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Original Article 

Revisiting Veerman’s interpolation 

method 

Peter Christiansen
1
 and Niels Bay

1
 

 

Abstract 

This paper describes an investigation of Veerman’s interpolation method and its 

applicability for determining sheet metal formability. The theoretical foundation is 

established and its mathematical assumptions are clarified. An exact Lagrangian 

interpolation scheme is also established for comparison. Bulge testing and tensile testing 

of aluminium sheets containing electro-chemically etched circle grids are performed in 

order to experimentally determine the forming limit of the sheet material. The forming 

limit is determined using a) Veerman’s interpolation method, b) exact Lagrangian 

interpolation and c) FE-simulations. A comparison of the determined forming limits 

yields insignificant differences in the limit strain obtained with Veerman’s method or 

exact Lagrangian interpolation for the two sheet metal forming processes investigated. 

The agreement with the FE-simulations is reasonable. 
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Introduction 

Sheet metal forming is applied for the 

production of a large variety of everyday 

products. Examples are deep drawing of 

food and beverage cans, stamping of car 

body panels and stretch forming of car 

hoods. To ensure sound production with 

no fracture the material formability is 

often determined in form of an 

experimental forming limit diagram 

(FLD) with the in-plane major and minor 

strains (𝜀𝑚𝑖𝑛, 𝜀𝑚𝑎𝑥) on the abscissae and 

ordinate axis respectively. Such 

diagrams were first proposed by Keeler
1
 

for stretch forming and by Goodwin
2
 for 

drawing of sheets determining the local 

strains by measuring deformation of 

electro-chemically etched circle grids in 

sheet stamping production. The forming 

limits were, however, difficult to 

estimate with accuracy in stamping 

production, especially when fracture had 

occurred leading to excessive 

deformation of the circle through which 

it occurred. 

Takashina et al.
3
 suggested to measure 

the strains in three circles, where the 

middle one contained the fracture, 

averaging the strains to obtain the limit 

strain.  

By measuring and plotting strains from 

several circles in the neighbourhood of 

fracture a more proper definition of the 

forming limit can be made. These 

deformed circles (often of elliptical 

shape) must include ones that are not 

affected by necking and ones that are. 

The forming limit curve can then be 

drawn to fall above those circles that are 

not-necked and below those that are. 

Hecker
4
 utilized this method on 

fractured, necked and defect free 

deformed circles at or close to the 

fracture in order to determine the FLD. 

D’Haeyer et al.
5
 suggested a two-step 

approach for determining instability. 



 

 

First the blank, containing an electro-

chemically etched grid, is deformed to a 

stage close to necking and strains are 

measured. Thereafter the blank is 

deformed a small amount more and 

strains are measured again. Areas that 

are necking will increase significantly in 

strain whereas other areas will only 

show a minor increase in strain. This 

method however may require a large 

number of tests before having 

determined when necking occurred. 

Veerman
6
 has pointed out that after the 

onset of local necking the material 

outside the neck will not be strained any 

further and deformation will concentrate 

inside the neck. It should therefore be 

possible to detect the onset of localized 

necking by plotting strain in the necking 

region versus strain in the region next to 

necking but not affected by it. Such a 

curve is sketched in Figure 1. Initially 

the two areas will deform rather 

identically and the curve is represented 

by a straight line inclined 45° to the 

axes. Then as necking occurs strain 

concentrate in one area and cease in 

other areas. Thus the curve will bend 

towards parallelism with one of the axes.  

 
Measurements using optical cameras and 

subsequent strain determination were 

performed by Volk et al.
7
 who 

determined the onset of necking as the 

point where two lines approximating the 

measured strain at steady growth and 

after instability intersects one another. 

 

 
Figure 1. Definition of the limit strain using 

Veerman’s graphical method.  

 



 

 

In case of no visible access to the 

necking area due to contacting punch or 

die in a production environment another 

method developed by Veerman
8
 may be 

applied. Based on the assumption that 

the strain in the neck at the onset of 

localized necking can be inferred from 

the strain gradients adjacent to the 

fracture Veerman
8
 has proposed a 

Lagrangian interpolation formula for the 

maximum strain 𝜀𝑚𝑎𝑥 based on the 

strain at three positions on each side of 

the fracture, see Figure 2. The minimum 

strain is determined by measuring the 

deformed circle including or closest to 

the fracture. 

It is the aim and scope of this paper to 

examine Veerman’s interpolation 

method and its mathematical basis 

comparing experimental measurements 

on bulge tests and tensile tests of 

aluminium blanks with FE predictions of 

the FLD. 

 

The theoretical basis for 

Veerman’s interpolating 

method 

The basis for Veerman’s interpolation 

method will be derived in order to 

understand the mathematical foundation 

and approximations. The derivation is 

based on Figure 2, which schematically 

illustrates a deformed circle grid and 

associated strain distribution around a 

crack going through one of the circles 

deformed to an ellipse. The ellipses have 

centers at positions 

(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5). The centers of the 

ellipses are separated by the distances 

(∆𝑥1, ∆𝑥2, ∆𝑥5, ∆𝑥6) and the two ellipses 

closest to the fracture have distances ∆𝑥3 

and ∆𝑥4 to the crack. The major in-plane 

strain 𝜀𝑚𝑎𝑥 is calculated for each non-

fractured ellipse by 

 

𝜀𝑚𝑎𝑥 = ln(2𝑎/𝑑0) (1) 

 



 

 

where 2𝑎 is the length of the major axis 

and 𝑑0 is the diameter of the undeformed 

circle. 

The distribution of 𝜀𝑚𝑎𝑥 is also 

schematically illustrated in Figure 2. At 

fracture, 𝜀𝑚𝑎𝑥 goes towards infinity at 

the crack location. The aim of 

Veerman’s interpolation method is to 

compute the limit strain 𝜀∗ immediately 

prior to fracture. 

To do so, Veerman
8
 suggested to use 

Lagrangian interpolation and listed the 

formula for the limit strain 𝜀∗ as 

 

𝜀∗ =
3

4
(𝜀𝑣1 + 𝜀𝑣2) −

3

10
(𝜀𝑢1

+𝜀𝑢2) +
1

20
(𝜀𝑡1 + 𝜀𝑡2)

 

(2) 

 

The derivation is, however, not listed in 

the paper and the mathematical 

approximations are not mentioned. In the 

following the derivation is presented. 

The basis for Lagrangian interpolation is 

a polynomial 𝑃𝑛(𝑥),  

 

𝑃𝑛(𝑥) =∑𝐿𝑖(𝑥)𝜀(𝑥𝑖)

𝑛

𝑖=0

 (3) 

 

where the coefficients 𝐿𝑖(𝑥) are given by 

 

 

 

 
Figure 2. Interpolation of limit strain 𝜺∗. 

 



 

 

𝐿𝑖(𝑥) =∏
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗

𝑛

𝑗=0
𝑗≠𝑖

 (4) 

 

and 𝜀(𝑥𝑖) is the strain at position 𝑥𝑖. 

Since six strains are measured, the order 

of the polynomial is 𝑛 = 5 and as 

derived in Appendix 1, the coefficients 

listed in Equation (2) are obtained, when 

the distance between the centers of the 

ellipses is assumed to be constant. This 

is, however, an approximation, which is 

normally not encountered in practice. 

Therefore experiments are carried out to 

determine how well the limit strain is 

determined with this approximation. 

 

Experiments 

Two sets of experiments are conducted; 

1) hydraulic bulge tests in a circular and 

two elliptic dies with two different ratios 

between major and minor axis of the 

dies, 2) tensile tests. The 1,0mm thick 

aluminium AA 1050 blanks are provided 

with a 2,5mm diameter circle grid with 

0,3mm distance between the circles by 

electro-chemical etching. Loading in 

bulge tests as well as in tensile tests is 

performed until fracture occurs. Using a 

flexible, transparent ruler, the major axis 

of the ellipses and the distances between 

the ellipses indicated in Figure 2 are 

measured in order to calculate the limit 

strain 𝜀∗. The interpolation is performed 

using Equation (2) as well as Equation 

(6) (given in appendix 1). 

 

Materials characterization 

1mm thick aluminium 1050 sheets in the 

“as received” condition are used. Based 

on the average of two tensile tests, the 

stress-strain curve is determined as 

𝜎𝑜 = 140(𝜀̅ + 0,013)0,270MPa. 

Young’s modulus 𝐸 = 70𝐺𝑃𝑎 and 

Poisson’s ratio 𝜈 = 0,33. Isotropic 

material behaviour is assumed in the 

FEA. 



 

 

 

Bulge tests 

Octagonal blanks with a width of 

250mm between parallel sides are cut 

from the aluminium sheet. They are 

hydraulically bulged to fracture using an 

in-house build bulge tester (see Figure 3) 

and three different dies. One die is 

circular with a diameter of Ø190mm and 

the two others are elliptical with 

major/minor axis lengths of 

180mm/140mm and 180mm/100mm. 

The experiments are denoted “circle”, 

“large ellipse” and “small ellipse” 

respectively in the data treatment. 

During deformation the blank is clamped 

by a circular drawbead, which prevents 

drawing-in of the sheet. During testing 

the oil pressure is measured. The 

pressure increase was performed with a 

manually operated valve, slowly so rate 

effects should be negligible and the 

deformation isothermal. The time of a 

test is typically 2-3 min. 

 The blanks before and after deformation 

can be seen in Figure 4. 

 

 

Tensile tests 

Two tensile tests of strips of dimensions 

𝑙0 × 𝑏0 = 250 × 20 mm provided with 

 

 
Figure 3. In-house build bulge tester. 

 

 

 
Figure 4. Blanks after bulge tests and an 

undeformed blank. 

 



 

 

etched circular grid were performed 

using a 100 kN Amsler universal testing 

machine (see Figure 5) equipped with a 

load cell and two length transducers for 

measuring longitudinal elongation and 

transversal contraction.  

The tensile specimens were clamped by 

jaws with an original distance of 150mm 

between them. Elongation and transverse 

contraction of the sheet width were 

measured during testing using a 

longitudinal as well transverse 

transducer placed in the mid-section of 

the sample, where uniaxial deformation 

prevails. The tensile tests were 

performed at low speed, app. 0,17 mm/s 

so rate effects are considered negligible 

and the deformation isothermal. 

The experiments are denoted “tensile 

testing” in the data treatment.  

 

FEM simulations 

Todkar et al.
9
 compared experimental 

bulge test results with numerical 

simulation using LS-DYNA. Good 

agreement was found. Therefore LS-

DYNA is also utilized in this study. 

The numerical simulations are 

performed using LS-DYNA version 

R7.1.1. Both bulge tests and tensile tests 

are modelled with fully integrated shell 

elements having five through-thickness 

integration points as utilized in 

Larsson
10

. The simulation time is 10ms 

and explicit time integration is used. 

 

 
Figure 5. Amsler universal testing machine. 

 



 

 

 

Bulge tests 

A simulation layout of the bulge test 

with a circular die can be seen in Figure 

6. 

 

Due to symmetry, only ¼ is modelled. 

The blank is modelled as circular with a 

diameter equal to the drawbead diameter 

and is meshed using 3043 elements. It is 

clamped along the periphery. The die is 

modelled as rigid with frictionless 

contact towards the blank. A pressure 

increasing linearly with time is assigned 

to the bottom side of the blank 

representing the hydraulic oil pressure 

measured in the experiments. Except for 

the difference in die geometry, the two 

bulge simulations with elliptical dies are 

performed in the same way. 

Examples of the effective plastic strain 

after bulge testing can be seen in Figure 

7-9.  

 

 

 

 

 

 
Figure 6. Bulge test simulation layout. The 

marked path at the edge is used in the data 

treatment. 

 

 
Figure 7. Effective strain, circular die. 

 

 
Figure 8. Effective strain, large ellipse die. 

 

 
Figure 9. Effective strain, small ellipse die. 

 



 

 

 

Tensile tests 

The rectangular aluminium strip is 

meshed using 3000 elements. Due to the 

constraining jaws of the tensile test 

contraction of top and bottom of the 

specimen is prevented. One end of the 

specimen is fixed, while the other end 

moves with constant velocity in 

longitudinal direction of the strip. The 

effective plastic strain after onset of 

necking can be seen in Figure 10. 

 

For further analysis of the FE-

simulations, the effective strain 

distribution at instability is plotted along 

two different paths. For the bulge tests, 

the effective strain is plotted from the 

center top of the bulge along the major 

axis to the periphery of the sheet (see the 

path in Figure 6) normalized by the 

instantaneous length from the top to the 

periphery.  

For the tensile test, the path is along the 

centerline from bottom to top. The 

resulting effective strain distributions 

can be seen in Figure 11. The abscissae 

represents the distance from the bottom 

normalized with the instantaneous length 

of the tensile test. 

 

 

 
Figure 10. Effective strain after instability has 

occurred. 

 

 

 
Figure 11. Effective strain along the major axis of 

bulge tests or centerline of tensile test. 



 

 

As it can be seen from Figure 11, there is 

a marked difference in the appearance of 

the instability strains. For the tensile test, 

a clear localization of the strain is 

noticed. For the bulge tests no 

localization appears. The instability 

point is here determined by the strain 

evolution with time. This is described in 

detail in the following. 

Comparison of 

experiments with FE-

simulations 

Based on measurements of the deformed 

grid, the maximum, in-plane limit strain 

𝜀∗ is calculated using Equations (2) and 

(6). The minimum in-plane strain is 

measured directly on the fractured 

ellipse or the ellipse closest to the 

fracture. From the FE-simulations, the 

numerically predicted strain paths and 

forming limits are extracted from the 

models.  

The resulting experimental strains and 

numerical strain paths can be seen in 

Figure 12-13. It should be noticed that 

since both the pressure and elongation 

loading are performed with equally sized 

increments, the rapid increase in strain at 

the end of loading indicates onset of 

instability in the FE-simulations. The left 

most strain path is the one for tensile 

testing indicating local instability by the 

abrupt bend towards vertical, i.e. 

towards plane strain deformation. The 

three bulge test curves in the stretching 

region shows no bend, since strain 

localization is absent. But strain 

develops faster at the end of the path, 

where diffuse instability occurs. 

 



 

 

 

 

Both Figure 12 and Figure 13 indicate 

reasonable agreement between 

prediction of the limit strain by FE-

simulations and by experiments. 

The ratio of the experimentally 

determined forming limit based on 

Veerman’s interpolation method and 

exact Lagrangian interpolation can be 

seen in Figure 14. It is noticed that the 

difference in the two experimental 

predictions is insignificant. 

 

Discussion 

The previous section showed that 

Veerman’s interpolation method is in 

practice just as good as the exact 

Lagrangian interpolation for the tests 

investigated.  

In order to illustrate whether the 

assumption of equidistance between 

centers of ellipses may become 

insufficient in extreme cases, such a case 

is analyzed numerically below. 

 

 
Figure 12. FE-predicted strain evolution and 

fracture strains predicted by Veerman’s 

interpolation method. 

 

 

 
Figure 13. FE-predicted strain evolution and 

fracture strains predicted by exact Lagrangian 

interpolation. 

 

 

 
Figure 14. Ratio of maximum in-plane strain 

determined either by Veerman’s interpolation 

method or exact Lagrangian interpolation. The 

ratio for each column is indicated above it. 

 



 

 

It is assumed that the ellipses denoted t1 

and t2 in Figure 2 have a maximum in-

plane principal strain of 0,1, the ellipses 

u1 and u2 a strain of 0,2 and v1 and v2 a 

strain of 0,3. The spacing between the 

ellipses is assumed to be ∆𝑥1 = ∆𝑥6 =

∆𝑥, ∆𝑥2 = ∆𝑥5 = (∆𝑥)2 and ∆𝑥3 =

∆𝑥4 = (∆𝑥)3. This example imitates 

different levels of violation of the 

assumption of equidistance between 

centers of ellipses applied by Veerman
8
. 

The resulting predicted limit strain 𝜀∗ , 

for various values of ∆𝑥, can be seen in 

Figure 15. 

 

Figure 15 shows that for equally spaced 

ellipse centers (∆𝑥 = 1), both 

Veerman’s interpolation formula and the 

Lagrangian formula are equal as 

expected. For highly inhomogeneous 

strain distribution with large difference 

in distances between ellipse centers, 

deviations in the calculated limit strain 

𝜀∗ are obtained. However the difference 

is fairly small for the selected strains and 

grid spacing’s. Therefore it seems 

reasonable to apply Veerman’s 

interpolation method instead of the exact 

Lagrangian interpolation formula. 

 

Conclusion 

The theoretical basis for Veerman’s 

interpolating method has been 

established. Experiments of bulge tests 

with different die sets and tensile tests 

yielded a variety of different strain paths 

to fracture. The forming limit strain 𝜀∗ 

were determined from electro-

 

 
Figure 15. Predicted limit strain for various grid 

spacing’s between ellipse centers when applying 

Veerman’s interpolation method or exact 

Lagrangian interpolation. 

 



 

 

chemically etched circle grids by using 

both Veerman’s interpolation method 

and exact Lagrangian interpolation. The 

experiments were also simulated using 

FEA. 

Based on comparison of experiments 

with FE-simulations, it can be concluded 

that for the metal forming processes 

investigated, bulge testing and tensile 

testing, Veerman’s interpolation method 

is sufficiently accurate to determine the 

limit strain 𝜀∗. 
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Appendix 1 

Applying Equation (4) to the circle grid seen in Figure 2 yields the following coefficients 𝐿𝑖 for 𝑛 = 5 

 

𝐿0 = (
𝑥 − 𝑥1
𝑥0 − 𝑥1

) (
𝑥 − 𝑥2
𝑥0 − 𝑥2

) (
𝑥 − 𝑥3
𝑥0 − 𝑥3

) (
𝑥 − 𝑥4
𝑥0 − 𝑥4

) (
𝑥 − 𝑥5
𝑥0 − 𝑥5

)

𝐿1 = (
𝑥 − 𝑥0
𝑥1 − 𝑥0

) (
𝑥 − 𝑥2
𝑥1 − 𝑥2

) (
𝑥 − 𝑥3
𝑥1 − 𝑥3

) (
𝑥 − 𝑥4
𝑥1 − 𝑥4

) (
𝑥 − 𝑥5
𝑥1 − 𝑥5

)

𝐿2 = (
𝑥 − 𝑥0
𝑥2 − 𝑥0

) (
𝑥 − 𝑥1
𝑥2 − 𝑥1

) (
𝑥 − 𝑥3
𝑥2 − 𝑥3

) (
𝑥 − 𝑥4
𝑥2 − 𝑥4

) (
𝑥 − 𝑥5
𝑥2 − 𝑥5

)

𝐿3 = (
𝑥 − 𝑥0
𝑥3 − 𝑥0

) (
𝑥 − 𝑥1
𝑥3 − 𝑥1

) (
𝑥 − 𝑥2
𝑥3 − 𝑥2

) (
𝑥 − 𝑥4
𝑥3 − 𝑥4

) (
𝑥 − 𝑥5
𝑥3 − 𝑥5

)

𝐿4 = (
𝑥 − 𝑥0
𝑥4 − 𝑥0

) (
𝑥 − 𝑥1
𝑥4 − 𝑥1

) (
𝑥 − 𝑥2
𝑥4 − 𝑥2

) (
𝑥 − 𝑥3
𝑥4 − 𝑥3

) (
𝑥 − 𝑥5
𝑥4 − 𝑥5

)

𝐿5 = (
𝑥 − 𝑥0
𝑥5 − 𝑥0

) (
𝑥 − 𝑥1
𝑥5 − 𝑥1

) (
𝑥 − 𝑥2
𝑥5 − 𝑥2

) (
𝑥 − 𝑥3
𝑥5 − 𝑥3

) (
𝑥 − 𝑥4
𝑥5 − 𝑥4

)

 

(5) 

 

By assuming the point of interpolation 𝑥 = 0 and inserting the distances (∆𝑥1, ∆𝑥2, ∆𝑥3, ∆𝑥4, ∆𝑥5, ∆𝑥6) into Equation (5) gives 

 



 

 

𝐿0 = (−
∆𝑥2 + ∆𝑥3

∆𝑥1
) (−

∆𝑥3
∆𝑥1 + ∆𝑥2

) (
∆𝑥4

∆𝑥1 + ∆𝑥2 + ∆𝑥3 + ∆𝑥4
) (

∆𝑥4 + ∆𝑥5
∆𝑥1 + ∆𝑥2 + ∆𝑥3 + ∆𝑥4 + ∆𝑥5

) (
∆𝑥4 + ∆𝑥5 + ∆𝑥6

∆𝑥1 + ∆𝑥2 + ∆𝑥3 + ∆𝑥4 + ∆𝑥5 + ∆𝑥6
)

𝐿1 = (
∆𝑥1 + ∆𝑥2 + ∆𝑥3

∆𝑥1
) (−

∆𝑥3
∆𝑥2

) (
∆𝑥4

∆𝑥2 + ∆𝑥3 + ∆𝑥4
) (

∆𝑥4 + ∆𝑥5
∆𝑥2 + ∆𝑥3 + ∆𝑥4 + ∆𝑥5

) (
∆𝑥4 + ∆𝑥5 + ∆𝑥6

∆𝑥2 + ∆𝑥3 + ∆𝑥4 + ∆𝑥5 + ∆𝑥6
)

𝐿2 = (
∆𝑥1 + ∆𝑥2 + ∆𝑥3

∆𝑥1 + ∆𝑥2
) (
∆𝑥2 + ∆𝑥3

∆𝑥2
) (

∆𝑥4
∆𝑥3 + ∆𝑥4

) (
∆𝑥4 + ∆𝑥5

∆𝑥3 + ∆𝑥4 + ∆𝑥5
) (

∆𝑥4 + ∆𝑥5 + ∆𝑥6
∆𝑥3 + ∆𝑥4 + ∆𝑥5 + ∆𝑥6

)

𝐿3 = (
∆𝑥1 + ∆𝑥2 + ∆𝑥3

∆𝑥1 + ∆𝑥2 + ∆𝑥3 + ∆𝑥4
) (

∆𝑥2 + ∆𝑥3
∆𝑥2 + ∆𝑥3 + ∆𝑥4

) (
∆𝑥3

∆𝑥3 + ∆𝑥4
) (
∆𝑥4 + ∆𝑥5

∆𝑥5
) (
∆𝑥4 + ∆𝑥5 + ∆𝑥6

∆𝑥5 + ∆𝑥6
)

𝐿4 = (
∆𝑥1 + ∆𝑥2 + ∆𝑥3

∆𝑥1 + ∆𝑥2 + ∆𝑥3 + ∆𝑥4 + ∆𝑥5
) (

∆𝑥2 + ∆𝑥3
∆𝑥2 + ∆𝑥3 + ∆𝑥4 + ∆𝑥5

) (
∆𝑥3

∆𝑥3 + ∆𝑥4 + ∆𝑥5
) (−

∆𝑥4
∆𝑥5

) (
∆𝑥4 + ∆𝑥5 + ∆𝑥6

∆𝑥6
)

𝐿5 = (
∆𝑥1 + ∆𝑥2 + ∆𝑥3

∆𝑥1 + ∆𝑥2 + ∆𝑥3 + ∆𝑥4 + ∆𝑥5 + ∆𝑥6
) (

∆𝑥2 + ∆𝑥3
∆𝑥2 + ∆𝑥3 + ∆𝑥4 + ∆𝑥5 + ∆𝑥6

) (
∆𝑥3

∆𝑥3 + ∆𝑥4 + ∆𝑥5 + ∆𝑥6
) (−

∆𝑥4
∆𝑥5 + ∆𝑥6

) (−
∆𝑥4 + ∆𝑥5

∆𝑥6
)

 

(6) 

 

If assuming equidistance between the centers of the ellipses (∆𝑥1 = ∆𝑥2 = ∆𝑥3 = ∆𝑥4 = ∆𝑥5 = ∆𝑥6 = ∆𝑥), Equation (6) reduces to 

 



 

 

𝐿0 = (−2) (−
1

2
) (
1

4
) (
2

5
) (
3

6
) =

1

20

𝐿1 = (3)(−1) (
1

3
) (
2

4
) (
3

5
) = −

3

10

𝐿2 = (
3

2
) (2) (

1

2
) (
2

3
) (
3

4
) =

3

4

𝐿3 = (
3

4
) (
2

3
) (
1

2
) (2) (

3

2
) =

3

4

𝐿4 = (
3

5
) (
2

4
) (
1

3
) (−1)(3) = −

3

10

𝐿5 = (
3

6
) (
2

5
) (
1

4
) (−

1

2
) (−2) =

1

20

 

(7) 

 


