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ABSTRACT 24 

β-Glucan was extracted from eight different barley genotypes varying in β-glucan content and 25 

molecular structure using Termamyl® SC (T), Attenuzyme® (A) and Attenuzyme® Flex (AF) 26 

amylolytic enzymes in combinations. Extracts from barley lines Lys5f, KVL408, KVL1104 and 27 

CDC Fibar exceeded 4 g β-glucan/l, providing European Food Safety Authority (EFSA) and U.S. 28 

Food and Drug Administration (FDA) recommended amounts (3 g β-glucan/day) from three 29 

portions. TAF extracts of Lys5f and KVL408 grains reached extraordinary high concentrations of 8-30 

9 g β-glucan/l.  The β-glucan molecular mass decreased with enzyme treatment T < TA < TAF due 31 

to minor lichenase side activity. Extractability was generally higher and molecular mass lower for 32 

barley lines low in triosyl/tetraosyl (DP3/DP4) ratios than for those high in DP3/DP4 ratios (Lys5f, 33 

KVL408 and KVL1104). Overall, the higher β-glucan content and structural robustness in Lys5f 34 

and KVL408 raw materials favor these in a β-glucan rich extract with potential for EFSA and FDA 35 

health and nutrition claims.   36 

 37 

 38 

Keywords 39 
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1. Introduction 41 

The human population at large fails to consume adequate amounts of dietary fiber. Recently, 42 

renewed interest in barley as a food grain has evolved due to its high content of physiologically 43 

active soluble fibers, especially mixed linkage (1→3, 1→4) β-glucan (BG).  44 

BG dietary fibers have a remarkable range of health benefits including the promotion of heart 45 

health, stabilization of blood glucose levels, stimulation of immune responses, satiety increase and 46 

maintenance of body weight (El et al., 2012; Mikkelsen et al., 2014; Wood, 2010). Scientific 47 

evidence has led to the approval of barley BG with health claims by the United States Food and 48 

Drug Administration (FDA, 2005) and the European Food Safety Authority (EFSA). EFSA has 49 

authorized health claims for the ability of barley BG to maintain or reduce blood cholesterol levels 50 

and reduce post-prandial glycemic responses (Harland, 2014). Furthermore, barley grain fibers are 51 

approved by EFSA for contributing to an increase in fecal bulk, which relates to gut health. The 52 

recommended intake of BG is minimum 3 g per day and the health claims allow food producers to 53 

label products containing at least 1 g BG per serving. In addition to the content of BG in the 54 

products, also the physico-chemical properties of BG, which may be dependent on combinations of 55 

molecular mass, solubility and viscosity, are essential for providing the health effects (Mikkelsen et 56 

al., 2014; Wood, 2010). BG depolymerization, as might be imparted by food processing, typically 57 

leads to reduction in BG viscosity. However, low molecular mass BGs have shown to form gel like 58 

structures more readily than high molecular mass BGs (Wood et al., 2010), and low molecular mass 59 

BGs might be physiologically as effective as those with high molecular mass provided that the 60 

concentration or active dose estimated by increased releasability is sufficiently high (Frank et al., 61 

2004; Naumann et al., 2006). Kerckhoffs et al. (2003) found that beneficial physiological effects of 62 

BGs can be decreased when incorporated into solid foods such as bread and cookies. Liquid 63 

matrices, such as beverages and soups, may therefore be preferable for inducing health effects from 64 

BG meals as the liquid state allows hydration and release of the BG before ingestion. Liquids 65 
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containing high levels of BGs are typically very viscous, which renders them less attractive as 66 

beverages. Hence, there is an unmet need for methods and materials for preparing appealing and 67 

functional extracts with high content of natural BG and there is sparse evidence of how combined 68 

processing and genotypic variation in barley BG structure affect its major physical and potential 69 

health beneficial properties. In the present study, we evaluate the extractability and quality of BG 70 

liquid formulations from eight different barley lines using mashing protocols and selected 71 

combinations of amylolytic enzymes.  72 

In barley grains, BG is located in pericarp, scutellum, aleurone layer and starchy endosperm 73 

as a cell wall component (Dornez et al., 2011). BG is a structural polysaccharide, but it also 74 

provides glucose during grain germination (Burton et al., 2010). Barley is a genetically diverse 75 

cereal crop and it is classified as spring or winter type, two- or six-rowed, hulled or hull-less, and 76 

malting or feed by the end-use type. Based on grain composition, barley can be further classified as 77 

normal, waxy or high amylose starch types, high lysine and high BG. De-hulling and pearling of 78 

barley grains reduces the contents of insoluble fiber, protein, ash and free lipids from the outer 79 

layers including the hull (palea and lemma), bran (pericarp, testa, aleurone) and germ (embryo), and 80 

increases the content of starch and soluble BG fiber originating from the endosperm (Baik and 81 

Ullrich, 2008). BG content in barley grains typically ranges from 2.5% to 12% by weight 82 

(Izydorczyk and Dexter, 2008), but extreme levels of 15-20% have been reported for the high 83 

BG/low starch mutant line Lys5f (Munck et al., 2004). This mutant line along with its barley 84 

mother line, Bomi, was included in the present study.  85 

BGs are comprised of glucose units connected by β (1→4)-linkages (~70%) and β (1→3)-86 

linkages (~30%) in a linear manner (Mikkelsen et al., 2010). Blocks of β (1→4)-linked sequences, 87 

with cellotriose and cellotetraose units constituting ~90% of the molecule, are separated by single β 88 

(1→3)-linkages (Burton et al., 2010). The molar ratio of the cellotriosyl to cellotetraosyl units with 89 

degree of polymerization (DP) of 3 to 4, respectively, is referred to as the DP3/DP4 ratio and is 90 
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considered as a fingerprint of the individual BGs from various barley lines and tissues. Typically, 91 

small amounts (~10%) of cellulosic oligosaccharides with DP5-15 are also present (Woodward et 92 

al., 1988). DP3/DP4 ratios of barley BGs have generally been reported in the range of 1.8-3.5. 93 

Lower ratios are typically found in the endosperm (2.7-3.2) tissue compared to pericarp (3.4-4.2) 94 

and aleurone (3.8-4.1) outer layers of the barley grain (Izydorczyk and Dexter, 2008). Both, linear 95 

regions of repeated units of cellotriosyl or cellotetraosyl, as well as the long cellulosic oligomer 96 

blocks, have been suggested to decrease BG solubility due to chain alignment and aggregation 97 

(Burton et al., 2010; Woodward et al., 1988). Thus, the DP3/DP4 ratio provides an indication of 98 

solubility and BGs with ratios close to 1:1 are found to be more soluble than BGs with either very 99 

high or very low DP3/DP4 ratios having longer stretches with repetitive structures (Burton et al., 100 

2010). Barley BGs typically comprise more than 1000 glucosyl residues and reported molecular 101 

mass values range 130 to 2,500 kDa. The large variations reflect the diversity of genotypical 102 

botanic origin, but also result from the methodology of extraction and molecular mass 103 

determination (Irakli et al., 2004).  104 

A wide range of laboratory and pilot scale BG extraction protocols have been reported 105 

(Benito-Roman et al., 2011; Benito-Roman et al., 2014; Limberger-Bayer et al., 2014; Mikkelsen et 106 

al., 2013; Wood, 2010). In brief, they involve milling, inactivation of endogenous hydrolytic 107 

enzymes, extraction with hot water or alkaline solutions, removal of starch and protein using 108 

hydrolytic enzymes and/or centrifugation, recovery of BG from the extract by ethanol precipitation 109 

or cryogellation cycles and drying of the BG gum. The extractability of BG is influenced by process 110 

parameters such as fineness of grind, temperature, ionic strength and pH of the solvent (Mikkelsen 111 

et al., 2013). β-Glucanase activity and mechanical damage during extraction have been reported to 112 

cause BG depolymerization which modify the BG molecular mass, extraction yield and rheological 113 

behavior (Wood, 2010). Thus, valid evaluation of BG yield and quality from different barley 114 

genotypes requires identical and standardized extraction conditions. Depending on the method used, 115 
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the extractability of barley BGs can vary between 33% and 87% (Izydorczyk and Dexter, 2008). 116 

Benito-Román et al. (2011) found BG extraction yields of ~73% and ~62% for hulled and hulless 117 

barley, respectively. Amylolytic enzymes are widely used for the degradation of starch in BG 118 

extraction (Benito-Roman et al., 2014; Doehlert et al., 2012). Following thermal gelatinization the 119 

starch is hydrolyzed into maltooligosaccharides, maltose and glucose by the action of endo- and 120 

exo-glucanases such as α- and β-amylases, glucoamylase and debranching pullulanase. α-Amylase 121 

(EC 3.2.1.1) and pullulanase (EC 3.2.1.41) act endo in a pseudo random mode in the amylose and 122 

amylopectin polymer chains of starch and hydrolyze (1→4)-α-D-glycosidic and (1→6)-α-D-123 

glycosidic linkages, respectively. At the non-reducing end of the starch polymer chains, β-Amylase 124 

(EC 3.2.1.2) hydrolyses (1→4)-α-D-glycosidic to liberate successive maltose, whereas 125 

glucoamylase (EC 3.2.1.3) hydrolyses both (1→4) and (1→6)-α-glycosidic linkages and produces 126 

glucose (van Oort, 2010). For complete and efficient starch degradation, enzyme preparations with 127 

specific and diverse functionalities are warranted. However, introducing more enzymes to a process 128 

increases the risk of hydrolytic side-, or contaminating activities on BGs. Few studies using 129 

enzymes as part of their BG isolation have investigated, if the amylolytic enzymes had any effect on 130 

the BG itself (Benito-Roman et al., 2014; Doehlert et al., 2012). In the present study we screen 131 

widely different barley genotypes for BG extraction yields. A hydrothermal, mechanical enzyme-132 

assisted protocol was optimized and we assess the risk of BG degradation by trace contaminating β-133 

glucanase side activity in commercial bulk enzyme preparations.  134 

  135 
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2. Materials and methods 136 

2.1. Raw materials, experimental design and data analysis 137 

Grains from eight two-rowed spring barley genotypes having vastly different BG content were 138 

included in this work (Fig. 1). The grains of KVL408, KVL1104, CDC Fibar cv., Chameleon cv. 139 

and Columbus cv. were provided by Carlsberg Research Laboratory (Denmark) whereas Lys5f and 140 

Bomi cv. were from the University of Copenhagen (Denmark). The Lys5f, KVL1104 and KVL408 141 

barley genotypes derive from a larger collection of barley mutants where KVL408 have been 142 

mutated in Perga and Lys5f in Bomi standard malt barley (Di Fonzo and Stanca, 1977). KVL1104 143 

derives from the crossing of Lys5f and Bomi. CDC Fibar is a high fiber, 0% amylose hulless barley 144 

registered in Canada. Chameleon is a hulless and Columbus a hulled standard malt barley registered 145 

in Denmark. Pearling of Columbus was performed on a vertical polishing BSPB (Bühler AG, 146 

Switzerland) with pearling 11% of husk. In total, 48 samples were prepared from mashing grains 147 

from the eight barley lines with three different enzyme combinations in replicate. Raw grains were 148 

investigated for BG content and BG spatial distribution in the grain. BG extracts were analyzed for 149 

viscosity, BG yield and molecular mass. Ethanol precipitated BGs from extracts were analyzed for 150 

DP3/DP4 ratios. Commercial amylolytic enzymes were examined for BG hydrolytic side activity 151 

(Fig. 1).   152 

Data were mined by multivariate data analysis using principal component analysis (PCA) to 153 

visualize trends related to genotype, molecular structure and processing. PCA captures the major 154 

variation in a data set in a model (X = T · P′ + E) where the two-dimensional data matrix (X) 155 

containing information about samples and variables is decomposed into systematic variation (T and 156 

P′) and noise (E). The systematic variation is described by the calculated principal components 157 

(PCs) that represent the outer product of scores (containing information about the samples) and 158 

loadings (containing information about the variables) (Wold et al., 1987). PCA on the physico-159 
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chemical properties of the 48 BG extracts was performed using Latentix software (LatentiX™ 2.12, 160 

Latent5, Copenhagen, Denmark, www.latentix.com). Data were auto-scaled prior to analysis. 161 

 162 

2.2. Microscopy 163 

Barley grains were trimmed with a razor blade to aid diffusion of agents, fixed for 24 h in 164 

Karnovsky’s fixative (5% glutaraldehyde, 4% paraformaldehyde, 0.1 M sodium cacodylate buffer at 165 

pH 7.3) including a 1 h vacuum treatment, and subsequently washed in cacodylate buffer and water. 166 

Samples were dehydrated in a graded acetone series, infiltrated with increasing ratios of Spurr 167 

resin:acetone and embedded in Spurr resin within flat molds. The resin was polymerized in an oven 168 

at 60°C for 8 h. Semi-thin sections of 2 µm were cut with a histo-diamond knife on a Reichert-Jung 169 

supernova ultramicrotome and stained for BGs with 0.01% (w/v) Calcofluor White M2R (Sigma-170 

Aldrich) and imaged with UV excitation and blue emission. Other sections were stained with 171 

Periodic Acid Sciffs’s (PAS) and counterstained with Amido Black (AB). All images, apart from 172 

the overview images, were taken from the central part of the starchy endosperm tissue. Sections 173 

were viewed in a Nikon Eclipse 80i light and fluorescence microscope and images were recorded 174 

with 4 x dry objective or 100 x objective using immersion oil. Final image processing, cropping and 175 

mounting of the images were done with Adobe (San Jose, CA, US) Photoshop CS2 and Illustrator 176 

CS2.  177 

 178 

2.3. Extraction and enzymatic treatment 179 

BG extraction yield was optimized in a mashing pre-study with focus on milling particle size, 180 

solvent:flour ratio, pH, temperature and extraction time using the Lys5f line as model. Enzymes 181 

were dosed as suggested by the manufacturer (1.5% w/w, enzyme/flour). Production of high BG 182 

wort was performed using a Lochner electronic mashing device with 8 beakers. Barley grains were 183 

milled immediately before mashing with an EBC mill adjusted to 0.5 mm. The water:flour ratio was 184 
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1:15 per weight equivalent to 27 g barley flour mashed-in with 400 ml standard brewing water in a 185 

500 ml metal beaker and the pH was adjusted to 5.5 with phosphoric acid. To facilitate starch 186 

hydrolysis three different enzyme treatments were used: Termamyl® SC containing thermostable α-187 

mylase (T), a combination of Termamyl® SC and Attenuzyme®, the latter containing 188 

glucoamylase (TA) or a combination of Termamyl® SC and Attenuzyme® Flex, the latter 189 

containing glucoamylase and pullulanase (TAF). All enzymes were purchased from Novozymes 190 

A/S, Denmark. Following 45 min incubation at 65°C, the temperature was linearly increased to 191 

90°C for 25 min, and finally kept at 90°C for 30 minutes. The mash was centrifuged at 3500 rpm 192 

for 10 min to remove insoluble spent grain material. From the 340 ml wort sample, 100 ml were 193 

withdrawn and subjected to ethanol precipitation by adding 100 ml ethanol at room temperature, 194 

incubating for precipitation 30 min and draining BG gums. The BG gums were lyophilized for 24 h 195 

and ground prior to DP3/DP4 analysis of pure BG samples free of maltose and glucose. The 196 

remaining wort was used directly for analyses of viscosity, BG content and molecular mass.   197 

 198 

2.4. β-Glucan content and viscosity 199 

The content of BGs in wort and barley grains was measured by the fluorimetric calcofluor-method 200 

(Brewing EBC standards, 1994). Calcofluor has the capacity to form fluorescent products with BGs 201 

larger than approx. 10-30 kDa present in solution and its fluorescence proportionally increases with 202 

the content of BG bound (Rieder et al., 2015). The instrument used was a BG Carlsberg System 203 

5700 Analyzer with flow injection (Tecator, Sweden). The viscosity was measured by a viscometer 204 

Vibro SV-10 (A&D Company Limited, Tokyo) at 20°C within 1 h after centrifugation of the wort. 205 

The viscometer cup was filled up with 10 ml of wort and the viscosity recorded as mPas at 30 Hz 206 

constant frequency and less than 1 mm amplitude. 207 

 208 

2.5. Molecular mass and oligomer block structure  209 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
   

10 
Mette Skau Mikkelsen, Journal of Cereal Science 
 

The molecular mass analysis was conducted by size exclusion chromatography (SEC). Prior to 210 

analysis the wort samples were heated at 80 °C for 30 min and diluted 1:4 in 50 mM ammonium 211 

formate buffer of pH 5. The solutions were mixed, heated at 80°C for 30 min, centrifuged and 212 

filtered (0.45 µm) before injection of 50 µl. Separation was performed using an Asahipak GS 213 

520HQ (7.5 × 300 mm) column (Shodex, US). The column was calibrated with five BG standards; 214 

barley 650,000 kDa, oat 391,000 kDa, oat 265,000 kDa, barley 229,000 kDa, oat 70,600 kDa and 215 

oat 35600 kDa (Megazyme, Ireland). Elutions were performed with 50 mM of ammonium formate 216 

buffer (pH 5) and 0.01% NaN3 at 60°C with a constant flow rate of 0.5 ml/min. The separation was 217 

performed using a GPC system (viscotek 270max, Malvern) equipped with an online degasser, a 218 

pump and a differential refractometer controlled at 40°C. Data for molecular mass determinations 219 

was analyzed by Omnisec software (version 4.7.0.406, Malvern) based on conventional calibration 220 

of homopolymers. Results are reported as weight average molecular mass (Mw). 221 

The DP3/DP4 analysis was based on lichenase digestion of BG precipitated from wort 222 

prepared as described above. BG powder (2.5 mg) was wetted with 10 µl 50% EtOH, and the slurry 223 

was suspended in 500 µl of 10 mM NaH2PO4/Na2HPO4 buffer. The solution was heated at 96°C for 224 

2 h, cooled to 60°C and 10 U of lichenase (Megazyme, Ireland) were added. The samples were 225 

incubated with mixing overnight at 60°C. Subsequently, the enzyme was inactivated at 100°C for 226 

30 min and the samples were lyophilized. The BG fragments were labeled with the fluorophore 227 

Aminobenzamide (2-AB) by a reductive amination procedure (Walther et al., 2015). To the 228 

lyophilized samples was added 150 µl of 1 M 2-AB in DMSO/AcOH (7:3) and 150 µl of 1 M 229 

NaBH3CN in DMSO/AcOH (7:3). Samples were mixed and incubated for 4 h at 60ºC, cooled to 230 

room temperature, centrifuged and diluted 400-fold with a mixture of Milli Q water and acetonitrile 231 

(22:78). The samples were directly analyzed by hydrophilic interaction liquid chromatography 232 

(HILIC) using maltotriose and maltotetraose as standards. 5 µl aliquots were injected onto a Waters 233 

Acquity UPLC System equipped with a fluorescence detector (excitation wavelength of 350 nm and 234 
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emission wavelength of 420 nm) and columns: a VanGuard BEH glycan 1.7 µm, 2.1 × 5 mm pre-235 

column and an Acquity UPLC BEH glycan 1.7 µm, 2.1 × 150 mm column. Measurements were 236 

performed at room temperature. Data were processed using MassLynx V4.1. 237 

 238 

2.6. NMR spectroscopy 239 

The possible presence of trace β-glucanase activity in the three different commercial enzyme 240 

mixtures applied in the wort production was tested using medium viscosity barley BG (200 kDa, 241 

Megazyme, Ireland). The BG was dissolved by gentle heating and whirl-mixing to concentrations 242 

of 1 mg in 600 µl of 50 mM potassium phosphate buffer (pH 6) in D2O (Cambridge Isotope 243 

Laboratories, Andover, MA, USA). Buffer of the desired pH had been prepared by lyophilization 244 

and re-dissolution in D2O. To three substrate samples 0.5 µl of enzyme solution (Termamyl® SC, 245 

Attenuzyme®, or Attenuzyme® Flex) were added, respectively. Reactions were followed in situ by 246 

high resolution nuclear magnetic resonance (NMR) spectroscopy for 240 min at 18°C to slow down 247 

the reaction relative to process conditions. Spectra were acquired as a time series in situ by 248 

sampling 16,384 complex data points during an acquisition time of 1.57 sec, summing 32 transients 249 

and using a recycle delay of 2 sec.  250 

The site-specific action of trace β-glucanase activity was investigated using a Lys5f BG 251 

sample extracted solely by Termamyl® SC under real process conditions, i.e. at 65°C. 252 

Homonuclear 1H -1H DQF COSY spectra were recorded on enzyme-treated samples using a 800 253 

MHz Bruker Avance II (Fällanden, Switzerland) NMR spectrometer equipped with a TCI 254 

cryoprobe and 18.7 T magnet (Oxford Magnet Technology, Oxford, UK). Spectra were acquired as 255 

a matrix of 2048 × 256 complex data points sampling 512 ms × 64 ms in the two proton 256 

dimensions. Spectra were processed with extensive zero filling in both dimensions. BG structures 257 

formed by exposure to Attenuzyme® Flex were analyzed. Assignments of cleavage site signals 258 

from intermediates and products were conducted through comparison of the 2D spectra using 259 
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reference assignments from previous work (Petersen et al., 2013). All spectra were acquired, 260 

processed and analyzed using Topspin 2.1 (Bruker). 261 

 262 

3. Results and discussion 263 

3.1. Raw materials 264 

Barley raw materials showed significant variation in the content of BG (Fig. 1) with Lys5f and 265 

KVL408 ranging 11.8-15.3 % (dry mass, dm), KVL1104 and CDC Fibar ranging 8.0-8.9 % (dm) 266 

and Bomi, Chameleon, Columbus and Columbus pearled ranging 3.9-4.9 % (dm). Accordingly, the 267 

barley lines were categorized into high, medium or low BG genotypes. The pearling of Columbus 268 

grains increased the BG content from 3.9 to 4.5 % (dm).    269 

The distribution and appearance of BG within the barley outer layers and starchy endosperm 270 

was investigated by histochemical analyses of the eight genotypes (Fig. 2). Three kernels of each 271 

genotype were prepared for light microscopy and the results shown are consistent for all repetitions. 272 

BG is known to be the main cell wall constituent (70%) of barley starchy endosperm and is also part 273 

(20%) of the aleurone layer, and can be stained with calcofluor. Calcofluor also labels cellulose, 274 

which however only makes up 2% of the barley grain cell walls (Burton et al., 2010). As deduced 275 

from the calcofluor fluorescence (Fig. 2), the cell walls in the starchy endosperm appear 276 

significantly thicker in Lys5f and KVL408 (Fig. 2C, D) compared to the other lines. The cell wall 277 

signal is also fairly strong in KVL1104, CDC Fibar and Bomi (Fig. 2E, F, G), compared with 278 

Chameleon, Columbus and Columbus pearled (Fig. 2H-J). Thus, the visual appearance of the BG in 279 

the microscope is consistent with the content of BG in the different lines. Microscope samples of 280 

Lys5f and Bomi were furthermore stained for the presence of insoluble polysaccharides and counter 281 

stained with a protein stain. Starch granules from Lys5f were of similar size and distribution as 282 

those of Bomi however empty voids were frequently seen in the center of Lys5f starch granules (Fig 283 
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2K). No differences in protein amount could be noted. The empty center of starch granules in Lys5f 284 

might be related to the general decreased starch content in this mutant line (Munck et al., 2004). 285 

 286 

3.2. β-Glucan extractability and oligomer block structure 287 

To meet the requirements of the BG health claims of FDA and EFSA a BG extract should provide 3 288 

g BG/day from at least 1 g/serving. This implies that a concentration of 4 g BG/l from 3 × 250 ml 289 

typical portion sizes sufficiently will supply the recommended dose. From Fig. 3A it can be seen 290 

that Lys5f, KVL408, KVL1104 and CDC Fibar extracts exceed this threshold whereas Bomi, 291 

Chameleon and Columbus extracts, regardless of the enzyme treatment, contain lower 292 

concentrations. Benito-Roman et al. (2014) extracted 2-4 g BG/l (239 kDa) from barley bran using 293 

ultrasound extraction, enzymatic starch hydrolysis and membrane filtration. In comparison, our 294 

extraction process provides higher BG solution concentrations from simple hot water extraction, 295 

enzymatic starch hydrolysis and centrifugation. 296 

The effect of the different enzyme treatments was evaluated in terms of extractability defined 297 

as the recovery of BG from the total amount found in the barley grain. For most barley lines the 298 

intensification of enzyme treatment did not influence the genotypic BG extractability significantly. 299 

The extractability for T, TA and TAF samples was in the range of 41-81 %, 47-79 % and 60-100 %, 300 

respectively (Fig. 3B). These numbers are similar or slightly higher (for Lys5f and KVL408 TAF 301 

extracts) compared to extraction yields reported elsewhere (Benito-Roman et al., 2011; Izydorczyk 302 

and Dexter, 2008). Unlike Benito-Román et al. (2011), we did not find lower extractability for the 303 

hull-less barley lines (CDC Fibar and Chameleon) and we did not see an increase in BG yield from 304 

the pearling treatment of the Columbus grains, which have been indicated by others (Baik and 305 

Ullrich, 2008). From Fig. 3B, a clear tendency of higher extractability from barley lines containing 306 

BGs with low DP3/DP4 ratios can be seen. This is in good agreement with the general 307 

understanding of the effect of BG non-repetitive oligomer block structure on polymer solubility 308 
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(Burton et al., 2010). For Lys5f, KVL408 and KVL1104 with high DP3/DP4 ratios of 3.8, 3.8 and 309 

3.2, respectively, the T and TA BG yields reached only 41-68 % of the potential extraction levels 310 

indicating a lower releasability of BG from these grains. Nevertheless, when comparing all barley 311 

lines and enzyme treatments, the combination of either Lys5f or KVL408 high BG raw materials 312 

with the TAF enzyme treatment resulted in the overall highest extractabilities. Thus, the Lys5f and 313 

KVL408 TAF extractions meet important material and method requirements for preparing an 314 

extract having a high content of natural BG.     315 

 316 

3.3. Molecular mass and viscosity 317 

The Mw of extracted barley BGs calculated from equivalent external BG standards is shown in Fig. 318 

3C. The highest Mw values were found for Lys5f, KVL408 and KVL1104 samples with values 319 

ranging 570-580 kDa (T), 415-535 kDa (TA) and 40-110 kDa (TAF). In comparison, the CDC 320 

Fibar, Bomi, Chameleon and Columbus BGs from T, TA, and TAF extractions showed significantly 321 

lower Mw values of 155-415 kDa, 130-270 kDa and 15-35 kDa, respectively. In a previous study 322 

(Mikkelsen et al., 2013), we extracted Lys5f and Bomi BGs in large scale using thermostable α-323 

amylase, protease, wet milling, repeated heat cycles (up to 125°C), decanting plus centrifugation 324 

and ethanol precipitation and found the BG Mw from the two barley lines to be similar (200-300 325 

kDa). In the present study, the genotypic variation in BG Mw observed by others (Irakli et al., 2004) 326 

is supposedly better preserved due to the more gentle extraction conditions. It is obvious that 327 

extraction with some amylolytic enzyme preparations resulted in BG depolymerization (Fig. 3C). 328 

This effect could either be due to contaminating activities in the commercial enzyme preparations or 329 

due to amylolytic enzymes themselves exhibiting nonspecific activities toward the BG (Doehlert et 330 

al., 2012). The degree of BG degradation followed the order T < TA < TAF, and a profound 331 

reduction in Mw was especially found for the TAF combination, where α-amylase is combined with 332 

glucoamylase and pullulanase. The elution profiles of Lys5f and Bomi T, TA, and TAF samples 333 
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shown in Fig. 4 represent the general trend in sample polydispersity as affected by the different 334 

enzyme combinations. In addition to peaks eluting in the order T > TA > TAF due to decreasing 335 

Mw, the polydispersity index (Mw/Mn) increased in the order T < TA < TAF, indicating a 336 

broadening of the molecular mass distribution in the samples as a result of intensified enzymatic 337 

treatment. In a similar study Doehlert et al. (2012) found starch hydrolytic enzymes to have a large 338 

effect on the Mw and polydispersity when used for maximizing the extractability of oat BGs. Hence, 339 

efficient BG extractability and recovery must be balanced against Mw loss of the extracted BG 340 

when using existing enzyme preparations. High extractability and low Mw is advantageous for 341 

beverage applications since high viscosity is unsuited for these applications. The wort viscosity 342 

generally followed the Mw of the samples (Fig. 3C). Thus, a significant drop in viscosity was seen 343 

for TAF samples (2-12 mPas) as compared to T (5-296 mPas) and TA (4-216 mPas) samples, 344 

respectively.   345 

It should be noted that the calcofluor method for BG quantification, albeit being rapid and 346 

suitable for liquid samples, is not accurate for low molecular mass (<10-30 kDa) BGs. The assay 347 

problem implies that the BG content of the TAF samples, being generally low in BG Mw, could be 348 

somewhat underestimated. This might be the reason why CDC Fibar, Bomi, Chameleon and 349 

Columbus TAF (17-35 kDa) extractabilities compared to Lys5f, KVL408 and KVL1104 (42-109 350 

kDa) are relatively lower when compared internally to the T and TA extraction yields (Fig. 3B). 351 

 352 

The BG extracts generally showed high variability in their physico-chemical properties 353 

(supplemental table S1) as illustrated by the PCA bi-plot (Fig. 5). The samples typically distribute 354 

along the diagonals of the plot according to high, medium and low BG barley lines or enzymatic 355 

treatment (T, TA, TAF). Inspection of the loadings (Fig. 5) shows that the main variance among 356 

samples (PC1, 53%) is explained both by differences in structural features like DP3/DP4 ratio and 357 

molecular mass and by BG content in the raw materials. Due to general viscosity dependence of Mw 358 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
   

16 
Mette Skau Mikkelsen, Journal of Cereal Science 
 

the clustering of these variables was expected and the apperent co-variance between high BG 359 

content in raw materials and high DP3/DP4 ratios of the extracted BG has been suggested by others 360 

(Burton et al., 2011). The main target of the Lys5f mutation is suggested to be in starch 361 

biosynthesis, decreasing starch content in the endosperm (Patron et al., 2004) and the effects on BG 362 

deposition have been explained as pleitropic. This implies that a redirection of glucose 363 

incorporation into alternative carbohydrate biosynthesis pathways may take place. In addition to the 364 

thicker cell walls found in Lys5f compared to its mother line Bomi (Fig. 2), more BGs were 365 

allocated to the outer parts of the grain. Here, the more recalcitrant BGs with high DP3/DP4 ratio 366 

are typically found (Izydorczyk and Dexter, 2008), which may explain the overall higher DP3/DP4 367 

ratio found for the Lys5f BGs. The minor variance along PC2 (33%) explained by extractability and 368 

Mw is spanned by TAF and T/TA samples. This finding confirms that BG depolymerization events, 369 

especially originating from the Attenuzyme® Flex enzyme side activity, modify the BG extractable 370 

amount. 371 

 372 

3.4. Side activity from amylolytic enzymes 373 

The molecular mass profiles of the BGs were affected by the amylolytic enzymes, especially by the 374 

Attenuzyme® Flex mixture. Hence, NMR spectroscopy was used to investigate the products 375 

generated by the β-glucanase activities in the commercial enzyme preparations. Using pure medium 376 

viscosity barley BG from Megazyme as the substrate, the highest β-glucanase side activity was 377 

found in Attenuzyme® Flex (Fig. 6A) followed by Attenuzyme®. No significant β-glucanase 378 

activity was observed in Termamyl® SC. Enzyme activity was judged by the emergence of 379 

reducing end signals other than glucose (present in the enzyme mixtures), as indicated in Fig. 6A. 380 

The assignments in Fig. 6B show that the vastly predominating cleavage site signals can be 381 

attributed to β−(1-3) reducing end signals, formed by cleavage with an endo-1,3-1,4-β-D-glucanase 382 

activity in Attenuzyme® Flex and Attenuzyme® preparations. The substrate sample (BG from 383 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
   

17 
Mette Skau Mikkelsen, Journal of Cereal Science 
 

Lys5f) was largely devoid of pullulan and amylopectin substrates due to Termamyl® SC (amylase) 384 

pretreatment and subsequent ethanol precipitation in the preparation of the dry BG powder fraction. 385 

Thus, the use of high-resolution NMR spectroscopy provides atomic resolution to validate residual 386 

β-glucanase activity in Attenuzyme® Flex and Attenuzyme® preparations, which can be, from 387 

cleavage site structures (Petersen et al., 2013), identified as a Lichenase (EC 3.2.1.73)  activity (Fig. 388 

6C). The presence of this activity rationalizes the rapid decay of BG molecular masses due to its 389 

endoglucanase activity. In this specific case, the presence of minor β-endoglucanase activity is 390 

considered advantageous, since is permits a controlled minor degradation of the barley BGs to 391 

increase extractability and decrease viscosity.  392 

 393 

4. Conclusion 394 

The genotypic variation in barley grain BG content and molecular structure in combination with 395 

enzymatic modifications directs its potential as an ingredient in a natural extract high in BG. Lys5f 396 

and KVL408 high BG lines extracted with combined α-amylase, glucoamylase and pullulanase 397 

enzymes meet optimal material, methods and product requirements. The extracts demonstrate 398 

extraordinary high BG yields meeting the criteria for the EFSA and FDA barley BG health claims, 399 

low viscosity (~10 mPa s) and molecular mass values (~100 kDa) comparable to commercial barley 400 

BG products. Lichenase side activity from the amylolytic enzymes cause controlled BG 401 

degradation, which increases the extractable amount and provides desired viscosity.  402 
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Fig. 1. 

 

 

Fig.1. Study overview including eight barley genotypes, three enzyme combinations and six analysis 

methods.  
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Fig .2. 

 

 

Fig. 2. Histochemical analysis of the eight barley genotypes used for extraction experiments. A and B 

show half kernels of Lys5f and Bomi in low magnification. C-J show details from the starchy 

endosperm cell wall from all the genotypes. Note the thick and less dense cell walls in Lys5f and 

KVL408 (arrow). In K and L the differences in starch granule structure is shown for Lys5F and Bomi. 
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Note the empty voids in Lys5F (arrowhead). A-J are calcofluor stained, K and L are stained with 

PAS/AB. Bar = 300 µm (A,B), 10 µm (C-L). 
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Fig. 3. 
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Fig. 3. (A) Potential and real extraction level of BG from different barley genotypes. Bar = 4 g BG/l. 

(B) Extractability (%) of BG from different barley genotypes in relation to oligomer block structure 

(DP3/DP4). (C) Molecular mass (Mw) of BG from different wort in relation to wort viscosity. Mean 

values ± SD, n = 2. 
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Fig. 4.  

 

 

Fig. 4. The effect of T, TA and TAF amylolytic enzymes on Lys5f and Bomi BG molecular mass 

profiles as determined by size-exclusion chromatography. The peak widths calculated as 

polydispersibility indices, Mw/Mn are provided in the supplemental table S1. 
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Fig. 5. 

 

 

Fig. 5 PCA bi-plot based on the auto-scaled physico-chemical properties of the 48 BG extracts 

(supplemental table S1). The first two principal components explain 87% of the data variance. Samples 

cluster according to high, medium and low BG barley lines. DP3/DP4 = triosyl/tetraosyl molar ratio, 

Mw = Weight average molecular mass, Mn = Number average molecular mass, Mw/Mn = 

Polydispersibility index.   
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Fig. 6. 

 

 

Fig. 6. (A) End products of BG degradation at 18˚C by Attenuzyme® Flex, Attenuzyme® and 

Termamyl® SC enzyme mixtures using medium viscosity barley BG from Megazyme as the substrate. 

(B) 1H-1H COSY spectrum of Lys5f BG degraded by the Attenuzyme® Flex side activity at 65˚C. (C) 

Lichenase cleavage pattern on mixed linkage BGs. 
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Highlights 

 

• Screening of barley genotypes for high β-glucan (BG) extraction yields  

• High BG grain content correlate with high BG triosyl/tetraosyl (DP3/DP4) molar ratio  

• Lichenase side activity from amylolytic enzymes cause controlled BG degradation 

• Lys5f and KVL408 barley extracts meet EFSA and FDA BG health claim criteria 


