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Abstract 

In this paper, an approach is presented for the determination of the Value of Information (VoI) 

in relation to models which can represent structural systems such as e.g. towers, cables, jackets. 

Stochastic capacities and loads are assumed for the models studied herein. The VoI is obtained 

with a prior and a pre-posterior decision analysis. The prior decision analysis takes basis in the 

design phase of the structural system. Pre-posterior decision analysis builds upon modelling 

results of not yet conducted experiments. In order to perform the prior and pre-posterior 

Bayesian decision analysis, the expected life-cycle benefit of the considered systems are 

computed. The difference in the expected benefits relating to the prior and pre-posterior 

decision analysis leads to the VoI. The system models are probabilistically computed using the 

Monte Carlo / Importance sampling simulations to estimate their probability of failure. Next to 

the intrinsic uncertainties in loads and capacities further uncertainties accounting for the model 

uncertainties are included in the simulations. As an SHM strategy, proof loading is considered 

and modelled as a process accompanying the construction. The costs of proof loading and 

probable component failures are considered explicitly. The analyses results point to high Value 

of Information for component proof loading in systems with a low reliability. 

 

 

1 INTRODUCTION 

 

It is currently often unclear whether experiments, e.g. proof load testing that provide data on 

the structural performance are beneficial. A method in order to assess this benefit is the 

Bayesian decision theory. The decision analysis is based on system models (section 2). The 

discussed series system could represent a monopile and the Daniels system a jacket 

substructure. The system models and measurements incorporate model and measurement 

uncertainties, respectively. In section 3 the model updating is explained and with a short outline 

of the Bayesian decision theory is given. Section 4 presents the modelling results taking basis 

in the economics of offshore wind turbines. The paper is concluded and summarised in section 

5. 
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2 SYSTEM MODELS 

 

Various typical structural systems can be represented by generic models. A series system can 

represent e.g. a tower or single fibre cable consisting of several components. A Daniels system 

can present e.g. cables, tendons with several fibres or jackets and other truss structures. The 

failure of the discussed systems is described by the limit state function (Equation 1). 

 

𝑅 ⋅ 𝑀𝑅 − 𝑆 ⋅ 𝑀𝑆 ≤ 0 (1) 

 

with the resistance force, 𝑅, and the load, 𝑆. The model uncertainties for 𝑅 and 𝑆 are represented 

by 𝑀𝑅 and 𝑀𝑆 respectively. All four random variables are sampled as described in Table 1. The 

limit state function in equation (1) is used in order to determine the failure probabilities of the 

systems described in section 2.2 and 2.3. 

 

2.1 SERIES SYSTEMS 

 
Figure 1: Series system. 

 

 
Figure 2: Daniels system with infinitively stiff 

bar for the instantaneous load redistribution. 

 

A series system fails if any of its 𝑛 components fail. Equation 2 follows the definition in [9]. 

The weakest component determines the capacity of the whole series system. 

𝑃𝐹 = 𝑃 (⋃ 𝐹𝑖

𝑛

𝑖=1

) with 𝐹𝑖 = {𝑅𝑖 ⋅ 𝑀𝑅𝑖
≤ 𝑆 ⋅ 𝑀𝑆} (2) 

 

2.2 DANIELS SYSTEMS 

The so-called Daniels system was first introduced by H. E. Daniels in 1945 [3], Figure 2. It is 

a parallel system with special properties that make it meaningful in terms of mechanic systems. 

As described in [6, 9] all components experience the same load, 𝑆𝑖 = 𝑆𝑡𝑜𝑡/𝑛, which is the 𝑛th 

fraction of the total load, 𝑆𝑡𝑜𝑡. If the load exceeds the system’s load bearing capacity the weakest 

component breaks first and the load is equally redistributed among the remaining intact 

components. The entire system fails when the remaining intact components cannot jointly carry 

the additional load fraction that was sustained by the last component that broke. 

In the presented Daniels systems it is distinguished whether all their components behave 

perfectly brittle or perfectly ductile. A structural component is called perfectly brittle if it loses 

its bearing capability completely at failure. A perfectly ductile component maintains its load 

level after failure. 

The probability of failure of a perfectly ductile Daniels system is given by equation (3). 

𝑃𝐹 = 𝑃 (∑ 𝑅𝑖 ⋅ 𝑀𝑅𝑖

𝑛

𝑖=1

− 𝑆 ⋅ 𝑀𝑆 ≤ 0) 
 
 

(3) 
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For a perfectly brittle Daniels system the failure probability is determined by equation (4). 

𝑃𝐹 = 𝑃 (⋂{(𝑛 − 𝑖 + 1)𝑅𝑖 ⋅ 𝑀𝑅𝑖
− 𝑆 ⋅ 𝑀𝑆 ≤ 0}

𝑛

𝑖=1

)  (4) 

Where the realisations of 𝑅𝑖 ⋅ 𝑀𝑅𝑖
 are ordered according to �̂�1 ⋅ �̂�𝑅1

≤ ⋯ ≤ �̂�𝑖 ⋅ �̂�𝑅𝑖
≤ �̂�𝑖+1 ⋅

�̂�𝑅𝑖+1
≤ ⋯ ≤ �̂�𝑛 ⋅ �̂�𝑅𝑛

. 

 

2.3 PROBABILISTIC MODEL SIMULATION 

The applied model parameters are described in Table 1. In case of the prior model the variables 

𝑅𝑖 and 𝑆 are substituted by 𝑅des,𝑖
′  and 𝑆des

′ , respectively. In the pre-posterior model 𝑅𝑖 is 

substituted by the variable 𝑅mix
′′  that follows the distribution explained in section 3.2. 

 

Table 1: Parameters of the structural probabilistic model. 

Model parameter Distribution type Mean (𝝁) Standard deviation 

(𝝈) 

𝑅 𝑖     Resistance 
To be substituted by either prior (𝑅des,𝑖

′ ) or pre-posterior (proof 

loading) uncertainties. See section 4.3. 

𝑅des,𝑖
′  Design resistance Lognormal 13.4196 1 

𝑆des
′    Design load Weibull 10 √2 

𝑅mix
′′   Updated resistance Mixture distribution Depend on distribution definition 

𝑀𝑅  uncertainty of 𝑅 Lognormal 1.15 0.15⋅ mean(𝑀𝑅) 

𝑀𝑆  uncertainty of 𝑆 Lognormal 1.0 0.05⋅ mean(𝑀𝑆) 

 

2.4 SINGLE COMPONENT RELIABILITY 

This study is based on a target component reliability of 𝛽𝑡 = 2. This is achieved by pre-defining 

the mean and the variance of the load, 𝑆, as well as the variance of the component strength, 

Var(𝑅𝑖). The mean of 𝑅𝑖 is calibrated iteratively so it matches 𝛽𝑡. 𝛽 = 2 is approximately equal 

to a probability of failure = 0.02275 [2]. 

 

2.5 CORRELATION 

Correlation between the random variables has a strong influence on the system reliability. The 

random variables of the resistance, 𝑅𝑖, are correlated in a range from 0 to 1 in the system models. 

This is achieved by applying a normal copula which uses the Spearman rank as input 

correlation. According to [8] the ultimate strength of tubular joints in jacket structures are 

correlated in a range from 0.2 to 0.9. The wide spread maybe due to varying joint dimensions 

and welding craftsmanship. As the components are represented by the same models it seems 

reasonable to assume a correlation between their model uncertainties, 𝑀𝑅, in the discussed 

systems fully (𝜌𝑀𝑅
= 1) as well as un-correlated (𝜌𝑀𝑅

= 0) model uncertainties are simulated 

in order to compute upper and lower bounds. 
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3 VALUE OF INFORMATION IN PROOF LOAD TESTING 

 

3.1 DECISION THEORY 

The theory of the Value of Information is part of the Bayesian decision theory developed by 

Raiffa and Schlaifer [10]. In order to obtain the VoI in the context of civil engineered structures 

with pre-posterior information, the expected value of sample information (EVSI) is to be 

determined. The EVSI considers experimental results before they have been obtained. In the 

context of proof load testing, the prior information may be retrieved from the structural design 

and the pre-posterior information may be obtained through modelling the proof load testing 

results probabilistically. 

A brief explanation of the concept of VoI follows here according to [4, 12, 14] where the value 

of Information 𝑉 is quantified as the difference between life-cycle benefit, 𝐵1, as determined 

by pre-posterior decision analysis and life-cycle benefit, 𝐵o, according to a scenario without 

proof load utilisation based on prior models (Equation 5). 

𝑉 = 𝐵1 − 𝐵0 
 

 
(5) 

The life-cycle benefit, 𝐵1, depends on the outcome of the pre-posterior decision analysis which 

depends on the choice of the proof load test, structural performance and the impact of 

undertaken corrective measures. The proof load test influences the result by its capabilities, i.e. 

load type and its distribution, and cost. In order to choose the highest utility 𝐵1 = 𝐸𝑋[𝐵(𝑋, 𝑠)], 
expressed as the expected value of benefits must be maximised accounting for the decision 

alternative 𝑠 (Equation 6). 
 

𝑉 =  𝑚𝑎𝑥
𝑠

𝐸𝑋[𝐵(𝑋, 𝑠)] − 𝐵0  (6) 
 

The above described VoI derivation is given in greater detail by [4] or [14]. Some examples of 

VoI analyses are given in [1]. The value of proof load information may thus relate to increasing 

benefits or decreasing costs, or in a wider context, to increasing human safety. 

 

3.2 PRIOR AND PRE-POSTERIOR KNOWLEDGE 

The prior model incorporates the design model uncertainties, 𝑀𝑆 and 𝑀𝑅, of the load and 

resistance respectively. The prior model uncertainties are defined as suggested by [16] in Table 

1. In order to obtain pre-posterior knowledge proof load testing is applied to each component 

separately which updates the structural resistance, 𝑅. Relevant for obtaining the updated 

knowledge is the proof loading distribution with its parameters listed in Table 2. 

Table 2: Parameters of the proof load distribution. 

Uncertainty parameter Distribution type Mean (𝝁) Coefficient of variation 

𝑅proof
′  proof load Normal 0.85 ⋅ mean(𝑅des

′ ) 0.01 

 

UPDATING BY PROOF LOADING 

Proof loading for reliability updating has been considered already in 1984 [7], by applying a 

load to a structure its capacity can be tested and the resistance distribution be updated. The 

authors in [13] suggest to update the resistance distribution by combining the proof load and 
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resistance distribution to a posterior mixture distribution, 𝑅mix
′′ , which will substitute 𝑅des

′  in 

the reliability analysis. 𝑅mix
′′  consists of two truncated distributions, first it follows the proof 

load distribution, 𝑅proof
′ , up to a threshold, 𝑙, and beyond 𝑙 it follows the design resistance, 

𝑅des
′ . 𝑙 is chosen such that it is at the intersection point of the PDFs of 𝑅proof

′  and 𝑅des
′  on their 

increasing flanks. The updating is solely based on survival information as failed components 

will not be used for construction. 

𝑅mix
′′ = {

𝑅proof
′

𝑅des
′

 , for 𝑥 ≤ 𝑙
 , for 𝑙 < 𝑥

  (7) 

 
Figure 3: Visualisation of the resistance updating process using probability density functions. 
 

With the chosen distribution parameters the proof load had to be rather high in order to obtain 

numerically significantly different results. 85% of the mean(𝑅des
′ ) was chosen. With increasing 

uncertainty in the prior distribution of the resistance model the required proof load becomes 

smaller in order to achieve significant differences. Such a high proof load is probably best 

realised by testing single components. The here-in presented models assume that each 

component is updated separately. The probability of failure during the proof load test estimates 

to approximately 0.0421. PDFs of the involved distributions are shown in Figure 3. 

 

COMPUTUATION OF THE VALUE OF INFORMATION 

In order to estimate the benefit of the presented models, assumption are made based on [15] for 

offshore wind turbines. Capital expenditures are assumed to be 3.0 M€ / MW. The proof load 

tested system contributes 600 k€ / MW to the capital expenditures. The income per MWh is 45 

€, and the capacity factor 50%, over a service-life of 𝑡 = 1, … , 20 years and is discounted with 

the rate 𝑟𝑑 = (1 + 0.025)−𝑡. The component cost is assumed to be anti-proportional with the 

amount of components in the system. Expenses for operation & maintenance are not considered. 

Direct consequences arise from component failure during proof load testing, indirect 

consequences defined by the capital expenditures and the system failure probability. The costs 

for proof loading are assumed to be 1% of the system costs. On the bases of [8] the distribution 

of the component resistance correlation, 𝜌𝑅𝑖
, is chosen as shown in Figure 4. 
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Figure 4: Assumed distribution of component resistance correlation. 

 

The Bayesian pre-posterior decision analysis follows the decision tree in Figure 4. Based on the 

not yet known test results a component that failed will not be used for construction; a surviving 

component will be used. Thus failure is not explicitly modelled which results in the simple 

decision tree in Figure 4. The first chance nodes after the decision represent the probabilities of 

a certain component resistance correlation. The following chance nodes branch into system 

failure or survival. 

 
Figure 5: Decision tree. The resistance correlation 𝜌 varies according to Figure 4. 

 

4 MODEL RESULTS 

Figures 6 to 8 show the relative change of the reliability index 𝛽 normalised by the target index 

𝛽𝑡 = 2. Figure 9 to 11 display the difference of the proof load test reliability and the design 

model reliability normalised by the difference in reliability one component gained. The images 

use bi-linear interpolation. In order to aid the graph interpretation, recognise that a dark colour 

in the background represents a low value with a light colour contour line for better contrast. A 

high value is thus shown by a light background colour and a dark contour line. 

 

DESIGN MODEL 

For the series (Figure 6) and brittle Daniels (Figure 7) systems it can be observed how the 

system reliability is reduced with increasing number of components; a higher correlation 

counter acts on this effect. 

In Figure 8 one can observe an increase in reliability with increasing amount of components in 

ductile Daniels systems. In case of fully correlated model uncertainties the reliability converges 

faster to its maximum reliability which is only slightly higher than 𝛽𝑡 = 2. 
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Figure 6: series systems with 𝜌𝑀𝑅
= 0 (left) and with 𝜌𝑀𝑅

= 1 (right) 

  
Figure 7: brittle Daniels systems with 𝜌𝑀𝑅

= 0 (left) and with 𝜌𝑀𝑅
= 1 (right) 

  

Figure 8: ductile Daniels systems with 𝜌𝑀𝑅
= 0 (left) and with 𝜌𝑀𝑅

= 1 (right) 

 

UPDATED STRUCTURAL MODELS 

In the figures 9 to 11 a value larger than 0 represents a gain in reliability through proof load 

testing, a value larger than 1 indicates gain in the system reliability that is larger than the gain 

of a single updated component. 

In the series system models (Figure 9) the proof load testing increases the reliability estimate 

with increasing numbers of components and a low correlation of component resistances. Thus 

the maxima are concentrated in the lower right corner of the graphs. Furthermore the 
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reliability increase is stronger when the model uncertainties are correlated with 𝜌𝑀𝑅𝑖
= 1. 

  
Figure 9: updated series systems with 𝜌𝑀𝑅

= 0 (left) and with 𝜌𝑀𝑅
= 1 (right) 

 

Brittle Daniels systems show behaviour similar to that of series systems in case of 𝜌𝑀𝑅𝑖
= 0. 

The peak reliability gain remains with a large amount of components but moves towards a 

higher correlation of component resistance. 

  
Figure 10: updated brittle Daniels systems with 𝜌𝑀𝑅

= 0 (left) and with 𝜌𝑀𝑅
= 1 (right) 

 

Ductile Daniels systems gain more reliability through proof load testing with high component 

resistance correlation. This is especially pronounced with uncorrelated model uncertainties. 

  
Figure 11: updated ductile Daniels systems with 𝜌𝑀𝑅

= 0 (left) and with 𝜌𝑀𝑅
= 1 (right) 
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DECISION ANALYSIS 

As shown in Figure 13 the VoI of proof load testing for series and brittle Daniels systems 

become positive for larger numbers for components. The VoI = 0 is exceed between 11 and 16 

components and beyond. Proof load testing of ductile Daniels system components does not 

provide a positive VoI in this study. The increase of the VoI with the number of components is 

due to lower risk associated with the failure of a component as the price per component is anti-

proportional to the amount of components. 

 
Figure 13: Value of Information obtained by proof load testing. 

5 SUMMARY AND CONCLUSION 

 

The study has shown how proof load testing of individual components can be utilised in order 

to update the system resistance distribution and hence the system’s reliability for series and 

Daniels system models. But for owners and operators of structural systems a more accurate 

estimation of the system reliability is not sufficient in itself. Before conducting an experiment 

such as proof load testing it is preferable to assess the value the experiment provides to the 

owner or operator. In this study the Value of Information was estimated using the Bayesian 

decision theory in order to assess whether or not proof load testing of single components can 

add value. 

Considering the same type of system the Value of Information is mainly influenced by the risk 

associated with the proof load tests. The larger the amount of components, the larger is the 

Value of Information as the individual component price drops in more complex systems. Across 

systems the Value of Information is changing with the fundamental reliability of the system. 



10 
 

From the most reliable system type in this study, the ductile Daniels system, to the least reliable 

system, the series system, the Value of Information increases. This generic approach requires 

an adaptation to relevant failure mechanisms for actual applications. 
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