normalized such that
∫︀∞
−∞ d𝑘

∫︀∞
−∞ d𝑘′ (|𝛽11(𝑘, 𝑘′)|2+|𝛽12(𝑘, 𝑘′)|2+|𝛽22(𝑘, 𝑘′)|2)

= 1. Introducing the notation |𝑘𝑘′⟩𝑖𝑖′ = {𝑖′𝑖⟨𝑘′𝑘|}† = 𝑎†𝑖 (𝑘)𝑎†𝑖′(𝑘
′)|𝜑⟩, the two-

photon scattering elements are [66]

𝑗𝑗′⟨𝑝𝑝′|𝑆(2)|𝑘𝑘′⟩𝑖𝑖′ = 𝛼𝑗𝑖,𝑘𝛼𝑗′𝑖′,𝑘′𝛿(𝑘 − 𝑝)𝛿(𝑘′ − 𝑝′)

+ 𝛼𝑗′𝑖,𝑘𝛼𝑗𝑖′,𝑘′𝛿(𝑘 − 𝑝′)𝛿(𝑘′ − 𝑝)

+ 1
4𝐵𝑝𝑝′𝑘𝑘′𝛿(𝑝+ 𝑝′ − 𝑘 − 𝑘′), (5.22)

for 𝑖, 𝑗 ∈ {1, 2}, and where

𝛼𝑗𝑖,𝑘 =

{︃
𝑡(𝑘) if 𝑖 = 𝑗

𝑟(𝑘) if 𝑖 ̸= 𝑗
(5.23)

are the single photon reflection and transmission matrix elements. Here 𝐵𝑝𝑝′𝑘𝑘′

describes interactions between the two incoming and the two scattered photons,
and is determined by the specific localized scatterer considered. As in the single-
photon case, to find the scattered state, we insert the identity operator, which
is now given by

ℐ =

∫︁ ∞

−∞
d𝑝
∫︁ ∞

−∞
d𝑝′
[︂

1

2
|𝑝′𝑝⟩1111⟨𝑝𝑝′| + |𝑝′𝑝⟩2112⟨𝑝𝑝′| +

1

2
|𝑝′𝑝⟩2222⟨𝑝𝑝′|

]︂
.

(5.24)

In this chapter we specifically considering two incoming, counter-propagating
photons. Thus 𝛽12 is the only non-zero expansion coefficient in Eq. (5.21),
which results in the post-scattering state

|𝛽⟩𝑡→∞ =

∫︁ ∞

−∞
d𝑝
∫︁ ∞

−∞
d𝑝′
{︂

1

2

[︂
(𝑡(𝑝)𝑟(𝑝′) + 𝑟(𝑝)𝑡(𝑝′))𝛽12(𝑝, 𝑝′) + 1

4𝑏12(𝑝, 𝑝′)

]︂
𝑎†1(𝑝)𝑎†1(𝑝′)

+

[︂
(𝑟(𝑝)𝑟(𝑝′) + 𝑡(𝑝)𝑡(𝑝′))𝛽12(𝑝, 𝑝′) +

1

4
𝑏12(𝑝, 𝑝′)

]︂
𝑎†1(𝑝)𝑎†2(𝑝′)

+
1

2

[︂
(𝑡(𝑝)𝑟(𝑝′) + 𝑟(𝑝)𝑡(𝑝′))𝛽12(𝑝, 𝑝′) +

1

4
𝑏12(𝑝, 𝑝′)

]︂
𝑎†2(𝑝)𝑎†2(𝑝′)

}︂
|𝜑⟩.

(5.25)
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The first term in each of the three square brackets in Eq. (5.25) represents
single photon scattering processes, containing the appropriate combinations of
transmission and reflection coefficients connecting the initial and final photon
configurations. I.e. to obtain the output state with photons in different modes,
either both must be reflected, 𝑟(𝑝)𝑟(𝑝′), or both transmitted, 𝑡(𝑝)𝑡(𝑝′), given
in the third line of Eq. (5.25). Multi-photon process are contained in the
pulse-dependent contribution 𝑏12(𝑝, 𝑝′), which describes processes induced by
the emitter non-linearity, and is given by

𝑏12(𝑝, 𝑝′) =

∫︁ ∞

−∞
d𝑘 𝛽12(𝑘, 𝑝+ 𝑝′ − 𝑘)𝐵𝑝𝑝′𝑘(𝑝+𝑝′−𝑘). (5.26)

We define 𝑃11 (𝑃22) as the probability that both photons are measured propa-
gating in waveguide mode 1 (mode 2), and 𝑃12 the probability that one photon
propagates in each waveguide mode. From Eq. (5.25) we find

𝑃11 =
1

2

∫︁ ∞

−∞
d𝑝
∫︁ ∞

−∞
d𝑝′
⃒⃒⃒⃒
(𝑡(𝑝)𝑟(𝑝′) + 𝑟(𝑝)𝑡(𝑝′))𝛽12(𝑝, 𝑝′) +

1

4
𝑏12(𝑝, 𝑝′)

⃒⃒⃒⃒2
,

(5.27)

𝑃12 =

∫︁ ∞

−∞
d𝑝
∫︁ ∞

−∞
d𝑝′
⃒⃒⃒⃒
(𝑡(𝑝)𝑡(𝑝′) + 𝑟(𝑝)𝑟(𝑝′))𝛽12(𝑝, 𝑝′) +

1

4
𝑏12(𝑝, 𝑝′)

⃒⃒⃒⃒2
, (5.28)

with 𝑃11 = 𝑃22 and 𝑃11 + 𝑃12 + 𝑃22 = 1.
As for the single photon case, we will be interested in comparing the scat-

tered two-photon state described by Eq. (5.25) to some desired state using the
fidelity measures we have introduced in Eqs. (5.14), (5.15), and (5.18). In
Chapter 4 we demonstrated numerically how a two-level emitter may act as a
non-linear beam splitter. Thus, it would of relevance to compare the scattered
to a scattered state obtained by replacing the emitter with a 50-50 beam split-
ter, which preserves the shape and phase of the input photons. In this case the
desired state would be

|𝛽des⟩ =
1√
2

∫︁ ∞

−∞
d𝑘
∫︁ ∞

−∞
d𝑘′ 𝛽12(𝑘, 𝑘′)

×
[︂

1√
2
𝑎†1(𝑘)𝑎†1(𝑘′) +

1√
2
𝑎†2(𝑘)𝑎†2(𝑘′)

]︂
|𝜑⟩. (5.29)

With this desired state our fidelity measures become

𝐹full =

⃒⃒⃒⃒∫︁ ∞

−∞
d𝑝

∫︁ ∞

−∞
d𝑝′𝛽*

12(𝑝, 𝑝′)𝛽′
12(𝑝, 𝑝′)

⃒⃒⃒⃒2
(5.30)

𝐹int =

[︂∫︁ ∞

−∞
d𝑝

∫︁ ∞

−∞
d𝑝′|𝛽12(𝑝, 𝑝′)| |𝛽′

12(𝑝, 𝑝′)|
]︂2

(5.31)

𝐹prob = 𝑃11 + 𝑃22 (5.32)

with 𝛽′
12(𝑝, 𝑝′) = (𝑡(𝑝)𝑟(𝑝′) + 𝑟(𝑝)𝑡(𝑝′))𝛽12(𝑝, 𝑝′) + 1

4𝑏12(𝑝, 𝑝′).
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5.3.1 Two-level emitter

The theory presented above is valid for any localized scatterer. We now specif-
ically consider the two-level-emitter–waveguide system described by Eq. (5.4),
and focus here only on pulses starting equidistantly from the emitter. Further-
more, we only treat pairs of input pulses with the same spectral linewidth, al-
though the formalism can be straightforwardly extended to more general cases.
For a two-level-emitter the single photon transmission and reflection matrix
elements 𝑡(𝑘) and 𝑟(𝑘) are given by Eq. (5.12), while the two-photon scattering
element is [66]

𝐵𝑝𝑝′𝑘𝑘′ = i

√
Γ

𝜋
𝑠(𝑝)𝑠(𝑝′)[𝑠(𝑘) + 𝑠(𝑘′)], (5.33)

where

𝑠(𝑘) =

√
Γ/𝑣𝑔

𝑘 − ∆ + iΓ/(2𝑣𝑔)
. (5.34)

We only consider uncorrelated photon input states, and as such 𝛽(𝑘, 𝑘′) is a
symmetrized product of two single-photon wavepackets 𝛽(𝑘, 𝑘′) = [𝜉(𝑘)𝜉′(𝑘′)+
𝜉′(𝑘)𝜉(𝑘′)], which is normalized as

∫︀∞
−∞ d𝑘

∫︀∞
−∞ d𝑘′ |𝛽(𝑘, 𝑘′)|2 = 1.

We begin our analysis of the scattered state by considering correlations in
photon detection events in the two waveguide mode subsets, as depicted in
Fig. 5.1(b). In this case no information regarding the spectrum and phase of
the scattered photons is obtained, and the appropriate fidelity measure is 𝐹prob,
which is equal to 1 minus the probability of detecting a coincidence in the two
detectors, i.e. for 𝐹prob = 1 no coincidence events are measured (a perfect
Hong-Ou-Mandel dip would be observed). In Fig. 5.3(a), 𝐹prob is calculated
for Gaussian and Lorentzian input pulses for zero detuning (∆ = 0), for which
the interaction between the pulses and emitter is greatest. We see that very
high fidelities are obtained, reaching values of ∼ 80% for the Lorentzian input
and ∼ 90% for the Gaussian. This is equivalent to the result in Fig. 4.7,
wheremaximal correlations are achieved in the regime where the emitter and
pulse linewidth are similar. Interestingly, although the Lorentzian pulse shape
is well-known to be the optimal pulse shape for maximally exciting the two-level
emitter with a single photon [103], it is not the optimal shape for maximizing
the directional correlations in the scattered state.

The high fidelities obtained demonstrate that the scattered states are highly
directionally entangled, in analogy with the effect of an optical beam-splitter.
However, in contrast to the classical beam splitter, the high correlation seen
here is induced solely by non-linearities. To demonstrate that the high direc-
tional correlations indeed stem from non-linearities, in Fig. 5.3(a) we also show
the case where the non-linear two-photon interaction term 𝑏12(𝑝, 𝑝′) has been
artificially set to 0 (dashed curves). For an uncorrelated two-photon input pulse
which is resonant with the emitter and which has a symmetric spectral wave-
function amplitude, |𝜉(−𝑘)|2 = |𝜉(𝑘)|2, as is the case here, Eq. (5.27) reduces
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Figure 5.3: Degree of directional entanglement 𝐹prob plotted for varying incom-
ing pulse widths, shown for both Lorentzian and Gaussian input pulses (solid
lines). The corresponding values obtained when neglecting two-photon scatter-
ing terms are also shown (dashed lines). (a) Pulse and emitter are resonant,
∆ = 0. (b) Pulse and emitter detuned by ∆ = Γ/(2𝑣𝑔).

to

𝑃11 = 𝑎(1 − 𝑎), with 𝑎 =

∫︁ ∞

−∞
d𝑝

(Γ̃/2)2

𝑝2 + (Γ̃/2)2
|𝜉(𝑝)|2, (5.35)

showing that 𝑃11 maximally attains the value 1/4, occurs when 𝑎 = 1/2. Thus,
𝐹prob = 2𝑃11 never exceeds 1/2, as confirmed in Fig. 5.3(a), which indicates
that no directional entanglement is present in the scattered state [38]. For
𝑏12(𝑝, 𝑝′) = 0, the emitter behaves as a linear component (e.g. a lossless optical
cavity) and cannot mediate interactions between the two photons. As such, the
scattering process is determined entirely by interference effects, which, unlike
an optical beam-splitter, cannot create entanglement in this system when the
pulses are resonant with the emitter.

A more direct analogy with a 50/50 beam splitter can be obtained by
detuning the input pulses by half the emitter linewidth, ∆ = Γ/(2𝑣𝑔). For
this value of the detuning, a monochromatic single-photon pulse will be re-
flected/transmitted with 50% probability (whereas at ∆ = 0 a monochromatic
single-photon pulse is fully reflected). Fig. 5.3(b) shows 𝐹prob for ∆ = Γ/(2𝑣𝑔),
and we confirm that 𝐹prob → 1 as 𝜎 → 0 as expected. The change in the fidelity
due to the non-linearities now becomes smaller than in the resonant case, as
the interaction between the pulse and the emitter is less efficient off resonance.
Interestingly, in this case, for small 𝜎, the non-linear interaction actually dete-
riorates the beam splitting effect, since now the directional entanglement can
be generated by interference effects only.

For a Lorentzian input analytic expressions for 𝑃11,Lor = 𝑃22,Lor may be
derived. We find

𝑃11,Lor =
3Γ̃𝜎(3𝜎+Γ̃)(𝜎+Γ̃) + 4∆2Γ̃(𝜎+2Γ̃)[︁
(3𝜎 + Γ̃)2 + 4∆2

]︁ [︁
(𝜎 + Γ̃)2 + 4∆2

]︁ , (5.36)

with Γ̃ = Γ/𝑣𝑔. The maximum value on resonance (∆ = 0) is obtained for
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𝜎/Γ̃ = 3−1/2 ≈ 0.57, at which point 𝑃11,Lor ≈ 0.40 (and 𝐹prob = 2𝑃11,Lor ≈
0.8), in agreement with Fig. 5.3(a). In comparison, with no non-linear terms,
𝑏12(𝑝, 𝑝′) = 0, the scattering probability becomes

𝑃 one
11,Lor =

𝜎Γ̃(𝜎 + Γ̃)2 + 4∆2Γ̃(𝜎 + 2Γ̃)[︁
(𝜎 + Γ̃)2 + 4∆2

]︁2 , (5.37)

which has an on-resonance maximum for 𝜎 = Γ̃, giving 𝐹prob = 2𝑃 one
𝑅𝑅,Lor =

1/2. Thus, for the Lorentzian pulse, non-linearities increase the scattering
probability by a factor of 𝑃11,Lor/𝑃

one
11,Lor = 1 + 2/(1 + 3𝜎/Γ̃) on resonance.

For 𝜎 → ∞, the interaction with the emitter becomes infinitely weak and no
enhancement is present. In the opposite limit of 𝜎 → 0, the enhancement factor
is 3.

5.3.2 Scattering fidelities

As discussed above, if the scatterer is to be implemented in a larger optical
circuit, in addition to considering in which direction the photons scatter, the
amplitude and phase of the different frequency components may also be im-
portant. In such a case, 𝐹prob is no longer a sufficient fidelity measure, since
it contains only directional information. As illustrated in Fig. 5.4, where we
plot the intensity spectrum of a scattered Gaussian wavepacket, the spectra
of the scattered pulses change significantly during the scattering process. For
input pulses with a narrow spectral linewidth compared to the emitter (1st
row), the pulse power at the emitter position remains low due to the corre-
sponding broad spatial profiles of the pulses. In that case, the non-linearity is
only weakly addressed, and the individual photons are predominately reflected.
A weak non-linearity-induced four-wave mixing process is signified by the ap-
pearance of diagonal features, as one photon achieves a larger energy, while the
energy of the other decreases. When the pulse and emitter linewidths are com-
parable (2nd row), the predicted strong directional correlation is induced [121],
with the pulse profile being almost preserved. For spectrally broad pulses (3rd
row), only the near-resonant part of the spectrum interacts with the emitter.
We see that the spectral components at the emitter frequency are absent from
the transmitted pulse since these have been reflected without significant two-
photon effects.

Interestingly, the fact that the pulse spectrum is almost perfectly preserved
when the pulse and emitter linewidths are comparable (2nd row) can be at-
tributed to non-linearities. This can be seen in the 4th row, where we again
show the initial and scattered spectra for the case 𝜎 = Γ̃, but where we have
artificially set the non-linear term equal to zero, 𝑏12 = 0. By comparison with
the 2nd row, we can clearly see that the non-linearities not only give rise to the
directional entanglement, but also suppress changes to the spectral shape.

To quantify both the spectral and phase deviations between the scattered
and the desired state, all three fidelities defined in Eqs. (5.30)-(5.32) are shown
in Fig. 5.5. By comparing 𝐹prob to 𝐹int, i.e. taking into account the difference
in the spectra of the scattered and desired pulse (but not the phase), we see
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Figure 5.4: Intensity spectrum of an incoming Gaussian two-photon state for
two counter-propagating photons (left column), and the resulting two-photon
intensity spectra for the scattered state (middle and right columns) for photons
scattering in different directions, 12, and where both photons propagate in the
same direction, 11 (identical to 22), with ∆ = 0. The spectral width of the
input pulses is varied: 𝜎 = 0.2 Γ̃ (1st row), 𝜎 = 1 Γ̃ (2nd row), and 𝜎 = 4 Γ̃ (3rd
row). The intensity spectra are also shown for scattering with the non-linearity
turned off, 𝑏12(𝑝, 𝑝′) = 0, using 𝜎 = 1 Γ̃ (4th row).
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Figure 5.5: Fidelities from Eqs. (5.30)-(5.32) plotted for varying width of the
input pulses, shown both for Gaussian and Lorentzian inputs on resonance with
the emitter.

that the fidelity becomes lower, and most significantly so for pulses with a small
spectral linewidth. This can be understood from Fig. 5.4, where we see that
the scattered wavepacket for the spectrally narrow input (1st row) is clearly
influenced by strong four-wave mixing effects. For pulses with larger widths,
these effects are weaker, since a larger fraction of frequency components are
detuned from the emitter transition and therefore interact only weakly.

Scattering-induced phase differences across the pulses may be examined by
comparison of 𝐹int and 𝐹full. As illustrated in Fig. 5.5, these fidelities are
almost equal for spectrally narrow pulses, whereas significant deviations are
seen for spectrally broad pulses. This may be explained by considering the
simpler single-photon scattering case. From Eq. (5.12), we see that a resonant,
monochromatic pulse will be reflected with a phase shift of 𝜋, whereas spectrally
broader pulses attain a phase shift from 𝜋/2 to 3𝜋/2 across the pulse spectrum.
Thus, spectrally broad pulses experience larger decreases in the fidelity due to
phase mismatching with our given desired state.

As the phase changes correspond to modifications to the spatial profile of
the pulse, we specifically consider how the spatial pulse profile (here analogous
to the temporal shape) is changed during the scattering process. To clearly
illustrate the effect of the non-linear scattering on the spatial profile, we eval-
uate the photon density at a specific point of the photon wavepacket in the
rotating frame, defined in the same way as in Eq. (4.9),

𝑁𝑧(𝑧,∞) =𝑡→∞ ⟨𝛽|𝑎†(𝑧)𝑎(𝑧)|𝛽⟩𝑡→∞, (5.38)

where 𝑎(𝑧) = (2𝜋)−1/2
∫︀∞
−∞ d𝑘 𝑎(𝑘) exp[i𝑘𝑧] is the annihilation operator for an

excitation at a position 𝑧 in a frame rotating with the pulses. For Gaussian
and Lorentzian input pulses, the photon density is plotted in Fig. 5.6. For
both pulse shapes, we see that a delay occurs due to interaction with the
emitter, and furthermore the non-linearity improves the similarity between the
scattered and incoming field. The Gaussian pulse is observed to preserve its
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Figure 5.6: The photon density in the moving frame, 𝑁𝑧(𝑧,∞), calculated for
the input pulse and for photons in the same (11 identical to 22) or in different
modes after the scattering (12) for resonant input pulses with 𝜎 = 1 Γ̃ and
∆ = 0. The largest values of 𝑧 correspond to the front part of the pulse,
and the solid (dashed) lines include (do not include) the non-linear two-photon
interaction, 𝑏12(𝑝, 𝑝′). (a) Gaussian wavepacket (b) Lorentzian wavepacket.

spatial symmetry, as compared to the Lorentzian input pulse. This is due to
the fact that the part of the photon pulses which is absorbed by the emitter
is re-emitted with an exponential shape that is spatially reversed compared to
the input pulse, which explains why 𝐹prob deviates significantly from 𝐹int for
large spectral linewidths in Fig. 5.5.

5.4 Summary

We have analytically demonstrated that the non-linearity of a two-level-emitter
can induce strong pulse-dependent directional correlations (entanglement) in
the scattered state of two initially counter propagating photons, as predicted
numerically in Chapter 4. These correlations are maximized for photons with
spectral widths comparable to that of the emitter, and also depend on the
specific spectral shape of the photons. Furthermore, we have investigated how
the spectra and phase of the photons are affected by the scattering process, and
introduced different fidelity measures to quantify the similarity of the scattered
and input photons. Interestingly, for photons with spectral widths comparable
to the emitter linewidth (where the directional correlations are maximized),
the non-linearity of the emitter acts to suppress changes in the spectra and
phase of the photons. As such, even when taking all properties of the scattered
state into account, a comparison to perfect directionally entangled photons with
preserved spectra and phases gives fidelities as high as∼ 80% for Gaussian pulse
shapes. A comparison of our fidelity measures indicates that when engineering
photonic gate structures and other functionalities using two-level-emitters, it
is important to also consider spectral and phase changes when determining the
efficiency and scalability of non-linear photonic devices.

Compared to the wavefunction approach in Chapter 4, the scattering matrix
approach is advantageous if one is only interested in the long-time scattered
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state. This may be calculated computationally faster than in the wavefunction
approach, whereas it necessitates a derivation of scatterer-specific one- and two-
photon scattering matrix elements. This becomes complex for multi-component
scatterers or spatially separated scatterers, as compared to the wavefunction
approach. Thus, the method to analysing two-photon scattering on a non-
linearity should be chosen depending on the specific problem and the desired
information about the scattering process.
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Chapter 6

Controlled phase gate

In this chapter we discuss how the results and understanding of non-linear two-
photon scattering from the previous chapters may be employed in proposals for
two-photon conditional gates and switches, where the presence of one photon
influences the scattering of the second photon. Conditional two-qubit gates
such as the CNOT gate or the controlled-phase (c-phase) gate are a funda-
mental building block in the universal set of gates operations required in the
standard picture of quantum computing [3].

Using only beam splitters, phase shifters, and photon detectors, T. Ralph
proposed in 2002 a scheme for a CNOT gate [122], where the non-linearities
were obtained by projective measurements on ancilla arms. Due to its prob-
abilistic nature, the succes probability of the gate is 1/9, where a success is
indicated by a specific measurement outcome in the ancilla arms. The gate
has been experimentally implemented using free-space optics [16], and has also
recently been implemented in an all-optical semiconductor platform using di-
rectional couplers and quantum dots in micropillars as single-photon sources
[123]. A disadvantage with the gate is its probabilistic nature, as the low
success rate have major influence is several subsequent gates are to be em-
ployed. One method to enhance the performance of these probabilistic gate is
by quantum teleportation [15], which however relies on using multiple ancilla
waveguides and photon detectors. As this quickly results in large structures for
implementation, current research focusses on implementation the conditional
gate operations in a deterministic setup instead.

Several recent experimental results demonstrate the possibility of creating
deterministic controlled phase gates and photonic switches between the polar-
isation state of a single photon and the spin state of an emitter. It has both
been demonstrated experimentally for Rubidium atoms coupled strongly to op-
tical cavities [40, 124, 39] and recently also for a quantum dot inside a photonic
crystal cavity [42]. By applying single-qubit rotations to the atom mediated
by 𝜋/2-pulses from external lasers, the atom–cavity systems may work as con-
ditional gates for qubit state encoded in the polarisation of two temporally
separated photons. This was originally proposed by Duan and Kimble [125],
and has been applied to a variety of systems, including also proposals with NV
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centers [126].
Deterministic switching operations between two photons may also be re-

alized using other encodings than in the polarisation degree of freedom. For
an emitter strongly coupled to an optical cavity, the atom dresses the energy
levels of the cavity, given rise to energy levels of the dressed cavity which are
not equally spaced [24]. By using different frequencies of the control and the
signal photons, the frequencies may be chosen such that the signal only may
couple to the cavity if the control photon is present [44, 127, 128].

A different proposal by R. Johne et al. [129] describes a scheme for a
controlled-phase gate for two indistinguishable, temporally separated photons.
Here the control photon is captured as an excitation of a QD inside an optical
cavity by electrically detuning the emitter out of resonance with the cavity.
The emitter is detuned such that the energy for exciting the bi-exciton state of
the QD exactly matches the energy of the incoming signal photon. Thus, the
signal photon can only couple to the emitter if the control photon was present
to excite the QD - giving the conditional operation. An advantage of using this
scheme is that the non-linearity-induced distortions in the photon spectra as
discussed in the previous chapters do not occur [130], as the photons do not
scatter at the same time. We will look further into this type of gate in the next
chapter.

In this chapter we propose an experimental setup for a deterministic control-
led-phase gate for two uncorrelated, indistinguishable photons in the dual-rail
representation, which employs two two-level emitters as non-linear components.
The gate works best for input pulses with spectral linewidths comparable to the
linewidth of the emitter, which is also where the largest non-linear interaction is
expected, cf. the previous chapters. In this regime, the presence of one photon
prevent the second photon from scattering on the emitter - in analogy with the
effect discussed above for the strongly coupled emitter–cavity systems.

In contrast to the deterministic gates discussed above, our proposal does not
rely on any external modulations such as lasers to prepare or alter the emitter
state, and it does not need any dynamical trapping processes, which may be a
large benefit when discussing implementations. We demonstrate a gate fidelity
of almost 80 %, which primarily limited by the non-linearity-induced spectral
changes.

In Section 6.1 the requirements for a controlled-phase gate is discussed,
and we introduce the individual gate components. In Section 6.2 we introduce
our gate proposal and evaluate the performance using the scattering matrix
formalism introduced in Chapter 5. The results presented in this chapter are
from an ongoing research collaboration with Mikkel Heuck and Prof. Dirk
Englund from the Quantum Photonics Group at Massachusetts Institute of
Technology.

6.1 The controlled phase gate

In a controlled phase (c-phase) gate, the state of a control qubit determines
whether a signal qubit attains a phase shift of 𝜋 or not [38]. Denoting the qubit
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states by |′0′⟩ and |′1′⟩, an ideal c-phase would act on the combined qubit state
as

exp[iθc]

exp[iθs]

exp[iθc+iθs+iπ]

'0c' '0s'

'0s''1c'

'0c' '1s'

'1c' '1s'

'0c' '0s'

'0s''1c'

'0c' '1s'

'1c' '1s'

with c (s) referring to the control (signal). Here it is implied that non-linear
interaction occurs when both photons are in the ’1’ state, giving the additional
phase shift of 𝜋. In a specific gate structure, each individual photon may also
attain a phase of 𝜃𝑠 or 𝜃𝑐 when entering the gate in the ’1’ state compared to
entering the gate in the ’0’ state. This is, however, without accounting for the
presence of the other photon. The core of the c-phase gate is, however, that
when both qubits are in the ’1’ state, an additional phase shift of 𝜋 is gained
on the total state, in addition to 𝜃𝑠 and 𝜃𝑐, requiring non-linear interaction
between the qubits.

In our proposal, each flying qubit is encoded in a dual-rail representation
of propagating photon pulse, i.e. a photon may be in one of two waveguides,
characterized by the ’0’ and ’1’ states respectively. For the c-phase gate to
work optimally for pulsed input for our requirements, the scattered state at
the output should fulfil:

∙ The control and signal photon must be distinguishable at the output
arms. Thus, all scattering processes which have a probability of scattering
both photons into either the control or signal arms, introduce errors in
the gate operation, and these processes must be minimized.

∙ For the gate to be implemented in larger photonic circuits, the gate cannot
alter the spectrum and temporal shape of the pulse, as this could decrease
the performance of succeeding gates. Thus we require that the spectra
of the control and signal photon pulses are changed as little as possible
when passing the gate, i.e. by maximizing the fidelity between the input
and output states, with the fidelity measures defined in Chapter 5.

∙ The gate-induced phase must be the same across the full spectral width
of the pulse (delays taken into account). If it is not, the photon pulses
might not interfere/interact perfectly with other photons, decreasing the
performance in following gates.

6.1.1 Gate components

Three types of optical components are used to realize the c-phase gate: direc-
tional couplers, phase shifters and end-coupled emitters.

Directional coupler : The setup employs a directional coupler as shown in
Fig. 6.1(a) which may be realized in various waveguide technologies, such as
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Figure 6.1: (a) Directional coupler, relating the state in the input arms, 1 and 2,
to the output arms, 3 and 4, through the symmetrical beam splitter relation, cf.
Eq. (6.1). (b) The phase attained by a single-photon wavepacket scattering on a
lossless, end-coupled resonant emitter, 𝜃(𝑘), (black solid line) and a linearisation of
𝜃(𝑘), see Eq. (6.3) (green dashed line). By comparison, the spectrum of a resonant
Gaussian wavepacket with spectral FWHM of 𝜎 = Γ̃/2 is shown (red dotted line)
(where the intensity has been scaled to match the plotting window).

silica-on-silicon ridge waveguides [131], photonic ridge waveguide circuits in
GaAs [132], and in photonic crystals waveguides [133]. The length of the cou-
pling region is chosen such that the creation operators for the input and output
states are related by the symmetrical beam splitter relation [132][︃

𝑎†3

𝑎†4

]︃
=

1√
2

[︃
1 i

i 1

]︃[︃
𝑎†1

𝑎†2

]︃
, (6.1)

Phase shifter : Phase shifters are exploited to alter the phase of the pulses by
a momentum-dependent phase, 𝜙 = 𝑘𝛿𝐿, with 𝛿𝐿 being the additional optical
path length, either induced by a change in the refractive index of the material
or by a longer arm length. Spatially, the linear phase change is equivalent to a
delay of the pulse (obtained by Fourier-transforming the output pulse).

End-coupled emitter : As illustrated in the previous chapters, the non-
linearity of a two-level emitter inside a waveguide induces very strong cor-
relations in a two-photon state. We also observed that for pulses with finite
temporal width, it is unavoidable that the incoming photon pulses scatter in
different directions, giving higher demands for the gate structure. One way to
circumvent this is by making the system one-sided, i.e. by placing the emitter
close to a terminated waveguide, necessitating that the full pulse is reflected
back. Furthermore, the interaction between the pulse and the emitter is in-
creased, as the decay rate of the emitter is halved (cannot couple to waveguide
modes propagating in both directions) [64], making it possible for a perfect
(Lorentzian) single-photon pulse to excite the emitter fully. A trade-off using
this one-sided setup is, however, that the input and output of the gates are in
the same arms.

The frequency-dependent transmission coefficient of an emitter coupled to
a chiral (with propagating restricted to a single direction) waveguide is [88, 63],

𝑡(𝑘) =
𝑘 − ∆ − i(Γ − 𝛾)/(2𝑣𝑔)

𝑘 − ∆ + i(Γ + 𝛾)/(2𝑣𝑔)
, (6.2)
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with 𝑘 being the momentum in a frame rotating with the carrier frequency
of the pulse. The momentum detuning of the emitter from the pulse is ∆,
and Γ denotes the emitter decay rate (which is halved compared to the decay
rate defined in Chapter 3). Emitter losses are introduced by the substitution
∆ → ∆ − i𝛾/(2𝑣𝑔) in the single-photon scattering elements, with 𝛾 being the
loss rate of the emitter into other modes than the waveguide modes [63].

Some insight may be gained about the scattering-induced phase by con-
sidering the loss-less case. For 𝛾 = 0, |𝑡(𝑘)| = 1, and thus 𝑡(𝑘) may also be
described by a complex phase, 𝑡(𝑘) = ei𝜃(𝑘), such that an incoming single-
photon pulse with a spectral wavepacket 𝜉(𝑘) results in a scattered wavepacket
of 𝜉scat(𝑘) = ei𝜃(𝑘)𝜉(𝑘). This phase is shown in Fig. 6.1 in the case 𝛾 = 0.
If the incoming single-photon pulse has a carrier frequency corresponding to
the emitter transition, ∆ = 0, and if the pulse has a sufficiently narrow spec-
trum compared to the linewidth of the emitter, 𝜃(𝑘) may be approximated by
a Taylor expansion,

𝑡(𝑘) = exp
[︁
i𝜋 + i4𝑘/Γ̃ +𝑂(𝑘3)

]︁
, (6.3)

with 𝑂(𝑘3) containing terms of third order or higher in 𝑘. Pulses with a narrow
spectral width compared to the emitter linewidth will, apart from a constant
phase shift of 𝜋, gain a phase of 4𝑘/Γ̃, which in time is exactly equivalent to
a temporal delay of ∆𝑡 = 4/Γ. This delay is caused by the interactions with
the emitter due to absorption and re-emission. For spectrally broader pulses,
higher order terms in 𝑘 do have an influence and introduces different chirping
effects, as seen from Eq. (6.3) and the discussion in Chapter 3.

6.2 Gate setup

Our proposal for a c-phase gate is illustrated in Fig. 6.2, which works for two
uncorrelated single-photon pulses with the same spectral wavefuntion, where
the control and single photon are represented in a dual-rail basis. The ’1’ arms
(inner arms) are connected by a 50-50 directional coupler, and at each output
port of the coupler is an end-coupled two-level emitter. The coupler creates a
superposition state of two photon being either in the upper or lower arm on the
right side of the beam splitter. Thus, when the photon state scatters on the
emitters, it only contains component with two photons, and thus the full state
is affected by the non-linearity. In this way, the non-linearity may be exploited
the most. The outer arms (’0’ arms) contain a phase shifter to compensate for
delays in the ’1’ arms, as predicted by Eq. (6.3). Note, that due to the choice
of directional coupler, the output port of the ’1’ control and signal states are
flipped, as indicated in Fig. 6.2. A similar setup is discussed in [96, 134], but
here with the purpose of using it as photon sorter, quantum non-demolition
detector, and Bell-state analyzer.

As the gate proposal is one-sided, meaning that the input and output arms
of the gate are the same, the whole setup may be "unfolded" to a chiral scheme
(where the waveguides only allow propagation in one direction), if the overall
phase due to the reflection is omitted. An important requirement is, however,
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Figure 6.2: (Left) Proposal for controlled phase gate in the dual rail representation
using a directional coupler, phase shifters, and two identical emitters placed close
to two terminated waveguides, with identical coupling strengths to the waveguide
modes. The hatched brown sections describe perfectly reflecting mirrors. (Right)
The c-phase setup may be "unfolded" to a chiral scheme, if the overall phase induced
by the reflection is omitted. Note that the ’1’ states in this scheme is interchanged
at the output ports.

that the emitters are identical and couples to the waveguide modes with the
same coupling strength. If this is not the case, the scattered photons will not
interfere perfectly on the way back through the coupler, which will result in a
decrease of the gate efficiency.

For the gate to work properly, the input states |”0𝑐”⟩|”0𝑠”⟩, |”1𝑐”⟩|”0𝑠”⟩,
and |”0𝑐”⟩|”1𝑠”⟩, which induce only linear scattering effects, and the input state
|”1𝑐”⟩|”1𝑠”⟩, which gives non-linear interaction, must all provide the desired
output states in the c-phase gate. This may only be achieved perfectly if
input and output photons of the gate have the same intensity spectrum and
no undesired phase changes across the pulse, induced by scattering on the
emitters. These scattering-induced changes are investigated below, treating
the linear and non-linear case separately. The scattered states are calculated
using the scattering matrix formalism introduced in Chapter 5.

6.2.1 Linear gate interactions

Apart from the |”1𝑐”⟩|”1𝑠”⟩ input, the c-phase gate in Fig. 6.2 behaves linearly,
as two photons never are present simultaneously at the emitters.

The input state |”0𝑐”⟩|”0𝑠”⟩ simply attains a phase shift of 𝜙 = 𝑘𝛿𝐿 for
each photons due to the phase shifters.

The input states with a single photon in one of the ’1’ arms, |”0𝑐”⟩|”1𝑠”⟩
and |”1𝑐”⟩|”0𝑠”⟩, scatters as∫︁ ∞

−∞
d𝑘 𝜉(𝑘)𝑎†𝑐/𝑠,1(𝑘)|𝜑⟩ →

∫︁ ∞

−∞
d𝑘 [−i𝑡(𝑝)] 𝜉(𝑝)𝑎†𝑐/𝑠,1(𝑝)|𝜑⟩ (6.4)

whereas the other photon attains a phase shift of 𝜙. The factor of −i ap-
pears from coupling forth and back through the directional coupler, as seen in
Eq. (6.1).

In the scattering with the emitter, it is important that the spectrum is
unchanged and that the phase across the pulse is constant (up to a linear
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Figure 6.3: (a) Fidelity between an incoming Gaussian pulse with spectral width 𝜎
and the state scattered on a resonant two-level emitter close to a terminated waveg-
uide. A temporal delay, 𝛿𝑡, is allowed in the fidelity calculation. (b) The maximal 𝐹
at a given 𝜎 and the corresponding value of 𝑓 .

phase, as we may account for delays by the phase shifters in the ’0’ arms). The
similarity between the spectral wavepacket of the input and scattered photon is
measured by the earlier introduced fidelity between the spectral wavefunction of
the gate input, 𝜉(𝑘), and the output wavefunction with the spectral wavepacket
𝑡(𝑘)𝜉(𝑘). According to the discussion in Section 5.2.1, the relevant fidelity
measure to use would be 𝐹spat(𝛿𝑧), as it takes spectral deviations between the
pulses into account, but allows a spatial/temporal detuning of the pulses in the
output arms (which we may account for using the phase shifters). We use a
shorthand notation for 𝐹spat(𝛿𝑧) in this chapter,

𝐹 (𝛿𝑧) =

⃒⃒⃒⃒ ∫︁ ∞

−∞
d𝑝 𝑡(𝑝)|𝜉(𝑝)|2ei𝛿𝑧 · 𝑝

⃒⃒⃒⃒2
(6.5)

where the spatial delay is analogous to a temporal delay of 𝛿𝑡 = 𝛿𝑧/𝑣𝑔. Assum-
ing Gaussian wavepackets with a spectral bandwidth (FWHM of the intensity
spectrum) of 𝜎 as given in Eq. (3.12b), the resulting fidelity for a photon res-
onant with the emitter, ∆ = 0, is illustrated in Fig. 6.3(a) by plotting 𝐹 as a
function of 𝜎 and 𝛿𝑡. The fidelity is maximized in the continuous wave limit,
𝜎 → 0, for all delays due to the fact that two plane waves overlap perfectly.
In the regime 𝜎 ∼ Γ̃, where non-linear interactions are expected to be the
strongest, a high value of 𝐹 may still be achieved. As expected from Eq. (6.3),
the high fidelities are obtained at delays corresponding to 𝛿𝑡 ∼ 4/Γ when 𝜎 . Γ̃.

Apart from having a large 𝐹 , it is important that the phase across the pulse
(apart from a linear phase change - corresponding to a delay) is not changes by
the scattering event. As a measure to compare phases between the incoming
and scattered photons, we introduce

𝑓 =
1

4

∫︁ ∞

−∞
d𝑝

⃒⃒⃒⃒
𝜉(𝑝) + 𝑡(𝑝)𝜉(𝑝)ei𝑣𝑔𝛿𝑡 · 𝑝

⃒⃒⃒⃒2
. (6.6)

which is evaluated at the value of 𝛿𝑡 which maximizes 𝐹 . With this measure,
0 ≤ 𝑓 ≤ 1, with 𝑓 = 1 corresponding to two pulses being in phase at all 𝑘, and
𝑓 = 0 to pulses being out of phase by exactly 𝜋 at all values of 𝑘. The maximal
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value of 𝐹 at a specific 𝜎 is plotted together with 𝑓 in Fig. 6.3(b) as a function
of 𝜎. For small values of 𝜎, 𝑓 is close to zero, as expected from Eq. (6.3), as
the scattered pulse attains a constant phase of 𝜋 upon scattering.

Summarizing the linear scattering results, a single photon in one of the ’1’-
arms attains a phase shift of 𝜋 and a temporal delay. The linear operations
work optimally when the spectral width of the incoming pulses is much smaller
than the emitter linewidth. In the regime, where the non-linearities may be
addressed the best 𝜎 ∼ Γ̃, the pulse spectrum is still preserved with more than
95% fidelity as seen in Fig. 6.3, if we choose the optimal delays for the emitter-
induced temporal delay. This may be done by tuning the induced delay in the
phase shifters to match the emitter-induced delay.

6.2.2 Non-linear gate interactions

The non-linear interaction occurs for the input state |”1𝑐”⟩|”1𝑠”⟩. The non-
linear scattering is treated in the same way as in Chapter 5, but here we are
considering a chiral waveguide [66], and we take the directional coupler into
account when calculating the scattered state of the entire gate. The gate input
for two uncorrelated, identical photons and the corresponding gate output are

|𝜓in⟩ =

∫︁ ∞

−∞
d𝑘
∫︁ ∞

−∞
d𝑘′ 𝜉(𝑘)𝜉(𝑘′)𝑎†𝑐1(𝑘)𝑎†𝑠1(𝑘′)|𝜑⟩

→ |𝜓scat⟩ = −
∫︁ ∞

−∞
d𝑝
∫︁ ∞

−∞
d𝑝′ 𝛽scat(𝑝, 𝑝

′)𝑎†𝑐1(𝑝)𝑎†𝑠1(𝑝′)|𝜑⟩ (6.7)

with

𝛽scat(𝑝, 𝑝
′) = 𝛽linearscat (𝑝, 𝑝′) +

1

2
𝑏(𝑝, 𝑝′) (6.8)

with the linear contribution 𝛽linearscat (𝑝, 𝑝′) = 𝑡(𝑝)𝑡(𝑝′)𝜉(𝑝)𝜉(𝑝′) and a non-linear
scattering contribution with

𝑏(𝑝, 𝑝) =

∫︁ ∞

−∞
d𝑘 𝜉(𝑝)𝜉(𝑝′)𝐵𝑝𝑝′𝑘(𝑝+𝑝′−𝑘) (6.9)

where 𝐵𝑝𝑝′𝑘(𝑝+𝑝′−𝑘) is defined in Eq. (5.33).
For the c-phase gate to work properly, the scattered state of Eq. (6.7) must

differ by an overall phase of 𝜋 compared to the linear case, where the two
photons do not interact, i.e. to a scattered state as in Eq. (6.7) but with
𝛽linearscat (𝑝, 𝑝′) instead of 𝛽scat(𝑝, 𝑝′). As before, the pulse spectrum must also
remain unchanged. To quantify the scattering-induced effects, we employ two-
photon versions of the fidelities from Eqs. (6.5) and (6.6),

𝐹 =

⃒⃒⃒⃒ ∫︁ ∞

−∞
d𝑝
∫︁ ∞

−∞
d𝑝′

[︀
𝛽linearscat (𝑝, 𝑝′)

]︀*
𝛽scat(𝑝, 𝑝

′)ei𝑣𝑔𝛿𝑡(𝑝+𝑝′)

⃒⃒⃒⃒2
(6.10)

taking into account that each photon may be delayed by an identical temporal
delay of 𝛿𝑡, and

𝑓 =
1

4

∫︁ ∞

−∞
d𝑝
∫︁ ∞

−∞
d𝑝′
⃒⃒⃒⃒
𝛽scat(𝑝, 𝑝

′) + 𝛽linearscat (𝑝, 𝑝′)ei𝑣𝑔(𝑝+𝑝′)𝛿𝑡

⃒⃒⃒⃒2
(6.11)
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Figure 6.4: (a) The fidelity 𝐹 for the scattered two-photon state for a gate input of
|”1𝑐”⟩|”1𝑠”⟩ compared to a similar setup with the non-linearities artificially turned
off, assuming 𝛾 = 0. The input pulses are resonant with the emitter and have a
Gaussian spectrum with a spectral width 𝜎. The temporal delays describes the delay
of 𝛽linear

scat (𝑝, 𝑝′) compared to 𝛽scat(𝑝, 𝑝
′). (b) The maximal 𝐹 at a given 𝜎 and the

corresponding value of 𝑓 . The fidelities are evaluated for different loss rate in the
emitter, 𝛾 = 0 (solid line), 𝛾 = 0.01Γ (solid line), and 𝛾 = 0.10Γ (dotted line).

with 𝑓 is evaluated at the delay which maximizes 𝐹 , in similarity with the
linear cases.

The calculated fidelities are shown in Fig. 6.4. The largest values of 𝐹 are
obtained at 𝜎 ∼ 1.2Γ̃, consistent with the results in Chapter 5. Most impor-
tantly we see that for these values of 𝜎, 𝑓 is very close to zero, demonstrating
that the gate actually works as a controlled phase gate, as the non-linearity
induces a phase difference of 𝜋. In the linear case, both photons would attain a
phase shift of 𝜋 according to Eq. (6.3), giving a total of 2𝜋 for the two-photon
state. In the non-linear case, one photon "blocks" the coupling to the emitter
for the second photon, and thus only a single phase shift of 𝜋 is attained.

In Fig. 6.4(a), the maximal fidelities all appear for negative values of 𝛿𝑡.
This implies that when the non-linearity is "off", the pulse will actually prop-
agate slower through the gate than when the non-linearity is "on". This is due
to the fact that both photons may interact with the emitter in the linear case
and attain large delays, than compared to when the non-linearity is "on".

The limiting factor in the gate functionality is two fundamental properties in
the scattering. First, the phase gained upon scattering from the coefficient 𝑡(𝑘)
introduce phase differences across the pulse. When the pulses are sufficiently
narrow, the attained phase is linear, which we may correct for by introducing
phase shifters. However for spectrally broader pulser, the scattering induces
other variations in the phase of the scattered pulse, which decreases the fidelity.
From this point of view, the input pulse should be as narrow as possible, but
this brings us to the second point: The non-linearity is only efficient when the
bandwidth of the pulses is similar to the emitter linewidth. Thus we cannot
use spectrally narrow pulses, and must accept the error from the scattering-
induced changes in phase. However, the non-linearity impose changes on the
spectrum due to four-wave mixing as demonstrated in Chapter 4, which also
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results in lower gate fidelities.
In the optimal case, the fidelity becomes almost 80 %, as shown Fig. 6.1(b),

when accounting for the non-linearity-induced change in the pulse shape and
phase. When taking emitter losses into account, 𝐹 decreases even further, and
for loss rates of 𝛾 = 0.1Γ, 𝐹 is reduced to 40%. Thus it is very important
to effectively couple the emitter to the waveguide. For a semiconductor quan-
tum dot inside a photonic crystal waveguide, coupling efficiencies between the
emitter and the waveguide of up to 98% has been achieved [45].

6.3 Summary

We have proposed a setup for a deterministic controlled phase gate for two
identical, uncorrelated single photon pulses, which exploits the intrinsic non-
linearity of two-level emitters. Our calculations demonstrate fidelities for the
gate operations just below 80%. This is limited by linear scattering-induced
changes in the phase of the pulse, and also by non-linearity-induced changes
in the pulse spectrum and phase, as discussed in Chapter 4. The interaction
with the emitters also causes a delay in the ’1’-arms, but this is accounted for
by phase shifters in the ’0’ arms.

The setup depends strongly on having two resonant emitters, which cou-
ples with identical strengths to the waveguides. If the emitters are not exactly
identical, the gate performance would decrease, as it relies on perfect interfer-
ence between the states scattered on the two emitters. If only a single emitter
were used in the present setup, only half of the pulse would be affected by the
non-linearity, decreasing the performance of the gate, especially deteriorating
the interference at the directional coupler after the scattering. In standard
quantum dot samples, quantum dots are grown at random positions and with
different resonant frequencies [61], and thus it may be difficult to fulfil both
criteria at the same time. Site-controlled growing of the quantum dots has been
demonstrated [135, 136], although it still appears a challenge to precisely con-
trol the transition frequencies of the individual dots. Another possibility would
be to trap identical atoms close to the facets of the inner waveguides [62, 39],
as they by nature would be resonant. This may, however, not be suitable for
on-chip integration in larger optical circuits.

As the input and output arms are the same in Fig. 6.2, an implementation
of the gate necessitates the use of optical components such as circulators [137]
to direct the output into new waveguides. A way to circumvent this is to exploit
"uni-directional" non-linearities, i.e. non-linearities which only couple to a sub-
set of modes propagating in one direction of the waveguide. With these, the
chiral scheme in Fig. 6.2 could be directly implemented. An example of such is
chiral spin-photon interfaces, which has recently has been demonstrated experi-
mentally for a quantum dot inside a photonic crystal waveguide using polarized
light [138]. Other candidates are whispering-gallery-type resonators, such as
ring resonators, microtoroids, microdisks or microspheres [139] created in a
material with a strong non-linearity (typically a 𝜒(2) non-linearity). As we will
discuss in the following chapter, recent developments allow fabrication of very
high 𝑄-resonator cavities. If the intrinsic non-linearity dominates the losses,
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a splitting of the energy spectrum will appear, in similarity with strong cou-
pling in an emitter-cavity system. If the coupling between counter-propagating
modes in the ring is zero, the transmission of a strongly non-linear resonator
may be described by Eq. (6.2), making ring resonators viable candidates for
the proposed gate scheme. Non-linear optical cavities do, however, also suffer
from the demonstrated non-linear processes which alter the spectrum of the
scattered photons [119].

The proposed fidelity of the deterministic gate of almost 80 % is relatively
good, compared to the fact that no external manipulations are required during
the gate operation, in contrast to many other proposals. The fidelity is, how-
ever, difficult to improve further using only passive components, as it is limit
by intrinsic properties of the photon scattering.
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Chapter 7

Controlled phase gate -

Using dynamical capture

The performance of the controlled phase gate in the previous chapter was de-
teriorated by side-effects when two photons of the same frequency scatter on a
non-linearity at the same time. In this chapter we investigate possibilities of cir-
cumventing these side-effects by employing the recently proposed "interaction-
free" gate schemes [140, 141], which exploit the quantum Zeno blockade (QZB)
[142]. The QZB occurs when frequent or continuous measurements are per-
formed on a quantum system, which will inhibit the unitary evolution of the
system. In optical systems, the "measurements" may be facilitated by a strong
optical non-linear interaction with another photon. We will specifically consider
an optical cavity with a large quadratic (𝜒(2)) material non-linearity, giving rise
to sum-frequency generation [143]. As will be demonstrated in the following,
the presence of one (control) photon in the cavity will prohibit the coupling
of another (signal) photon into the cavity, as the control photon continuously
"probes" the cavity. In that sense, the QZB is analogous to the photon blockade
in a strongly coupled emitter–cavity system [24].

Recently Sun et al. [141] made a theoretical proposal of a c-phase gate,
which employs a lithium niobate (LiNbO3) ring resonator, as LiNbO3 has a
high intrinsic (𝜒(2)) non-linearity. In the scheme, a temporally broad (con-
trol) photon probes the cavity during the time where second (signal) photon
scatters. When the control is "on", it prohibits the signal for entering the
cavity, giving the conditional gate operation and predicts fidelities of up to
98 % (although they do not take into account that the temporal shape of the
control is reversed). The scheme proposed by Sun et al. does however not
work for identical photons as the gate in Chapter 6, as their proposal relies
on using photons of different frequencies. This enables the signal and control
photon to be distinguished at the output, which would not be possible when
using two identical photons, and the gate does not seem suitable for large-scale
integration in general quantum circuits.

A method to overcome this when using two identical photons is proposed
in a scheme for a c-phase gate by Johne et al. [129], in which the control
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Figure 7.1: Phenomenological gate structure of the dynamical capture c-phase gate,
with each qubit being encoded in a one-way dual-rail representation, and where the
control (red) and signal (green) photons are distinguished by a temporal separation.
The control pulse may be dynamically captured in the yet unspecified object indicated
by the blue box. (a) Both photons in the ’0’ state goes through the gate unaffected.
(b) Ideally the signal photon has the same phase before and after the scattering, as
the control is in arm ’0’. (c) If both photons are in the ’1’ arm, the presence of a
captured control photon impose a phase shift of 𝜋 on the signal. Note than if the
control photon is in ’1’, the temporal ordering of the pulses is reversed at the output
[129].

photon and signal photon are distinguished by a temporal separation in the
waveguide. The scheme employs a method where the firstly arriving (control)
photon is captured and stored in a state with another frequency, as illustrated
phenomenologically in Fig. 7.1. When considering two photons of the same
frequency, this shifting of frequency is necessary; otherwise a capture of the
control photon would also mean that the interaction channel for the signal
would be shut off, by which the non-linear interaction cannot occur. In Ref.
[129] the scattering object is facilitated by a QD inside an optical cavity. The
QD is detuned exactly to the point where the frequency of the succeeding signal
photon matches the bi-exciton transition in the QD— which it may only couple
to, if the control is present. After the scattering of the signal photon, the control
photon will be released again, and thus no frequency-mixing processes like
the four-wave mixing process we allowed during the gate operation, predicting
fidelities of close to 90 % for an ideal loss-less QD [129].

In this chapter we discuss if it would be feasible to combine the idea of
Sun et al. [141] and Johne et al. [129]. One major benefit of using a (𝜒(2))
compared to a QD in the gating scheme is that it is not restricted to low-
temperature operations due to phonon coupling. Furthermore the rings have an
inherent uni-directional scattering into only a single direction of the waveguide,
and thus no combination of end-coupled QDs and circulators are necessary, as
in the proposal in Chapter 6. However, the dynamical capture scheme sets
requirements of the possibility of tuning the frequency of the resonator modes
[144, 145, 146]. We first discuss the possibility of achieving sufficiently high non-
linear coefficients in Section 7.1. Secondly we focus on the full gate operation,
which is divided into several stages: capture of control photon, scattering of
signal photon, and release of control photon. In Section 7.2 we estimate the
efficiency of the individual steps. We demonstrate how a theoretically larger
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fidelity may be obtained using this gate scheme as compared to the passive
scheme in Chapter 6, but is also sets high fabricational requirements on the
ring properties and timing possibilities during the gate operation.

The research presented in this chapter is from an ongoing research collabora-
tion with Mikkel Heuck and Prof. Dirk Englund from the Quantum Photonics
Group at Massachusetts Institute of Technology.

7.1 Requirements for ring-resonator non-linearity

In this section we estimate the requirements on the magnitude of the non-
linearity compared to the losses in order for the QZB scheme to work. To do
so, we specifically consider three energies in the ring resonator, 𝜔1, 𝜔2, and 𝜔3 =
𝜔1 + 𝜔2, and we assume the that a single non-degenerate mode exists at each
frequency. In ring resonators, sum-frequency generation may populate the sum-
state, but an additional condition apart from conservation of energy has to be
fulfilled, namely quasi-phase matching (QPM) condition. For disk resonators,
QPM is usually obtained by a periodical poling of the disk [147, 148, 141]. In
reality it is possible to obtain a structure with a set of frequencies as stated
above, but it requires numerical (and sometimes analytical, when possible)
investigations for the specific structure to find possible sets of {𝜔1, 𝜔2, 𝜔3} [149,
150, 141].

Following Ref. [141], the Hamiltonian of the three-mode system may be
described by

𝐻 =

3∑︁
𝑗=1

~𝜔𝑗𝑎
†
𝑗𝑎𝑗 + ~

(︁
𝑈𝑎†3𝑎2𝑎1 + 𝑈*𝑎†1𝑎

†
2𝑎3

)︁
, (7.1)

where 𝑈 is the non-linear coupling coefficient describing sum-frequency gener-
ation between the considered resonator modes. It has the form

𝑈 =
𝜒(2)

2

√︂
~𝜔1𝜔2𝜔3

𝜖0

∫︁
𝑉

dr𝐷(r)Φ1(r)Φ2(r)Φ*
3(r), (7.2)

with 𝜒(2) being the non-linear coefficient, Φ𝑗(r) the spatial mode profile of mode
𝑗, and 𝐷(r) being a function describing the spatial dependence determined
by the fabricated QPM pattern [141, 149]. Thus, a high value of 𝑈 depend
on a high value of the non-linear coefficient, but also on the modal overlap
between the spatial wavefunctions of the three modes. As detailed calculations
of possibly attainable values of 𝑈 are given in Ref. [141] for a LiNbO3 resonator,
we will not elaborate further on the calculation details here, but simply refer
to their calculations.

Eq. (7.1) is derived under a no-loss assumption. However, losses of the
cavity system may be included as coupling to external reservoirs for each of
the three ring modes according to Refs. [149, 70, 151], giving an effective
Hamiltonian on the form

𝐻eff =

3∑︁
𝑗=1

~𝜔̃𝑗𝑎
†
𝑗𝑎𝑗 + ~

(︁
𝑈𝑎†3𝑎2𝑎1 + 𝑈*𝑎†1𝑎

†
2𝑎3

)︁
, (7.3)
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with 𝜔̃𝑗 = 𝜔𝑗 − i𝛾𝑗/2, where 𝛾𝑗 is the loss rate of energy in mode 𝑗 in the
resonator. If the ring is initially populated by two photons, one with frequency
𝜔1 and one with frequency 𝜔2, the system state is

|𝜓(𝑡)⟩ = 𝐶12(𝑡)𝑎†1𝑎
†
2|𝜑⟩ + 𝐶3(𝑡)𝑎†3|𝜑⟩, (7.4)

with |𝜑⟩ describes the vacuum state, and where the expansion coefficient are
not normalized, due to the presence of loss. The temporal evolution of the
system is determined by the time-dependent Schrödinger equation, i~𝜕𝑡|𝜓(𝑡)⟩ =
𝐻eff|𝜓(𝑡)⟩, providing equations of motion for the expansion coefficients,

𝜕𝑡𝐶12(𝑡) = −i(𝜔̃1 + 𝜔̃2)𝐶12 − i𝑈*𝐶3(𝑡), (7.5)

𝜕𝑡𝐶3(𝑡) = −i𝜔̃3𝐶3 − i𝑈𝐶12(𝑡). (7.6)

The corresponding eigenvalues of the differential equation system are

𝜆± = −

⎛⎝i𝜔3 +

3∑︁
𝑗=1

𝛾𝑗
4

⎞⎠± i

√︃
|𝑈 |2 −

(︂
𝛾1 + 𝛾2 − 𝛾3

4

)︂2

. (7.7)

In similarity with the Jaynes Cummings model, two regimes exist describing
the dynamical evolution of the system. If the non-linearity is strong, 4|𝑈 | >
𝛾1 + 𝛾2 − 𝛾3, two new non-degenerate eigenstates form, |𝜆−⟩ and |𝜆+⟩, being
superpositions between the two states 𝑎†1𝑎

†
2|𝜑⟩ and 𝑎†3|𝜑⟩, see Fig. 7.2(a,b).

These levels may be properly resolved if the splitting between the new states
is much larger than the loss-induced broadening, which from Eq. (7.7) occurs
when |𝑈 |2 ≫ [(𝛾1 + 𝛾2)2 + 𝛾23 ]/8. If 𝑈 is sufficiently large as illustrated in
Fig. 7.2(b), the splitting may be exploited in the c-phase gate in the way, that
when a control photon proves the cavity, an incoming signal photon cannot
couple, giving the conditional operation in the gate.

The task is now to determine realistic values for 𝑈 and the loss rates for this
specific configuration. The needed calculations for the non-linear coefficient in
a LiNbO3 resonator have already carried out by Sun et al. in Ref. [141]. Here
the magnitude of the non-linear parameter, 𝑈 , is estimated from the mode pro-
files of a whispering gallery mode using Eq. (7.2), based on calculations from
[152]. A figure of merit for the non-linear parameter is 𝜒(2)𝑄/𝑉 , with 𝑄 being
the quality factor of the resonator more and 𝑉 the mode volume. A realisti-
cally obtainable value1 of 𝑈 is estimated to be 𝑈 = 337MHz for a disk LiNbO3
resonator with a diameter of 40𝜇m, using the available micro-fabrication tech-
nology. We assume that one of the loss rates is dominating the others, denoted
by 𝛾, e.g. corresponding to a mode which couples to a waveguide mode, as we
will discuss below. For the gate to work properly, a maximum allowed loss rate
is 𝛾max = 2

√
2|𝑈 |. Assuming that the wavelength of the light is 𝜆 = 1.31𝜇m,

and that the decay rate of all modes is identical, the minimal quality factor of
each mode must be 𝑄min = 𝜔0/𝛾max = 2𝜋𝑐/(2

√
2|𝑈 |𝜆𝑛ref) = 7 × 105, using a

the refractive index of lithium niobate of 𝑛ref = 2.22 [153].

1In Ref. [141] they even use a value of 610 MHz in their theoretical calculations, although
this seems large compared to realistically obtained values nowadays. It may, however, be
possible to achieve soon with the rapid improvements in micro- and nanofabrication.
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Figure 7.2: (a) Level scheme for a linear cavity, which have transitions corresponding
to the frequencies 𝜔1, 𝜔2, and 𝜔3 = 𝜔1 +𝜔2. (b) Level scheme for a non-linear cavity
where the non-linear coefficient exceeds the losses, which results in a splitting of the
sum-frequency level due to the QZB, according to Eq. (7.7). If a control photon
(green) of frequency 𝜔1 is present in the cavity, a signal photon (red) with frequency
𝜔2 cannot couple to the resonator. (c) A non-linear ring resonator coupled to a one-
dimensional waveguide, with indications of the rate of population transfer to/from
the ring, 𝜅, and a loss rate of population out of the system, 𝛾 (which may be different
for each cavity mode).

The quality factor of a resonator mode may be divided into two contribu-
tions, 𝑄−1 = 𝑄−1

𝑖 + 𝑄−1
𝑐 , where 𝑄𝑖 is given by the intrinsic losses and 𝑄𝑐 is

given by the coupling rates to other external modes, e.g. to a waveguide. The
intrinsic losses are typically bending losses and absorption. Due to the high
refractive index of LiNbO3, the bending losses are not the limiting factor on 𝑄𝑖

[154]. The limiting factor is in general material absorption, which according to
Ref. [141] has a reasonable limitation of 𝑄𝑖 & 109 with the existing structures.
To overcome the internal losses, 𝑄𝑐 should be less than ∼ 108.

In our proposal, the non-linear resonator is be coupled to a one-dimensional
waveguide, corresponding to the functionality of the blue box in Fig. 7.1. In
that case 𝑄𝑐 will be directly related to the decay rate of the energy in the
ring into the waveguide modes, 𝜅, as 𝑄𝑐 = 𝜔/𝜅, with 𝜔 being the carrier
frequency of the pulses. This coupling may be realized physically e.g. by
coupling to integrated planar waveguides [155], demonstrating a 𝑄 above 108.
To specifically consider the effect of the non-linear interaction, we make the
crude approximation that the control photon is already "trapped" in the cavity
at a frequency 𝜔1 (i.e. it cannot couple to the continuum of waveguide modes)
when the signal is impinging – we will comment on this approximation later
on. We also for simplicity assume that the sum-frequency state at 𝜔3 cannot
couple to the waveguide modes. With these approximations, the dynamics
may be described by the single-photon scattering model in Chapter 3, where
the total Hamiltonian now to be given by

𝐻wg–one ring = 𝐻eff +

∫︁ ∞

0

d𝑘 ~𝜔(𝑘)𝑎†(𝑘)𝑎(𝑘)

+ ~
√︂
𝜅𝑣𝑔
2𝜋

∫︁ ∞

0

d𝑘
[︁
𝑎†(𝑘)𝑎2 + 𝑎†2𝑎(𝑘)

]︁
, (7.8)

where 𝐻eff is given in Eq. (7.3), and with 𝑎(𝑘) being the annihilation operator
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Figure 7.3: Phase of an incoming single-photon pulse (green dotted line) and the
scattered photon (solid blue line) when scatterings from a waveguide onto a non-linear
ring resonator with the non-linear coefficient of 𝑈 . The loss rate, 𝛾, is assumed to be
the same for each mode of the ring. In the cases with 𝛾 ̸= 0, the loss of population
during the scattering is indicated in the plot, calculated for an incoming pulse with
a bandwidth identical to the emitter linewidth.

of a plane wave mode in the waveguide with momentum 𝑘 and energy 𝜔(𝑘).
Furthermore the QD decay rate has been replaced by 𝜅, and the lower bound on
the integration is 0, as we assume no back-scattering from the ring. In deriving
Eq. (7.8), we furthermore assumed a constant coupling parameter from the

gate cavity to all modes in the waveguide equal to
√︁

𝜅𝑣𝑔
2𝜋 , in similarity with

Section 3.2.

According to the proposed gate scheme in Fig. 7.1, the phase of the signal
photon should by changed by 𝜋, if the control is present in the resonator. In or-
der to estimate the gained phase, we employ the numerical model in Chapter 3.
In Fig. 7.3 we sketch the phase gained at the different frequency components
of the pulse for different values of 𝑈 and 𝛾, assuming that the internal losses
for all modes are identical 𝛾 = 𝛾1 = 𝛾2 = 𝛾3 (the coupling to the waveguide
modes is described by 𝜅, which thus is not included in the rate 𝛾2).

At resonance, a narrow-bandwidth signal photon will gain a phase shift of
𝜋 when 𝑈 = 0, i.e. corresponding to the absence of a captured control photon.
When 𝑈 ̸= 0, the signal can no longer couple to the cavity and does not gain a 𝜋
phase shift. As discussed in the previous chapter in Fig. 6.1(b), the bandwidth
of the incoming pulse must be sufficiently narrow compared to the spectral
linewidth of the resonator mode, as the gate to a maximum allows a linear
phase change across the pulse (corresponding to a temporal delay, which may
be accounted for). Furthermore, 𝑈 must be sufficiently large compared to the
pulse bandwidth such that the linear phase condition is still fulfilled across the
spectrum of the incoming pulse, if a control photon is present in the cavity. As
demonstrated in Fig. 7.3, the gained phase remains almost the same for the
shown loss rates of up to at least 𝛾 = 0.1𝜅. The limiting factor here is the fact
that more than 80 % of the pulse energy is lost.
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Figure 7.4: (a) Double-resonator system, in which a gate ring is introduced as com-
pared to Fig. 7.2(c). The coupling rate from the waveguide to the first ring is still
denoted 𝜅, but an additional coupling occurs between the rings, described by the cou-
pling strength 𝑔. (b) Desired modal density in the storage and gate rings at the time
where the signal photon scatteres with frequency 𝜔1 (with a possible control pho-
ton at 𝜔2) (c) An equivalent system, consisting of QD inside an end-coupled optical
cavity, as described in Ref. [129].

7.2 Dynamical capture

Above we have estimated the requirements for the non-linearity and losses for
the part of the gate operation where a control photon may have been cap-
tured and the signal photon is impinging. However, with the one-ring setup in
Fig. 7.2(c), the control excitation may in principle decay into the continuum
of waveguide modes as nothing hinders the coupling. In order to prevent this,
we introduce a gate-ring as sketched in Fig. 7.4(a,b). When the control photon
is captured at a mode with frequency 𝜔1 in the storage (inner) ring, it cannot
couple to the waveguide, as no mode is present in the gate at that frequency. In
contrast, an incoming signal photon with frequency 𝜔2 may couple to a mode
in the storage ring through the gate ring. This capture principle is the same
as for an emitter inside an optical cavity at the end of a waveguide [129], as
illustrated in Fig. 7.4(c).

The full scheme will thus be as follows: First a incoming control photon
of frequency 𝜔2 is captured in the storage cavity by detuning the mode of the
captured photon to a frequency 𝜔1. Secondly, the signal photon of frequency
𝜔2 scatters and attains a phase shift depending on the presence of the con-
trol photon. Lastly, the control photon is released again at a frequency 𝜔2

by detuning the storage back. Below, we will go through the steps; first by
considering capture and release of the control photon, followed by a detailed
discussion of the scattering of the signal photon for the presence/absence of the
control photon.

7.2.1 Capture and release of the control photon

In the first step where the control photon is captured, ideally all of the energy
in the photon must be captured in the storage. We assume that the control
photon initially is resonant with both a mode in the gate and in the storage,
at the frequency 𝜔2 in Fig. 7.4. The idea is to capture the control by detuning
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the storage exactly when it is populated the most. Here we only consider the
possibility of tuning the resonances of the storage. In that case, the control
photon must have a specific spectral and temporal shape in order to be fully
absorbed. The optimal may be determined by reversing the capture process,
i.e. by determining the pulse shape of an emitted photon if the storage initially
is excited.

To determine this, we define a Hamiltonian for the double-ring system valid
for a single excitation, in analogy with the derivations in Chapter 3,

𝐻wg–double-ring = ~𝑔(𝑎†s𝑎g + 𝑎†g𝑎s) + ~
√︂
𝜅𝑣𝑔
2𝜋

∫︁ ∞

0

d𝑘
[︀
𝑎†(𝑘)𝑎g + 𝑎†g𝑎(𝑘)

]︀
, (7.9)

with 𝑎s and 𝑎g being annihilation operators for the considered mode in the
storage and gate resonator, respectively (we do not include transitions to other
modes here). The coupling rate 𝑔 is proportional to the rate at which energy
is transferred between the rings. The single-excitation state of the system is

|𝜓(𝑡)⟩ = 𝐶s(𝑡)𝑎
†
s |𝜑⟩ + 𝐶g(𝑡)𝑎

†
g|𝜑⟩ +

∫︁ ∞

0

d𝑘 𝐶wg(𝑘, 𝑡)𝑎
†(𝑘, 𝑡)|𝜑⟩, (7.10)

with |𝐶s/g(𝑡)|2 being the population in the storage/gate ring at time 𝑡, and

with
∫︀ 𝑘2

𝑘1
d𝑘 |𝐶wg(𝑘, 𝑡)|2 being the possibility having a photon with momentum

between 𝑘1 and 𝑘2 > 𝑘1 at time 𝑡. In a similar way as in Chapter 3, we use the
time-independent Schrödinger equation to determine differential equations for
the expansion coefficients. In a frame rotating with the frequency of the modes
in the gate and storage, which is assumed to be the same, we arrive at

𝜕𝑡𝐶s(𝑡) = −i𝑔𝐶g(𝑡), (7.11a)

𝜕𝑡𝐶g(𝑡) = −𝜅
2
𝐶g(𝑡) − i𝑔𝐶s(𝑡), (7.11b)

where the coupling to the waveguide modes may described by 𝜅 mode with
narrow linewidths compared to the carrier frequencies of the pulses, in analogy
to Γ in Eq. (3.9). By solving these equations, the spontaneously emitted pulse
shape is given by the temporal wavepacket

𝜉(𝑡) = i
𝑔
√
𝜅

𝐽
e−𝜅𝑡/4

[︁
ei𝐽𝑡/2 − e−i𝐽𝑡/2

]︁
, (7.12)

where 𝐽 =
√︀

4𝑔2 − 𝜅2/4 is either real or purely imaginary, depending on if the
system is in the strong or weak coupling regime, respectively.

Using the numerical approach in Section 3.3 with a temporally reversed
version of Eq. (7.12) as input, we calculate the full scattering dynamics, see
Fig. 7.5. In Fig. 7.5(a), the resulting gate and storage populations are shown.
The idea is to detune the storage exactly when the population of the stor-
age is at its maximum, here 𝑡/𝜅 ∼ 13. To illustrate the scattering dynam-
ics clearly, we evaluate the spectral density in the waveguide, 𝑁𝑘(𝑘, 𝑡) =
⟨𝜓(𝑡)|𝑎†(𝑘)𝑎(𝑘)|𝜓(𝑡)⟩, and the spatial photon density in the waveguide, 𝑁𝑧(𝑧, 𝑡),
given in Eq. (3.15). These are plotted in Fig. 7.5(b,c), and specifically we no-
tice, that the temporal shape of the pulse is reversed for the scattered pulse.
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Figure 7.5: (a) Gate (green) and storage (red) popultion for an incoming single-
photon pulse with the temporal shape from Eq. (7.12) (blue), shown for 𝑔 = 𝜅/2. (b)
Spectral density in waveguide, 𝑁𝑘(𝑘, 𝑡). (c) Spatial photon density in the waveguide,
𝑁𝑧(𝑧, 𝑡). (d) The fidelity measure 𝐹 from Eq. (6.5) describes the fidelity between the
incoming and scattered pulse, plotted for varying temporal delays when calculating
the fidelity. 𝑓 describes the relative phases between the pulses, as defined in Eq. (6.6).

This reversion explains why the fidelity, 𝐹 , between the scattered pulse and
the incoming pulse is not perfectly 1 (when delay is taken into account) in
Fig. 7.5(d). This fidelity measure is the same as used in the previous chapter
in Eq. (6.5), where 𝐹 is evaluated at the optimal delay. When accounting for
scattering-induced delays, the relative phase measure 𝑓 from Eq. (6.6) is close
to 1, stating that the scattered and incoming pulse are in phase. This is due
to the fact that the pulse interacts with both cavities, and thus attains a total
phase shift of 2𝜋.

Actually, as demonstrated in Ref. [156], a Gaussian pulse as in Eq. (3.12b)
may approximate the "perfect" excitation pulse very well when the bandwidth
of the Gaussian, 𝜎 (in units of 1/m as in Eq. (3.12b)), is ∼ 𝜅/𝑣𝑔 and when
the the combined two-ring system is on the border between strong and weak
coupling, where the loss rate of the mode in the gate ring is similar to the rate
at which energy is exchanged between the two ring resonators. The resulting
dynamics are calculated in the same way as for the "perfect" pulse, for a Gaus-
sian pulse with 𝜎𝑣𝑔 = 𝜅 see Fig. 7.6. Even though a part of the Gaussian pulse
does not couple to the emitter (as seen from the small leakage in Fig. 7.6(c)
), the fidelities in Fig. 7.6(d) are on the same order as for the "perfect" pulse.
This is due to the fact that the Gaussian pulse has a symmetric temporal shape,
which compensates for the non-perfect coupling. For both pulse shapes, high
fidelities of > 95% are obtained, and thus both of them seem applicable in the
given ring setup.

Choosing the "perfect" pulse as an example, we illustrate the capture and
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Figure 7.6: (a) Gate (green) and storage (red) popultion for an incoming single-
photon pulse with a Gaussian spectrum as in Eq. (3.12b) with bandwidth 𝜎𝑣𝑔 = 𝜅
(blue), shown for 𝑔 = 𝜅/2. (b) Spectral density in waveguide, 𝑁𝑘(𝑘, 𝑡). (c) Spatial
photon density in the waveguide, 𝑁𝑧(𝑧, 𝑡). (d) The fidelity measure 𝐹 and phase com-
parison parameter 𝑓 from Eqs. (6.5) and (6.6), plotted for varying temporal delays.

release in Fig. 7.7, where the storage instantaneously2 is detuned by an amount
of either 𝛿𝜔 = 9𝜅 or 𝛿𝜔 = 10𝜅, and the resulting fidelities are calculated. As
𝐹 remains the same for the two different detunings, a significant difference
appears in the values of the relative phase measure, 𝑓 . For 𝛿𝜔 = 10𝜅, the
input and output pulse are in phase, whereas the case 𝛿𝜔 = 9𝜅 results in pulses
almost completely out of resonance. This is explained by the fact that when
the frequency of the stored pulse is shifted, the stored pulse gains an additional
phase of 𝛿𝜔 · 𝑡cap with 𝑡cap being the capture time of the control. Thus, in order
to obtain high efficiencies for the photon capture/release, a very precise timing
is required both to perform the detuning at the correct time, but also timing
the release (compared to the detuning magnitude) very precisely.

The required magnitude of the frequency detuning, 𝛿𝜔, depends on how long
the operation time of the gate is, as the control according to the gate scheme
cannot to decay while the signal is scattering. The effective decay rate may
be calculated from Eqs. (7.11a) and (7.11b) by including a term −i𝛿𝜔𝐶S(𝑡)
in Eq. (7.11a) to account for the detuning. We estimate the effective decay
rate of a captured control excitation in the storage from the eigenvalue of
the differential equation system in Eqs. (7.11a) and (7.11b) with the smallest
magnitude of its real part. In the large detuning limit3, this real part would

2The detuning speed depends in practice of the limitations in the detuning process. As
an example, electro-optical modulation in LiNbO3 may be on the order of 10 GHz [146].

3For small detunings and large values of 𝑔, the real part of the eigenvalues of the differential
equation system would be describe the decay of the dressed states.
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Figure 7.7: (a) Capture of control photon (blue) by detuning the gate by a frequency
𝛿𝜔 = 10, exactly when the storage is populated the most, and releasing it again after
a time of 𝑡cap = 7/𝜅. (b) Fidelity, 𝐹 , and relative phase measure, 𝑓 , shown for two
different detunings, with 𝐹 having the same value at both detunings. 𝐹 peaks at a
later time compared to in Fig. 7.5, corresponding to an additional delay of 𝑡cap.

correspond to the decay of the energy for the detuned storage mode,

𝜅stor,eff =
𝜅

2
−
⃒⃒⃒⃒
Im
{︁√︀

4𝑔2 − (𝜅/2 − i𝛿𝜔)2
}︁ ⃒⃒⃒⃒
. (7.13)

The effective decay rate is shown in Fig. 7.8 in the case 𝑔 = 𝜅/2 and should in
principle be very small compared to 1/𝑡op, where 𝑡op is the total time for a full
c-phase gate operation. A high value of 𝛿𝜔, however, also demands more from
the physical mode detuning process. Furthermore, for the specific practical
gate setup, the energy of the detuned state cannot match any states in the
gate, as this destroy the gate performance. Thus a lot of issues have to be
taken into account when determining the value of 𝛿𝜔 to be used in a given
setup. An estimate of the time which the control has to be captured in can be
roughly estimated from the example in Fig. 7.7(a) to be a time ≈ 20/𝜅. For the
control photon not to decay during this period, a reasonable estimate would
be 𝜅stor,eff/𝜅 < 10−2, which from Fig. 7.8 necessitates a detuning of at least 10
linewidths of the gate resonator mode. This is significantly larger than for the
existing LiNbO3 tunable resonators, which allows switching corresponding to
a few linewidths [145, 146]. Although with an improvement in the Q-factors of
the resonator modes, this could be achievable.

7.2.2 Scattering of the signal photon

We now turn to consider the core operation of the gate, namely the phase
shift imposed on the signal photon if it is in arm "1", depending on whether
the control was in "1" as thus was captured, or if was in "0" and was not
captured. According to the gate scheme, the phase of the signal should have
an additional 𝜋, if the control was captured. Furthermore we require that the
properties of the signal photon is not altered upon scattering, apart from a
scattering-induced temporal delay.

If the conditions mentioned in the previous sections are fulfilled, such that
a control photon is perfectly captured in the highly non-linear storage ring, the
signal cannot couple to the storage, as we discussed in Section 7.1. Assuming
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Figure 7.8: Effective decay rate of the captured control photon, 𝜅stor,eff, from
Eq. (7.13), here shown for 𝑔 = 𝜅/2.

that no backscattering is present in the resonators, scattering of the signal
photon may simply be described by the one-ring transmission coefficient in
Eq. (6.2) [151, 157]. Equivalently, the fidelity and relative phase between the
input and scattered signal pulses are as calculated in Fig. 6.3, but with the
time scale normalized to 𝜅 instead of Γ. For low values of 𝜎, the signal gains a
phase shift of 𝜋, with a fidelity close to 1. In the regime where the capture is
optimal, 𝜎𝑣𝑔 ∼ 𝜅, a fidelity of 𝐹 ∼ 95 % is still achieved.

If the control photon, however, was in arm "0" while the signal was in
"1", the scattered signal photon should in-phase with the incoming photon,
according to Fig. 7.1. The resulting scattering fidelities are shown in Fig. 7.9,
evaluated for 𝑔 = 𝜅/2, 𝑔 = 𝜅, and 𝑔 = 2𝜅. For low valus of 𝜎, 𝑓 is very close
to 1, indicating that the scattered state is in phase with the input photon.
And with a value of 𝐹 of more than 95 % even at 𝜎𝑣𝑔 ∼ 𝜅, the pulse shape
is well preserved upon scattering. For large values of 𝑔, the rings are strongly
coupling and a frequency splitting occurs, preventing the signal from entering
the rings. This explains why the highest fidelities are achieved at close to zero
temporal delay Fig. 7.9(c), as the signal simply does not couple to the rings.
Summarizing, the signal photon is scattered with high fidelity in both cases,
and with the desired phases according to the c-phase scheme.
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Figure 7.9: (a-c) The fidelity 𝐹 between an incoming Gaussian pulse with spectral
width 𝜎 and the state scattered on a two-ring system, shown for three different values
of 𝑔 (in units of 𝜅). A temporal delay, 𝛿𝑡, is allowed in the fidelity calculation. (d) The
maximal 𝐹 at a given 𝜎 (spectral FWHM of the input pulse) and the corresponding
value of 𝑓 .

7.3 Summary

In this chapter we have discussed the implementation of a control-phase gate
presented by Johne et al. in Ref. [129] into a system of two coupled ring
resonators. This is inspired by the continuously improvements in nano- and
microfabrication which shows promising perspectives in achieving 𝜒(2)-non-
linearities at the single-photon level [140]. By storing the control photon in
an optical cavity instead of in a QD, we expect less decoherence from the
environment, which especially is significant if the gate is to work at room
temperature.

The realization of a controlled-phase for two identical photons which em-
ploys dynamical capture of the control photon, requires high efficiency of all
individual processes related to one full gate operation: eventual capture of
control photon, scattering of signal photon, eventual release of control photon.
The processes involving scattering of the signal photon shows high fidelities
of more than 95 % for pulses with an optimal bandwidth for the dynamical
capture. The dynamical capture and release of the control photon, however,
relies on the possibility of shifting the frequency of the storage resonator very
fast compared to the temporal extent of the pulse, and the magnitude of the
detuning must be of several linewidths of the given resonator mode. This pro-
cess therefore makes very high demands on the modulation probabilities of the
materials, as they at the same time must have a high non-linear coefficient and
𝑄-factor.

Electro-optically tunable microring resonators have been demonstrated in
LiNbO3, but these have too low 𝑄-values on the order ∼ 104 [146, 145]. On
the other hand, free-standing LiNbO3 ring resonators show very high 𝑄-factors
[155] on the order 𝑄 ∼ 108, but to our knowledge are difficult to manipulate
electro-optically. Recent fabrication processes for integrated LiNbO3 resonators
with sub-mm dimensions with 𝑄-factors of ∼ 105 [158, 132], but with the
present technology it seems a challenge to have at highly non-linear, high-𝑄,
electro-optically tunable micro-resonator in LiNbO3 which fulfils the require-
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ments for the gate implementation. If it becomes possible to fabricate such a
resonator, a good control of the timing and release of the control photon is also
necessitated.

The gate performance is limited by the one of the four possible input config-
urations with the lowest fidelity, being the four permutations of a control and
signal in ’0’ and ’1’. The case with the lowest fidelity is when both photons are
in the ’1’ arm, where they are both interacting with the ring system, as also
pointed out in Ref. [129]. The total fidelity is estimated to be close to 90 %,
but we clearly see limiting factors in this gate in the practical implementation
as compared to the gate in the previous chapter. This would be timing of the
capture–release process, and the possibility to shift the resonator frequency suf-
ficiently much, sufficiently fast. Regarding the aspect of capturing the control
photon by storing it in a mode with another frequency, the idea proposed by
Johne et al. in Ref. [129] may be easier to implement, as it relies on electrical
tuning of the QD, in which the control is stored. It may, however, only be
operated at low temperatures to avoid dephasing from phonon interaction.

With the increasing knowledge and instrumental power in the field of mi-
crofabrication, this scheme with dynamical capture in rings could be realized, if
precisely-tunable, highly non-linear, high-𝑄, low mode volume ring resonators
are constructed, which to our knowledge not yet has been fabricated with suf-
ficient properties.
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Chapter 8

Phonon-induced dynamics

— Basic theory

As demonstrated in the previous chapters, solid-state implementations of few-
photon non-linearities such as with semiconductor quantum dots (QDs) are
promising for the realisation of a variety of integrated optical functionalities
such as few-photon gates and single-photon sources [45]. However, due to the
solid-state nature of the QDs, it is well-known that interactions with vibrational
modes in the surrounding lattice introduce dephasing and may lead to loss of
quantum mechanical coherence between the different system states. In partic-
ular, solid-state based cavity QED systems such as semiconductor micropillars
[159, 160, 161] and photonic crystal cavities [162, 163] are strongly affected by
dephasing induced by phonon scattering [47, 46, 164, 165, 166, 167, 48, 168].
Phonon-induced decoherence thus makes the observation of such effects as vac-
uum Rabi-oscillations [169] much more difficult than in atomic cavity QED
systems and impairs the realization of a scalable solid-state platform for quan-
tum information technology. For instance, indistinguishability requirements of
subsequent emission events from a single-photon source places strict limitations
on the amount of dephasing that can be accepted [49, 170, 171].

Recently it was demonstrated experimentally in that the usual Markovian
model of pure dephasing is not sufficient to describe the system dynamics for
a non-resonant coupled cavity-quantum dot system [46]. A non-Markovian
description of the electron-phonon interaction is required to explain the ad-
ditional coupling of the QD to the cavity through the emission/absorption
of a phonon. Several approaches have been made recently to describe the
electron-phonon coupling, showing asymmetric off-resonance coupling at low
temperatures [48, 47]. These asymmetries stem from a lower probability for
non-resonant couplings which requires absorption of a phonon, but a larger
probability for emission of a phonon.

In this and the following two chapters we examine this asymmetry in detail.
Specifically, we investigate how the confinement of both the electrical carriers
(Chapter 9) and of the phonons (Chapter 10) affect the phonon-induced dy-
namics, and we discuss the possibilities of controlling the confinement in order
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to be able to optimize the performance of the quantum systems. Our main
focus will be on implementation in a GaAs platform, as the theory will be
applied to an experiment made in this material platform [172].

This chapter provides the fundamental theory on the interaction between
the QD and the phonons. In Section 8.1 the three major coupling mecha-
nisms between phonons and electrons/holes are introduced. In Section 8.2 we
derive specific equations of motion for a quantum system interacting weakly
with a large bosonic reservoir, using standard open-system approaches [54, 173,
174, 175]. We employ the model considered by P. Kaer [173, 54], where the
time-convolutionless formalism enables the inclusion of non-Markovian effects,
which stem from a finite memory depth of the phonon reservoir [176, 177, 178].
The commonly-used Lindblad formalism [179] may be obtained from the time-
convolutionless formalism in the limit where the reservoir correlation functions
are delta functions in time, corresponding to memory-less reservoir, resulting
in Markovian dynamics.

8.1 Electron-phonon coupling mechanisms

In crystals with two or more atoms per primitive basis, e.g. in GaAs, the vi-
brational modes may be divided into two classes of phonon, acoustic phonons
and optical phonons [58]. These may be divided further into transverse (re-
spectively TA and TO) phonons and longitudinal (LA and LO) phonons, which
are characterized by their dispersion properties as illustrated in Fig. 8.1.

Acoustic phonons are characterized by lattice oscillations where the ions
move in phase with each other. They have a linear dispersion close to the
center of the Brillouin zone, Γ, where the phonon wavelength becomes infinitely
large, corresponding to sound waves propagating in a lattice, hence the name
acoustic phonons. Optical phonons, on the other hand, are quantized lattice
vibrations where differently charged ions oscillate out of phase. This induces a
dipole moment, and thus infrared radiation may excite these photons, which is
why they are called optical photons.

The interaction between charge carriers and phonons is described by three
major mechanisms:

∙ Polar coupling: Appears in crystals with two or more atoms in the
primitive cell with different charge, when optical phonons are excited by
an optical field [53, 180].

∙ Deformation potentials: Local site deformations caused by dilations
associated with acoustical waves: For long-wavelength phonons, the dis-
placement corresponds to a deformation of the crystal, shifting the elec-
tronic bands. [181].

∙ Piezo-electric interaction: In non-centrosymmetric materials, stress
will induce a macroscopic polarization, well-known as the piezo-electric
effect. The process also works the other way around, where acoustic
phonons will induce a polarization which will interact with the electrons
[53].
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Figure 8.1: Dispersion curve for phonon modes in GaAs from theoretical calculations
(solid lines) and experimental data points found using neutron diffraction [184], show-
ing the phonon frequency as a function of the wavevector, k. The different branches
correspond to the four classes of phonons, TA, LA, TO, and LO. GaAs crystallizes
in a Zinc-blende structure, which has a truncated octahedron shaped Brillouin zone,
shown in the figure to the right, with indications of the high-symmetry points.

In the considered QD structure, acoustic phonons will introduce a broadening
of the zero phonon line, whereas the polar coupling to optical phonons give rise
to phonon sidebands in the absorption spectrum well separated from the zero
phonon line [182].

In a bulk GaAs material at low temperatures, the LA phonon modes have
energies of < 10 meV [173]. When only considering this energy regime, longitu-
dinal optical phonons do not contribute to the dynamics due to their large en-
ergies, ∼ 37 meV in GaAs [173]. The piezoelectric interaction depends strongly
on the separation of the electron and hole wavefunctions. In GaAs the de-
formation potential is dominating the piezoelectric coupling, but a material
like GaN possesses strong polarisation charges at the interfaces which gives
a strong build in polarisation, in which the piezoelectric interaction will be
much stronger than the deformation potential coupling [183]. In this thesis, we
thus limit ourselves to only consider the coupling to LA phonons through the
deformation potential coupling.

8.1.1 Deformation potential

Following derivations in [185, 186, 187, 188], we for simplicity consider a non-
degenerate band close to Γ in Fig. 8.1. The deformation potential is defined as
the energy change of an electronic level per unit strain. To the leading order,
the energy shift is proportional to the relative volume change 𝛿𝒱/𝒱, and the
interaction Hamiltonian may be written as

𝐻
(DP)
e/h = ∆𝐸c/v = 𝐷e/h

𝛿𝒱
𝒱

= 𝐷e/hTr{𝜎̂}, (8.1)

with 𝐷e/h being the deformation potential constant for the electron/hole, 𝒱 is
the volume of a unit cell of the crystal, and Tr{𝜎̂} is the trace of the strain
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tensor. When 𝐷e/h < 0, the bottom of the energy band is shifted toward higher
energies when the crystal is compressed.

For a homogeneous material, small strains obey Hooke’s law [58],

𝜎𝑖𝑗 =
1

2

(︃
𝜕𝑢𝑖
𝜕𝑟𝑗

+
𝜕𝑢𝑗
𝜕𝑟𝑖

)︃
, (8.2)

where 𝑢𝑖 are the vector components of the local displacement field of the
phonons, u(r). This reduces Eq. (8.1) to

𝐻
(DP)
e/h = 𝐷e/h∇ ·u(r), (8.3)

with u(r) = (𝑢𝑥(r), 𝑢𝑦(r), 𝑢𝑧(r)). Initially we assume bulk phonon modes, for
which u(r) is given in Eq. (2.16). As seen from Eq. (8.3), transverse phonon
modes do not contribute to the Hamiltonian, and thus only longitudinal acoustic
phonons contribute to the deformation potential coupling. The Hamiltonian
simplifies to

𝐻
(DP)
e/h (r) = −𝐷e/h

∑︁
k

𝑘

√︃
~

2𝜚𝑉 𝜔LA(k)

(︁
𝑏†−k,LA + 𝑏k,LA

)︁
eik · r. (8.4)

with 𝜔LA(k) being the dispersion relation for the longitudinal acoustic phonons,
𝜚 the material density, 𝑉 the phonon quantization volume, and 𝑏k,LA the an-
nihilation operator for an LA phonon with the wavevector k. In the literature,
the minus sign is commonly (but not always) taken into the definition of 𝐷e/h,
such that the commonly given values of the deformation potential already con-
tain this minus sign [185] — we will adopt this notation from now on.

The corresponding Hamiltonian in second quantization is obtained by cal-
culating the matrix element of Eq. (8.4) in the electron/hole single-particle
basis as discussed in Chapter 2,

𝐻
(DP)
e/h =

∑︁
k,𝜈𝜈′

𝐷e/h𝑘

√︃
~

2𝜚𝑉 𝜔LA(k)
ℱe/h,𝜈𝜈′(k)

(︁
𝑏†−k,LA + 𝑏k,LA

)︁
𝑐†𝜈𝑐𝜈′ , (8.5)

with 𝑐𝜈 being the annihilation operator in the single-particle electron/hole ba-
sis, and with 𝑘 = |k|. The form factor, ℱ , is given by with the form factor
given by

ℱe/h,𝜈𝜈′(k) =

∫︁
dr𝜓*

e/h,𝜈(r)𝜓e/h,𝜈′(r)eik · r. (8.6)

It describes the overlap between the electronic confinement and the phonon
confined, with the latter being described by plane waves, as we assume bulk
phonon modes. The form factor has the symmetry properties ℱe/h,𝜈𝜈′(k) =
ℱ*
e/h,𝜈′𝜈

(−k).

By comparing Eq. (8.5) with the general form of the electron-phonon inter-
action in Eq. (2.17), the interaction matrix element is given as

𝑀
(DP)

e/h,𝜈𝜈′(k) = 𝐷e/h𝑘

√︃
~

2𝜚𝑉 𝜔LA(k)
ℱe/h,𝜈𝜈′(k), (8.7)
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At some other symmetry points in the crystal, where the bands are degenerate,
e.g. at 𝑋 or 𝐿 point in Fig. 8.1, the 𝐷e/h in Eq. (8.1) is not a scalar but
rather a tensor and more complex equations involving also TA phonons must
be considered [57].

Having established the fundamental form of the interaction Hamiltonian,
we will in the following determine the dynamics of a quantum system which
couples weakly to a bosonic reservoir, where the coupling in our case will be
described by the Hamiltonian in Eq. (8.5).

8.2 Open quantum systems

In open quantum systems, where a small system interacts with a many-body
environment, a common approach to determine the system dynamics is by a
quantum master-equation [189]. We give a general derivation here, and we
employ the interaction Hamiltonian from Eq. (8.5) later. The environment
is modelled as a reservoir, R, which interacts with the system, S, and thus
the combined R+S system is described by the total Hilbert space ℋtotal =
ℋS ⊗ ℋR. By tracing out the reservoir degrees of freedom from the density
matrix of the total system, 𝜌full(𝑡), the system dynamics may be described by
the reduced density matrix operator, 𝜌(𝑡) = TrR {𝜌full(𝑡)}. From the reduced
density matrix, the expectation value of all operators belonging to ℋS may be
calculated as

⟨𝑂̂⟩ = TrR⊕S

{︁
𝑂̂𝜌full(𝑡)

}︁
= TrS

{︁
𝑂̂TrR {𝜌full(𝑡)}

}︁
= TrS

{︁
𝑂̂𝜌(𝑡)

}︁
. (8.8)

The Hamiltonian of the total system is separated into three parts: a part only
related to the system, 𝐻S, a part only related to the reservoir, 𝐻R, and a term
𝐻SR expressing the interaction between S and R,

𝐻 = 𝐻S +𝐻R +𝐻SR = 𝐻0 +𝐻SR. (8.9)

We here consider time-independent Hamiltonians only, and use 𝐻0 = 𝐻S +𝐻R

as short-hand notation for the non-interacting parts of the Hamiltonian.
The time evolution of the total density matrix in the Schrödinger picture is

given by

𝜕𝑡𝜌full(𝑡) =
1

i~
[𝐻, 𝜌full(𝑡)] . (8.10)

If the interaction is weak, 𝜌full(𝑡) may advantageously be considered in the
interaction picture,

𝜌full(𝑡) = e
i
~𝐻0𝑡𝜌full(𝑡)e

−i
~ 𝐻0𝑡. (8.11)

in which the fast motion stemming from 𝐻0 is suppressed. Using Eq. (8.10)
and the unitary properties of the operator ei~

−1𝐻0𝑡, the equation of motion for
𝜌full(𝑡) becomes

𝜕𝑡𝜌full(𝑡) =
1

i~

[︁
𝐻̃SR(𝑡), 𝜌full(𝑡)

]︁
, (8.12)
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where

𝐻̃SR(𝑡) = e
i
~𝐻0𝑡𝐻SRe

−i
~ 𝐻0𝑡. (8.13)

By formally integrating Eq. (8.12) from an initial time, 𝑡0, up to 𝑡 to obtain an
expression for 𝜌full and inserting this back into Eq. (8.12), we arrive at

𝜕𝑡𝜌full(𝑡) =
1

i~

[︁
𝐻̃SR(𝑡), 𝜌full(𝑡0)

]︁
− 1

~2

∫︁ 𝑡

𝑡0

d𝑡′
[︁
𝐻̃SR(𝑡),

[︁
𝐻̃SR(𝑡′), 𝜌full(𝑡

′)
]︁]︁
.

(8.14)
The reduced density matrix operator may equivalently be defined in the inter-
action picture,

𝜌(𝑡) = e
i
~𝐻S𝑡𝜌(𝑡)e−

i
~𝐻S𝑡. (8.15)

Here the interaction picture for 𝜌 is defined purely by the free Hamiltonian of
the system, 𝐻S, as the reservoir has been traced out. It may be obtained from
𝜌full(𝑡) in Eq. (8.11)

TrR {𝜌full(𝑡)} = TrR
{︁

e
i
~𝐻0𝑡𝜌full(𝑡)e

−i
~ 𝐻0𝑡

}︁
(8.16)

= e
i
~𝐻S𝑡TrR

{︁
e

i
~𝐻R𝑡𝜌full(𝑡)e

−i
~ 𝐻R𝑡

}︁
e−

i
~𝐻S𝑡 (8.17)

= 𝜌(𝑡). (8.18)

where we in the last equality exploit the cyclic property of the trace. With
this, tracing over the reservoir in Eq. (8.14) leads to

𝜕𝑡𝜌(𝑡) =
1

i~
TrR

{︁[︁
𝐻̃SR(𝑡), 𝜌full(𝑡0)

]︁}︁
− 1

~2

∫︁ 𝑡

𝑡0

d𝑡′TrR
{︁[︁
𝐻̃SR(𝑡),

[︁
𝐻̃SR(𝑡′), 𝜌full(𝑡

′)
]︁]︁}︁

. (8.19)

Eq. (8.19) is still exact, but to eliminate the reservoir-related terms, several
approximations must be carried out.

8.2.1 The Born-Markov approximation

At the initial time, 𝑡0, we assume that no correlations exist between the system
and the reservoir. This corresponds to a factorizable density matrix operator,

𝜌full(𝑡0) = 𝜌(𝑡0) ⊗𝑅0, (8.20)

with 𝑅0 being the initial density operator for the reservoir.
If the reservoir is very large and the coupling between the system and reser-

voir is weak, the reservoir may be assumed to be approximately in the thermal
state 𝑅0 = exp(−𝛽𝐻R)

TrR{exp(−𝛽𝐻R)} at all times, with 𝛽 = 1/(𝑘𝐵𝑇 ) defined from Bolz-
man’s constant, 𝑘𝐵 , and the temperature, 𝑇 . We assume that 𝐻SR contains
terms with exactly one bosonic operator, 𝑏† or 𝑏, e.g. as in Eq. (8.5). Because
𝑅0 contains only terms with an even number of bosonic operators (seen by a
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Taylor-expansion of the exponential in the expression for 𝑅0 because 𝐻R con-
tains only quadratic terms in bosonic operators), 𝐻̃SR(𝑡)𝑅0 will contain an odd

number of bosonic operators. In that case TrR
{︁
𝐻̃SR(𝑡)𝑅0

}︁
= 0 due to the fact

that expectation values of operators with an odd number of operators will be
zero, i.e. ⟨𝑛|𝑏†|𝑛⟩ = ⟨𝑛|𝑏|𝑛⟩ = 0. Therefore, the first term in Eq. (8.19) becomes
zero. The assumption about the reservoir remaining in the same thermal state
moreover allows a factorization of 𝜌full(𝑡) at all times,

𝜌full(𝑡) = 𝜌(𝑡) ⊗𝑅0 +𝑂(𝐻SR), (8.21)

where the deviations from the uncorrelated state should be on the order of 𝐻SR

due to the weak coupling [175].
To proceed, we make our first major approximation, the so-called Born

approximation. When inserting Eq. (8.21) into Eq. (8.19), we neglect terms
higher than second order in 𝐻SR,

𝜕𝑡𝜌(𝑡) = − 1

~2

∫︁ 𝑡

𝑡0

d𝑡′ TrR
{︁[︁
𝐻̃SR(𝑡),

[︁
𝐻̃SR(𝑡′), 𝜌(𝑡′) ⊗𝑅0

]︁]︁}︁
. (8.22)

This gives a closed integro-differential equation for the density operator 𝜌(𝑡)
of the system in the interaction picture. More detailed analysis of the Born
approximation may be carried out by the projection operator formalism, see
[176] for details.

To further simplify Eq. (8.22), we have to specify the interaction Hamilto-
nian. Thus we assume that 𝐻SR as in Eq. (8.5) may be written on the form

𝐻SR =
∑︁
𝜈𝜈′

𝑃𝜈𝜈′ ⊗𝐵𝜈𝜈′ , (8.23)

where 𝑃𝜈𝜈′ is a system operator and 𝐵𝜈𝜈′ is a reservoir operator. Using this
notation and omitting the use of ⊗, we have

𝜕𝑡𝜌(𝑡) = − 1

~2

∫︁ 𝑡

𝑡0

d𝑡′TrR

{︂ ∑︁
𝜈1𝜈2𝜈′

1𝜈
′
2

[︂
𝑃𝜈1𝜈′

1
(𝑡)𝐵̃𝜈1𝜈′

1
(𝑡),

[︀
𝑃𝜈2𝜈′

2
(𝑡′)𝐵̃𝜈2𝜈′

2
(𝑡′), 𝜌(𝑡′)𝑅0

]︀]︂}︂
. (8.24)

The system part may now be distinguished from the reservoir part. This may
be realized by exploiting the cyclic property of the trace and by evaluating
the expectation value when averaging over all reservoir degrees of freedom,
TrR {𝑂𝑅0} = ⟨𝑂⟩, giving

𝜕𝑡𝜌(𝑡) = − 1

~2

∫︁ 𝑡

𝑡0

d𝑡′
∑︁

𝜈1𝜈′
1𝜈2𝜈′

2

{︁
[︁
𝑃𝜈1𝜈′

1
(𝑡)𝑃𝜈2𝜈′

2
(𝑡′)𝜌(𝑡′) − 𝑃𝜈2𝜈′

2
(𝑡′)𝜌(𝑡′)𝑃𝜈1𝜈′

1
(𝑡)
]︁
⟨𝐵̃𝜈1𝜈′

1
(𝑡)𝐵̃𝜈2𝜈′

2
(𝑡′)⟩

+
[︁
𝜌(𝑡′)𝑃𝜈2𝜈′

2
(𝑡′)𝑃𝜈1𝜈′

1
(𝑡) − 𝑃𝜈1𝜈′

1
(𝑡′)𝜌(𝑡′)𝑃𝜈2𝜈′

2
(𝑡)
]︁
⟨𝐵̃𝜈2𝜈′

2
(𝑡′)𝐵̃𝜈1𝜈′

1
(𝑡)⟩
}︁
.

(8.25)
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Due to the 𝑡′ dependence of 𝜌 in the integral (and not 𝑡), the evolution of
𝜌(𝑡) is non-Markovian, meaning that the evolution depends on the past due to
interaction with earlier states that are reflected back.

The Markov approximation

To handle Eq. (8.25), further approximations have to be introduced. A com-
monly used but simple approach is the Markov approximation described in
[174, 175, 176] which is obtained by the substitution 𝜌(𝑡′) → 𝜌(𝑡) such that the
time evolution only depends on the present state 𝜌(𝑡). This assumption seems
reasonable if we consider a large bath in thermal equilibrium, since we expect
minor changes to be equalized so fast that they do not affect the dynamics of
the system. The Markov approximation is only valid if the correlation time of
the reservoir 𝜏𝑅 is small compared to the time scale describing changes in 𝜌(𝑡)
described by 𝐻SR [175]. What is important is that the substitution is made
in the interaction picture such that Eq. (8.25) still contains memory related
to the dynamics caused by 𝐻S, and in that way the system behaviour is still
non-Markovian in our description.

The Born- and Markov-approximations together are often just denoted the
Born-Markov approximations. The important point for the assumptions is that
the time scale over which the system varies is much larger than decay times of
the reservoir correlation functions.

The dynamics of 𝜌(𝑡) is only governed by the Hamiltonian of the system,
𝐻S, and may be described using the transformation operator [173]

𝑈S(𝑡, 𝑡0) = e−i~−1𝐻S(𝑡−𝑡0), (8.26)

which obeys the Schrödinger equation

i~𝜕𝑡𝑈S(𝑡, 𝑡0) = 𝐻S𝑈S(𝑡, 𝑡0). (8.27)

Transforming Eq. (8.25) back to the Schrödinger picture using 𝑈𝑆 and Eq.
(8.27), gives

𝜕𝑡𝜌(𝑡) = 𝜕𝑡

{︂
𝑈S(𝑡, 𝑡0)𝜌(𝑡)𝑈†

S(𝑡, 𝑡0)

}︂
= − i

~
[𝐻S, 𝜌(𝑡)] + 𝑆(𝑡), (8.28)

where 𝑆(𝑡) defines the time-local scattering terms induced by the reservoir,

𝑆(𝑡) = 𝑈S(𝑡, 𝑡0) (𝜕𝑡{𝜌(𝑡)})𝑈†
S(𝑡, 𝑡0). (8.29)

By exploiting the properties of 𝑈S, we have the two relations

𝑈S(𝑡, 𝑡0)𝜌(𝑡′)𝑈†
S(𝑡, 𝑡0) = 𝑈S(𝑡, 𝑡0)𝑈†

S(𝑡′, 𝑡0)𝜌(𝑡′)𝑈S(𝑡′, 𝑡0)𝑈†
S(𝑡, 𝑡0) (8.30)

= 𝑈S(𝑡, 𝑡′)𝜌(𝑡′)𝑈†
S(𝑡, 𝑡′), (8.31)

and similarly

𝑈S(𝑡, 𝑡0)𝑃𝜈1𝜈′
1
(𝑡′)𝑈†

S(𝑡, 𝑡0) = 𝑈S(𝑡, 𝑡′)𝑃𝜈1𝜈′
1
𝑈†
S(𝑡, 𝑡′). (8.32)
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Using these, the time-local scattering term may be achieved from Eq. (8.25) by
substituting 𝜌(𝑡′) → 𝜌(𝑡), before transforming back to the Schrödinger picture,

𝑆(𝑡) = − 1

~2

∫︁ 𝑡

𝑡0

d𝑡′
∑︁

𝜈1𝜈′
1𝜈2𝜈′

2

{︁
[︂
𝑃𝜈1𝜈′

1
𝑈S(𝑡, 𝑡′)𝑃𝜈2𝜈′

2
𝑈†
S(𝑡, 𝑡′)𝜌(𝑡)

− 𝑈S(𝑡, 𝑡′)𝑃𝜈2𝜈′
2
𝑈†
S(𝑡, 𝑡′)𝜌(𝑡)𝑃𝜈1𝜈′

1

]︂
⟨𝐵̃𝜈1𝜈′

1
(𝑡)𝐵̃𝜈2𝜈′

2
(𝑡′)⟩

+

[︂
𝜌(𝑡)𝑈S(𝑡, 𝑡′)𝑃𝜈2𝜈′

2
𝑈†
S(𝑡, 𝑡′)𝑃𝜈1𝜈′

1

− 𝑃𝜈1𝜈′
1
𝜌(𝑡)𝑈S(𝑡, 𝑡′)𝑃𝜈2𝜈′

2
𝑈†
S(𝑡, 𝑡′)

]︂
⟨𝐵̃𝜈2𝜈′

2
(𝑡′)𝐵̃𝜈1𝜈′

1
(𝑡)⟩
}︁
. (8.33)

For a specific system, 𝑈S may thus be determined from the system Hamiltonian,
𝐻S, and 𝑃 and 𝐵 are given by the specific coupling mechanism between the
system and the reservoir, described by 𝐻SR.

8.3 Summary

In this chapter we have introduced the deformation potential coupling, being
the major mechanism for interaction between the electronic carriers in a stan-
dard GaAs-based QD system and the surrounding environment, with the latter
being modelled as a large phonon reservoir. The interaction strength is propor-
tional to the overlap between the spatial modes of the electronic carriers and
the phononic modes, characterized by a form factor, Eq. (8.6).

Using a quantum master equation [173, 175, 174], an equation of motion
for the reduced density matrix of the system has been derived in Eq. (8.28)
using the time-convolutionless formalism, where the phonon reservoir degrees
of freedom has been traced out. The influence of the phonons appear as a
non-Markovian time-local scattering term, Eq. (8.33), additional to the pure
evolution of the system.

In the next two chapters we solve Eq. (8.28) with the interaction Hamilto-
nian in Eq. (8.5) to examine how the electronic and phononic confinement may
be engineered in order to alter the phonon-induced dynamics. For the phonon
confinement, the interaction matrix element becomes more complicated, as the
bulk phonon description breaks down.
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In this chapter we investigate the role of carrier confinement on phonon scat-
tering in a semiconductor quantum dot (QD). We employ the comprehensive
theoretical model described in Chapter 8 that takes into account the non-
Markovian nature of the phonon reservoir [48], thus avoiding the standard
approach of describing phonon-induced decoherence by a pure dephasing rate
[190, 191]. Surprisingly, we find that deformation potential scattering may be
completely quenched under certain conditions, depending on the degree of con-
finement of the involved electronic states. The effect is investigated in detail
for two cases.

Firstly in Section 9.1, we consider photoluminescence spectroscopy of a sin-
gle QD and find that the luminescence is suppressed at certain detunings due to
a quenching of phonon scattering. Approximate analytic results show that the
effect originates from the difference in the spatial confinement of electrons and
holes, usually neglected in theoretical treatments. Secondly in Section 9.2, we
find that quenching of phonon scattering strongly affects pure dephasing in cou-
pled QD-cavity systems. Expanding the description to realistic QD structures,
which are analyzed numerically, conditions for reducing phonon scattering are
established. Lastly in Section 9.3, the phonon model is applied to an exper-
imental measurement of the decay rate of a QD inside a L3 photonic crystal
cavity, by which we are able to map out the effective phonon density of states,
which to our knowledge has not been demonstrated before [172].

Other approaches towards controlling the degree of phonon scattering use
phononic bandgap structures for suppressing vibrational modes [192] or consid-
ers QDs near surfaces [193], which will be discussed in the next chapter. Struc-
tures with simultaneous photonic and phononic bandgaps have been discussed
theoretically [194] and experimentally realized [195] with phononic bandgaps
in the GHz-regime. In cavity QED, the most relevant phonons belong to the
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acoustic branch with energies in the THz-regime, hence the present phononic
band gap structures are primarily of interest for improving the optomechanical
coupling [196].

The chapter is based on the journal publication Proposed Quenching of
Phonon-Induced Processes in Photoexcited Quantum Dots due to Electron-Hole
Asymmetries. Phys. Rev. Lett. 110, 087401 (2013) by A. Nysteen, P. K.
Nielsen, and J. Mørk. Experimental results are included from the journal
publication: Measuring the effective phonon density of states of a quantum dot
in cavity quantum electrodynamics. Phys. Rev. B 88, 045316 (2013) by K. H.
Madsen, P. K. Nielsen, A. Kreiner-Møller, S. Stobbe, A. Nysteen, J. Mørk, and
P. Lodahl.

9.1 Photoluminescence excitation

At first we consider a two-level QD with transition energy ~𝜔QD illuminated
by a CW laser with frequency 𝜔L in a standard photoluminescence excita-
tion experiment. We consider InGaAs material systems and limit ourselves to
detunings below 10meV and low temperatures (here 4K), where the deforma-
tion potential coupling between electrons and longitudinal acoustic phonons
constitutes the dominating coupling mechanism, as discussed in Section 8.1.
Following Chapter 2, the Hamiltonian for the QD excited by the laser has the
form

𝐻S = ~(𝜔QD − 𝜔L)𝑐†𝑒𝑐𝑒 + ~Ω(𝑐†𝑒𝑐𝑔 + 𝑐†𝑔𝑐𝑒), (9.1)

here written in a frame rotating with the frequency of the laser, and where
~Ω corresponding to a Rabi-frequency induced by the laser. The QD excited
and ground state annihilation (creation) operators are 𝑐𝑒 and 𝑐𝑔 (𝑐†𝑒 and 𝑐†𝑔)
respectively. The phonon bath is described by Eq. (2.10),

𝐻0,ph =
∑︁
𝑗,k

~𝜔𝑗(k)𝑏†𝑗,k𝑏𝑗,k, (9.2)

where the 1/2-term also is omitted as it does not contribute to the dynamics.
Finally, the interaction between the electrons (𝑒)/holes (ℎ) and the phonons
for bulk phonon modes is given by Eq. (8.5),

𝐻e-ph =
∑︁
𝑗,k

(︀
𝑀k

𝑗,ℎℎ𝑐
†
𝑔𝑐𝑔 +𝑀k

𝑗,𝑒𝑒𝑐
†
𝑒𝑐𝑒
)︀ (︁
𝑏†𝑗,−k + 𝑏𝑗,k

)︁
. (9.3)

As the interlevel in the QD is much larger than the phonon energies considered
in this theses, we set the matrix elements 𝑀k

𝑗,ℎ𝑒 and 𝑀
k
𝑗,𝑒ℎ to zero because the

interlevel distance is much larger than the phonon energies considered in this
thesis.

Initially we consider spherical-parabolic confinement potentials, giving the
electron and hole wavefunctions

𝜑𝜈(r) = 𝜋−3/4𝑤−3/2
𝜈 exp

[︀
−𝑟2/(2𝑤2

𝜈)
]︀
, (9.4)
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with 𝜈 ∈ {𝑒, ℎ} representing the electron and the hole respectively. The dif-
ferences in carrier confinement lead to wavefunctions with different effective
widths for electrons (𝑤𝑒) and holes (𝑤ℎ).

As derived in Eq. (8.28), the reduced density matrix describing the quantum
system evolves according to

𝜕𝑡𝜌(𝑡) = −i~−1[𝐻S, 𝜌(𝑡)] + 𝑆LA(𝑡) + 𝐿(𝑡). (9.5)

Here 𝐿(𝑡) represents losses included through the Lindblad formalism [179],
which accounts through the rate Γ, for the decay of the excited QD state into
subsystems which are not described by𝐻S. 𝑆LA(𝑡) describes the non-Markovian
coupling between the electron/hole and the phonon reservoir. It is calculated
from Eq. (8.33), which is carried out in detail in [173]. We will not go through
the deviations here, but simply note that 𝑆LA(𝑡) contains a correlation function
describing the phonon reservoir,

𝐷≷(𝑡) =
∑︁
k

|𝑀k|2 [(2𝑛k + 1) cos(𝜔k𝑡) ∓ i sin(𝜔k𝑡)] . (9.6)

where k is the phonon wavevector, and 𝑛k = 1/[exp(~𝜔k/𝑘𝐵𝑇 ) − 1] is the
average thermal occupation number of the phonon mode k at temperature 𝑇 .
It is related to the phonon bath operators in Eq. (8.33) as 𝐷≷(𝑡−𝑡′) = ⟨𝐵̃(±[𝑡−
𝑡′])𝐵̃(0)⟩ and contains information about the memory depth of the phonon
reservoir. For bulk phonons, 𝐷≷(𝑡) decays within 5 ps [173, 197]. Furthermore
𝑀k = 𝑀k

𝑒𝑒−𝑀k
ℎℎ is the effective electron/hole-phonon coupling matrix element

with the interaction strengths given by Eq. (8.7). When evaluating 𝑀k, we
consider bulk phonons with a linear dispersion relation, 𝜔k = 𝑐𝑙|k|, with 𝑐𝑙
being the velocity of longitudinal acoustic waves, here defined as the slope of
the dispersion curve in Fig. 8.1 close to the Γ-point in reciprocal space.

Solving Eq. (9.5) numerically1 with the confinement of the electronic car-
riers given by Eq. (9.4), we calculate the stationary population of an InAs QD
embedded in GaAs for varying detuning between the laser and the QD ground
state resonance, see Fig. 9.1a. Comparing the black and blue curve in Fig.
9.1a shows that the QD, as is well-known [164, 198], may be populated by a
phonon-assisted process when the laser and the QD are off-resonant. However,
when the widths of the electron and hole wavefunction differ, as for the red
curve, the QD population and thus the photoluminescence intensity is sup-
pressed at a specific detuning. As we shall show, this implies quenching of
phonon scattering.

The strength of the carrier-phonon scattering is quantified by the effective
phonon spectrum, 𝒟(𝜔), describing how the phonon modes interact with the
QD at a given temperature. It is obtained by calculating the real part of 𝐷>(𝑡)
from Eq. (9.6) in frequency domain [173, 48],

𝒟(𝜔) = 𝜋
∑︁
k

|𝑀k|2
[︂
𝑛k𝛿(𝜔 + 𝜔k) + (𝑛k + 1)𝛿(𝜔 − 𝜔k)

]︂
. (9.7)

1We consider parameters for GaAs, with deformation potentials 𝐷𝑒 = −14.6 eV, 𝐷ℎ =
−4.8 eV [47, 182], 𝑐𝑙 = 5110m/s, and 𝜚 = 5370 kg/m3. See Appendix C for elaborating
discussions of the parameters.
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(b)

(a)

Figure 9.1: (a) Stationary population of a bare QD, when excited by a CW field,
corresponding to a Rabi-frequency ~Ω = 10𝜇eV. The black curve describes the
case without phonon-assisted coupling, and the QD decay rate is Γ = 1ns−1.
(b) The effective phonon spectrum for spherical wavefunctions for varying 𝑤ℎ

and 𝑤𝑒. For both plots, 𝑤3
𝑒 + 𝑤3

ℎ is kept constant, and 𝑇 = 4K.

A positive frequency implies a phonon of energy ~𝜔 being emitted into the
surrounding lattice, whereas a negative frequency indicates the absorption of a
phonon of energy ~|𝜔| from the surrounding environment.

For spherical wavefunctions, cf. Eq. (9.4), the effective phonon spectrum
reduces to

𝒟(𝜔) =
~

4𝜋𝜚𝑐5𝑙

𝜔3

1 − e−𝛽~𝜔

×
[︁
𝐷𝑒e

−𝜔2𝑤2
𝑒/(4𝑐

2
𝑙 ) −𝐷ℎe

−𝜔2𝑤2
ℎ/(4𝑐

2
𝑙 )
]︁2
, (9.8)

and is shown in Fig. 9.1b. The magnitude of 𝒟(𝜔) is generally smaller for 𝜔 < 0
compared to 𝜔 > 0 due to the low probability of thermally excited phonons.
As seen from Eq. (8.6), a spatially narrow wavefuntion is wide in k-space and
thus interacts with many phonon modes, explaining why 𝒟(𝜔) broadens and
increases in magnitude as 𝑤ℎ decreases. At non-zero temperature, 𝒟(𝜔) has
two zeros at

𝜔2 =
4𝑐2𝑙

𝑤2
𝑒 − 𝑤2

ℎ

ln

(︂
𝐷𝑒

𝐷ℎ

)︂
, (9.9)

except for the trivial zero at 𝜔 = 0. In materials where 𝐷𝑒/𝐷ℎ > 0, like GaAs
[47, 182], dips thus appear in the effective phonon spectrum for non-zero phonon
energies when 𝑤𝑒 ̸= 𝑤ℎ. The dips appear exactly when |𝑀k| ∝ |𝐷𝑒ℱ𝑒(𝑘 =
𝜔/𝑐𝑙) −𝐷ℎℱℎ(𝑘 = 𝜔/𝑐𝑙)| = 0 ⇒ 𝐷𝑒ℱ𝑒(𝑘 = 𝜔/𝑐𝑙) = 𝐷ℎℱℎ(𝑘 = 𝜔/𝑐𝑙).

Based on this we provide a simple physical explanation for the quenching
of phonon-induced processes. The deformation potential interaction occurs in
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Figure 9.2: Coupled cavity–QD system interacting with a phonon reservoir.
The light-matter coupling strength is 𝑔, the QD–cavity detuning is ∆ (positive
for the case shown), and 𝑀𝑒𝑒/ℎℎ are electron/hole–phonon coupling matrix
elements. Γ is the QD population decay rate, and 𝜅 is the leakage rate from
the optical cavity.

general due to the different values of the deformation potential constant in the
conduction and valence band. However, for a specific detuning, this can be
compensated by a difference in the confinement of the electron and the hole
through the form factor in Eq. (8.6). In the case of identical electron and hole
wavefunctions, 𝑤𝑒 = 𝑤ℎ, the zeros appear at infinite frequency, and the effect
is not apparent.

9.2 Coupled QD–cavity system

Quenching of phonon processes has interesting consequences for cavity QED.
Instead of illuminating the QD with a laser, the QD is now placed inside a
single-mode optical cavity, detuned by ∆ = 𝜔QD−𝜔cav from the QD resonance,
see Fig. 9.2. 𝐻S in Eq. (9.5) is replaced by the combined QD-cavity system
Hamiltonian, Eqs. (2.8) and (2.12),

𝐻S = ~∆𝑐†𝑒𝑐𝑒 + ~𝑔(𝑎𝑐†𝑒𝑐𝑔 + 𝑎†𝑐†𝑔𝑐𝑒) (9.10)

where ~𝜔cav is the cavity photon energy, 𝑎 (𝑎†) is the annihilation (creation)
operator for the cavity photons, and 𝑔 is the optical interaction strength, see e.g.
Ref [173]. Furthermore, the escape of photons through the cavity is included
via a rate 𝜅 in the Lindblad term 𝐿(𝑡) in Eq. (9.5).

Solving Eq. (9.5), the QD decay curves in Fig. 9.3a are obtained. The
structure of the phonon bath results in an asymmetry, expressed in the possi-
bility of the QD to couple to a red-tuned (lower energy, ∆ > 0) cavity by the
emission of an acoustic phonon, but a lack of coupling to a blue-tuned (higher
energy, ∆ < 0) cavity by phonon absorption at low temperatures, where the
population of thermally excited phonons is low [47, 48]. This is in accordance
with 𝒟(𝜔) in Fig. 9.1b. In the limit of |∆| → ∞, the QD and the cavity decou-
ple, and the QD decays with the rate Γ. By single-exponential fits to the QD
decay curves, the lifetime of the excited QD state is extracted, see Fig. 9.3b.
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Figure 9.3: (a) Time evolution of the population of an initially excited QD
for different detunings. The solid (dashed) curve is for negative (positive)
detuning, and the electron and the hole are equally confined, 𝑤𝑒 = 𝑤ℎ = 5nm.
The temperature is 𝑇 = 4K, and we use ~𝑔 = 150𝜇eV, Γ = 1 ns−1, and
~𝜅 = 100𝜇eV. (b) Lifetimes, 𝜏 , of the excited QD state plotted versus detuning
for different values of 𝑤𝑒 and 𝑤ℎ, keeping the volume parameter 𝑤3

𝑒 + 𝑤3
ℎ

constant. The solid (dashed) curves indicate negative (positive) detunings. (c)
The degree of asymmetry versus detuning.

From this we determine the lifetime ratio 𝜏Δ<0/𝜏Δ>0, see Fig. 9.3c. Surpris-
ingly, for 𝑤𝑒 ̸= 𝑤ℎ, a non-zero QD–cavity detuning exists, where no lifetime
asymmetry is present.

To examine the physical origin of the lifetime asymmetry, we consider the
total decay rate of the excited QD state when ∆ ≫ 𝑔 as derived in Ref. s[173],

Γtot ≈ Γ + 2𝑔2
𝛾tot

𝛾2tot + ∆2

[︂
1 +

1

~2𝛾tot
𝒟(𝜔 = ∆)

]︂
, (9.11)

with 𝛾tot = (Γ + 𝜅)/2. The total QD decay rate, Γtot, has two contributions
besides the decay rate Γ. The first term in the square brackets represents the
usual Purcell enhancement rate, while the second term represents the decay
of the QD through the cavity by the simultaneous emission/absorption of a
phonon. Thus, the behaviour of 𝒟(𝜔) translates directly into the behaviour
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Figure 9.4: (a) Time evolution of phonon-induced dephasing rate for different
QD-cavity detunings. Inset shows the long-time value of the dephasing rate
versus detunings, 𝑤ℎ = 3nm, 𝑤𝑒 = 6nm, and 𝑇 = 4K. (b) Time evolution of
phonon-induced dephasing rate for different wavefunction widths, keeping 𝑤3

𝑒 +
𝑤3

ℎ constant, and ∆ = 1meV. The inset quantifies the short-time scattering
by showing the integrated value of 𝛾ph(𝑡) from 𝑡 = 0 to 3 ps for different
wavefunction widths. Parameter values as in Fig. 9.3.

of the lifetime ratio plot in Fig. 9.3c, such that non-zero QD-cavity detunings
exist where phonons do not affect the lifetime of the excited QD state.

The suppression of the effective phonon density is expected to affect not only
the QD lifetime, but all phonon-induced effects such as pure dephasing. The
degree of single-photon indistinguishability [170] is typically quantified as the
ratio between the coherence time and lifetime of the emitter [171], here given
by the ratio Γtot/(Γtot +2𝛾ph), with 𝛾ph being the pure dephasing contribution
from the phonons. This hints at the importance of having a high decay rate
compared to the pure dephasing rate.

The phonon-induced pure dephasing rate2 is calculated from the phonon

2𝛾ph corresponds to Re{𝛾12} in Ref. [173].
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bath correlation function [173], and we find it to be given by

𝛾ph(𝑡) = Re

{︂
~−2(1 −𝐾)

∫︁ 𝑡

0

d𝑡′ 𝒟<(𝑡′)

+~−2𝐾

∫︁ 𝑡

0

d𝑡′ cos
(︁
𝑡′
√︀

∆2 + 4𝑔2
)︁
𝒟<(𝑡′)

}︂
, (9.12)

where 𝐾 = 4𝜆2+/(1 + 𝜆2+)2 with 𝜆+ = ∆/(2𝑔) +
√︀

∆2/(2𝑔)2 + 1. As seen from
Fig. 9.4a, the initial behaviour of 𝛾ph(𝑡) is governed by the bare QD-phonon
coupling, whereas the long-time value depends on the cavity detuning. On
the short time scale, the phonons participate in non-energy conserving virtual
processes, and the electrons interact with the full phonon spectrum 𝒟(𝜔). The
long-time value 𝛾ph(𝑡→ ∞), on the other hand, implies a Fourier transform of
𝒟(𝑡) and depends only on 𝒟(𝜔 = 0), which is zero, and 𝒟(𝜔 = ±

√︀
∆2 + 4𝑔2),

corresponding to sampling the spectrum at the polaritonic eigenenergies.
The phonon-induced dephasing of the QD–cavity system may be reduced by

minimizing the short-time or long-time scattering. The former may be achieved
by reducing the overall amplitude of 𝒟(𝜔), as illustrated in the inset of Fig.
9.4b for 𝑤ℎ ∼ 3.4 nm, compare with Fig. 9.1b. The reduction of long-time
scattering is obtained by using a QD–cavity detuning such that

√︀
∆2 + 4𝑔2

coincides with a dip in 𝒟(𝜔), as seen from the inset in Fig. 9.4a. It turns out
that for the indistinguishability of single photons, the reduction of the overall
amplitude is the most important [49]. The coupling to excited shells in the QD
through virtual phonon interactions induces additional pure dephasing [167].
However, for 𝑇 < 10 K this amounts to a weak background, with no qualitative
effect on our result. Furthermore, for the dot sizes considered here, the next
electronic energy levels are well-separated compared to the acoustic phonon
energies [199], and these levels are neglected.

QD structures realized by epitaxial growth are not spherically symmet-
ric [200], and to investigate the quenching for more realistic structures, we
model truncated conical QD structures by solving the one-band effective mass
Schrödinger equation using the Finite Element Method (FEM) [201]. Strain-
induced effects [200] were not included, but since the strain strongly depends
on the QD geometry, material and growth conditions, it may further suppress
or enhance phonon scattering, thus presenting another option for engineering
the basic properties.

The effective phonon spectrum obtained with the FEM wavefunctions is
shown in Fig. 9.5a for an InAs QD and wetting layer embedded in a GaAs
barrier3. The overall amplitude of the spectrum is the largest, when the carriers
are strongly confined in two directions, i.e. for the tallest dot, compared to the
shallow dot where the carriers are only strongly confined in one direction. These
results are qualitatively explained by the form factor in Eq. (8.6).

To examine the role of material composition, we consider an In𝑦Ga1−𝑦As
QD, where the amount of gallium in the QD and wetting layer is varied. Increas-

3We use 𝐸𝑔,GaAs = 1.424 eV, 𝐸𝑔,InAs = 0.359 eV, 𝑚*
𝑐,GaAs = 0.0665𝑚0, 𝑚*

𝑐,InAs =
0.027𝑚0, 𝑚*

𝑣,GaAs = 0.38𝑚0, 𝑚*
𝑣,InAs = 0.34𝑚0, and a wetting layer thickness of 0.2 nm

[201, 202].
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(a)

(b)

Figure 9.5: (a) Effective phonon spectrum using the FEM-computed wavefunctions
for the three QDs shown in the insets with matching colors, 𝑇 = 4K. The QD volume
and side slope are kept constant. (b) The effective phonon spectrum for the shallow
dot in (a) for different QD material compositions, In𝑦Ga1−𝑦As.

ing the gallium concentration shrinks the band offsets [202], and the effective
mass changes, giving 𝒟(𝜔) in Fig. 9.5b. Thus, 𝑤𝑒 and 𝑤ℎ both increase, re-
sulting in a lower overall amplitude of 𝒟(𝜔). Due to the heavier hole mass, the
asymmetry between the electron and hole wavefunctions also increases, moving
the dip in the spectrum towards lower frequencies, as predicted by the spherical
model in Eq. (9.9) when 𝑤2

𝑒 − 𝑤2
ℎ increases. The dip position may hereby be

changed by the QD growth parameters. For small gallium concentrations, the
confinement energies may become comparable to the Coulomb energy, in which
case the exitonic nature of the electron–hole pair must be taken into account.

103



Chapter 9. Phonon-induced dynamics — The electronic confinement

(a)

(b)

Figure 9.6: (a) Effective phonon spectrum using the FEM-computed wave-
functions for the three QDs shown in the insets with matching colors, 𝑇 = 4K.
The QD volume and side slope are kept constant. (b) The effective phonon
spectrum for the shallow dot in (a) for different QD material compositions,
In𝑦Ga1−𝑦As.
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9.3 Experimental investigation

Experimental investigations of the dependence of the QD–cavity detuning on
the QD decay rate has recently been carrier out by Kristian H. Madsen and
Asger Kreiner-Møller at the Niels Bohr Institute in the Quantum Photonics
Group, headed by Prof. Peter Lodahl [172]. To our knowledge, this is the first
demonstration of modelling the decay rates with a macroscopic model which
allows us to extract the effective phonon density of states.

The detuning dependence is investigated in a standard L3 cavity in a pho-
tonic crystal membrane containing self-assembled quantum dots, see Fig. 9.7(a).
The Purcell-enhancement is spectrally much broader than expected from the
standard Markovian Jaynes Cummings model [203, 24], given by the first two
terms in Eq. (9.11). Instead, the experimental data may be modelled very well
by including the phonon contribution to the decay rate of the emitter as the last
term in Eq. (9.11). In Fig. 9.7(b) the effective phonon spectrum is extracted
from the experimental data, accounting for the fact that the measurements were
carried out at different temperatures by plotting the temperature-independent
quantity 𝒟(𝜔 = ∆)sgn(∆) (1 − exp[−~𝜔/(𝑘𝐵𝑇 )]).

The grown QDs were known to have a smaller height compared to widths,
and thus the spherical electronic confinement in Eq. (9.4) would not be a suf-
ficient description. Instead, the extracted data was fitted to match phonon
interaction with an elliptical carrier wavefunction,

𝜑𝜈(r) = 𝜋−3/4𝑤−1
𝜈,𝜌𝑤

−1/2
𝜈,𝑧 e−𝜌2/(2𝑤2

𝜈,𝜌)e−𝑧2/(2𝑤2
𝜈,𝑧),

given in cylindrical coordinates with 𝜌 describing the radial dependence, where
the radial width is given by 𝑤𝜈,𝜌 and the height by 𝑤𝜈,𝑧. We determine the
effective phonon spectrum by evaluating Eq. (9.7) with the elliptical carrier
confinement,

𝒟(𝜔) =
~

4𝜋𝜚𝑐5𝑙

𝜔3

1 − e−𝛽~𝜔

[︂
𝐷2

𝑒e
−𝜔2𝑤2

𝑒,𝜌/(2𝑐
2
𝑙 )𝑓𝑒𝑒(𝜔) +𝐷2

ℎe
−𝜔2𝑤2

ℎ,𝜌/(2𝑐
2
𝑙 )𝑓ℎℎ(𝜔)

− 2𝐷𝑒𝐷ℎe
−𝜔2(𝑤2

𝑒,𝜌+𝑤2
ℎ,𝜌)/(4𝑐

2
𝑙 )𝑓𝑒ℎ(𝜔)

]︂
, (9.13)

requiring 𝑤𝜈,𝜌 ≥ 𝑤𝜈,𝑧, and with

𝑓𝜈𝜈′(𝜔) =

∫︁ 1

0

d𝑥 e
𝜔2𝑏2

𝜈𝜈′
4𝑐2

𝑙

𝑥2

,

where 𝑏𝜈𝜈 =
√

2
√︁
𝑤2

𝜈,𝜌 − 𝑤2
𝜈,𝑧, and 𝑏𝑒ℎ =

√︀
𝑏2𝑒𝑒 + 𝑏2ℎℎ/

√
2. Eq. (9.13) reduces

to Eq. (9.8) in the limit 𝑤ℎ,𝜌 = 𝑤ℎ,𝑧, 𝑤𝑒,𝜌 = 𝑤𝑒,𝑧.
The experimental data points are fitted to Eq. (9.13) using the material

parameters from Appendix C, and is seen to match the theoretical model very
well. The confinement lengths for the QD wavefunctions are extracted to be:
𝑙𝑒,𝜌 = 3.4 nm, 𝑙𝑒,𝑧 = 1.4 nm, 𝑙ℎ,𝜌 = 3.9 nm, and 𝑙ℎ,𝑧 = 2.3 nm. However,
to make the fit agree, 𝒟(𝜔) has been scaled by a factor of 5.57 compared
to Eq. (9.13). This scaling does, however, seem reasonable when accounting
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Figure 9.7: (a) Experimentally measured decay rates of a QD in an L3 photonic
crystal cavity for varying detuning cavity–QD detunings (with the color specifying
the experimental temperature). The emitter decay rate evaluated theoretically using
Eq. (9.11) for the smallest and largest temperature used in the experiments (solid
curves), and in the case where no phonon coupling is present (dashed line), i.e. the
standard Jaynes Cummings model [203]. (b) A plot of the effective phonon spectrum,
extracted experimentally for the L3-system, where the temperature dependence has
been factored out. The inset shows the theoretical behaviour of the effective phonon
spectrum when the temperature is increased. The parameters used for the L3 cavity
are ~𝜅 = 195𝜇eV, ~𝑔 = 22𝜇eV, and ~Γ = 0.2𝜇eV. Reproduced from [172].

for the uncertainty in the material constants, especially the uncertainty in 𝑐𝑙,
as it appears to the fifth power — see Appendix C and [164] for elaborating
discussions.

When employing the elliptical confinement in the calculations, the zeros in
the effective phonon spectrum for non-zero detunings only appear in the spheri-
cal limit. For non-spherical wavefunctions, a dip in the spectrum is however still
present in similarity with Fig. 9.5, at which detunings the phonon-contribution
to the decay rate would be low. The extracted widths of the wavefunctions
indicate a dot geometry where the height is much smaller than the width. Ac-
cording to Fig. 9.5 the position of the dip would be at detunings of ∼5–6 meV.
But as the phonon contribution to the QD lifetime in Eq. (9.11) is proportional
to (𝛾2tot+∆2)−1, it becomes a challenge to measure these phonon-contributions
to the lifetime at such large detunings, as they are very small. This may ex-
plain why we are not able to observe any dips in the extracted effective phonon
spectrum in Fig. 9.7(b).

9.4 Summary

In this chapter we have applied the non-Markovian model of the phonon dy-
namics from Chapter 8 to describe the dynamics of a QD driven by a slightly

106



Summary

detuned laser. We expanded this to consider the decay dynamics of a QD inside
an optical cavity. In both cases we predict how that electron-phonon scattering
may be suppressed due to differences in the spatial confinement of electrons and
holes. Physically we explain this by a balancing between the electronic confine-
ment and the effect on the deformation potential coupling on the energy bands
in the QD. We suggest that the effect may be measured by photoluminescence
excitation spectroscopy, but also that it should strongly affect the decoherence
properties of cavity QED systems.

We derived an expression for the phonon spectrum of ellipsoidal wavefunc-
tions of the electrons and holes, and it is able to reproduce recent experimental
results very well. In the experiment, we were however not able to observe any
of the dips in the effective phonon spectrum due to the electron-hole asym-
metry. The wavefunction dimensions extracted from the experiment estimates
that the dip in the phonon spectrum appear for QD–cavity detunings of ∼ 4-5
meV. But at these detuning values, the phonon contribution to the measured
lifetime is also very low according to Eq. (9.11), making the dip very difficult
to measure. In another recent experiment in Ref. [198], a dip is observed in the
intensity spectrum of a QD pumped by a detuned laser at a detuning of ∼ 1
meV, which could be due to these electron-hole asymmetries. It was, however,
not possible to facilitate a collaboration for further investigations.

We demonstrated in Eq. (9.12) that the phonon-induced dephasing has two
contributions: In the long time limit depends on sampling the effective phonon
spectrum at two specific points, 𝒟(𝜔 = ±

√︀
∆2 + 4𝑔2). In the short-time limit,

however, phonons may participate in non-energy-conserving virtual processes,
which corresponds to sampling the effective phonon at all frequencies. Both of
these contributions have to be minimized in order to reduce the phonon-induced
dephasing the most.

In later works [73, 49], P. Kaer et al. have specifically investigated how the
phonon-induced dephasing affects the indistingushability of photons emitted
from a single-photon source created with a QD inside an optical cavity such as
a micropillar. Here it is shown that the short-time non-Markovian interaction
has the largest significance on the indistinguishability of the emitted photons.
These effects are minimized when the integral of the effective phonon spectrum
is minimized, shown by the inset in Fig. 9.4, providing optical values of the
electronic and hole confinements. One must however keep in mind, that these
depend on the material parameters of the quantum dot and the barrier.

We expect this new approach for suppressing phonon interactions to be
important for the reduction of decoherence in devices for quantum information
technology, like single-photon sources and switches. This is combined with the
possibility of also engineering the phononic confinement, as will be discussed
in the following chapter.
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Chapter 10

Phonon-induced dynamics

— The phononic

confinement

In experimental setups which employ QDs, a bulk description of the phonons
is usually employed, even though the sample with the QDs have a finite ex-
tent. The question is, however, for which structures the bulk assumption is
valid, and whether the confinement of phonon may be exploited to improve
the performance of a quantum system, i.e. to improve the performance of a
single-photon source.

The simplest approach to consider phonon confinement is by confining them
in a single spatial direction, i.e. in an infinite slab. It is well-known that the
phonon reservoir changes properties when describing the coupling to a QD close
to a surface [204, 205]. These descriptions have been expanded to include the
infinite slab structure, where the calculations show that the emitted phonons
have a possibility of being scattered at the surface and interact with the QD
carriers again, which will introduce modulations in the QD absorption spectrum
[206, 207, 193].

A specific interest has been in predicting the dynamics in a double-quantum
dot system placed in an infinite slab [208]. The double-dot systems are viable
candidates as solid-state qubits with the qubit states represented by an excita-
tion in either of the dots, where the coefficients of the system may be controlled
by electrically controlling the tunneling rate between the qubits. The perfor-
mance of the qubits are, however, deteriorated by phonon-assisted coupling
between the quantum dots. By placing the emitters at optimal positions in the
slab, the phonon-induced effects may however be suppressed, due to changes
in the phonon modes as compared to bulk phonons [208, 209, 210, 211].

In this chapter, we extend the approaches above to investigate how these
suppressions apply to a cavity–QD-system suspended in an infinite slab. Using
the theory from the previous chapters we have an approach to directly address
the phonon reservoir. Physically such a system could correspond to the L3
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cavity in a photonic crystal slab as in Section 9.3. We show how the decay rate
of the emitter may be either enhanced or suppressed (compared to bulk), de-
pending on the detuning from the cavity modes. The enhancement/suppression
depends on the energies of the vibrational modes in the slab, and we show how
a slight change in the detuning can alter the phononic contribution to the decay
rate significantly. The enhancement or reduction is most significant when the
slab is thinnest, and we estimate that for a slab thickness of more than ∼ 70
nm, a bulk description of the phonon modes is sufficient.

In Section 10.1 the vibrational modes of an infinite slab is described, and
we discuss the changes in the electron-phonon coupling mechanism as com-
pared to bulk phonons. The resulting dynamics are calculated in Section 10.2,
and the effective phonon spectrum is determined. The results are based on
Reducing dephasing in coupled quantum dot-cavity systems by engineering the
carrier wavefunctions. Proceedings of SPIE, the International Society for Op-
tical Engineering 8271, 82710E (2012) by A. Nysteen, P. K. Nielsen, and J.
Mørk.

10.1 Phonon modes in an infinite slab

For an isotropic elastic continuum the ion displacement at a position r obeys
the wave equation [206],

𝜕2𝑡 u = 𝑐2𝑡∇2u + (𝑐2𝑙 − 𝑐2𝑡 )∇(∇ ·u), (10.1)

where 𝑐𝑡 and 𝑐𝑙 are the velocity of the transverse and longitudinal sound waves
in bulk semiconductors, respectively, and obey 𝑐𝑙 > 𝑐𝑡. The boundary condi-
tions to Eq. (10.1) stem from the assumption of a free-standing slab, requiring
that the normal components of the stress tensor vanish at the slab surface. For
the vibrational modes in an infinite slab, the solution of Eq. (10.1) is on the
form

u(r, 𝑡) =
∑︁
𝑛

∫︁
u𝑛(k‖, 𝑧)e

ik‖ · r‖−i𝜔𝑛𝑡
dk‖

(2𝜋)2
, (10.2)

where the phonons are described by a continuum of plane waves in the in-
plane directions and by a discrete set of eigenmodes u𝑛(k‖, 𝑧) in the 𝑧-direction
depending on the in-plane wavevector, k‖ [206].

Typically, vibrational modes of a slab are divided into shear, dilatational
and flexural waves [193]. According to Eq. (8.3), the deformation potential cou-
pling allows coupling only between electrons and longitudinal acoustic phonons
with the assumptions discussed in Section 8.1, and thus the shear waves will
not be considered. Examples of the grid displacements for dilatational and
flexural modes are shown in Fig. 10.1.

Following [193, 212], the carrier–phonon interaction matrix element for the
deformation potential interaction for dilatational modes simplifies to

𝑀𝑛,𝜈𝜈 = 𝐷𝜈𝒢𝑛ℱ𝑛,𝜈 , (10.3)

where 𝐷𝜈 is the deformation potential of the electron/hole, and 𝒢𝑛 is a factor
containing the dispersion relation of the phonon subband 𝑛, 𝜔𝑛. The spatial
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Figure 10.1: Illustration of the grid displacement for the three lowest-order dilata-
tional (symmetric) and flexural (anti-symmetric) modes. Illustration from [188].

overlap between the electronic and phononic wavefunctions is contained in the
form factors, analogous to the bulk form factor in Eq. (8.6),

ℱ𝑛,𝜈,dil =

∫︁
slab

dr |𝜑𝜈(r)|2eik‖ · r‖ cos(𝑘𝑙,𝑛𝑧), (10.4)

ℱ𝑛,𝜈,flex =

∫︁
slab

dr |𝜑𝜈(r)|2eik‖ · r‖ sin(𝑘𝑙,𝑛𝑧), (10.5)

The electronic confinement is included in a simple way by assuming a quantum
dot with spherical wavefunction placed in with its center in the middle of
the slab, and with 𝑧 = 0 as a symmetry plane. With this configuration the
electrons will only interact with the dilatational (symmetric) slab modes and
not the flexural (anti-symmetric) modes, with the latter caused by a vanishing
integral in Eq. (10.5) as the integrand has an odd-symmetry in the 𝑧-direction
with the given assumptions.

For bulk phonon modes, 𝒢𝑛 has a simple form as in Eq. (8.7), which however
is more complex for phonon modes in a slab — see Ref. [193] for the specific
expression for 𝒢𝑛. The dispersion relation for the dilatational modes, which is
employed when evaluating 𝒢𝑛, is obtained from Ref. [193], and it is illustrated
in Fig. 10.2
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Figure 10.2: Phonon dispersion for dilatational modes, relating the frequency of
the phonon modes in the 𝑛th band to the phonon wavevector, both normalized
to the thickness of the slab, 𝑑. The dashed line indicates a minimum of the
second band at 𝜔𝑑/𝑐𝑙 = 2.98. Reproduced from [213].
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10.2 Dynamics

Eq. (9.5) is solved numerically by assuming an initially excited QD state, using
the material parameters in Appendix C and with spherical wavefunctions as
in Eq. (9.4). To emphasize the changes induced by the phononic confinement,
we make the crude approximation that the electron and hole have the same
confinement length, 𝑤𝑒 = 𝑤ℎ = 5nm. The resulting QD decay is illustrated in
Fig. 10.3 for various QD–cavity detunings, where an asymmetry exist between
positive/negative detuning due to the emission/absorption of a phonon, as
discussed in Chapter 9. For bulk phonons we expect the fastest decay at the
lowest detunings, where the coupling to the cavity through the Purcell effect is
strongest. This is however not the case in Fig. 10.3 for the slab configuration,
where the detuning is varied only slightly. To investigate this interesting feature
further, we examine the lifetime asymmetry in detail.

The lifetime variation with detuning is calculated by extracting the lifetime
of the excited QD state by a single-exponential fit to the decay curves in Fig.
10.3. As a measure of the asymmetry, we plot the lifetime ratio 𝜏Δ<0/𝜏Δ>0 as
a function of the QD-cavity detuning, see Fig. 10.4. At small slab thicknesses
we clearly see the effect of both suppressed and enhanced electronic interaction
on the lifetime asymmetry.

As we saw in the previous chapters that the effective phonon spectrum
contains details information about the phonon-induced features, the spectrum
in Eq. (9.7) is evaluated using the new expression for the interaction matrix
elements from Eq. (10.3). A plot of the effective phonon spectrum in provided
in Fig. 10.5. It shows the same features as seen in the lifetime plot in Fig.
10.4, where both suppressed and enhanced phonon interaction can be observed,
dependent on the value of ∆. Due to the limited amount of sampling points
in the detuning-array, we are not able to catch the suppressed and enhanced
phonon modes properly for the slab with 𝑑 = 30nm in the lifetime plot, but
they are clearly seen in the effective phonon spectrum. For a slab thickness of
𝑑 = 70 nm, the suppression/enhancement not pronounced in the spectrum any
more as compared to the bulk case (except for very small detunings).

In the calculations we include a finite lifetime of the phonons to account for
other dephasing processes of the phonon reservoir such as anharmonic effects as
described in Eq. (2.9) which from Ref. [214] is estimated to be 600 ps at 10K.
These are accounted for by multiplying 𝒟≷(𝑡) in Eq. (9.6) with exp[−𝑡/600 ps].
For bulk phonon, this factor is insignificant, as the correlation time of the
reservoir (i.e. the memory depth) is only around 5-10 ps [173]. However, in
the slab, longer memory depths are observed as the phonons may be reflected
from the slab surfaces and interact with the QD again, and thus the correction
for other dephasing processes must included.

The enhanced electron-phonon coupling stems from interaction with a reso-
nant vibrational mode of the slab and arises from a van-Hove singularity in the
phonon density of states. This is seen in Fig. 10.2 as a minimum in the second
phonon band of the dispersion curves [213, 207], equivalent to a theoretically
infinite phonon density of states. The resonance peak appears in Eq. (9.6) at
𝜔 = 2.98 · 𝑐𝑙/𝑑, with 𝑑 being the thickness of the slab. The resonance peak
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moves closer to 𝜔 = 0 as the thickness of the slab increases. However, the am-
plitude of the resonance peak will decrease with increasing 𝑑, since a phonon
emitted from the QD has a smaller probability of interacting with the surface
rather than disappearing into the infinite extend of the slab. At 𝑑 = 10nm the
travel time for a photon from the QD to the surface and back is ∼ 4 ps, which
exactly corresponds to the fast oscillations in Fig. 10.3 for non-zero detuning.

Surprisingly, at slightly lower detunings than for the enhanced phonon
modes, the interaction with the phonon modes is suppressed, which accord-
ing to Eq. (9.11) gives the zeros in the lifetime asymmetry plot in Fig. 10.4.
This system thus shows features of a coupled QD-cavity system where the sys-
tem at a specific detuning does not experience any phonon-induced lifetime
asymmetry, even when assuming identical widths of the wavefunction for the
electron and the hole.

We should emphasize the assumptions and approximations made for the
calculations. The large spikes in the effective phonon spectrum correspond to a
strong electron-phonon interaction, which in the theory is assumed only to be a
weak perturbation in Eq. (8.22). In a system where these phonon resonances is
to be exploited, the assumption of small interaction strength should be tested.
Furthermore, if very narrow slabs are used, the contrast between the GaAs
material and the surrounding air introduces a quantum well for the electrons
as well, which has to be taken into account. A full description where the
flexural slab modes have to be taken into account, if we want to consider the
possibility of placing the QD away from the center plane of the slab, or if we
treat non-symmetric electronic wavefunction.

10.3 Summary

In conclusion we have demonstrated how the presence of an infinite slab around
a coupled cavity-quantum dot system alters the dynamics significantly due
to enhanced/suppressed electron-phonon interaction depending on the cavity-
quantum dot detuning. The enhancement/suppression depends on how the
QD–cavity detuning matches the vibrational modes of the slab, and by changing
the detuning only slightly ∼ 0.3 meV, the phonon contribution to the decay
rate of the emitter may go from 0 to a large enhancement compared to the bulk
case. We estimate that for a slab thickness of ∼ 70 nm, the bulk description
of the phonon modes is sufficient. In the experiment in Section 9.3, a slab
thickness of ∼ 150 nm was used, and the considerations in this chapter justify
the bulk treatment of the phonons.

We believe that these effects of confining the phonons may have interesting
applications in the creation of a coupled QD-cavity system with low dephasing,
showing promising features e.g. for obtaining high indistinguishability in single-
photon sources. An interesting perspective of the calculations would be to
consider micropillar single-photon sources [32, 215]. Here the phonons are
confined effectively in two dimensions, where one thus would expect a higher
sensitivity of the phonon modes to confinement dimensions than compared to
the slab. The electron-phonon interaction matrix elements will, however, also
becomes more complex.
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Chapter 11

Highlights and outlook

The work carried out in this thesis provides a fundamental description of
photon–photon interaction in the presence of non-linearities such as a two-level
system, and we discuss implementations, possibilities, and limitations when
exploiting the non-linearities in conditional gates for quantum computation.
When utilising solid-state implementations of the few-photon non-linearities
such as semiconductor quantum dots, coupling to phonons may deteriorate
the efficiency, and we discuss possibilities for suppressing the phonon-induced
effects by manipulating the electronic and phononic confinement.

Highlights

We focus on a simple system in which propagating photons interact via a mate-
rial non-linearity, namely in an infinite waveguide containing a two-level emit-
ter. Single-photon scattering is well-understood, but the dynamics becomes
much more complex for two-photon scattering due to saturation of the emitter.
We consider two approaches for examining non-trivial two-photon interactions;
a numerical wavefunction approach and the scattering matrix formalism. The
wavefunction approach excels in determining the total system wavefunction at
all times and makes it possible to relate the emitter excitation to the scattering-
induced correlations. It may easily be expanded to consider more complicated
scatterers, e.g. multiple quantum dots in a cavity or spatially separated scat-
teres. On the other hand, the scattering matrix formalism allows calculation of
the scattered state faster than the full numerical approach. However, it relies
on the calculation of a scatterer-specific two-photon scattering matrix which
attains a simple expression for the simple two-level scatterer, but quickly be-
comes much more complex to evaluate if the scatterer is more complex.

With the two approaches we demonstrate that the largest non-linearity-
induced correlations between two photons scattering on an emitter occurs when
the emitter is excited the most. This happens when the bandwidth of the
incoming photon pulses is similar to the linewidth of the emitter. For scattering
of two initially counter-propagating photons we show how the emitter works
as a non-linear beam splitter in this regime of input pulse bandwidths. We
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demonstrate how the non-linearity may help preserving the spectral shapes
of the photons. Even when accounting for all the scattering-induced changes
phase and spectrum of the photons, the photon properties are preserved with
almost 80 % in the non-linear beam splitter.

By employing the gained knowledge, we propose an experimental setup
for a controlled-phase gate consisting of passive optical components and two
emitters. We estimate a gate fidelity close to 80 %, limited by phase mod-
ulations upon scattering and inherent errors from four-wave-mixing processes
caused by the non-linearity. We discuss another proposal for a controlled-phase
gate consisting of a waveguide coupling to two ring resonators with a strong
second-order non-linearity. The scheme suppresses the four-wave-mixing pro-
cesses by dynamically capturing the first of two temporally separated photons.
Theoretically the scheme promises higher fidelities than the other gate pro-
posal, although the dynamical capturing relies on precise timing and control
over cavity detunings, which in reality may be very difficult with the current
technology.

When the non-linearities are implemented in solid-state environments, cou-
pling to phonons may induce dephasing, limiting the coherent interactions. To
understand how to minimize the phonon-induced effects, we apply a model
by P. Kaer [173] which considers a non-Markovian coupling to a large phonon
reservoir through the deformation potential coupling. We specifically inves-
tigate how the electronic and phononic confinement affect the dynamics of a
quantum dot decay through coupling to an optical cavity. The theory is ap-
plied to an experimental measurement of the decay rate of a quantum dot
inside an photonic crystal cavity, from which we are able to extract an effective
phonon spectrum. When examining the electronic confinement, we find that
the asymmetry between the electron and hole wavefunction in a quantum dot
in a GaAs platform may be exploited to suppress the phonon-induced effects.
We explain this suppression by a balancing of the electron-hole wavefuntion
and the deformation potential coupling, occuring only in materials where the
deformation interaction shifts the electron and hole energy bands in the same
direction. Regarding the confinement of the phonons, we consider a quantum
dot–cavity system with the dot placed in the center of an infinite slab. We
demonstrate how the phonon-assisted coupling of the dot through the cav-
ity may be either significantly suppressed or enhanced, depending on how the
quantum dot–cavity detuning matches the energies of the vibrational modes
in the slab. Furthermore we estimate that a bulk description of the phonon
modes is sufficient for a slab thickness larger than ∼ 70 nm, at least when de-
scribing the phonon-contribution the emitter decay rate. We believe that a full
understanding of the possibilities of manipulating the electronic and phononic
confinements will be important for reducing dephasing in quantum devices such
as single-photon sources and non-linear gates.

Outlook and future directions

It is obvious that a large amount of work still has to be carried out in order
to achieve an efficient, scalable platform for performing quantum computation
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utilising few-photon non-linearities. This is both in the field of creating efficient
single-photon sources, gates, and detectors in a scalable scheme — and also in
combining them together in integrated circuits without large coupling losses
between the different devices. In wake of recent breakthroughs, the following
years will most likely bring many new achievements in the fundamental study
of strongly interacting photons. As an example of the recent breakthroughs, a
chiral spin-photon interface in a photonic crystal waveguide allows direction-
specific emission to emitter depending on the spin state of a quantum dot
[138]. New structures with non-linearities in the single-photon regime have also
appeared, such as a graphene plasmon cavity coupling to a dielectric waveguide
[216], which extends the perspectives of the possibilities with the few-photon
non-linearities.

It would indeed be interesting to expand the numerical code to consider
several spatially separated emitters and/or cavities in the waveguide, especially
regarding investigation of sharp Fano resonances [217]. These structures require
a significantly smaller energy detuning to change from being fully transmissive
to fully reflective, as compared to a system with only a single emitter. These
Fano-structures could high relevance when designing few-photon conditional
gates.

Regarding the phonon-induced effects it would be worth making a more
thorough investigation of varying the material compositions in order to change
the electronic confinement and deformation potential constants such that the
phonon-induced dephasing is suppressed the most in quantum devices. We
also see promising perspectives in suppressing the dephasing by altering the
phononic confinement, which may be done by an expansion of the presented
model to more complicated phonon confinements such as in micropillars. The
possibility of creating structures with simultaneous photonic and phononic
bandgap has already been proposed, although with the purpose of enhancing
the optomechanical coupling strength [218, 195]. The bandgap in the presented
structures is, however, for vibrational modes with energies in the GHz regime,
which are several magnitudes below the energies of the acoustic phonons. It
would be interesting to examine if these structures could be exploited to sup-
press dephasing from acoustical phonons in the quantum dot systems.
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Appendix A

Analytical derivation of

two-photon emitter

excitation

In this appendix we demonstrate how to find an analytical expression for the
emitter excitation probability, when a two-photon pulse consisting of two co-
phopagating, uncorrelated single-photon pulses scatters on an emitter, which
initially is in its ground state. We specifically determine the excitation prob-
ability for an input pulse consisting of two identical pulses with a Gaussian
wavepacket, and we use this to verify the numerical implementation demon-
strated in Chapter 4.

The procedure of the derivation follows Kojima et al. [91] and Valente et
al. [92], starting from the Hamiltonian in Eq. (3.1), with the waveguide modes
given as plane wave modes with a frequency 𝜈. The waveguide modes are split
into two subgroups, 𝑎 and 𝑏, distinguished by the direction of propagating, and
with different orientations of the spatial axis of the two modes, by which we
may assume a positive value of the wavevector for all modes (removing the
absolute value in the dispersion relation, Eq. (3.4)). With these notations, the
Hamiltonian is

𝐻 = 𝐻1D +𝐻atom +𝐻int, (A.1)

𝐻1D =

∞∑︁
𝜈=0

~𝜈(𝑎†𝜈𝑎𝜈 + 𝑏†𝜈𝑏𝜈), (A.2)

𝐻atom = ~𝜈𝐴𝑐†𝑐, (A.3)

𝐻int = −i

∞∑︁
𝜈=0

~𝑔𝑎𝜈 [𝑎𝜈𝑐
† − 𝑐𝑎†𝜈 ] − i

∞∑︁
𝜈=0

~𝑔𝑏𝜈 [𝑏𝜈𝑐
† − 𝑐𝑏†𝜈 ], (A.4)

where 𝑎†𝜈 and 𝑏†𝜈 creates an excitation of frequency 𝜈 in the respective subgroup
of waveguide modes, and 𝑐† creates an excitation in the emitter. Here 𝜈𝐴 is the
transmission frequency of the emitter, and 𝑔𝑎𝜈 and 𝑔𝑏𝜈 describing the coupling
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Appendix A. Analytical derivation of two-photon emitter excitation

strength of the emitter into the different directions of the waveguide. In this
derivation we use slightly different definitions of rotating frames etc. compared
to the remaining thesis, which however does not influence the results

We define the two-excitation state as,

|𝜓(𝑡)⟩ =

∞∑︁
𝜈=0

𝜓𝑎
𝜈 (𝑡)𝑎†𝜈𝑐

†|𝜑⟩ +

∞∑︁
𝜈=0

𝜓𝑏
𝜈(𝑡)𝑏†𝜈𝑐

†|𝜑⟩ +

∞∑︁
𝜈1,𝜈2=0

[︂
𝜑𝑎𝑎𝜈1𝜈2

(𝑡)𝑎†𝜈1
𝑎†𝜈2

+ 𝜑𝑎𝑏𝜈1𝜈2
(𝑡)𝑎†𝜈1

𝑏†𝜈2
+ 𝜑𝑏𝑎𝜈1𝜈2

(𝑡)𝑏†𝜈1
𝑎†𝜈2

+ 𝜑𝑏𝑏𝜈1𝜈2
(𝑡)𝑏†𝜈1

𝑏†𝜈2

]︂
|𝜑⟩. (A.5)

The factor of 1/
√

2 used in Eq. (4.5) is absorbed into the expansion coefficients
of the state to ease the notation in the following for 𝜑𝑎𝑎 and 𝜑𝑏𝑏 (changing the
normalization condition of the state). Furthermore we define the symmetric
version of 𝜑,

Φ𝜎1𝜎2
𝜈1𝜈2

=
𝜑𝜎1𝜎2
𝜈1𝜈2

+ 𝜑𝜎2𝜎1
𝜈2𝜈1

2
. (A.6)

The expressions above are inserted in the time-dependent Schrödinger equa-
tion i~𝜕𝑡|𝜓(𝑡)⟩ = 𝐻|𝜓(𝑡)⟩. By projecting onto the different system states given
in Eq. (A.5), a system of coupled differential equations is achieved,

𝜕𝑡𝜓
𝜎
𝑤 = −i(𝜈𝐴 + 𝑤)𝜓𝜎

𝑤 − 2
∑︁
𝜈2

(︀
𝑔𝜎𝜈2

Φ𝜎𝜎
𝑤𝜈2

+ 𝑔𝜎̄𝜈2
Φ𝜎𝜎̄

𝑤𝜈2

)︀
, (A.7a)

𝜕𝑡Φ
𝜎1𝜎2
𝑤1𝑤2

= −i(𝑤1 + 𝑤2)Φ𝜎1𝜎2
𝑤1𝑤2

+
1

2

(︀
𝑔𝜎2
𝑤2
𝜓𝜎1
𝑤1

+ 𝑔𝜎1
𝑤1
𝜓𝜎2
𝑤2

)︀
, (A.7b)

where 𝜎 ∈ {𝑎, 𝑏}, and 𝜎̄ is the opposite of 𝜎, i.e. 𝑎̄ = 𝑏. Defining the Fourier
transform

𝜓𝜎(𝑟, 𝑡) =

∞∑︁
𝜈=0

𝜓𝜎
𝜈 (𝑡)ei𝑘𝜈𝑟, (A.8)

and using the relation∑︁
𝜈

𝜈𝜓𝜎
𝜈 ei𝑘𝜈𝑟 = −i𝑐𝜕𝑟

∑︁
𝜈

𝜓𝜎
𝜈 ei𝑘𝜈𝑟, (A.9)

Eq. (A.7a) becomes

[𝜕𝑡 + 𝑐𝜕𝑟]𝜓𝜎(𝑟, 𝑡) = −i𝜈𝐴𝜓
𝜎(𝑟, 𝑡) − 2

∑︁
𝜈𝑤

(︀
𝑔𝜎𝜈 Φ𝜎𝜎

𝑤𝜈(𝑡) + 𝑔𝜎̄𝜈 Φ𝜎𝜎̄
𝑤𝜈(𝑡)

)︀
ei𝑘𝑤𝑟.(A.10)

The term −i𝜈𝐴𝜓
𝜎(𝑟, 𝑡) is removed by introducing a rotating frame [92],

𝜓𝜎(𝑡) = 𝜓𝜎(𝑡)ei𝜈𝐴𝑡ei𝜔
𝜎
𝐿(𝑡−𝑟/𝑐). (A.11)

With this, Eq. (A.10) becomes

[𝜕𝑡 + 𝑐𝜕𝑟]𝜓𝜎(𝑟, 𝑡) = −ei𝜈𝐴𝑡+i𝜈𝜎
𝐿(𝑡−𝑟/𝑐)2

∑︁
𝜈𝑤

(︀
𝑔𝜎𝜈 Φ𝜎𝜎

𝑤𝜈 + 𝑔𝜎̄𝜈 Φ𝜎𝜎̄
𝑤𝜈

)︀
ei𝑘𝑤𝑟. (A.12)
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To determine expressions for the Φ’s, we formally integrate Eq. (A.7b), assum-
ing that the initial time is 𝑡 = 0,

Φ𝜎1𝜎2
𝑤1𝑤2

(𝑡) = Φ𝜎1𝜎2
𝑤1𝑤2

(0)e−i(𝑤1+𝑤2)𝑡

+
1

2

∫︁ 𝑡

0

d𝑡′
[︀
𝑔𝜎2
𝑤2
𝜓𝜎1
𝑤1

(𝑡′) + 𝑔𝜎1
𝑤1
𝜓𝜎2
𝑤2

(𝑡′)
]︀

e−i(𝑤1+𝑤2)(𝑡−𝑡′). (A.13)

Inserting this into Eq. (A.12), we arrive at

[𝜕𝑡 + 𝑐𝜕𝑟]𝜓𝜎(𝑟, 𝑡) = −𝐴𝜎
1 (𝑟, 𝑡) −𝐴𝜎

2 (𝑟, 𝑡), (A.14)

where

𝐴𝜎
1 (𝑟, 𝑡) = 2

∑︁
𝑤𝑣

[︀
𝑔𝜎𝑣 Φ𝜎𝜎

𝑤𝑣(0) + 𝑔𝜎𝑣 Φ𝜎𝜎
𝑤𝑣(0)

]︀
ei𝜈𝐴𝑡+i𝜈𝜎

𝐿(𝑡−𝑟/𝑐)−i(𝑤+𝑣)𝑡+i𝑘𝑤𝑟, (A.15)

and

𝐴𝜎
2 (𝑟, 𝑡) = ei𝜈𝐴𝑡+i𝜈𝜎

𝐿(𝑡−𝑟/𝑐)
∑︁
𝑤𝑣2

[︂
𝑔𝜎𝑣

∫︁ 𝑡

0

d𝑡′ [𝑔𝜎𝑣𝜓
𝜎
𝑤(𝑡′) + 𝑔𝜎𝑤𝜓

𝜎
𝑣 (𝑡′)] e−i(𝑤+𝑣)(𝑡−𝑡′)

+𝑔𝜎𝑣

∫︁ 𝑡

0

d𝑡′
[︀
𝑔𝜎𝑣𝜓

𝜎
𝑤(𝑡′) + 𝑔𝜎𝑤𝜓

𝜎
𝑣 (𝑡′)

]︀
e−i(𝑤+𝑣)(𝑡−𝑡′)

]︂
ei𝑘𝑤𝑟. (A.16)

From here we make the Markov-approximation and thus assume that the cou-
pling constants are independent of frequency, according to the discussion in
Section 3.2.

Simplifying 𝐴𝜎
2 (𝑟, 𝑡)

With Eq. (A.8), we may further divide 𝐴𝜎
2 (𝑟, 𝑡) into four terms,

𝐴𝜎
2,1(𝑟, 𝑡) = 𝑔𝜎𝑔𝜎

∫︁ 𝑡

0

d𝑡′ 𝜓𝜎(𝑟 − 𝑐(𝑡− 𝑡′), 𝑡′)
∑︁
𝜈

e−i𝜈(𝑡−𝑡′)+i𝜈𝐴𝑡+i𝜈𝜎
𝐿(𝑡−𝑟/𝑐),

(A.17a)

𝐴𝜎
2,2(𝑟, 𝑡) = 𝑔𝜎𝑔𝜎

∫︁ 𝑡

0

d𝑡′ 𝜓𝜎(−𝑐(𝑡− 𝑡′), 𝑡′)
∑︁
𝑤

e−i𝑤(𝑡−𝑡′)+i𝑘𝑤𝑟+i𝜈𝐴𝑡+i𝜈𝜎
𝐿(𝑡−𝑟/𝑐),

(A.17b)

𝐴𝜎
2,3(𝑟, 𝑡) = 𝑔𝜎𝑔𝜎

∫︁ 𝑡

0

d𝑡′ 𝜓𝜎(𝑟 − 𝑐(𝑡− 𝑡′), 𝑡′)
∑︁
𝜈

e−i𝜈(𝑡−𝑡′)+i𝜈𝐴𝑡+i𝜈𝜎
𝐿(𝑡−𝑟/𝑐),

(A.17c)

𝐴𝜎
2,4(𝑟, 𝑡) = 𝑔𝜎𝑔𝜎

∫︁ 𝑡

0

d𝑡′ 𝜓𝜎(−𝑐(𝑡− 𝑡′), 𝑡′)
∑︁
𝑤

e−i𝑤(𝑡−𝑡′)+i𝑘𝑤𝑟+i𝜈𝐴𝑡+i𝜈𝜎
𝐿(𝑡−𝑟/𝑐),

(A.17d)

We consider each term separately. For the first term, Eq. (A.17a), we transform
𝜓𝜎 to 𝜓𝜎 using Eq. (A.11),

𝐴𝜎
2,1(𝑟, 𝑡) = 𝑔𝜎𝑔𝜎

∫︁ 𝑡

0

d𝑡′ 𝜓𝜎(𝑟 − 𝑐(𝑡− 𝑡′), 𝑡′)
∑︁
𝜈

e−i(𝜈−𝜈𝐴)(𝑡−𝑡′). (A.18)
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Appendix A. Analytical derivation of two-photon emitter excitation

Using the Wigner–Weisskopf approximation as in Section 3.2, 𝜓 may be moved
outside the integral by assuming that it varies slowly compared to the temporal
evolution in the exponential. The remaining part in the integral over time
corresponds to half a delta-function (plus a Lamb shift), leading to a definition
of the decay rate

Γ𝜎1𝜎2 = 2𝜋𝑔𝜎1𝑔𝜎2

∑︁
𝜈

𝛿(𝜈 − 𝜈𝐴), (A.19)

leading to

𝐴𝜎
2,1(𝑟, 𝑡) =

Γ𝜎𝜎

2
𝜓(𝑟, 𝑡). (A.20)

A similar statement applies to 𝐴𝜎
2,3(𝑟, 𝑡) in Eq. (A.17c), which becomes

𝐴𝜎
2,3(𝑟, 𝑡) =

Γ𝜎𝜎

2
𝜓(𝑟, 𝑡). (A.21)

For Eq. (A.17b), we get

𝐴𝜎
2,2(𝑟, 𝑡) = 𝑔𝜎𝑔𝜎e−i𝛿𝜎𝐿𝑟/𝑐

∫︁ 𝑡

0

d𝑡′ 𝜓𝜎(−𝑐(𝑡− 𝑡′), 𝑡′)
∑︁
𝑤

e−i(𝑤−𝜈𝐴)(𝑡−𝑡′−𝑟/𝑐),

(A.22)

where 𝛿𝜎𝐿 = 𝜈𝜎𝐿−𝜈𝐴 and 𝑘𝑤 = 𝑤/𝑐. Making that same assumption about a fast
varying exponential, the only contribution to the 𝑤-sum is when 𝑡−𝑡′−𝑟/𝑐 = 0.
As the integration only goes from 0 < 𝑡′ < 𝑡, this introduces two Heaviside step
function,

𝐴𝜎
2,2(𝑟, 𝑡) = e−i𝛿𝜎𝐿𝑟/𝑐Γ𝜎𝜎𝜃(𝑟)𝜃(𝑡− 𝑟/𝑐)𝜓𝜎(−𝑟, 𝑡− 𝑟/𝑐), (A.23)

with the propertiy that 𝜃(0) ≡ 1/2.
The last contribution in Eq. (A.17d) becomes

𝐴𝜎
2,4(𝑟, 𝑡) = 𝑔𝜎𝑔𝜎e−i𝛿𝜎𝐿𝑟/𝑐+i(𝜈𝜎

𝐿−𝜈𝜎
𝐿)𝑡

∫︁ 𝑡

0

d𝑡′ 𝜓𝜎(−𝑐(𝑡− 𝑡′), 𝑡′)

×
∑︁
𝑤

e−i(𝑤−𝜈𝐴)(𝑡−𝑡′−𝑟/𝑐). (A.24)

With similar arguments as for 𝐴𝜎
2,2(𝑟, 𝑡), we arrive at

𝐴𝜎
2,4(𝑟, 𝑡) = e−i𝛿𝜎𝐿𝑟/𝑐+i(𝜈𝜎

𝐿−𝜈𝜎
𝐿)𝑡Γ𝜎𝜎𝜃(𝑟)𝜃(𝑡− 𝑟/𝑐)𝜓𝜎(−𝑟, 𝑡− 𝑟/𝑐). (A.25)

Thus Eq. (A.14) simplifies to

[𝜕𝑡 + 𝑐𝜕𝑟]𝜓𝜎(𝑟, 𝑡) = 𝐴𝜎
1 (𝑟, 𝑡) − Γ𝜎𝜎 + Γ𝜎𝜎

2
𝜓𝜎(𝑟, 𝑡)

− 𝜃(𝑟)𝜃(𝑡− 𝑟/𝑐)e−i𝛿𝜎𝐿𝑟/𝑐

[︂
Γ𝜎𝜎𝜓𝜎(−𝑟, 𝑡− 𝑟/𝑐) + Γ𝜎𝜎ei(𝜈

𝜎
𝐿−𝜈𝜎

𝐿)𝑡𝜓𝜎(−𝑟, 𝑡− 𝑟/𝑐)

]︂
,

(A.26)

where 𝐴𝜎
1 (𝑟, 𝑡) only depends on the initial conditions of the 𝜑s. We define the

total rate Γ = Γ𝜎𝜎 + Γ𝜎𝜎 = Γ𝑎𝑎 + Γ𝑏𝑏, which according to Eq. (A.26) describes
the rate of spontaneous emission of the emitter into both directions.
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Solving Eq. (A.26)

To determine a solution to Eq. (A.26), we first consider a general differential
equation on the form

[𝜕𝑡 + 𝑐𝜕𝑟]𝑓(𝑟, 𝑡) = −Γ𝑓(𝑟, 𝑡) −𝐴(𝑟, 𝑡). (A.27)

Applying a symmetric Fourier transform,

𝑓(𝑘, 𝑡) =
1√
2𝜋

∫︁
d𝑟 𝑓(𝑟, 𝑡)e−i𝑘𝑟, 𝑓(𝑟, 𝑡) =

1√
2𝜋

∫︁
d𝑘 𝑓(𝑘, 𝑡)ei𝑘𝑟, (A.28)

Eq. (A.27) becomes

[𝜕𝑡 + i𝑘𝑐+ Γ]𝑓(𝑘, 𝑡) = − 1√
2𝜋

∫︁
d𝑟 𝐴(𝑟, 𝑡)e−i𝑘𝑟. (A.29)

By multiplying each side with exp[(Γ + i𝑘𝑐)𝑡] and integrating over time, we
arrive at

𝑓(𝑘, 𝑡) = 𝑓(𝑘, 0)e−(Γ+i𝑘𝑐)𝑡 − 1√
2𝜋

∫︁ 𝑡

0

d𝑡′
∫︁

d𝑟 𝐴(𝑟, 𝑡′)e−i𝑘𝑟−(Γ+i𝑘𝑐)(𝑡−𝑡′).

(A.30)

Transforming back, we get

𝑓(𝑟, 𝑡) =
1√
2𝜋

∫︁
d𝑘 𝑓(𝑘, 0)e−(Γ+i𝑘𝑐)𝑡+i𝑘𝑟

− 1

2𝜋

∫︁
d𝑘
∫︁ 𝑡

0

d𝑡′
∫︁

d𝑟′𝐴(𝑟′, 𝑡′)e−i𝑘𝑟′−(Γ+i𝑘𝑐)(𝑡−𝑡′)+i𝑘𝑟

= 𝑓(𝑟 − 𝑐𝑡, 0)e−Γ𝑡 −
∫︁ 𝑡

0

d𝑡′
∫︁

d𝑟 𝐴(𝑟′, 𝑡′)𝛿(𝑟 − 𝑟′ − 𝑐(𝑡− 𝑡′))e−Γ(𝑡−𝑡′)

= 𝑓(𝑟 − 𝑐𝑡, 0)e−Γ𝑡 −
∫︁ 𝑡

0

d𝑡′𝐴 (𝑟 − 𝑐(𝑡− 𝑡′), 𝑡′) e−Γ(𝑡−𝑡′). (A.31)

This derived expression may be used to solve Eq. (A.26). By defining

𝐵𝜎(𝑟, 𝑡) =

∫︁ 𝑡

0

d𝑡′𝐴𝜎
1 (𝑟 − 𝑐(𝑡− 𝑡′), 𝑡′) e−Γ(𝑡−𝑡′)/2, (A.32)

we may use Eq. (A.31) to write the solution for Eq. (A.26),

𝜓𝜎(𝑟, 𝑡) = 𝜓(𝑟 − 𝑐𝑡, 0)e−Γ𝑡/2 −𝐵𝜎(𝑟, 𝑡)

−
∫︁ 𝑡

0

d𝑡′ 𝜃(𝑟 − 𝑐(𝑡− 𝑡′))𝜃(𝑡− 𝑟/𝑐)e−i𝛿𝜎𝐿(𝑟−𝑐(𝑡−𝑡′))/𝑐

×
[︂
Γ𝜎𝜎𝜓𝜎(−(𝑟 − 𝑐(𝑡− 𝑡′)), 𝑡− 𝑟/𝑐)

+ Γ𝜎𝜎ei(𝜈
𝜎
𝐿−𝜈𝜎

𝐿)𝑡𝜓𝜎(−(𝑟 − 𝑐(𝑡− 𝑡′)), 𝑡− 𝑟/𝑐)

]︂
e−Γ(𝑡−𝑡′)/2. (A.33)

127



Appendix A. Analytical derivation of two-photon emitter excitation

For simplicity, we assume from here that 𝜈𝜎𝐿 = 𝜈𝜎𝐿 ≡ 𝜈𝐿, i.e. that the carrier
frequency of the incoming pulses is identical in both arms. We write Eq. (A.33)
in a simple-looking form,

𝜓𝜎(𝑟, 𝑡) = 𝜓(𝑟 − 𝑐𝑡, 0)e−Γ𝑡/2 −𝐵𝜎(𝑟, 𝑡) − Γ𝜎𝜎𝐷𝜎(𝑟, 𝑡) − Γ𝜎𝜎𝐷𝜎(𝑟, 𝑡), (A.34)

with

𝐷𝜎1(𝑟, 𝑡) = 𝜃(𝑡− 𝑟/𝑐)

∫︁ 𝑡

0

d𝑡′ 𝜃(𝑟 − 𝑐(𝑡− 𝑡′))e−i𝛿𝐿(𝑟−𝑐(𝑡−𝑡′))/𝑐

× 𝜓𝜎1(−(𝑟 − 𝑐(𝑡− 𝑡′)), 𝑡− 𝑟/𝑐)e−Γ(𝑡−𝑡′)/2. (A.35)

A transformation 𝑅 = 𝑟 − 𝑐(𝑡− 𝑡′) gives

𝐷𝜎1(𝑟, 𝑡) = 𝜃(𝑡− 𝑟/𝑐)
1

𝑐

∫︁ 𝑟

𝑟−𝑐𝑡

d𝑅𝜃(𝑅)e−i𝛿𝐿𝑅/𝑐𝜓𝜎1(−𝑅, 𝑡− 𝑟/𝑐)e−
Γ
2

𝑟−𝑅
𝑐 .

(A.36)

The Heaviside-function in front of the integral modifies the lower limit of the
integral. As 𝑡 ≤ 0 the integral is only non-zero when 𝑟 ≤ 0 due to 𝜃(𝑅) and
thus gives a 𝜃(𝑟) in front,

𝐷𝜎1(𝑟, 𝑡) = 𝜃(𝑡− 𝑟/𝑐)𝜃(𝑟)
1

𝑐

∫︁ 𝑟

0

d𝑅 e−i𝛿𝐿𝑅/𝑐𝜓𝜎1(−𝑅, 𝑡− 𝑟/𝑐)e−
Γ
2

𝑟−𝑅
𝑐 . (A.37)

We insert the expression for 𝜓𝜎 from Eq. (A.34) and get

𝐷𝜎1(𝑟, 𝑡) = 𝜃(𝑡− 𝑟/𝑐)𝜃(𝑟)
1

𝑐

∫︁ 𝑟

0

d𝑅 e−i𝛿𝐿𝑅/𝑐

{︂
𝜓𝜎1(−𝑅− 𝑐(𝑡− 𝑟/𝑐), 0)e−

Γ
2 (𝑡−𝑟/𝑐) −𝐵𝜎1(−𝑅, 𝑡− 𝑟/𝑐)

}︂
e−

Γ
2

𝑟−𝑅
𝑐

− 𝜃(𝑡− 𝑟/𝑐)𝜃(𝑟)
1

𝑐

∫︁ 𝑟

0

d𝑅 e−i𝛿𝐿𝑅/𝑐

[︂
𝐷𝜎1(−𝑅, 𝑡− 𝑟/𝑐)

+𝐷𝜎1(−𝑅, 𝑡− 𝑟/𝑐)

]︂
e−

Γ
2

𝑟−𝑅
𝑐 . (A.38)

A closer look on the last two lines shows that both 𝐷𝜎1(−𝑅, 𝑡 − 𝑟/𝑐) and
𝐷𝜎1(−𝑅, 𝑡− 𝑟/𝑐) contain a step function 𝜃(−𝑅). But as the integration limits
only includes positive values of 𝑅, these integrations vanish and

𝐷𝜎1(𝑟, 𝑡) =
1

𝑐
𝜃(𝑡− 𝑟/𝑐)𝜃(𝑟)

∫︁ 𝑟

0

d𝑅 e−i𝛿𝐿𝑅/𝑐

{︂
𝜓𝜎1(𝑟 −𝑅− 𝑐𝑡, 0)e−

Γ
2 (𝑡−𝑟/𝑐)

−𝐵𝜎1(−𝑅, 𝑡− 𝑟/𝑐)

}︂
e−

Γ
2

𝑟−𝑅
𝑐 . (A.39)

Thus 𝐷𝜎1(𝑟, 𝑡) is solely described by the initial conditions, and the final ana-
lytical solution is given by Eq. (A.34).
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Simplifying the expression for 𝐵𝜎(𝑟, 𝑡)

The function 𝐵𝜎(𝑟, 𝑡) is defined in Eq. (A.32) and is given by

𝐵𝜎(𝑟, 𝑡) =

∫︁ 𝑡

0

d𝑡′𝐴𝜎
1 (𝑟 − 𝑐(𝑡− 𝑡′), 𝑡′) e−Γ(𝑡−𝑡′)/2, (A.40)

where 𝐴𝜎
1 (𝑟, 𝑡) is given in Eq. (A.15) as

𝐴𝜎
1 (𝑟, 𝑡) = 2

∑︁
𝑤𝑣

[︀
𝑔𝜎Φ𝜎𝜎

𝑤𝑣(0) + 𝑔𝜎Φ𝜎𝜎
𝑤𝑣(0)

]︀
ei𝜈𝐴𝑡+i𝜈𝐿(𝑡−𝑟/𝑐)−i(𝑤+𝑣)𝑡+i𝑘𝑤𝑟. (A.41)

We define a Fourier transform of Φ equivalent to the one for 𝜓 in Eq. (A.8),

Φ𝜎1𝜎2(𝑟1, 𝑟2, 𝑡) =
∑︁
𝜈𝜈′

Φ𝜎1𝜎2

𝜈𝜈′ (𝑡)ei𝑘𝜈𝑟1+i𝑘𝜈′𝑟2 . (A.42)

With this, 𝐴𝜎
1 (𝑟, 𝑡) becomes

𝐴𝜎
1 (𝑟, 𝑡) = 2

[︀
𝑔𝜎Φ𝜎𝜎(𝑟 − 𝑐𝑡,−𝑐𝑡, 0) + 𝑔𝜎Φ𝜎𝜎(𝑟 − 𝑐𝑡,−𝑐𝑡, 0)

]︀
ei𝜈𝐴𝑡+i𝜈𝜎

𝐿(𝑡−𝑟/𝑐).
(A.43)

By defining

Φ̃𝜎1𝜎2(𝑟1, 𝑟2, 0) = Φ𝜎1𝜎2(𝑟1, 𝑟2, 0)e−i𝜈𝐿𝑟1/𝑐−i𝜈𝐿𝑟2/𝑐, (A.44)

we arrive at

𝐴𝜎
1 (𝑟, 𝑡) = 2

[︁
𝑔𝜎Φ̃𝜎𝜎(𝑟 − 𝑐𝑡,−𝑐𝑡, 0) + 𝑔𝜎Φ̃𝜎𝜎(𝑟 − 𝑐𝑡,−𝑐𝑡, 0)

]︁
e−i𝛿𝐿𝑡. (A.45)

Thus the expression for 𝐵𝜎(𝑟, 𝑡) becomes

𝐵𝜎(𝑟, 𝑡) = 2

∫︁ 𝑡

0

d𝑡′ e−i𝛿𝐿𝑡′−Γ(𝑡−𝑡′)/2

[︂
𝑔𝜎Φ̃𝜎𝜎(𝑟 − 𝑐𝑡,−𝑐𝑡′, 0)

+ 𝑔𝜎Φ̃𝜎𝜎(𝑟 − 𝑐𝑡,−𝑐𝑡′, 0)

]︂
. (A.46)

Summarizing the results

The solution for the 𝜓-expansion coefficient of the two-photon state is in the
rotated frame given by

𝜓𝜎(𝑟, 𝑡) = 𝜓(𝑟 − 𝑐𝑡, 0)e−Γ𝑡/2 −𝐵𝜎(𝑟, 𝑡) − Γ𝜎𝜎𝐷𝜎(𝑟, 𝑡) − Γ𝜎𝜎𝐷𝜎(𝑟, 𝑡), (A.47)

where 𝐵𝜎(𝑟, 𝑡), 𝐷𝜎, and 𝐷𝜎(𝑟, 𝑡) are solely described by the initial conditions.
They are given by

𝐵𝜎(𝑟, 𝑡) = 2

∫︁ 𝑡

0

d𝑡′ e−i𝛿𝐿𝑡′−Γ(𝑡−𝑡′)/2

[︂
𝑔𝜎Φ̃𝜎𝜎(𝑟 − 𝑐𝑡,−𝑐𝑡′, 0)

+ 𝑔𝜎Φ̃𝜎𝜎(𝑟 − 𝑐𝑡,−𝑐𝑡′, 0)

]︂
, (A.48)
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Appendix A. Analytical derivation of two-photon emitter excitation

and

𝐷𝜎1(𝑟, 𝑡) =
1

𝑐
𝜃(𝑡− 𝑟/𝑐)𝜃(𝑟)

∫︁ 𝑟

0

d𝑅 e−i𝛿𝐿𝑅/𝑐

{︂
𝜓𝜎1(𝑟 −𝑅− 𝑐𝑡, 0)e−

Γ
2 (𝑡−𝑟/𝑐)

−𝐵𝜎1(−𝑅, 𝑡− 𝑟/𝑐)

}︂
e−

Γ
2

𝑟−𝑅
𝑐 . (A.49)

Assuming an initially excited QD, i.e. for all 𝜑’s, 𝜑(𝑟1, 𝑟2, 0) = 0 → 𝐵𝑎(𝑟, 𝑡) =
𝐵𝑏(𝑟, 𝑡) = 0, and a one-way waveguide, 𝑔𝑏 = 0 (no coupling to the backwards
propagating mode), the result becomes similar to the one of Valente et al. [92].

A.1 Example: Single-sided Gaussian two-photon

input

As an example we calculate the emitter excitation,

⟨𝜓(𝑡)|𝑐†𝑒𝑐𝑒|𝜓(𝑡)⟩ =
∑︁
𝜈

|𝜓𝑎
𝜈 (𝑡)|2 +

∑︁
𝜈

|𝜓𝑏
𝜈(𝑡)|2. (A.50)

This is done in the case of identical 𝑔s, i.e. that the emitter couples with equal
strength in to both directions of the waveguide. Furthermore we assume that
the carrier frequency of the input pulses is equal to the QD transition frequency,
i.e. 𝛿𝐿 = 0.

A general, two-photon input state has the form

|𝛽⟩ = 𝐾

∫︁
d𝑟1

∫︁
d𝑟2 𝛽(𝑟1, 𝑟2)𝑎†(𝑟1)𝑎†(𝑟2)|𝑔, 0, 0⟩, (A.51)

where 𝐾 is a normalization constant. Requiring that ⟨𝛽|𝛽⟩ = 1, the normal-
ization constant becomes

𝐾2 =
1

2
∫︀
d𝑟1

∫︀
d𝑟2 |𝛽(𝑟1, 𝑟2)|2

, (A.52)

where 𝛽 is a symmetric version of 𝛽, defined as

𝛽(𝑟1, 𝑟2) =
𝛽(𝑟1, 𝑟2) + 𝛽(𝑟2, 𝑟1)

2
. (A.53)

Assuming that the two-photon state initially exists in waveguide 𝑎 only, we see
by comparing Eq. (A.51) and Eq. (A.5) that the initial conditions are

𝜑𝑎𝑎(𝑟1, 𝑟2, 0) = 𝐾𝛽(𝑟1, 𝑟2), (A.54)

𝜑𝑎𝑏(𝑟1, 𝑟2, 0) = 𝜑𝑏𝑎(𝑟1, 𝑟2, 0) = 𝜑𝑏𝑏(𝑟1, 𝑟2, 0) = 𝜓𝑎(𝑟, 0) = 𝜓𝑏(𝑟, 0). (A.55)

As we are solving for the symmetrical version of 𝜑, the first condition becomes

Φ𝑎𝑎(𝑟1, 𝑟2, 0) = 𝐾𝛽(𝑟1, 𝑟2). (A.56)
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Example: Single-sided Gaussian two-photon input

Two independently created single photons

For simplicity, we assume that the two-photon state consists of two indepen-
dently created single-photon states, 𝛽(𝑟1, 𝑟2) = 𝜉1(𝑟1)𝜉2(𝑟2), with 𝜉𝑖(𝑟) be-
ing the spatial single-photon wavepacket. Assuming that the single-photon
wavepacket amplitudes are normalized as∫︁

d𝑟 |𝜉1(𝑟)|2 =

∫︁
d𝑟 |𝜉2(𝑟)|2 = 1, (A.57)

the normalization constant 𝐾 becomes

1

1 +
⃒⃒ ∫︀

d𝑟 𝜉1(𝑟)𝜉*2(𝑟)
⃒⃒2 . (A.58)

With the initial conditions above, 𝐵𝑏(𝑟, 𝑡) = 0, and the expression for 𝐵𝑎(𝑟, 𝑡)
simplifies to

𝐵𝑎(𝑟, 𝑡) = 𝐾𝑔𝑎

[︂
𝜉1(𝑟 − 𝑐𝑡)

∫︁ 𝑡

0

d𝑡′ e−Γ(𝑡−𝑡′)/2𝜉2(−𝑐𝑡′)

+ 𝜉2(𝑟 − 𝑐𝑡)

∫︁ 𝑡

0

d𝑡′ e−Γ(𝑡−𝑡′)/2𝜉1(−𝑐𝑡′)
]︂
. (A.59)

Gaussian input pulses

We assume input pulses with a Gaussian single-photon wavepacket as in Eq.
(3.12b), which in a spatial representation is (given in the rotated frame de-
scribed by Eq. (A.11)),

𝜉1(𝑟) =

(︂
𝜎2
1

𝜋

)︂1/4

e−(𝑟−𝑟01)
2𝜎2

1/2, 𝜉2(𝑟) =

(︂
𝜎2
2

𝜋

)︂1/4

e−(𝑟−𝑟02)
2𝜎2

2/2. (A.60)

which corresponds to pulses with a FWHM of the intensity spectrum corre-
sponding to 2

√︀
ln(2)𝜎1/2. Using these, the normalization constant becomes

𝐾2 =
1

1 + 2𝜎1𝜎2

𝜎2
1+𝜎2

2
exp

[︁
−𝜎2

1𝜎
2
2(𝑟01−𝑟02)2

(𝜎2
1+𝜎2

2)

]︁ . (A.61)

For the simple case of similar wavepacket width, 𝜎1 = 𝜎2 ≡ 𝜎, we get

𝐾2 =
1

1 + exp[−𝜎2(𝑟01 − 𝑟02)2/2]
. (A.62)

In calculating 𝐵𝑎(𝑟, 𝑡), a relevant integral is∫︁ 𝑡

0

d𝑡′ e−Γ(𝑡−𝑡′)𝜉𝑖(−𝑐𝑡′). (A.63)

Using the integral

𝑓𝑖(𝑥) =

∫︁
d𝑥 e−(𝑥𝜎𝑖/

√
2)2+𝑥Γ/𝑐 =

√︂
𝜋

2

1

𝜎𝑖
e

Γ2

2𝑐2𝜎2
𝑖 erf

[︂
𝑥𝜎𝑖√

2
− Γ√

2𝑐𝜎𝑖

]︂
, (A.64)
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Appendix A. Analytical derivation of two-photon emitter excitation

with may write Eq. (A.63) in a compact way by introducing the variable 𝑥 =
𝑐𝑡′ + 𝑟0𝑖,∫︁ 𝑡

0

d𝑡′ e−Γ(𝑡−𝑡′)/2𝜉𝑖(−𝑐𝑡′)

=

(︂
𝜎2
𝑖

𝜋

)︂1/4
1

𝑐
e−Γ𝑡/2

∫︁ 𝑐𝑡+𝑟0𝑖

𝑟0𝑖

d𝑥 e−𝑥2𝜎2
𝑖 /4+

Γ
2 (𝑥−𝑟0𝑖)/𝑐 (A.65)

=

(︂
𝜎2
𝑖

𝜋

)︂1/4
1

𝑐
e−

Γ
2 (𝑡+𝑟0𝑖/𝑐) [𝑓𝑖(𝑐𝑡+ 𝑟0𝑖) − 𝑓𝑖(𝑟0𝑖)] . (A.66)

Inserting this into Eq. (A.59), we arrive at

𝐵𝑎(𝑟, 𝑡) =
𝐾𝑔𝑎
𝑐

e−Γ𝑡/2

√︂
𝜎1𝜎2
𝜋

{︂
e−(𝑟−𝑐𝑡−𝑟01)

2𝜎2
1/2e−

Γ
2 𝑟02/𝑐 [𝑓2(𝑐𝑡+ 𝑟02) − 𝑓2(𝑟02)] + 1 ↔ 2

}︂
,

(A.67)

where 1 ↔ 2 replaces a similar term where the indices of 1 and 2 are inter-
changed.

For the 𝐷-functions, the initial conditions give that 𝐷𝑏(𝑟, 𝑡) = 0. For
𝐷𝑎(𝑟, 𝑡), we get

𝐷𝑎(𝑟, 𝑡) = −1

𝑐
𝜃(𝑡− 𝑟/𝑐)𝜃(𝑟)

∫︁ 𝑟

0

d𝑅𝐵𝑎(−𝑅, 𝑡− 𝑟/𝑐)e−
Γ
2 (𝑟−𝑅)/𝑐 (A.68)

= −𝐾𝑔𝑎
𝑐2

√︂
𝜎1𝜎2
2𝜋

𝜃(𝑡− 𝑟/𝑐)𝜃(𝑟)e−Γ𝑡/2

×
{︂

e−
Γ
2 𝑟02/𝑐 [𝑓2(𝑐𝑡− 𝑟 + 𝑟02) − 𝑓2(𝑟02)]

×
∫︁ 𝑟

0

d𝑅 e−(−𝑅−𝑐𝑡+𝑟−𝑟01)
2𝜎2

1/2+
Γ
2 𝑅/𝑐 + 1 ↔ 2

}︂
. (A.69)

The integral is evaluated as before, using the substitution 𝑥 = 𝑅+ 𝑐𝑡− 𝑟+ 𝑟01,∫︁ 𝑟

0

d𝑅 e−(−𝑅−𝑐𝑡+𝑟−𝑟01)
2𝜎2

1/2+
Γ
2 𝑅/𝑐

= e
Γ
2 (−𝑐𝑡+𝑟−𝑟01)/𝑐 [𝑓1(𝑐𝑡+ 𝑟01) − 𝑓(𝑐𝑡− 𝑟 + 𝑟01)] . (A.70)

This leads to

𝐷𝑎(𝑟, 𝑡) =
𝐾𝑔𝑎
𝑐2

√︂
𝜎1𝜎2
𝜋

𝜃(𝑡− 𝑟/𝑐)𝜃(𝑟)e−Γ𝑡+Γ
2 (𝑟−𝑟01−𝑟02)/𝑐

× {[𝑓1(𝑐𝑡− 𝑟 + 𝑟01) − 𝑓1(𝑐𝑡+ 𝑟01)] [𝑓2(𝑐𝑡− 𝑟 + 𝑟02) − 𝑓2(𝑟02)] + 1 ↔ 2} .
(A.71)
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Example: Single-sided Gaussian two-photon input

Summarizing the results for a Gaussian input

Summarizing, the excitation value of the emitter for two uncorrelated Gaussian
input pulses is

𝑃𝑒(𝑡) = 𝑃 𝑎
𝑒 (𝑡) + 𝑃 𝑏

𝑒 (𝑡) =

∫︁ ∞

−∞
d𝑟 |𝜓𝑎(𝑟, 𝑡)|2 +

∫︁ ∞

−∞
d𝑟 |𝜓𝑏(𝑟, 𝑡)|2, (A.72)

where

𝜓𝑎(𝑟, 𝑡) = −𝐵𝑎(𝑟, 𝑡) − Γ𝑎𝑎𝐷𝑎(𝑟, 𝑡), (A.73)

𝜓𝑏(𝑟, 𝑡) = −Γ𝑎𝑏𝐷𝑎(𝑟, 𝑡), (A.74)

with

𝐵𝑎(𝑟, 𝑡) =
𝐾𝑔𝑎
𝑐

e−Γ𝑡/2

√︂
𝜎1𝜎2
𝜋

{︂
e−(𝑟−𝑐𝑡−𝑟01)

2𝜎2
1/2e−

Γ
2 𝑟02/𝑐

[︂
𝑓2(𝑐𝑡+ 𝑟02)

− 𝑓2(𝑟02)

]︂
+ 1 ↔ 2

}︂
, (A.75)

and

𝐷𝑎(𝑟, 𝑡) =
𝐾𝑔𝑎
𝑐2

√︂
𝜎1𝜎2
𝜋

𝜃(𝑡− 𝑟/𝑐)𝜃(𝑟)e−Γ𝑡+Γ
2 (𝑟−𝑟01−𝑟02)/𝑐

×
{︂

[𝑓1(𝑐𝑡− 𝑟 + 𝑟01) − 𝑓1(𝑐𝑡+ 𝑟01)] [𝑓2(𝑐𝑡− 𝑟 + 𝑟02) − 𝑓2(𝑟02)]

+ 1 ↔ 2

}︂
, (A.76)

where

𝑓𝑖(𝑥) =

√︂
𝜋

2

1

𝜎𝑖
e

Γ2

2𝑐2𝜎2
𝑖 erf

[︂
𝑥𝜎𝑖√

2
− Γ√

2𝑐𝜎𝑖

]︂
, (A.77)

and the normalization constant is

𝐾2 =
1

1 + 2𝜎1𝜎2

𝜎2
1+𝜎2

2
exp

[︁
−𝜎2

1𝜎
2
2(𝑟01−𝑟02)2

(𝜎2
1+𝜎2

2)

]︁ . (A.78)
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Appendix B

Numerical Implementation

of wavefunction approach

In this appendix we discuss the numerical implementation to determine tem-
poral evolution of the expansion coefficient of the total state of the quantum
system, which is introduced in Section 3.3. We specifically show the scheme
for a excitation of a single emitter, first for a single excitation, followed by two
excitations, where the latter is used in Chapter 4.

B.1 Single excitation

The continuum of modes in the infinite waveguide is discretized into 𝑁 modes
divided into two sub-intervals, with 𝑁/2 of the points centered around −𝑘0
and the other half around 𝑘0, as only modes with |𝑘| close to 𝜔0/𝑣𝑔 interacts
with the emitter - i.e. in the interval [−𝑘0 − Σ;−𝑘0 + Σ] ∪ [𝑘0 − Σ; 𝑘0 + Σ]
with Σ being the width of the sub-intervals. The differential equations for the
expansion coeffients, Eqs. (3.6a) and (3.6b), are disretized accordingly using∫︀∞
−∞ d𝑘 = 𝑑𝑘

∑︀
𝑘, giving

𝜕𝑡𝐶
𝑒(𝑡) = −i 𝑑𝑘

∑︁
𝑗

𝑔(𝑘𝑗)𝐶
𝑔(𝑘𝑗 , 𝑡), (B.1a)

𝜕𝑡𝐶
𝑔(𝑘𝑗 , 𝑡) = −i∆𝜔(𝑘𝑗)𝐶

𝑔(𝑘𝑗 , 𝑡) − i𝑔*(𝑘𝑗)𝐶
𝑒(𝑡). (B.1b)

To implement Eqs. (B.1a) and (B.1b) and a given initial condition numeri-
cally, all quantities have to be normalized. For simplicity, we assume a constant,
real coupling constant 𝑔. To stick to the standard normalization, we normalize
everything to 𝑣𝑔 and the QD decay rate into the 1D continuum, which in Sec-
tion 3.2 was shown to be Γ = 4𝜋𝑔(𝑘0)2/𝑣𝑔. Defining the normalized quantities

𝑘 = 𝑘(𝑣𝑔/Γ), 𝑡 = 𝑡Γ, (B.2)
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Appendix B. Numerical Implementation of wavefunction approach

we get the equations

𝜕𝑡𝐶
𝑒(𝑡) = −i

𝑑𝑘√
4𝜋

∑︁
𝑘̃

𝐶𝑔(𝑘, 𝑡), (B.3a)

𝜕𝑡𝐶
𝑔(𝑘, 𝑡) = −i(|𝑘| − 𝑘0)𝐶𝑔(𝑘, 𝑡) − i

1√
4𝜋
𝐶𝑒(𝑡), (B.3b)

Numerically, the system of equations Eqs. (B.3a) and (B.3b) are imple-
mented as a matrix problem,

𝜕𝑡c(𝑡) = Ac(𝑡), (B.4)

with the 𝑘-array divided into components 𝑘1, 𝑘2, ..., 𝑘𝑁 . We choose the ordering

c(𝑡) =
[︁
𝐶𝑒(𝑡), 𝐶𝑔(𝑘1, 𝑡), 𝐶

𝑔(𝑘2, 𝑡), . . . , 𝐶
𝑔(𝑘𝑁 , 𝑡)

]︁𝑇
(B.5)

and where A will be a time-independent matrix, given by

A = −i

⎡⎢⎢⎢⎢⎢⎣
0 1 1 · · · 1

1 |𝑘1| − 𝑘0
1 |𝑘2| − 𝑘0
...

. . .
1 |𝑘𝑁 | − 𝑘0

⎤⎥⎥⎥⎥⎥⎦ (B.6)

with blank spaces corresponding to zeros. The initial condition is

c0 = [0, 𝜉(𝑘1), 𝜉(𝑘2), . . . , 𝜉(𝑘𝑁 )] (B.7)

with 𝜉(𝑘) being the spectral single-photon wavepacket, e.g. as in Eqs. (3.12a)-
(3.12c). The numerical single-photon results are discussed in Section 3.3, where
they are also compared to the analytical result for the emitter excitation using
a single-photon input pulse with a Gaussian spectrum.

B.2 Two excitations

In this section we expand the model of the single-excitation propagation to
a two-excitation model, using the same principle to disretize Eqs. (4.4a) and
(4.4a). Following the approach as in Eqs. (B.3a) and (B.3b), the dimensionless
equation system becomes

𝜕𝑡𝐶
𝑒(𝑘𝑖, 𝑡) = −i(|𝑘𝑖| − 𝑘0)𝐶𝑒(𝑘𝑖, 𝑡) − i

√
2
𝑑𝑘√
4𝜋

∑︁
𝑗

𝐶𝑔(𝑘𝑖, 𝑘𝑗 , 𝑡) (B.8)

𝜕𝑡𝐶
𝑔(𝑘𝑖, 𝑘𝑗 , 𝑡) = −i

(︁
|𝑘𝑖| − 𝑘0 + |𝑘𝑗 | − 𝑘0

)︁
𝐶𝑔(𝑘𝑖, 𝑘𝑗 , 𝑡)

− i√
2

1√
4𝜋

[︁
𝐶𝑒(𝑘𝑖, 𝑡) + 𝐶𝑒(𝑘𝑗 , 𝑡)

]︁
(B.9)
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Two excitations

Numerical implementation scheme

Numerically, the system of equations are implemented as a matrix differential
problem,

𝜕𝑡c(𝑡) = Ac(𝑡) (B.10)

where A will be a time-independent matrix, and where we choose the ordering

c =
[︁
𝐶𝑒

𝑘̃1
, 𝐶𝑒

𝑘̃2
, ..., 𝐶𝑒

𝑘̃𝑁
, 𝐶𝑔

𝑘̃1𝑘̃1
, 𝐶𝑔

𝑘̃2𝑘̃1
, 𝐶𝑔

𝑘̃3𝑘̃1
, ..., , 𝐶𝑔

𝑘̃𝑁 𝑘̃1
, 𝐶𝑔

𝑘̃1𝑘̃2
, 𝐶𝑔

𝑘̃2𝑘̃2
, ..., 𝐶𝑔

𝑘̃𝑁 𝑘̃𝑁

]︁𝑇
(B.11)

with the indices of the 𝑘s referring to the position in the discretized 𝑘-array.
With this definition, 𝐴 will be a sparse matrix of dimensions (𝑁 +𝑁2)× (𝑁 +
𝑁2).

The number of elements in c and A may be reduced by exploiting that
𝐶𝑔

𝑘̃𝑘̃′ = 𝐶𝑔

𝑘̃′𝑘̃
due to the bosonic nature of the photon, and thus we would only

have to include 𝑁 + [𝑁 + (𝑁 − 1) + (𝑁 − 2) + ...+ 1] = 𝑁 + (𝑁 + 1)𝑁/2 rows
and columns.

To verify the numerical implementation, the value of the maximal emitter
excitation obtained numerically is compared with an analytical value. For an
incoming two-photon state consisting of two identical, co-propagating Gaussian
pulses, the analytical value of the emitter excitation is derived in Appendix A.
The relative deviation between the two values is sketched in Fig. B.1 for varying
values of 𝑑𝑘 and 𝑁 , and in similarity with the single-photon results, the lowest
deviation is obtained when the product 𝑑𝑘 ·𝑁 is largest, i.e. when the span of
the calculation domain is widest.
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Figure B.1: Relative deviation between the maximum emitter excitation obtained by
the numerical and analytical solution for a two-photon Gaussian pulse scattering on
a two-level system, calculated for simulations with varying 𝑁 and 𝑑𝑘. The black lines
are contours for constant values of the width of the 𝑘-array, 𝑁 · 𝑑𝑘, and the spectral
width of the input pulses is 𝜎̃ = (2

√︀
ln(2))−1𝜎 = 1.0Γ/𝑣𝑔.
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Appendix C

Parameters for phonon

calculations

The parameter values used in the phonon calculations in Chapters 9 and 10
are given in Table C.1, with elaborating comments below for some of the pa-
rameters.

Table C.1: Simulation Parameters

Parameter Description Value Ref.
𝜚 Density of GaAs 5.37 g/cm3 [182]
𝑐𝑙 Velocity of LA waves in GaAs 5.11 km/s 𝑎)

𝑐𝑡 Velocity of TA waves in GaAs 3.02 km/s 𝑏)

𝐷𝑒 Def. potential for a electron in GaAs −14.6 eV 𝑐)

𝐷ℎ Def. potential for a hole in GaAs −4.8 eV 𝑐)

~𝑔 Electron-photon coupling strength 150𝜇eV 𝑑)

Γ Relaxation rate of excited state in QD 1 ns−1 [200]
~𝜅 Cavity population relaxation rate 100𝜇eV [219]

𝑎) 𝑐𝑙: The longitudinal sound velocity in GaAs may vary from 4.784–
5.447 km/s depending on the direction of propagation compared to the various
crystal planes in the GaAs crystal, 𝑇 = 77K [220]. We use the value 𝑐𝑙 =
5.11 km/s used in articles dealing with electron-phonon interaction [47, 182],
agreeing with the velocity obtained when averaging over all crystal directions
in [220]. Other similar articles use a velocity of 5.15 km/s [221, 222].

𝑏) 𝑐𝑡: The transverse sound velocity in GaAs varies from 2.479 − 3.35 km/s
depending on the direction of propagation compared to the various crystal
planes in the GaAs crystal, 𝑇 = 77K [220]. We use the value 𝑐𝑙 = 3.02 km/s
calculated as an average value of all the propagation directions of the value in
[220], it and corresponds to values used in [223]. Other articles dealing with
transverse sound waves use values from 2.80 km/s [221] to 3.35 km/s [207].

𝑐) 𝐷𝑒, 𝐷ℎ: We adapt the values of the deformation potential from articles
considering electron-acoustic phonon interaction, [182, 47], although it seems
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Appendix C. Parameters for phonon calculations

there a big uncertainty in determining agreeing values when measuring the
deformation potentials in different experiments. This is discussed in detail in
[202].

𝑑) ~𝑔: For QD in cavities coupling strengths for good cavities have been
shown to be on the order 100 − 200𝜇eV [224, 26]. Thus we pick 𝑔 = 150𝜇eV
as a reasonable value.
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