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ABSTRACT

This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their
excitation and characteristics. Within the last decades, HOMs have been applied both for
space multiplexing in optical communications, group velocity dispersion management and

sensing among others.
The research presented in this thesis falls in three parts. In the first part, a first time demon-

stration of the break of the azimuthal symmetry of the Bessel-like LP0X modes is presented. This
effect, known as the bowtie effect, causes the mode to have an azimuthal dependence as well as
a quasi-radial polarization as opposed to the linear polarization of the LP0X modes. The effect
is investigated numerically in a double cladding fiber with an outer aircladding using a full
vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating
and their free space characteristics and polarization state are investigated. For this fiber, the
onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associ-
ated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to
be conserved despite the lack of azimuthal symmetry.

In the second part of the thesis, a new scheme for constructing chirped microbend long period
gratings is presented. The method presents a versatile platform for tailoring the chirp to the
phase matching profile of the targeted HOM conversion in the fiber under test. The scheme
introduces the ability to implement a nonlinear chirp which is a first time demonstration. The
results are modelled using coupled mode theory and it is shown that the conversion bandwidth
may be increased more than four fold.

In the final part of the thesis, imaging as a characterization tool for HOMs is considered.
Three different characterization methods are considered. First, the divergence angle is intro-
duced as a quality parameter to replace the conventional M2 which compares the diffraction of
the investigated fiber mode to that of a Gaussian and suffers from ambiguity when considering
mode mixtures. Secondly, the phase retrieval method is used to retrieve the phase profile of a
mode mixture in fewmoded fiber based on volume intensity measurement. A mixture of LP01 and
LP11 is considered both using a numerical example to establish the workings of the method and
experimental investigations. In the experimental investigation, both a 50/50- and 88/12-mixture
is considered, and in both cases the method shows reliable results. Last, a new method for de-
termining the group velocity dispersion of modes in the LP0X , LP1X , and LP2X mode groups
based on an analysis of the field profile is presented. The method is independent of the fiber
length. The method reproduces the group velocity dispersion spectra obtained analyzing a test
fiber with a scalar mode solver.
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RESUMÉ

Denne ph.d.-afhandling omhandler højere ordens bølgetyper i optiske fibre. Dette inklud-
erer deres excitation og karakteristika. Indenfor de sidste 20 år har højere ordens bøl-
getyper fundet anvendelse indenfor blandt andet rumlig multioverføring i optisk kommu-

nikation, gruppehastighedsdispersion-kompensering samt i sensorer. Denne afhandling falder i
tre dele.

I den første del demonstreres for første gang et brud på den azimutale symmetri for Bessel-
lignende LP0X -bølgetyper. Denne effekt, kendt som butterflyeffekten, giver bølgetypen en az-
imutal afhængighed såvel som en kvasi-radiel polarisation modsat den linære polarisation som
er kendetegnende for LP0X -bølgetypen. Effekten undersøges i en dobbelt-kappe-fiber Ved en
ydre luftkappe med brug af en fuldvektoriel bølgetypeløser. Butterfly-bølgetypen undersøges
eksperimentelt i samme type fiber, hvor bølgetypen exciteres ved hjælp af et lang-periode-gitter.
Frirumsegenskaberne samt polarisationstilstanden karakteriseres i denne undersøgelse. For
den undersøgte fiber sker overgangen til butterfly-bølgetypen for LP011. De karakteristika, der
sædvanligvis associeres med Bessel-lignende bølgetyper såsom lang diffraktionsfri propagation-
slængde og gendannelse af bølgetypen efter en forhindring, er også kendetegnende for butterfly-
bølgetypen på trods af den manglende azimutale symmetri.

I anden del afhandlingen præsenteres en ny formalisme for chirpet mikrobøjnings-langperiod-
gitre. Det er alsidig platform, hvor chirpet kan tilpasses fasetilpasningsprofilen for den ønskede
højere-ordens-bølgetype-konvertering. Denne implementering giver mulighed for et ikke-lineært
chirp. Resultaterne modelleres numerisk ved hjælp af koblet bølgetype-teori. Herved kan det
vises, at konverteringsbåndbredden kan mere end firdobles.

Den sidste del af afhandlingen omhandler billedliggørelse som et karakteriseringsværktøj
for højere ordens bølgetyper. Tre forskellige karakteriseringsmetoder undersøges. Først intro-
duceres divergensvinklen som en kvalitetsparameter i stedet for den konventionelle M2. M2

sammenligner diffraktionen af en given bølgetype med diffraktionen fra en gaussisk bølgetype,
og det fører til en tvetydighed ved blandinger af bølgetyper. Dernæst undersøges fasefindingsme-
toden. Den bruges til at finde faseprofilen ved hjælp af en volumenintensitetsmåling for bølgetype-
blanding i en fiber, der understøtter få bølgetyper. For at etablere metoden undersøges en bland-
ing af LP01 og LP11 i et numerisk eksempel. I den eksperimentelle del undersøges to blandinger
af LP01 og LP11 i henholdsvis et 50/50- og et 88/12-forhold. I begge tilfælde giver metoden
pålidelige resultater. Til sidst præsenteres en ny metode til fastsættelse af gruppehastigheds-
dispersionen uafhængigt af fiberens længde. Metoden kan bestemme gruppehastighedsdisper-
sionen for LP0X -, LP1X -, og LP2X -bølgetype-grupperne udfra en analyse af det elektriske felt.
Metoden reproducerer værdien af gruppehastighedsdispersionen bestemt med en skalær bøl-
getypeløser i et numerisk eksempel.
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1
INTRODUCTION

This chapter introduces the work presented in my PhD thesis "Higher order fiber modes".

The first two chapters introduces the basic theory and state of the art for the application

and characterization of higher order modes (HOMs). Hereafter is the research conducted

during my PhD project presented.

In Ch. 2, the basic principles of the optical fiber is reviewed, that includes the operation, and

the modal solutions. The second part considers the HOMs and the special characteristics linked

to the HOMs. The third part of the chapter considers the excitation of HOMs. Both free space so-

lutions and in-fiber components, which are the ones used in for the work presented in this thesis.

In Ch. 3, state of the art for applications and characterization of the purity of HOMs are con-

sidered. Among the applications of HOMs reviewed are space division multiplexing for increas-

ing the bandwidth in optical communications, group velocity dispersion (GVD) compensation,

sensing, and nonlinear processes such as four wave mixing.

The purity of HOMs is an essential parameter in most applications and the standard tech-

niques for determining the modal purity are reviewed. These includes among others M2, spatial

and spectral spectroscopy, and cross correlated imaging.

In Ch. 4, the research on the break of the azimuthal symmetri for Bessel-like modes is pre-

sented. This research includes the first time demonstration of these modes both numerically and

experimentally. The modes are excited using a long period grating (LPG) in a specially designed

aircladding fiber.
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CHAPTER 1. INTRODUCTION

In Ch. 5, a new scheme for designing chirped LPGs for HOM excitation using microbends

are presented. The scheme is demonstrated experimentally and the results are predicted using

a coupled mode theory model.

In Ch. 6, imaging used as a characterization tool for HOMs is presented. The chapter falls

in three parts. The first part presents the divergence angle as a possible quality parameter for

pure HOMs. The second part uses a phase retrieval algorithm for retrieval of a phase profile

for a mode mixture in a few moded fiber. Lastly, the third part introduces a new fiber length in-

dependent characterization method for GVD in a weakly guiding step index fiber for the LP0X ,

LP1X , and LP2X modes.

The conclusion is presented in Ch. 7 and sums up the contents of the thesis and presents an

outlook.

In the Appendices, App. A and App. B, two unpublished manuscripts are included. In App.

A, the manuscript: "Broadband Higher Order Mode Conversion using Chirped Microbend Long

Period Gratings", which have been submitted for publication in Optics Express is included. The

second manuscript "Determining the Group Velocity Dispersion by Field Analysis for the LP0X ,

LP1X , and LP2X Mode Groups Independently of the Fiber Length", which is submitted for pub-

lication in JOSA B, is presented in App. B.

2



C
H

A
P

T
E

R

2
INTRODUCTION TO THE OPTICAL FIBER AND HIGHER ORDER

MODES

This chapter introduces the optical fiber and the equations that governs the propagation of

light in the fiber. In particular, the concept of fiber modes including HOMs are reviewed.

The characteristics of HOMs are considered and the methods for excitation of HOMs in

fibers are presented.

2.1 The optical fiber

The optical fiber was invented during the 1960’s, and in 1970’s large progress where made in

terms of reducing the loss. Charles Kao was awarded the Nobel prize in Physics in 2009 for his

contributions to this work [1].

A sketch of a standard step index fiber is seen in Fig. 2.1. The core of the fiber has a large

refractive index with refractive index nc and is surrounded by a lower refractive index material

called the cladding with refractive index ncl [1].

nc

ncl

Figure 2.1: Sketch of a simple step index fiber, where the refractive index of the core, nc, is larger
than the refractive index of the cladding, ncl .

The full wave equation, derived from Maxwells equations, is given by [1, 2]:

3



CHAPTER 2. INTRODUCTION TO THE OPTICAL FIBER AND HIGHER ORDER MODES

∇2E+k2
0εE= 0, (2.1)

(2.2)

where E is the electric field vector, k0 is wave number, and ε is the permittivity.

In the scalar approximation, also known as the weak guiding approximation where the step

in refractive index between core and cladding is small, the wave equation in cartesian coordi-

nates in Eq. (2.2) is modified to [1, 2]:

∂2Ψ

∂x2 + ∂2Ψ

∂y2 +k2
0ε(r)Ψ=β2Ψ, (2.3)

where Ψ is the wave function, k0 is wave number, ε(r) is the permittivity dependence of r, r =√
x2 + y2 , and β is the eigenvalue also known as the propagation constant. It may be rewritten

in polar coordinates, and for the core region and cladding region, respectively, to perform a

separation of variables, yielding the following equation for the radial dependence in the core

[1, 2]:

∂2Rm(r)
∂r2 + 1

r
∂Rm(r)
∂r

− m2

r2 Rm(r)+k2
0n2

cRm(r)=β2Rm(r), (2.4)

and in the cladding:

∂2Rm(r)
∂r2 + 1

r
∂Rm(r)
∂r

− m2

r2 Rm(r)+k2
0n2

clRm(r)=β2Rm(r). (2.5)

Rm(r) is the radial mode profile for the m’th solution, and nc and ncl are the refractive indices

of the core and cladding, respectively. The solution to this form of equation is well known and

introducing new scaled parameters, κ =
√

k2
0n2

c −β2 , and σ =
√
β2 −k2

0 −n2
cl , the solution may

be written as follows [1, 2]:

Ψ(r,φ)= AJm(κr)cos(mθ), for r < a, (2.6)

Ψ(r,φ)= BKm(σr)cos(mθ), for r > a, (2.7)

where Jm and Km are Bessel functions of the first and second kind, respectively, θ is azimuthal

coordinate, and a is radius of the core. To ensure continuity in the field and the derivative of the

field across core cladding interface, following conditions must be fulfilled [1, 2]:

AJm(κa)= BKm(σa), (2.8)

AκJ′
m(κa)= BσK ′

m(σa). (2.9)

Each mode is thus associated with a wavelength dependent eigenvalue, β. From β, an effec-

tive refractive index is introduced:

4



2.2. FIBER MODES

ne f f =
β

k0
. (2.10)

The wavelength dependence of the effective refractive index leads to a mode dependent GVD.

The modes in the fiber, described by the weakly guiding approximation, are indexed according

to the LP-terminology. LP stands for "linearly polarized". The modes are indexed as LPml modes

where the 2m denotes the number of nodes (zerocrossings of the magnetic field) for the full

2π at a constant radius and l − 1 denotes the number of nodes in the radial direction. From

the boundary conditions, a cutoff condition for the modes may be defined by introduction of the

normalized frequency, V [1, 2]:

Jm(V ) = 0, (2.11)

V = 2πa
λ

√
n2

c −n2
cl . (2.12)

In Fig. 2.2, the normalized electric field of the first four fiber modes, LP01, LP11, LP02, and

LP21, in the LP-terminology are shown.

In the case, where the weakly guiding approximation is not valid, the guiding mechanism

of the optical fiber is defined as strong guiding. That is the case for large index contrast fibers

[1, 2]. In that case the solutions are no longer uniquely linearly polarized, and these modes are

described as vectorial modes. Classes of fibers that exhibit strong guiding include among others:

Photonic crystal fibers [3], aircladding fibers [4], and vortex fibers [5–7].

2.2 Fiber modes

In the previous section, the fiber modes was introduced as different spatial solutions to the wave

equation. In this sections, different classes of fiber modes and their characteristics are reviewed.

Both the free space and the in-fiber properties of HOM distinguish them from the fundamental

mode.

Examples of the abilities of HOMs include the ability to carry orbital angular momentum

[5, 7]. One example of the generation of these modes is a linear combination of two HE21 with

a ±π/2 phase shift in a vortex fiber [7]. The vortex fiber splits up the mode group, formed by

the TE01, TM01, and two HE21, constituting the LP11 mode in the scalar approximation, so that

vectorial modes are no longer degenerate, that allows for the excitation of only the two HE21

modes with ±π/2-phase shift [6].

5



CHAPTER 2. INTRODUCTION TO THE OPTICAL FIBER AND HIGHER ORDER MODES
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Figure 2.2: The normalized electric field of the first four fiber modes in the LP-terminology, that
is (a) LP01, (b) LP11, (c) LP02, and (d) LP21. The change in the sign of the electric field indicates
a shift in the phase.

One class of fibers of fibers that have shown large potential, and significantly different prop-

erties compared to the fundamental mode is the Bessel-like mode in the LP0X mode group, also

known as the HE1X modes in the full vectorial picture.

In free space, the zero order Bessel beam have been shown to support a central bright spot

propagating without diffraction many times further than the Rayleigh range [8].

When considering the scalar solution to the wave equation, see Eq. (2.7), the solution in the

core for the LP0X modes is described by the zero order Bessel J function, and is thus a close

approximation to the Bessel beam [9]. An actual Bessel beam have infinite spatial extent and

thus carry infinite energy, hence being unphysical [8], and the mode excited in the fiber is thus

only an approximation. An LP0X mode have been excited in a HOM fiber with more than 99 %

6



2.2. FIBER MODES

conversion efficiency using an LPG [9]. The principle of the increased diffraction free length,

zmax, and its dependence on mode order is illustrated in Fig. 2.3 [8].

R
Fiber

Figure 2.3: A Bessel-beam is formed of two plane waves forming a cone with a cone angle φ.
A Bessel-like beams may be excited in a fiber, and using the propagation constant, β, and the
transverse wavevector, kt, the diffraction free length may be estimated.

Bessel beams are formed by interfering plane waves on a cone with cone angle φ. It can

be showed tan(φ) ≈ R/zmax, where R is the radius of the full beam. Using the same argument,

a similar equation may be written in k-space as illustrated in Fig. 2.4, where tan(φ) = kt/kz,

where kt and kz, is transverse and longitudinal wave vector, respectively. In an optical fiber, kz

is simply the propagation constant β. Assuming that the power is guided in the entire fiber, as

illustrated in the figure, kt is the transverse wave vector in the fiber. As the effective refractive

index, ne f f , decreases with mode order, so does β and the fraction kt/β increases indicating an

increasing cone angle and inherently a shorter diffraction free length, zmax. The diffraction free

length may be estimated: zmax ≈ Rβ/kt [9]. The higher the mode order, the better the approxi-

mation to a true Bessel beam.

A second property of the Bessel-like beams is their ability to pass an obstruction without

casting a shadow, this is also known as selfhealing, and has been observed in Bessel-like beams

excited in optical fibers [9].

One of the allures of HOMs is the ability to tailor the GVD and the effective area - both highly

relevant parameters for design of nonlinear processes [10, 11]. The GVD has two contributions

- the material dispersion and the waveguide dispersion. As the name suggests, tailoring the

waveguide and hence the guiding mechanisms, it is possible to tailor the waveguide dispersion.

That is true for both the fundamental mode and HOMs. Strong confinement of the fundamental

mode, as seen in for instance photonic crystal fibers, allows for anomalous dispersion below the

zero dispersion wavelength of silica at approximately 1300 nm [12].

As a consequence of the GVD being proportional to the second derivative of the effective

refractive index with respect to the wavelength, each mode has a distinctive GVD profile. Ex-

7



CHAPTER 2. INTRODUCTION TO THE OPTICAL FIBER AND HIGHER ORDER MODES

ploiting the possibility to selectively excite the mode with the desired GVD, GVD management is

possible. Furthermore, as the GVD is strongly dependent on fiber design and the fiber may thus

be designed so that both the GVD and the GVD slope can be compensated, something which is

not possible using the fundamental mode of a photonic crystal fibers where the parameter space

for GVD design is more limited [13].

The effective area is a parameter important in nonlinear processes, as well as when the

nonlinearity is undesired, that could for instance be in the design of high power lasers [10]. The

effective area is defined as [2]:

Ae f f =
(∫ |E|2dA

)2∫ |E|4dA
, (2.13)

where E is the electric field and dA is the spatial element. From Eq. (2.13), it is evident that

the effective area strongly depend on the spatial distribution of the electric field.

When scaling the fiber there is however an important concern: The mode stability. Stable

mode propagation for the fundamental mode with large effective area have been demonstrated

in rod type fibers [14]. In solid silica fibers, the fundamental mode, however becomes unstable

when scaling the effective area [10]. The instability have two sources: Mode distortions and mode

coupling. HOMs are more resistant to mode distortions, which makes them good candidates for

scaling the effective area. That may be explained by the natural bend immunity of HOMs [15].

A bend is typical perturbation to the fiber, and can generally be explained by considering a

tilted index profile. The concept is illustrated in Fig. 2.4. In Fig. 2.4(a), the effect of the bend on

the fundamental mode is considered. When the fiber is bent, an evanescent or forbidden region

is created due to the fact that ∆nbend >∆nLP01 , and the power carried by the mode leaks into the

evanescent region. Also the mode assumes a non-Gaussian like shape as it is only guided in one

side of the fiber, and the effective area is reduced up to 70 % [15]. In 2.4(b), a HOM configuration

is presented. As ∆nbend <∆nHOM , no evanescent region is created and the mode may propagate

stably without shape distortions [15].

For the second source of instability, mode coupling, HOMs typically couples to the nearest

neighbour as a result of small pertubations, that could for instance be fabrication inhomogeni-

ties. In the case of LP0X , previously mentioned for their free space properties, the nearest neigh-

bor is the LP1X mode in case of bend perturbations. Sufficient splitting in the refractive index of

these two mode groups is necessary for stable propagation without mode coupling. It has been

shown that this splitting increases with mode order, being an order of magnitude larger than

the splitting between the fundamental mode, LP01, and it’s nearest neighbor LP11 [10]. Coupling

to other mode groups need also be considered for the full picture of the mode coupling. Despite

the selection rules for direct mode coupling via bend perturbations demanding coupling to a

neighboring mode group, indirect coupling to the LP2X and LP6X mode group has been observed

experimentally [10].
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Figure 2.4: The refractive index profile of the unbent fiber is plotted in black. The red dotted
lines indicate the perturbation to the refractive index profile caused by the bend. In (a), the fun-
damental mode, LP01, considered. When the fiber is bent, the mode leaks out into the forbidden
(evanescent) region. In (b), a HOM is considered. As indicated by the dotted blue line, the HOM
is well guided in both the bent and the unbent fiber.

2.3 Excitation of higher order modes

In this section, a selection of the most common methods of exciting HOMs is reviewed. This

section falls in three parts: In the first part the principle of the LPG is reviewed. In the second

part, free space methods such as phase plates, spatial light modulators (SLMs) and q-plates are

considered. The third and last part covers the remaining methods such as tapered couplers and

photonic lanterns.

LPG is preferred method of excitation for the work presented in this thesis. LPGs used as in-

fiber band rejection filters was first presented by Vengsarkar et al. and present many interesting

features such as low loss and small back reflection [16]. The LPG as opposed to the conventional

Bragg grating couples two co-propagating modes. Conventionally, the coupling takes place from

the fundamental mode (LP01 or HE11) to a HOM. Each of these modes is characterized by a

propagation constant, βfundamental and βHOM , respectively. To achieve phase matching between

the two modes, following condition must be fulfilled [16–18]:

βfundamental −βHOM = 2π
Λ

. (2.14)

In Fig. 2.5, the schematics of a LPG is illustrated. The pertubation is shown as a variation

of the refractive index of the core.

Λ is the pitch of the LPG - that is period of the grating along the axis of propagation. Op-

timum conversion is thus met when this criterion is fullfilled, the equation may be rewritten

9
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L

Figure 2.5: Sketch of a LPG in simple step index fiber where the pertubation is a change of the
refractive index in the core. The period of the pertubation is given by the pitch, Λ.

introducing a wavelength dependent detuning parameter, δ(λ)

δ(λ)= 1
2

(
2π
Λ

−∆β(λ)
)
. (2.15)

The coupling is optimum for δ(λ) = 0 and trails of for wavelengths shorter and longer. The

phasematching condition Eq. (2.14) describes the simple case of first order diffraction. The equa-

tion may be generalized to include higher order diffraction by modifying it to [19]:

βfundamental −βHOM = 2πN
Λ

, (2.16)

where N is an integer. Higher order diffraction LPGs have been demonstrated on several occa-

tions [20–23]. Higher order diffraction may lead to increased number of spectral features in the

conversion spectrum [20].

As the propagation constant is wavelength dependent, the phase matching condition also

has a spectral response.

The LPG is a reversible device and may thus couple both from the fundamental mode to

HOM but also from a HOM to the fundamental mode.

The response of the LPG may be described by coupled mode theory [17]:

dEA

dz
= −iσEA(z)− iκ∗EB(z)exp(iδz), (2.17)

dEB

dz
= −iσEB(z)+ iκEA(z)exp(−iδz), (2.18)

where EA and EB are the amplitudes of the electric field of the two modes, δ is detuning param-

eter, and κ is the cross coupling coefficient. The general self-coupling coefficient, σ, is defined as

[17]:

σx ∝
∫
∆naverageExExdS, (2.19)

where as the cross-coupling coefficient is defined as [17]:

κ∝
∫
∆nmaxEAEBdS. (2.20)
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Ex is the electric field strength of the given mode, ∆naverage = (nmax +nmin)/2 is average re-

fractive index of the pertubation (nmin being the minimum refractive index, and nmax being the

minimum refractive index), ∆nmax = nmax − nmin is maximum refractive index of the pertuba-

tion, and dS is the cross section area of the pertubation [17, 18]. It may easily be shown that

the optimum coupling is achieved, without overcoupling, when κL ≤ π/2, where L is the length

of the LPG [17, 18].

Several schemes for implementation of the LPG have been demonstrated. Roughly speaking,

the implementations can be categorized in two groups: UV-induced LPGs and mechanical LPGs.

UV-induced LPGs are traditionally used for the conversion from the symmetrical funda-

mental mode to symmetrical HOMs [10], unless in a tilted version where it may couple from a

symmetrical to an asymmetrical mode [24].

UV-induced LPGs can produced both in a point-by-point UV-writing setup [9] and using an

amplitude mask [10]. The deuterium loaded germanium co-doped fiber core is exposed to UV

light in a periodic pattern as illustrated in Fig. 2.5. That gives rise to a permanent increment

of the refractive index of the core [10]. The change in the refractive index is permanent. The

UV-writing is typically performed at 248 nm [16].

A class of LPGs related to the UV-induced LPGs are LPGs formed with high intensity lasers

such as fs-lasers [25–27]. The LPGs formed with fs-lasers may be inscribed in all-silica fibers,

as opposed to UV-written LPGs, all though greater refractive index change is achieved in ger-

manium co-doped fibers [25]. The process relies on the ability of high intensity light to make

changes to the refractive index of silica glasses by damaging the silica bonds [25].

For the second class of LPGs, classified as mechanical LPGs, a periodic deformation of the

fiber is performed and that leads to a coupling to a HOM. This class of LPGs couple a symmetric

mode e.g. the fundamental mode to an asymmetric HOM [11, 28] or a cylindrical vectorial mode

[5, 6]. Several implementations of mechanical LPGs have been demonstrated and includes heli-

cal LPGs [29, 30], microbend LPGs [11, 31], CO2-written LPGs [28, 32], and a thermally induced

LPG created with a heat wire [31]. LPGs are attractive as they are potentially low loss [10], high

conversion in-fiber devices which may be implemented in for instance all-fiber lasers [33, 34].

Microbend LPGs have an inherent polarization dependency as the asymmetric modes to which

they couple consist of a group of vectorial fiber modes, that leads to a polarization dependent

conversion resonance [35]. They are also potentially temperature stable [32], the temperature

dependence present for most LPGs may however also be used in sensing applications [36].

LPGs can both be employed as narrowband rejection filters [16], but may also be imple-

mented in a broadband configuration. In the narrowband configuration, conversion efficiencies

as large as 30 dB have been demonstrated [10]. Broadband mode conversion may be achieved in

several ways, one is to increase ∆nmax [28], another is to employ chirped LPGs [37] , and thirdly
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socalled turn-around-point (TAP) LPGs can be used [10, 11, 38, 39]. The TAP is the point where

the group delay difference between the two modes in the conversion process is zero [38]. With a

TAP LPG, mode conversion bandwidths up to 94 nm have been realized [10]. This number does

however depend on the group velocity dispersion profile and inherently the fiber design and is

hence an increasing number.

The second group of mode converters covers the large range of free space elements which may

be used to excite HOMs in fibers. Whereas LPGs typically, though not exclusively [24], require

the fiber to have a single moded core making them sensitive to nonlinear effects in high power

applications, free space elements are independent of such considerations. Possible free space

elements include axicons [40, 41], used for the excitation of Bessel-like modes. Phase plates have

also been demonstrated for the conversion of LP0X modes to a nearly fundamental Gaussian

output [42]. Another free space element, the q-plate has been used for selective excitation of

optical angular momentum modes (OAM) [43]. A fourth method is to use computer generated

holograms [44, 45]. Lastly, SLMs have been shown to excite Bessel-like modes with conversion

rates up to 17 dB [46].

In common for all of these elements is that either or both the phase and amplitude of the

phase of the beam is modified upon input or output of the fiber.

In the last group of mode converters, tapered couplers and photonic lanterns is reviewed.

In photonic crystal fibers and other holey fibers, LPGs as mode converters have limited effect,

though they have been demonstrated [47, 48]. Using a UV-induced LPG requires a co-doping

of germanium for high coupling [10], and microbend LPGs tends to damage the holey fibers.

Another form of in-fiber coupler is the tapered coupler, designing the taper mode conversion

from the fundamental mode to LP11 and LP02 have been demonstrated [49]. Other close related

forms of mode converters was presented by Witkowska et al. and consist of either carefully

designed hole collapse or a twisted fused coupler as known from conventional fiber optics [50].

Using photonic lanterns is another option, where several fibers are fused into one allowing

for efficient multimode to single mode coupling [51, 52]. The photonic lantern has also been

demonstrated in a mode selective form for use in for instance mode division multiplexing (MDM)

[53]. This is not the direct form of HOM generation as seen in the other mode converters but

nonetheless an applicable device in the HOM to fundamental mode conversion process.

2.4 Summary

In this section, the introductory theory used as a prerequisite throughout the remaining thesis

is reviewed. That includes the governing equations for the optical fiber as well as the modal solu-

tions in the weak guiding approximation and an overview of the implications of strong guiding.

Hereafter fiber modes and in particular HOMs are review in terms of the characteristics and

12



2.4. SUMMARY

properties which eliminates them from the fundamental mode. Lastly, the excitation of HOMs

is presented with strong focus on the workings of the LPG.
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3
STATE OF THE ART FOR HIGHER ORDER MODES

This chapter focuses on state of the art of applications of the HOMs introduced in Ch- 2.

When using HOMs, purity of the modes is essential and several characterization meth-

ods are therefore reviewed as well in the second part of the chapter.

3.1 Applications of higher order modes

HOMs have had applications within fiber optics for more than two decades. Applications of

HOMs include, not exclusively, usage for space-division multiplexing in optical communication,

GVD compensation, sensing, and nonlinear frequency conversion.

Initially, the use of HOMs for optical communication is considered. Within conventional fiber

optics, researchers have within the last decades, exploited and optimized multiplexing in time,

wavelength, polarization and phase to reach more capacity for the ever growing demand. The

capacity limit approaches, and spatial multiplexing is now a possibility being explored. Gener-

ally, space-division multiplexing operates with two regimes: Multicore fibers and multimoded

fibers [54]. A crucial factor in both schemes is the ability to separate the channels to limit cross

talk.

The multicore fiber is not strictly within the regime of HOMs, but is nonetheless briefly

reviewed. The multicore fiber is a fiber with a number of single mode cores. The cores may

either work in a decoupled manor or a coupled manor with a number of supermodes [54]. Up to

30 separate cores within a limited fiber diameter (≈ 200µm) have been demonstrated [55], this

is however a constantly improving number.

In terms of mode multiplexing in few mode fibers, both demonstrations in LP-mode basis
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with mode selectivity larger than 28 dB [56] and in the vectorial basis [54] have been docu-

mented. More complex formats using modes that carry optical angular momentum have also

been reported [5].

Besides the issues concerning mode mixing during propagation due to for instance fiber in-

homogenities, the modes generally exhibit differential mode group delay and differential modal

loss or gain. As a result of mode coupling and differential mode group delay, the energy of a

given data symbol launched into a spatial mode spreads into adjacent symbol time slots, and

the quality of data transmission rapidly diminishes. To mitigate some of these issues, the mul-

tiple input multiple output (MIMO) technique is used [54].

A second application of HOMs is for GVD compensation, and in particular for the implemen-

tation in ultra short pulse fiber lasers. The concept of HOM GVD compensation was introduced

by Poole et al. using an LP11 to compensate the GVD in the fundamental mode, however as the

LP11-mode consists of four vectorial modes, this scheme suffers from polarization mode disper-

sion, which is hard to compensate [13]. Instead, Ramachandran et al. suggested using LP02 for

GVD compensation around 1 µm. This scheme also offers GVD slope compensation [13]. The

scheme has also been demonstrated in a polarization maintaining (PM) fiber, where there is

increased stability for implementation in ultra short pulse fiber lasers [33, 39].

Several demonstrations of HOM compensation in fs-fiber laser have been demonstrated both

in a non-PM configuration with a pulse duration of 62 fs [34] and in a PM configuration, with

increased environmental stability, and a pulse duration of 95 fs, which is currently state of the

art for all-fiber PM lasers [33].

The third group of applications is sensing. Sensing using HOMs is very wide disciplin and

the mentioned examples thus only covers part of the research carried out.

As previosly mentioned, the resonance wavelength of LPGs is sensitive to for instance tem-

perature. That may be exploited in a sensing scheme. In the typical LPG sensor, the LPG couples

to a series of cladding modes, resulting in a number of attenuation bands in the transmission

spectrum. The resonance of the attenuation band is sensitive to the local environment, and a

change in the local environment results in a change in the transmission spectrum. LPG sensor-

ing have been demonstrated for the measurement of temperature, strain, load, bend radius, and

the refractive index surronding the fibre. As the effect on the transmission spectrum depends on

the measurand, it is possible to construct multiple parameter sensor using a single LPG [57]. A

simultaneous temperature and bend sensor has been reported by Ye et al. [58]. A change in the

temperature results in a shift in the resonance wavelength in the transmission band, whereas a

bend results in one of two possibilities: Either a splitting of the resonance, where split depends

on the bend radius, or a shift in the central wavelength of the attenuation band. The first mani-

festation is a result of the breaking of symmetry in the fiber indicating two degenerate cladding
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modes become non-degenerate. This effect have been observed in Ge-B-codoped fibers. The sec-

ond manifestation is accompanied by a reduction of the loss and a broadening of the resonance.

The magnitude of the wavelength shift has been showed to depend on the orientation of the LPG

with respect to the plane of the bend, this obviously works best in fibers with an eccentric fiber

core [57].

The sensitivity to a specific measurand is dependent on fiber composition and the order of

the cladding mode to which the LPG couples, that makes it possible to tailor the LPG to the

wanted sensor. More specifically, appropriate fiber and LPG design allows for attenuation bands

insensitive to e.g. temperature or strain, allowing for multiparameter sensing. Alternatively dif-

ferential shifts in minimum two resonance bands of a single LPG may used for multiparameter

sensing [57].

A temperature sensor has also been constructed using the HOM itself, or to be more pre-

cise the interference of two HOMs. Li et al. reported a temperature sensor constructed of a

single mode fiber (SMF) and a multimode fiber [59]. Two HOMs are excited, LP06 and LP07 -

determined by the intermodal difference - and the wavelength difference between destructive

interference between the two modes is temperature dependent. The sensor is able to measure

temperature differences up to 800 ◦C.

Another use of the HOMs is the use of the long diffraction free length of the Bessel-like LPOX

modes to make a all-fiber Raman probe. The HOMs are excited using a LPG, the concept offers

the possibility of an all-fiber Raman probe with controllable penetration depth [60].

Also an all-fiber STED microscope have been demonstrated using OAM modes excited with

a UV-induced LPG in a vortex fiber offering nanoscale resolution. This implementation offers

low loss and tolerance to perturbations as well as excitation and depletion beams with sizes and

depletion ratios comparable to free space implementations [61].

The last subset of applications reviewed is nonlinear processes using HOMs. Soliton self

frequency shift in optical fibers is a process where Raman self-pumping continuously transfer

energy from higher to lower frequencies. That may be exploited to construct widely frequency-

tunable fs pulse sources with fiber delivery. Anomalous GVD is required for the generation and

maintenance of solitons, that is achievable for HOMs below the zero dispersion wavelength

(ZDW) of silica, approximately 1300 nm, as also exploited in the GVD compensation scheme

described earlier [11, 13, 39]. Soliton self-frequency shifts have been demonstrated in an all-

silica fiber from 1064 nm to 1200 nm by van Howe et al. [62].

The first demonstrations of non-linear frequency mixing using Bessel-like modes were re-

ported by Steinvurzel et al. [63], and improved results leading to continuum generation again

exploiting the Bessel-like LP0X -modes were demontrated by Demas et al. [64]. The Bessel-like

modes offer stable propagation and is thus not limited in their use by uncontrollable mode cou-

17



CHAPTER 3. STATE OF THE ART FOR HIGHER ORDER MODES

pling as demonstration in few moded fibers has been limited by [10]. Using the difference in

propagation constant allows for intramodal nonlinear mixing demonstrated for the LP06-mode

and intermodal nonlinear mixing LP06 to a continuum of mode ranging from LP07 to LP016. The

process exploited is fourwave mixing, pumping hard allows for cascaded four wave mixing, and

11 resolvable modes covering two octaves may excited in this process [64].

3.2 Characterization of modal purity

An important characteristic for the HOMs is the modal purity. A variety of methods have been

reported during the last decades, and this section highlights the workings of the most used.

The original method for characterizing nearly Gaussian beams, the M2-method, was adapted

by Yoda et al. for characterizing the beam quality of HOMs [65]. The M2-method compares the

free space diffraction of a given beam to diffraction of a perfect Gaussian beam and supplies the

ratio, thus an M2 of 1 indicates a perfect Gaussian. This method has been critiqued as it is not

very sensitive to modal mixtures and an excellent M2 of 1.1 might actually cover up to 30 %

HOM content [66]. M2 of modal mixtures is strongly dependent on the intermodal phase [66].

In stead, the beam quality of a mixed beam may instead be characterized by a method pro-

viding modal decomposition. The free space properties of a pure mode may be determined mea-

suring the divergence angle [22]. Most beams however are not pure.

The methods for modal decomposition may be divided into two groups: One where the modal

basis for decomposition is known, and one where the basis is unknown. For the methods where

the basis is known, it corresponds to knowing the fiber parameters such as guiding mechanism,

index contrast and core radius.

The first method presented relies on the basis of phase retrieval schemes [67]. Shapira et al.

are able to uniquely decompose the vectorial modes in a fewmoded photonic crystal fiber [68].

The method uses on two images: One of the intensity distribution immediately upon exiting the

fiber and one of the far field. The method relies on the principles of the phase retrieval algorithm

[67]. An a priori constraint of the field distribution is key for this type of method to provide a

unique solution. The phase retrieval algorithm is inherently a 2D problem, given by the dimen-

sions of the intensity measurements [67]. The modal decomposition may however be reduced to

1D problem since the field is constrained to be a linear superposition of the fiber eigenmodes

that can be determined from the fiber structure. The modal decomposition provides the expan-

sion coefficients and thus reduces the size of the computation [68]. The algorithm is constructed

to minimize an error function with respect to a set of independent variables representing the

expansion coefficients for the chosen basis. Since the basis is formed of vectorial fiber modes,

four squared-error functions for two orthogonally polarized components in the near and far field
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are constructed. The fields are reconstructed with the 16 lowest energy modes, restricting the

angular momentum to m < 4. Repeating the decomposition with five distinct pairs of orthogo-

nal polarization directions, and the correlation coefficients between the decomposition results

exceeds 0.98 [68].

A second method relying on a priori knowledge in form of basis of fiber eigenmodes is the

modal decomposition based on computer generated holograms [69]. Flamm et al. excites and

decomposes a modal mixture in a large mode area fiber using SLMs, the basis used is the LP-

modes of the weak guiding approximation. In Ch. 2, the excitation of pure modes using SLMs

was reviewed [46]. The modal mixture is projected onto a digital hologram, and the modal com-

ponents are split, and the intermodal phase is found from reference to a dominating mode [69].

The second group of modal decomposition methods is independent of a priori knowledge.

A widely used technique not requiring any a priori knowledge is the S2-technique. First

documented by Nicholson et al. [70], and later optimized [71–73]. The S2-method refers to spa-

tially and spectrally resolved imaging of modal content. The method requires a dominant mode,

preferably the fundamental mode as it does not have any areas with zero or very low intensity

within the guiding area [72]. The method is able to discriminate HOM content down to 50-60 dB

below the power level of the fundamental mode. Nicholson et al. explains the concept of S2 [70]:

"S2 imaging is based on the idea that modes propagating in optical fibers can be identified

by both the group delay difference which leads to a spectral interference pattern in a broadband

source propagating through the fiber, as well as by a distinct spatial interference pattern between

the high-order mode and the fundamental mode. "

A broadband source illuminates the fiber under test (FUT). After the FUT, the light passes

through a polarizer. The light is then collected in a SMF in a rectangular grid. The presence

of multiple modes leads to an interference beating in the SMF, assuming that all intensities

may be related by a space dependent constant. Through simple mathematics, the group delay

and Fourier transform of the measured spectrum, the space dependent constant may be deter-

mined, allowing for the evaluation multipath interference (MPI) and the intensity distribution

[70]. This concept has continually been improved, first using a wavelength swept source and a

camera [71] and in real-time version using a wavelength swept source and camera, where the

wavelength swept source is triggered by the camera [73].

Whereas S2 relied on a dominant mode, C2 - cross correlated imaging - is free of such con-

straints [74]. The method is based on optical low-coherence interferometry. It is based on cross-

correlations of the fiber output with a reference beam. The analysis of the low-coherence inter-

ferometry is based on the slowly varying envelope. The setup is based on a GVD compensated

Mach Zender interferometer with a reference arm with a varible delay, a broadband source, a

bandpass filter, and a camera. The setup provides information on the modal weights, intensity
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profiles, relative group-delays and GVD of all guided or quasi-guided (leaky) modes [74]. The

method has also been demonstrated in the frequency domain, employing a wavelength swept

source and a camera [75]. In the frequency domain, the measurements are performed on a sub-

second time scale and it may thus be used for the alignment of the free space excitation of HOMs

[75].
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4
BREAKING OF THE AXIMUTHAL SYMMETRY OF BESSEL-LIKE

HIGHER ORDER MODES

HOMs have many applications as discussed in Ch. 3, and in particular Bessel-like modes,

have recently attracted much attention within fiber optics. This chapter focuses on the

Bessel-like modes in the LP0X mode group - also known as HE1X modes in the full

vectorial theory [1]. Their long diffraction free propagation may for instance be use to create

optical bottles [76, 77].

Bessel beams were first introduced by Durnin et al. and possess many interesting properties

such as diffraction resistant propagation and selfhealing [8]. Bessel-like beams may be excited

in optical fibers, the so-called LP0X modes in the scalar approximation and HE1X modes in

the full vectorial theory [1], using a UV-induced LPG [9] and with SLMs employing free space

incoupling [46].

For high mode orders, break up of the azimuthal symmetry in LP0X modes is demonstrated.

That effects the polarization state, effective areas, mode conversion efficiencies, and free space

properties [78, 79].

Degeneracy and symmetry groups of microstructured fibers have earlier been investigated

for low order modes [80–82]. Here, the analysis shows a tendency towards non-degeneracy of

the modes [80].

The investigations in this chapter are both numerical and experimental. Bessel-like modes

excited in a double cladding structure are considered. The outer cladding in the fiber structure

is an aircladding. The modes are excited with a UV-induced LPG inscribed in the singlemoded

core and propagate in the inner cladding using the point-by-point method. Such modes have ear-

lier been investigated by e.g. Ramachandran et al. [10]. For very high order Bessel-like modes,
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it has been observed that the azimuthal symmetry is broken and the intensity profile of the

mode assumes a bowtie shape, these modes have been denoted bowtie modes [78]. These modes

are investigated experimentally, by considering an LP016 mode generated with minimum 90 %

conversion efficiency over a narrow 2 nm bandwidth. Israelsen et al. introduced a new nota-

tion to denote the bowtie modes as they are both experimentally and numerically shown to be

non-linearly polarized and the scalar approximation no longer is valid [78]. For the bowtie mode

corresponding to an LP0X mode, the notation BT0X is used, and the enumeration of the modes

is thus similar. The first 0 indicates a central lobe and the X denotes the number of rings plus

one [78]. The generated mode is hence forward denoted BT016.

In this chapter, the onset of the investigated bowtie effect and the dependence of this ef-

fect on the fiber design are investigated numerically using a full vectorial modesolver, COMSOL

[78]. An explanation of the properties of these modes recently presented by Rishøj et al. is also in-

cluded [83]. The free space properties of the simulated modes are investigated using fast Fourier

transform (FFT) propagation, designed after the principles described by Delen et al. [84]. These

properties are compared to those of an ideal mode - with no azimuthal dependence - generated

with a scalar modesolver. The selfhealing property observed for Bessel-like modes [9] is also

evaluated [79].

4.1 The bowtie effect

To describe the break up of the azimuthal symmetry experimentally, a narrowband LPG is in-

scribed in a double cladding fiber to excite a high order Bessel-like mode [78]. A microscope

image and a sketch of the refractive index profile of the fiber are depicted in Fig. 4.1.

The aircladding is designed to minimize the size of the bridges, so that the shape of the

bridges does not effect the guiding mechanisms of the aircladding.

The conversion efficiency of the LPG, converting from LP01 to BT016, is plotted in Fig. 4.2a.

The conversion efficiency is measured by splicing the FUT to a SMF and measuring the trans-

mission of a broadband source, assuming no other losses in the system, this may be converted to

a conversion efficiency. This is a standard method for measuring the conversion efficiency for an

LPG [16]. Around 810 nm, there is an artefact from the illuminating supercontinuum source. An

image of the generated mode is shown in Fig. 4.2b, note, the camera is unsaturated. The LPG

is here illuminated with a narrowband source. Due to the large difference in intensity across

the mode and the limitation in the camera given by a dynamic range of 8 bit, the features in

the outer rings of the mode are hard to observe. The conversion efficiency shows very little MPI

indicating excitation of a single mode by the LPG, which verifies the assumption of no other

losses in the transmission measurement. From the modal image, it is seen that the mode has a

central peak but the azimuthal symmetry is broken compared to an ideal LP0X mode. This effect

is denoted the bowtie effect and was first documented by Israelsen et al. [78], and the mode is
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Figure 4.1: (a) Microscope image of the fiber end facet. The outer diameter of the fiber is 156 µm.
The radius of the inner cladding is 39 µm and the airholes have a radius of 2 µm. The fiber is
designed and drawed in collaboration with NKT Photonics. (b) A sketch of the refractive index
profile of the fiber along the direction indicated by the arrow in (a).

thus BT016. By slight pertubation of the fiber, the orientation of the bowtie may easily be shifted,

indicating that two degenerates modes with orthogonal orientation are present [78]. The mode

is propagated 76 cm, showing that the mode propagates stably in the fiber.

(a) (b)

Figure 4.2: (a) Conversion efficiency of the LPG converting LP01 to BT016 in the aircladding fiber.
(b) Image of the BT016 mode after 76 cm of propagation in the aircladding fiber.

To show that the break up of the azimuthal symmetry is neither an imaging nor an interfer-

ence effect but is in fact a guided mode of the fiber, the fiber structure is investigated with a full

vectorial modesolver to find the guided modes in a double cladding structure, more specifically

COMSOL [78]. The modes are found employing a triangular grid. A double cladding structure
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with an aircladding as the outer cladding is considered. The radius of the holes in the aircladding

is varied while maintaining the number of holes in the aircladding to find the onset of the bowtie

effect. Varying the holes effectively varies index contrast between the inner and outer cladding.

A sketch of the full simulated fiber geometry and a zoom-in on the aircladding region is shown

in Fig. 4.3a and in Fig. 4.3b, respectively. Notice when the radius of the holes in the aircladding

is decreased the width of the silica bridges between the airholes is increased as the number of

holes and the aircladding radius is maintained [78]. A zoom-in on the mesh in aircladding region

is depicted in Fig 4.3c, this zoom-in shows the smallest mesh features in the fiber geometry. The

size of the mesh changes across the structure and is smallest around the small features in the

fiber design, such as the airholes and the core region. The size of mesh may be compared against

the feature size in Fig. 4.3c.

Core

Innercladding

Aircladding

(a)

Core

Innercladding
R

Aircladding

Radius of

    airhole

(b)

4 µm

(c)

Figure 4.3: (a) Sketch of the simulated fiber geometry. (b) Zoom-in on the airholes in the simu-
lated fiber geometry. (c) Zoom-in on the mesh in the aircladding region where the mesh has the
finest structures. The length of the arrow is as indicated in the figure 4 µm.

As the holes become smaller, a smaller amount of field interacts with the holes, the bowtie

effect is expected to be less pronounced [78]. Using the full vectorial modesolver, it has been

demontrated that for mode orders above a certain threshold, the azimuthal symmetry is broken

and the mode assumes a bowtie shape [78]. For every mode order, there are two degenerate

solutions where the orientations of the bowties are orthogonal. The degeneracy of the solutions

allows for every orientation of the bowtie by linear combination. In Fig. 4.4, the bowtie modes of

orders 11, 14, and 16 are plotted in both orientations. Here it is seen that the pronouncement of

the bowtie effect increase with mode order.

The grid size for the simulation is chosen so that the shape of the mode does not change when

choosing a finer resolution. In Fig. 4.5a, a simulated modal image of BT011 for a hole radius of

2 µm is depicted, the chosen fiber geometry, depicted in Fig. 4.3a, is a close approximation to

the fiber investigated experimentally. Here the bowtie effect is seen. The normalized variation

in the first norm squared of the transverse electric field vector along the first ring in the mode

is plotted in Fig. 4.5b, along the arrow indicated in Fig. 4.5a. A sinosoidal variation which is

not present for ideal LP0X modes is observed, the threshold for the onset of the bowtie effect
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Plots showing the two degenerate bowtie solutions for three different mode orders in
the aircladding fiber with a hole radius of 2 µm. (a), (b) BT011a,b. (c), (d) BT014a,b. (e), (f) BT016a,b

is predefined to a 25 % variation [78]. Thus it may be concluded that the onset of the bowtie

effect for r = 2 µm is BT011. As seen in Fig. 4.5b the bowtie effect is not above threshold for

lower hole radii and it may be concluded that the threshold is for higher mode orders as the
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bowtie effect becomes more pronounced with increasing mode order as also seen in Fig. 4.4. The

rippling in the curves originates from the fact the this analysis is performed on the data set up

in a cartesian system.

(a) (b)

Figure 4.5: (a) BT011 in aircladding fiber where the airholes have a radius of 2 µm. The deviation
in the first norm square of the transverse electric field vector is to be evaluated along the first
ring in the mode. (b) Deviation of the first norm square of the transverse electric field vector
along the first ring in BT011 guided in the aircladding fiber, the radius of the airholes are varied
and the number of holes are conserved.
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Figure 4.6: Onset of the bowtie effect as a function of the radius of the innercladding.

Numerical analysis also shows a large dependence on fiber design such as the radius of

the inner cladding, which makes it an important effect to consider in designing optical fiber

systems employing HOMs [78]. For smaller radii the bowtie sets in for lower mode order. In

Fig 4.6, the onset of the bowtie effect given by the radial mode order is plotted as function

of the radius of the innercladding. The fiber geometry is an aircladding geometry as the one

depicted in Fig. 4.3a. In this analysis, the radius of the airholes and the width of the bridges is

maintained, indicating that when reducing the radius of the innercladding the number of holes

in the aircladding is reduced. The radius of the airholes and the width of the silica bridges is
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4.1. THE BOWTIE EFFECT

maintained as a dependency of the airhole radius on the onset of the bowtie effect has just been

demonstrated.

To exclude the ellipticity as the source of the bowtie effect, a numerical study of an elliptical

fiber is conducted. Without loss of generality, the studied fiber is scaled down for better resolu-

tion. A step index fiber with an NA of 0.22 guiding LP02 but not LP03 is studied to investigate

the origin of the bowtie effect by stepwise making the fiber elliptical. With a ellipticity of 0.2,

an effect similar to the bowtie effect is observed but with two notable differences. The first dif-

ference is that in the elliptical fiber, the bowtie is always oriented along the semi-major axis in

the ellipse, which does not allow for all orientations of the bowtie, which have been observed

experimentally [78]. The second difference is the fact that all solutions for the elliptical fiber are

linarly polarized. In the next section it is demonstrated that it is not the case for bowtie modes.

Ellipticity is thus not the source of the bowtie effect [78].

To illustrate the effect of the ellipticity, the LP02/BT02 modes for varies degrees of ellipticity

is plotted in Fig. 4.7 in a step index fiber with the ellipticity along the vertical axis.
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Figure 4.7: Imaging of the LP02/BT02 modes for varies degrees of ellipticity in a step index fiber
with the ellipticity along the vertical axis. (a) Ellipticity of 1%. (b) Ellipticity of 2%. (c) Ellipticity
of 3% (d) Threshold for the onset of a bowtie-like effect.

It is expected that the bowtie effect can be attributed to the fact that the boundary conditions
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of the radial and the azimuthal component of the electric field are different, thus with increasing

field at the boundary as a result of the increasing mode order the effect becomes more dominant

and the solutions for the two components differs yielding a resulting bowtie power distribution

[78]. It is an effect also expected in an ideal circular fiber as since it is in fact a full vectorial

effect and has been shown experimentally in a simple fiber structure [83]. The effect could be an

analogue to the effect for hollow core fibers described in a ray picture by Golowich [85]. That is

elaborated in the following section.

When considering the modes in the vectorial description, that is strong guiding, there are two

contributions from Bessel modes of different orders to the HE1X modes, which is the accurate

description of the LP0X modes considered in the scalar approximation. In the scalar approxi-

mation where the electric and magnetic field of the LP0X modes are described by the J0-Bessel

function. From Okomato, the electric and magnetic field in the core region in polar coordinates

may be written as [2]:

Er =−iAβ
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where A is a constant, β is the propagation constant, a is the core radius, u is the transverse

wave number, s is a constant depending on n and the transverse wave numbers in the core

and cladding (u, w, respectively), likewise with s1, n1 is the refractive index in the core, and

φ is the offset in the phase. Only the r- and θ-components are considered as they are the only

contributing factors to the measured intensity proportional to the z-component of Poyntings

vector, Sz = ErHθ−EθHr.

From Eq. (4.1)-(4.4), it is evident, that in the full vectorial description of the HE1X /LP0X

modes there is a second contribution in form of the J2-Bessel function as well as an azimuthal

dependence proportional to cos(nθ+φ). This becomes increasingly dominant when increasing

the refractive index difference and/or the mode order.

A second feature adding to the bowtie effect is the fact that for most fibers, HE1X and

EH1X−1, which is part of the LP2X mode group in the scalar approximation, are nearly degen-

erate. For increasing mode order and increasing refractive index contrast, this effect becomes

more dominant. This effect is not a feature, which is a problem in the realization of the bowtie

modes which are excited using an LPG which uses the refractive index difference as well as on

axis pertubation of the refractive index and thus couples to a symmetric mode. Rishøj et al. ex-

cites the bowtie modes using an SLM and are thus dependent on the intensity profile, which is
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similar for the two modes when entering the bowtie regime, and as much as 3 dB is thus coupled

into the undesired mode [83].

4.2 Polarization effects of bowtie modes

As the bowtie effect sets in the polarization of the modes is no longer linear [78, 83]. That it is

also one of the features that separates the effect from the effect seen for elliptical fibers, where

the mode with azimuthal dependency in the intensity distribution are linearly polarized. In this

section, the nature of the polarization of the bowtie mode is reviewed. In Fig. 4.8a, the BT016

(a) (b) (c)

Ti:Sapph
SMF

Doublecladding fiber

LPG
Objective   Polarizer

Camera

(d)

Figure 4.8: (a) BT016 mode found with the full vectorial modesolver for an aircladding fiber
with a hole radius of 2 µm is plotted with arrows indicating the polarization. (b) Zoom-in on
the central rings in the simulated mode. (c) Measured modal image with arrows indicating the
polarization of the mode. There are no arrow heads as the measurement cannot distinguish a
π-phase shift. (d) Setup for measuring the polarization state of the mode.

mode found with the full vectorial modesolver for an aircladding fiber with a hole radius of 2 µm

is plotted with arrows depicting the polarization. It is seen that the polarization is orthogonal

to the intensity rings in the mode [78]. In the zoom-in on the central rings of the mode in Fig.

4.8b, it is seen that there is a π-phaseshift between the polarization of the rings, as is the case

for the linearly polarized mode LP0X . The tail of the arrow is the point of evaluation. This non-

linearity of the polarization sets in along with the bowtie effect, the LP0X modes below the

bowtie threshold are approximately linearly polarized. A gradual transition from the linearly

polarized LP0X mode to the non linear polarization configuration of the bowtie modes depicted
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in Fig. 4.8b is not observed [78]. That is a result of the fact that evaluating the polarization

configuration as a function of mode order is a discrete sampling, when instead maintaining the

mode order and sweeping the wavelength, a gradual transition from a linearly polarized mode to

the characteristic non-linearly polarized bowtie mode is found. The excitation of a bowtie mode

is not dependent on a polarized excitation source showing the stability of the bowitue mode. The

bowtie effect has been observed using an unpolarized excitation source [86].

In Fig. 4.8c, an experimental mapping of the polarization is depicted. The polarization is

measured with the setup in Fig. 4.8d, the polarizer is turned and for every 10◦ an image is

recorded. Summarizing the intensities for the different angles, it is possible to map the po-

larization of the mode however, only in an angle of π as the polarizer cannot discriminate a

π-phaseshift and the polarization is depicted therefore without arrowheads [78].

Comparing to the experimental results with the numerical investigations, it is seen that the

experimental realization shows the same tendency of a polarization orthogonal to the intensity

rings in the mode. The purity of the mode and the dynamic range of the camera limit further

comparisons of numerical and xperimental results.

Rishøj et al. concludes that, the two mode types exhibiting a bowtie like effect, namely the

HE1X modes and the EH1X−1 modes show two different type of polarization effects. Where as

the HE1X modes go from a linear polarization to a quasi-radially polarization with the onset

of the bowtie effect, the EH1X−1 modes become quasi-azimuthally polarized [83]. Using this

observation, it may be concluded that the modes excited in the aircladding fiber is of the HE1X

type.

4.3 Free space properties

One of the widely applicable properties of the Bessel-like modes is the diffraction resistant free

space propagation, where the diffraction free propagation distance is increased up 36-fold [9]. To

evaluate the performance of the bowtie modes, the free space propagation of the bowtie modes

is compared against ideal LP0X mode [78].

To find the diffraction free propagation distance experimentally, measurements on the BT016

mode depicted in Fig. 4.2b. The setup in Fig. 4.9a is used. Initially, the fiber is placed so that the

mode at the end facet of the fiber is imaged onto the camera, the distance between the FUT and

the objective is afterwards increased. The images of the mode upon propagation are stacked and

a cross sectional line through the center of the stacked images is used to depict the free space

propagation, the data along the horizontal axis is plotted in Fig. 4.9b. It is speculated, that the

airholes in the outer cladding slightly distorts the mode which results in the lack of smooth-

ness in the propagation measurement. In Fig. 4.9c, images from the free space propagation are

plotted. Note that the bowtie shape is preserved throughout the propagation.
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Fiber under test
LPG

XYZ-stage

Objective
Camera

Changing distance between fiber end fact and objective

(a)

(b) (c)

Figure 4.9: (a) Setup for measuring the free space propagation of a mode excited by a LPG. (b)
Images from the measurements are stacked and plotted along a single axis - the horizontal axis
in the mode images in (c). (c) Mode images after, from the top, 0 µm, 100 µm, and 200 µm of free
space propagation.

(a) (b) (c)

Figure 4.10: Numerical calculation of the free space propagation of BT016. (a) Modal image of
BT016 at 823 nm calculated for the aircladding fiber, where the holes have a radius of 2 µm.
The axes along which the free propagation is imaged in (b) and (c) are indicated. (b) Free space
propagation of BT016 along the horizontal axis. (c) Free space propagation of BT016 along the
vertical axis.

A numerical calculation of the free space properties is performed using a FFT propagation
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method based on the principles of Delen et al. [84]. The FFT propagation method is based on

following equation:

A(x, y, z = L)=F ∗
{
F {(A(x, y, z = 0)} · e−ikzL

}
,

kz =
√

k2
0 − (k2

x +k2
y) , (4.5)

where A is the electric field, k0 is vacuum wave number and kx, ky, and kz are components of

the wave vector, where kx and ky are found in the Fourier transform.

The contribution from Ez is neglected as it is at least 30 dB smaller than the contributions

from Ex and E y. The contributions from Ex and E y are propagated separately and subsequently

added [78]. The calculations are performed on BT016 at 823 nm found in the aircladding fiber

where the holes in the aircladding have a radius of 2 µm in order to compare to the experimental

investigation. The mode and the propagation along the horizontal and the vertical axis through

the center of the mode are plotted in Fig. 4.10. The diffraction free propagation distance is de-

fined as the point where the absolute value of the electric field squared in the center of the beam

has dropped to e−1 compared to the point of maximum absolute value of the electric field squared

[9]. The BT016 mode has a diffraction free propagation distance of 218 µm as compared to 216

µm for an ideal LP0X mode found with a scalar mode solver for a similar fiber structure. The

bowtie modes shows the same diffraction-resistant behaviour as the Bessel-like modes [9, 78].

When comparing to the experimental measurement, the diffraction free propagation distance is

comparable to numerically predicted distance.

Figure 4.11: Diffraction free propagation distance as function of modeorder for LP0X
modes/BT0X modes in an aircladding fiber and for ideal LP0X modes found with a scalar mode
solver.

The diffraction free propagation distance of LP0X modes/BT0X modes (dependent on whether

or not the bowtie threshold is reached) guided in the aircladding fiber, where the airholes have

a radius of 2 µm, is plotted as function of mode order and for the modes solved with the scalar

modesolver for a similar stepindex fiber, see Fig. 4.11. Modes of lower order propagate unstably

in any fiber [10], and they are thus not included in the plot. It is observed that the diffraction

free propagation distances are much like that of the ideal Bessel-like modes [78].
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4.4 Selfhealing

LP0X modes are selfhealing, which means that they may regenerate their shape after an obstruc-

tion [9]. In this section, it is numerically investigated if bowtie modes also selfheal. Secondly the

selfhealing is quantified [79].

The BT016 investigated previosly is considered again. The guided modes are found using a

full vectorial mode solver, COMSOL. Part of the beam is blocked by an absorbent bar and the

mode is propagated in free space using the FFT propagation routine used to consider the free

space propagation in Sec. 4.3 [84]. In Fig. 4.12a, the mode immediately after the absorbent bar

is depicted. To evaluate the angular dependency of the self-healing ability of the bowtie mode,

the degree of self-healing is quantified by the overlap integral:

η=
∣∣∫ Ep

∗ ·EunpdA
∣∣2∫ |Ep|2dA

∫ |Eunp|2dA
, (4.6)

where Ep is the perturbed electric field, Eunp is the unperturbed electric field, the integral spans

across the full beam cross section. As for the free space propagation, only the transverse com-

ponents of the electric field are considered. In Fig. 4.12b, the selfhealing overlap for BT016 with

an absorbent bar at angle 0 is evaluated as function of the propagation length. The selfhealing

overlap reaches a steady level maintained for at least 100 µm of free space propagation. The free

space propagation of the mode after the absorbent bar is plotted along the first axis in Fig. 4.12c

and along the second axis in Fig. 4.12d. The angular dependence of the selfhealing overlap is

plotted in Fig. 4.12e. after 2 µm of free space propagation, where a steady overlap was reached.

The selfhealing overlap follows a sinosoidal curve with minimum at the angle corresponding to

the orientation of the bowtie.

4.5 Summary

Experimentally, it has been observed that guiding high order Bessel-like modes in an aircladding

structure may lead to a break up of the azimuthal symmetry. This was verified numerically with

a full vectorial modesolver, which shows that the break up results in two degenerate modes. The

break up of the azimuthal the bowtie effect is named after the characteristic shape of the mode.

The effect is showed not to originate from an ellipticity of the fiber.

The effect may instead be explained considering the full vectorial solutions to the wave equa-

tion, where the HE1X mode is described by both the J0-Bessel function, as its equivalent in the

scalar approximation the LP0X modes, and the J2-Bessel function as well as an azimuthal de-

pendence proportional to cos(nθ+φ). The effect is dependent on the mode order and becomes

stronger when going to higher mode orders and is vice versa dependent on the radius of the fiber

and lowering the radius results in lowering the onset of the bowtie effect.

Once the effect sets in, the mode is no longer linearly polarized but instead orthogonal to the

intensity rings in the mode.
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Figure 4.12: (a) The BT016 mode after the absorbent bar of length 40 µm and width 2 µm. (b)
Selfhealing overlap as function of propagation length for the distorted mode plotted in (a). (c-d)
Selfhealing in free space of BT016 plotted along the vertical and horizontal through the beam
center, respectively. The unperturbed mode after 10 µm of propagation is plotted to the right. (e)
Angular dependence of selfhealing overlap.
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A second feature observed in the literature, is decreasing separation between the HE1X

mode group and EH1X−1 mode group, which both assume a bowtie like shape when increasing

the mode order and/or the refractive index constrast. This feature was observed in a perfectly

symmetric fiber.

The free space propagation of the modes are investigated both numerically and experimen-

tally and the both investigations show that the modes may propagate just as far as the ideal

Bessel-like modes and that the modes maintain their bowtie shape throughout the propagation.

Finally, the selfhealing properties are investigated and it is shown that the bowtie modes

may regenerate themselves as do Bessel-like modes.
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5
CHIRPED MICROBEND LONG PERIOD GRATINGS

Broadband mode conversion have several applications e.g. within GVD compensation [11,

39, 87] which may be used in ultrashort pulse lasers [33, 34], but also within sensing

[88]. The ability to achieve a broader and tailorable conversion bandwidth is highly

desirable. This is possible either by engineering the fiber and using the TAP, e.g. the point

where the group delay difference between the two modes in the conversion process is zero [11,

38, 39, 87] or as demonstrated in this chapter using a chirped LPG [89]. Chirped LPGs are

a very versatile platform in terms of designing broadband mode conversion, as only design of

the chirp of the LPG is required and the method is thus in principle applicable to all fibers. It

has also been showed that chirped LPGs have a GVD compensating effect by them selves, this

has been demonstrated both theoretically [90] and recently also experimentally [91]. Strong

oscillatory spectral effects in chirped LPGs [92] have until recently limited their use, since the

oscillatory spectral features are bandwidth limiting and results in unwanted highly oscillatory

GVD [13, 88].

In this section, the focus is on broadband mode conversion. Chirped fiber LPGs for broadband

mode conversion was first suggested by Östling et al. [37]. The scheme presented in this section

elaborates on the idea presented by Östling and shows a straight forward way to implement

linear and nonlinear chirp in a microbend LPG and was first presented by Israelsen et al. [89].

Microbend LPGs are due to asymmetric implementation limited to the mode conversion between

symmetric and anti-symmetric modes [11].

Chirping have also been demonstrated for UV-induced LPGs [91, 92] which allows for cou-

pling to symmetric modes.

The principle of implementation of chirped microbend LPGs used as mode converters is out-
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lined in Fig. 5.1 [89]. However, instead of holding the FUT straight as is customary [31], the FUT

SMF

Microbend

grating

FUT

Rubber pad

Force

Rubber pad with V-groove

FUT

Figure 5.1: Principle of the chirped microbend LPG. The FUT is perturbed by a microbend LPG.
The chirp in the LPG is made by a curved groove in the rubberpad used to press the FUT onto
microbend LPG.

is curved upon the microbend LPG [89]. The curve is achieved by placing the FUT in a groove in

the rubber pad pressing the FUT onto the microbend LPG fabricated in aluminum. The groove

feature enables a simple and versatile tool for tailoring the chirp of the LPG; the shape of the

groove principally defines the chirp.

Initially, a proof of principle of the method is presented. In this presentation, the shape of

the chirp is not tailored to the specific fiber, and the full potential of the method is thus not

demonstrated. In stead this section presents initial tries using grooves in the shape of circles

with different curvatures.

5.1 Proof of principle

In this section, the effects of a chirped LPG based on the microbend setup presented in Fig. 5.1

are presented in a proof of principle matter. A few moded fiber is used as the FUT.

Initially, an unchirped mode conversion scheme is considered and the transmission of the

fundamental mode through the mode converter as function of the conversion efficiency. The

conversion efficiency given by the translation of the rubber pad to the microbend. When the

rubber pad is moved, there is an increased force on the FUT and hence a larger conversion

efficiency [89]. The FUT is a socalled vortex fiber where the full vectorial modes in the LP11-

mode group are non-degenerate [6].

To measure the transmission, the vortex fiber is spliced to a SMF. It is assumed that all the

power equaling the measured loss is coupled into the desired mode. This is a standard procedure

for determining the mode coupling [16]. The transmission is plotted in Fig. 5.2 for the conver-

sion from the fundamental mode to the TE01- and HE21-modes. The pitch of the LPG is 800 µm.

The two HE21-modes are degenerate and thus represent the same dip in the transmission spec-

trum [93]. Increasing the translation of the rubber pad shows the effects overcoupling: Broader

transmission bands accompanied by more spectral features.
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Figure 5.2: The transmission for the conversion from the fundamental mode to the TE01- and
HE21-modes plotted as function of the translation of the rubber pad. The pitch of the unchirped
LPG is 800 µm.
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Figure 5.3: The transmission for the conversion from the fundamental mode to the TE01- and
HE21-modes plotted as function of the translation of the rubber pad. The pitch of the LPG is
800 µm. The FUT is embedded in a circular arc groove with a radius of 30 cm in the rubber pad.
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Figure 5.4: The transmission for the conversion from the fundamental mode to the TE01- and
HE21-modes plotted as function of the translation of the rubber pad. The pitch of the LPG is
800 µm. The FUT is embedded in a circular arc groove with a radius of 20 cm in the rubber pad.

In Fig. 5.3 and 5.4, a chirped configuration of the measurement is presented. The chirp con-

sist of a circular arc with a radius of 30 cm and 20 cm, respectively. The groove in the rubber

pad is approximately half of the outer diameter of the FUT with coating that is approximately

250 µm. The smoothness of the groove in the rubber pad is very important as ripples in the

groove adds extra unwanted pertubations resulting in uncontrolled mode coupling. Two conclu-

sions are drawn from the results. First, more broadband conversion is achieved. Secondly, the

conversion efficiency here represented by the translation of the rubberpad is needed to achieve

conversion. This feature especially prominent for the measurement where the circular arc groove

has a radius of 20 cm.

Despite the fact that the chirp is not tailored to the phase matching curves, a significant

increase in the bandwidth of the mode conversion is observed. In Fig. 5.5, the best possible

transmission for the conversion from the fundamental mode to the TE01- and HE21-modes in

a non-overcoupled configuration is plotted. The dip at approximately 1370 nm respresents the

conversion to the HE21-mode group. The 10 dB conversion bandwidth is increased 1.3 times

using the circular arc groove with a radius of 30 cm and 2.7 times for the circular arc groove

with a radius of 20 cm. For the conversion to the TE01-mode, at approximately 1470 nm, the

10 dB conversion bandwidth is increased 1.7 times using circular arc groove with a radius of

30 cm and 4 times for the circular arc groove with a radius of 20 cm.
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Figure 5.5: Comparison of the transmission spectra for the conversion from the fundamental
mode to the TE01- and HE21-modes for the unchirped and two chirped LPG configurations in
the vortex fiber. The transmission is plotted for the best conversion in non-overcoupled setup.

5.2 Numerical investigation

In this section, a numerical prediction of the effects of the chirped LPG is considered. Östling

et al. limited their investigation to linearly chirped microbend LPGs [37]. Israelsen et al. also

present nonlinearly chirped LPGs [89]. In this section, the coupled mode theory is used to simu-

late the conversion efficiency of the chirped microbend LPG [37], and the features of this method

are reviewed. The two main equations governing the coupling process are given in Eq. (5.2),

which describes the interaction between two co-propagating modes coupled by a z-dependent

pertubation in the slow growth approximation [37, 94].

da01

dz
= −iκa11 exp

(
i
∫ z

0
∆β(λ, x)dx

)
, (5.1)

da11

dz
= −iκ∗a01 exp

(
−i

∫ z

0
∆β(λ, x)dx

)
. (5.2)

where a01 and a11 are the complex modal amplitudes of LP01 and LP11, respectively, κ is the

coupling coefficient. The z-dependence of the pertubation is described by

∆β(λ, z)= 2π[1/LB(λ)−1/Λ(z)]. (5.3)

where LB(λ) is the beat length between the two modes and Λ(z) is the pitch of the LPG. The

beat length is measurable quantity and is given by LB = λ

∆ne f f
[95]. The pitch of the fiber may
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be described as Λ(z) =Λ0 +δ(z), where the perturbation, δ(z), describes the linear or nonlinear

chirp. κ is the coupling coefficient proportional to the force applied to the rubber pad; κ is as-

sumed constant along z. Changing κ along z would beneficial in the design of LPG spectra with

reduced number of sidebands for GVD compensation [91]. However, this is difficult to implement

in this scheme as it requires very high precision in the design of the rubber pad thickness as

well as knowledge of the material properties of the used rubber. The coupled mode equations are

solved numerically employing an ODE solver, as Eq. (5.2) does not yield a physically intuitive

closed form solution [92].

To achieve the widest conversion bandwidth, a nonlinearly chirped LPG with pertubation in

form of a 2nd order polynomial is employed. To find the set of coupled differential equations to

implement in the ODE solver, the integral∫ z

0
∆β(λ, x)dx =

∫ z

0
2π

(
1

LB(λ)
− 1
Λ(x)

)
dx

=
∫ z

0
2π

(
1

LB(λ)
− 1

ax2 +bx+ c

)
dx, (5.4)

is solved. In the simple case, b = 0, the solution is:∫ z

0
∆β(λ, x)dx =

∫ z

0
2π

(
1

LB(λ)
− 1

ax2 + c

)
dx

= 2π

 x
LB(Λ)

+
arctan

(
xp
ca

)
p

c∗a

 . (5.5)

The full solution is given by∫ z

0
∆β(λ, x)dx =

∫ z

0
2π

(
1

LB(λ)
− 1

ax2 +bx+ c

)
dx

= 2π

 x
LB(Λ)

+
2arctan

(
2ax+bp
4ac−b2

)
p

4ac−b2

 . (5.6)

A TrueWave® fiber operated at approximately 800 nm, where it is fewmoded and guides LP01

and LP11 [89]. This fiber and not the vortex fiber considered for the proof of principle is used

as the fiber is a simple weakly guiding step index fiber and vectorial effects can be neglected in

the calculations. The object is to couple LP01 to LP11. A higher order diffraction LPG to achieve

phase matching [19]. The first order diffraction is not usable due to a mechanical constraint: For

pitches comparable to the fiber diameter (that is including the coating), the mechanical grating

is not able to bend and perturb the fiber.

To find the fitting parameters for the chirp, the measured beat length within the desired wave-

length range is approximated with a second order polynomial using the longitudinal axis of the

LPG as the independent variable of the fit. The second order polynomial is used in accordance

with (5.4). The aim is to achieve broadband conversion without overcoupling around 800 nm
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Figure 5.6: Phase matching curves for the conversion of LP01 to LP11 in a TrueWave® fiber
operated in a fewmoded regime. (a) Full measurement of phase matching curves for higher order
conversions corresponding to Λ= 2LB, Λ= 3LB, Λ= 4LB, and Λ= 5LB. The red lines in the plot
correspond to 4th order polynomial fit in (b) scaled to the order of conversion. (b) Selected data
for the pitch corresponding to Λ= 2LB. The data is fitted to 4th order polynomial.

and the optimization of the chirp parameters is limited to the lower wavelength limit of the beat

length measurement and the turn-around-point around 870 nm [38].

In Fig. 5.6(a), the full measurement of the beat length is plotted. The multiple curves are

a result of the higher order diffraction and their sidebands [89]. The higher order diffraction

curves are marked with a red line corresponding to the fit in Fig. 5.6(b) which is scaled to the

diffraction order. The remaining points not following the red curves are sidebands. The first

order diffraction is not achievable as previously explained. The phase matching measurement

corresponding to second order diffraction is plotted in Fig. 5.6(b), where the order of the diffrac-

tion is identified from the full phase matching measurement in Fig. 5.6(a). The phase matching

measurement for second order diffraction is fitted to a fourth order polynomial.

In Fig. 5.7 the transmission, that is the power remaining in the fundamental mode after

the LPG, is plotted as function of the wavelength and conversion efficiency for an unchirped

LPG with a Λ = 525 µm which corresponds to conversion at 800 nm employing second order

diffraction. -20 dB transmission is achieved with a 1.8 nm bandwidth without overcoupling, that

corresponds to the lowest conversion efficiency κ that allows for -20 dB transmission [89]. The

transmission of a nonlinearly chirped LPG optimized for broadband conversion around 800 nm

is plotted in Fig. 5.8 as a function of the wavelength and the conversion efficiency. With a -

20 dB transmission across a 8.6 nm bandwidth, a 4.8-fold increase of the bandwidth is achieved

[89]. The broadest conversion bandwidth is achieved when matching the chirp curve to broadest

possible selection of the phase matching curve which in this case is from 649 nm to the TAP.

As for the unchirped LPG, the transmission is found using coupled mode theory as described in
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Figure 5.7: Transmission data for the conversion of LP01 to LP11 in a TrueWave® fiber operated
in a fewmoded regime. The applied mode converter is an unchirped LPG with a pitch of 525 µm
which corresponds to conversion at 800 nm.
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Figure 5.8: Transmission data for the conversion of LP01 to LP11 in a TrueWave® fiber operated
in a fewmoded regime. The applied mode converter is a nonlinearly chirped LPG where the chirp
is optimized for conversion around 800 nm.
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Eq. (5.2) with the condition of Eq. (5.4). Note that the conversion to LP11 is achieved for higher

values of the coupling coefficient, κ, corresponding to a larger force upon the rubber pad, hence

there is a trade off between conversion bandwidth and possible permanent deformation and

possible breakage of the fiber due to the larger load [89].

For closer examination, the transmission of the microbend LPGs in the chirped and unchirped

configuration is plotted in Fig. 5.9 applying the conversion coefficient κ corresponding the largest

possible conversion to LP11 without overcoupling. In this figure, it is evident that the chirped

LPG has a significantly broader bandwidth, if the 3 dB bandwidth is considered, there is an

23-fold increment. However with conversion efficiencies of 0.026 mm−1 and 0.081 mm−1 for the

unchirped and chirped configuration, respectively, the risk of permanent deformation of the fiber

is much larger for the chirped LPG.
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Figure 5.9: Transmission plot of the chirped and the unchiped LPG. For the chirped LPG, a con-
version efficiency of 0.08115 mm−1 is applied and for the unchirped LPG, a conversion efficiency
of 0.0258 mm−1.

5.3 Experimental results

In this section, an experimental investigation of the tailored chirp configuration presented in

the previous section is reviewed. For the experimental investigations, the shape of the V-groove

must be designed according desired nonlinear chirp. Thus the parametric curve describing the

chirp, r(u) is written as [89]

∮
L
=

∫ z

0
|r′(u)|du =Λ(z). (5.7)

Thus the line integral along the V-groove is equal to the pitch as function of z. This equation

is however not easily solved. Instead, it is approximated with a piecewise linear function. To
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carve a smooth curve in the rubberpad, the piecewise linear function is approximated with a

third order polynomia [89]. The smooth curve is important to induce only the desired pertuba-

tion leading to mode coupling between LP01 and LP11.

The chirp in this experimental realization is tailored to the phase matching curve as in

the numerical calculation in Fig. 5.8. The transmission is measured by launching a broadband

source in to the fundamental mode of the FUT as illustrated in Fig. 5.1 and after the chirped

microbend LPG the FUT is spliced to a SMF (@ 800 nm). The transmission is measured as

function of the translation of the rubber pad. In principle, the translation of the rubber pad is

linearly proportional to the force on the rubber pad and thereby the conversion efficiency, κ, but

due to mechanical restraints of the setup and the mechanical properties of the rubber pad, there

is not complete linearity.

Initially, a reference measurement given by a nonchirped microbend LPG tailored for con-

version at 800 nm corresponding to pitch of 525 nm is given. The transmission spectrum as

function of the translation of the rubber pad is plotted in Fig. 5.10.
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Figure 5.10: Experimental transmission data for the conversion of LP01 to LP11 in a TrueWave®

fiber operated in a fewmoded regime. The conversion efficiency is given by the force applied to
the rubberpad given in a unitless number. The applied mode converter is an unchirped LPG
with a pitch of 525 µm which corresponds to conversion at 800 nm.

A transmission spectrum as function of the wavelength and the translation of the rubber pad

for the nonlinearly chirped LPG is plotted in Fig. 5.11. In both the transmission spectrum of the

chirped and the unchirped LPG, there are some features around 1050 nm independently of the

translation of the rubber pad, which is a result of unstable excitation source, a supercontinuum
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Figure 5.11: Experimental transmission data for the conversion from LP01 to LP11 in a
TrueWave® fiber operated in a fewmoded regime. The conversion efficiency is given by the force
to the rubber pad which is given by a unitless number. The applied mode converter is a nonlin-
early chirped LPG where the chirp is optimized for conversion around 800 nm.

laser. These features are a result of the pump, and not the microbend LPGs.

In the experimental transmission spectrum of the nonlinearly chirped LPG, many of the

same features as seen in the numerical results are observed. Unfortunately, the high conversion

efficiency effects can not be measured. That is a result of the use of second order diffraction for

the LPG demanding high conversion efficiencies and the mechanical constraint of a microbend

LPG limiting the conversion to HOMs to what is possible without permanently damaging or

potentially breaking the fiber [89]. The linearity between the plotted force and the conversion

efficiency is also limited by the relaxation of the microbend LPG as described by G.-Nielsen et

al. [31], however as a rubber pad is employed the relaxation is reduced compared to the effect

described by G.-Nielsen et al..

In Fig. 5.12, the best possible conversion for the chirped and the unchirped LPG in the

TrueWave® fiber is plotted. In both the numerical and experimental studies, the chirped LPG

requires a higher coupling efficiency, κ, - here given by the translation of the rubber pad - for op-

timum coupling [89]. There are several features to notice in this plot: The first thing is that the

transmission plot for the unchirped LPG does not only show one dip as the simulations.It is ex-

pected that this is a result of the second order diffraction used [89]. The second is the squareness

of the transmission spectrum for the chirped LPG, a feature which has been achieved without

overcoupling and unwanted spectral oscillatory behavior [92]. This feature is especially attrac-

tive for GVD compensation using chirped LPGs [90, 91]. There is no significant broadening in
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Figure 5.12: Measured transmission plot of the chirped and the unchiped LPG in the TrueWave®

fiber. For the chirped LPG, translation of the rubber pad of -0.41 mm is used and for the
unchirped LPG, a translation of the rubber pad of -1 mm is used.

the chirped LPG if both dips in the transmission spectrum close to 800 nm for the unchirped

LPG are considered. However, recalling that the chirp was designed only for the dip at 800 nm.

Using this fact, the conversion bandwidth is enhanced 2.7-fold at 5 dB conversion. Due to me-

chanical constraints of this system, it is not possible to achieve higher conversion efficiencies

for this system, which would most likely have resulted in larger conversion. There is increased

need for the high conversion efficiencies in this system due to the use of higher order diffraction

[89]. Much higher conversion ratios are achievable as seen in Sec. 5.1.

5.4 Summary

A new and versatile platform for chirped LPGs coupling from a symmetrical to an anti-symmetrical

mode and cylindrical vector modes has been demonstrated [89]. The transmission characteris-

tics of this scheme has been modelled using coupled mode theory and a 4.8-fold increase of the

bandwidth is achieved for conversion from LP01 to LP11 in a TrueWave® fiber operated in a

fewmoded regime.
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6
IMAGING AS A CHARACTERIZATION TOOL

This chapter focuses on using imaging of the near field of a mode as a characterization

tool. The chapter falls in three parts. Initially, the divergence angle as a quality param-

eter for HOMs in free space is considered. Secondly, phase retrieval of mode mixtures

is presented. This procedure is used for retrieving size and phase of a field by considering a

volume intensity measurement. Lastly, the near field of a pure HOM in a weakly guiding step

index fiber is analyzed for determining the GVD.

6.1 Divergence Angle as a Quality Parameter for Fiber Modes

The parameter M2 has earlier been suggested for determining the modal quality of a beam

radiated from a fiber [65, 66]. M2 compares the second order intensity moment at the beam

waist to that of a Gaussian mode [65]. Wielandy shows that M2 for modal mixtures may be

indistinguishable from that of the fundamental mode and as such not a unique parameter for

characterising beams emanating from a fiber [66]. For characterising modal mixtures, S2 and C2

have shown excellent results [70, 74]. Yoda et al. demonstrates high values of M2 for pure HOMs

in fibers indicating poor mode quality [65]. If the object is illumination with small divergence, it

has recently been shown that LP0X -modes may propagate in free space with small divergence

[9]. The divergence angle is thus a more general parameter for the evaluation of the free space

properties of pure fiber modes [22].

In this section, the use of the divergence angle as a quality parameter for the propagation

of pure fiber modes in free space is considered. The divergence angle is formed using a volume

measurement of the intensity exciting the fiber in free space. Using the divergence angle, the

comparison of the second order intensity mode of HOMs against that of a Gaussian mode is
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avoided and a modal parameter applicable for comparison of the free space properties of HOMs

is obtained [22]. As proof of principle, the divergence angle of LP11 in a weakly guiding fiber is

measured. The method may be generalized to other fiber modes and that is done numerically

for modes in the LP0X -, LP1X and LP2X -mode groups in a weakly guiding step index fiber. This

section only considers weakly guiding step index fibers as the investigation carried out by Yoda

et al. [65]. LP11 is not a true eigenmode of the fiber but for weakly guiding fibers the vector

modes which constitutes LP11 are degenerate and the lack of a true eigenmode is not an issue.

Tunable CW

Ti:Sapph-laser

SMF @ 800 nm TW

Force
SMF @ 800 nm OSA

Microscope 

objective Camera

SMF @ 800 nm

Supercontinuum

source

LPG

Figure 6.1: Setup for measuring the conversion efficiency (dotted SMF @ 800 nm) and the
free space propagation (solid SMF @ 800 nm). CW Ti:Sapph-laser: Continuous wave Tita-
nium:Sapphire laser. TW: TrueWave® fiber.

(a)

1 2

3 4

(b)

Figure 6.2: (a) Conversion efficiency for the coupling to LP11. (b) Modal images of the modes at
the resonanses indicated in (a).

As a proof of principle, the divergence angle of the LP11 guided in a TrueWave® fiber at 773

nm, where the TrueWave® fiber is fewmoded, is measured [22]. The LP11 mode is excited using a

microbend LPG to couple from the fundamental mode, LP01. The microbend LPG consists of an

aluminium block and a rubber pad to which a force is applied. The force is adjusted for maximum

conversion efficiency. The LP11-mode is excited using second order diffraction as the first order
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diffraction is not accessible due to a mechanical constraint - the pitch of the LPG must be larger

than the diameter of the fiber including the coating in order perturb the fiber, as the case of the

chirped LPGs in Ch. 5.

The conversion effiency is measured with the setup in Fig. 6.1 using the connections with

a SMF @ 800 nm indicated with the dotted lines which connects a supercontinuum source to

the fiber guiding the HOM to an optical spectrum analyzer (OSA). The conversion efficiency is

plotted in Fig. 6.2a and a maximum conversion efficiency of 97 % is obtained. The images of the

modes at the conversion efficiency peaks are plotted in Fig. 6.2b. These are measured with the

setup with the solid SMF @ 800 nm connections in the setup using a CCD camera. To map the

free space propagation, the distance between the fiber end facet and the objective is increased

- starting at the distance where the intensity profile at the fiber end facet is imaged onto the

camera.

The divergence angle for a given fiber mode is determined at the divergence free propagation

length, Lprop, which is the length where the maximum intensity has dropped with a factor of 1/e.

The beam radius at the Lprop is determined by the 1/e2-intensity edge of the beam and the

divergence angle may then be determined as the inverse tangent of the ratio of the beam radius

and Lprop [22], a sketch is depicted in Fig. 6.3.

Fiber

Lprop

q

Figure 6.3: Definition of divergence angle, θ, determined as the inverse tangent of the ratio of
the beam radius and Lprop.

The experimental results for the free space propagation of LP11 are depicted along one axis

through the beam center in Fig. 6.4a. Lprop is determined to be 40 µm and the divergence angle

to be 0.13. The experimental measurement of the free space propagation of LP11 are compared

against numerical simulations. The modes in the TrueWave® fiber is found using a scalar mode

solver. The free space propagation is simulated using a FFT routine applying the principles in

[84], see Eq. (4.5), and depicted for LP11 at 773 nm along one axis in Fig. 6.4b. Lprop is determined

to be 50 µm and the divergence angle to be 0.13 [22]. The divergence angle is thus determined

with 2-digit accuracy and agreement between the numerical prediction and the experimental

realization is observed. Lprop is also determined close to the numerical prediction.

In Fig 6.5, the divergence angle of all guided LP-modes as a function of the normalized
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Figure 6.4: (a) Experimental measurement of the free space propagation length of LP11 guided
in TrueWave® fiber at 773 nm plotted along the horizontal axis going through the beam center
in Fig. 6.2b in the modal image of the second resonance. (b) Numerical simulation of the free
space propagation length of LP11 guided in TrueWave® fiber at 773 nm.
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Figure 6.5: Divergence angle for fiber modes in a weakly guiding step index fiber as function of
the normalized frequency.

frequency for a weakly guiding step index fiber is plotted. From the figure, the divergence angle

for HOMs away from cutoff approaches that of the fundamental mode. It is expected that modes

with the largest propagation constants diverges the least, indicating the fundamental mode

always has the smallest divergence angle.

HOMs with large mode areas have been shown to have small bend losses [15].Some appli-

cations needs of large mode areas for instance to avoid nonlinear effects such as high power

lasers [96]. Thus combining these two properties, one may operate in a single HOM and achieve

a compact high power device with predictable free space divergence angle.
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6.2 Phase retrieval - retrieval of the phase for pure and mixed
modes

In this section, phase retrieval of mixed fiber modes are considered. Phase retrieval of fiber

modes have been investigated earlier for mode decomposition purposes [68]. As discussed in Ch.

3, the mode decomposition presented by Shapira et al. considers fibers, where the eigenmodes of

the fiber are well known [68]. In this section, a demonstration of the phase retrieval process on

mixed modes in a weakly guiding step index fiber is presented. This is done in order to show that

the field profile at the fiber end facet may be retrieved from an volume intensity measurement.

Shapira et al. considers only the near and the far field, whereas this work shows phase retrieval

measurements based on the procedure of volume speckle interferometry [97] where a series of

intensity measurements are performed. It was shown, that the reconstruction improves with

more intensity measurements [97]. The scheme is illustrated in Fig. 6.6. Initially, an image of

the end facet of the fiber is recorded, afterwards the distance between the fiber end facet and

the microscope objective (MO) is increased to record the volume intensity distribution.

FUT MO Camera

Change

the distance
Fixed distance

Figure 6.6: Setup for phase retrieval. A series of images is recorded, initiated by an image of the
end facet of the fiber.

To find the phase, the electric field is propagated stepwise according to the principle of FFT

propagation [84, 97]. To find the complete wavefront, it is assumed that at a given plane that

(usually either the plane at the end facet of the fiber or the plane furthest away from the end

facet of the fiber), the field amplitude can be described as A(x, y, z) =√
I(x, y, z) , where I(x, y, z)

is the measured intensity. The phase distribution across the beam is initialized using a set of

random numbers between −1 and 1. The phase in the final result is expected to be distributed be-

tween −π and π and that would be the obvious starting guess, too large differences in the phase

guesses does however lead to large boundary reflections which then lead to large distortions

in the recovered mode. Knowing the amplitude and phase at a given plane, FFT propagation

is used, see Eq. (4.5), to numerically propagate the field to the next plane. At the next plane,

the phase distribution of the field numerically propagated and the square root of the measured

intensity as the amplitude is used to propagate to the next plane. A numerical propagation

to the third plane is then performed. This iterative process yields the phase distribution. This
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process may be repeated, propagating back and forth through the measurement series as the

homogeneous wave equation is time-reversible [98].

6.2.1 Numerical example

To demonstrate the principle, a numerical example is shown. A weakly guiding fiber with an NA

of 0.149, operated at 850 nm that results in a V-number of 2.52, which means that the fiber is

fewmoded, is considered. The guided modes of the fiber are found using a scalar mode solver.

A mode mixture of LP01 and LP11 is propagated in free space using FFT propagation. A

50/50 mix of the two modes with no initial phase difference is considered. An image of the fiber

output is plotted in Fig. 6.7 along with across section of the free space propagation.
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Figure 6.7: (a) Intensity plot of the simulated fiber. (b) A cross section of the free space propaga-
tion of the mode mixture plotted in (a). The cross section is the line through the origin along the
horizontal axis.

The mode mixture is propagated in steps of 1 µm for a total of 44 µm. The phase retrieval

algorithm is employed in a MATLAB scheme. A total of 15 iterations is used, starting furthest

away from the fiber facet. The quality of the retrieved phase and intensity profile is strongly

dependent on both the number of iterations and the step size. This was initially concluded by

Almoro et al. [98], and the same effect is seen in these calculations. The minimum step size of

1 µm yields the best results and can the be applied for the experimental investigation, where

this is the best achievable resolution in the z-direction with the present experimental setup. The

retrieved phase and the initial phase is plotted in Fig. 6.8. The retrieved phase shows strong

similarity with the initial phase, it may however only be retrieved in the region where the beam

is defined. Another feature observed in the retrieved phase is the stripes in the phase as also

described by Fienup [99].

The intensity retrieved in the phase retrieval process is plotted along with the initial phase

in Fig. 6.9. The figure also shows the error made by the phase retrieval process which is at no

54



6.2. PHASE RETRIEVAL - RETRIEVAL OF THE PHASE FOR PURE AND MIXED MODES

(a)

0

π/2

π

(b)

-π/2

0

π/2

Figure 6.8: (a) The expected phase of the mode mixture in the simulated fiber. (b) The retrieved
phase at the end facet of the fiber using a total of 15 iterations in the phase retrieval algorithm.
Both plots are showing the full calculation space to illustrate the boundary effects.

pixel larger than 8 %.

(a) (b) (c)

2

4

6

%

Figure 6.9: (a) The retrieved intensity of the mode mixture in the simulated fiber using the phase
retrieval algorithm using a total of 15 iterations. (b) The input intensity of the mode mixture. (c)
The error between the input and the retrieved intensity. All plots are slightly zoomed compared
to the full calculation space to show the features within the mode mixture.

6.2.2 Experimental results

In this section, the phase retrieval process is performed on experimentally measured data. To

perform numerical propagation of a measured field, the pixel size of the camera must be known.

The microscope objective magnifies the beam, and the setup is calibrated using a mode of a

known size. The fundamental mode of 780HP is imaged at 850 nm, where it is specified to have a

mode field diameter of 5±0.5 µm [100]. For the used setup, that results in a magnification of 98±
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11. With a pixel size of the camera of 3.75 µm × 3.75 µm, the numerical Fourier transformations

are performed with a spatial resolution of 0.0385 µm times 0.0385 µm. The camera has 960 ×
1280 pixels.

The FUT is a TrueWave® fiber operated at approximately 800 nm, where it is fewmoded. A

mechanical microbend grating is used to couple the fundamental mode to an LP11-mode [11].

The conversion efficiency is plotted in Fig. 6.10. Larger conversion efficiencies may be achieved

with microbend LPGs [11], but the conversion efficiency is limited to 90 %, for this demonstra-

tion of the phase retrieval method. A higher order diffraction LPG to achieve phase matching as

for the investigated divergence angle [19].
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Figure 6.10: Conversion efficiency of the LPG converting the fundamental mode to LP11 in a
TrueWave® fiber.

The phase distribution is retrieved at two different conversion efficiencies. Effectively, that

is achieved by considering two different wavelengths, 837 nm and 850 nm, which corresponds

to conversion efficiencies of 88.0 % and 50.4 %, respectively. A near field image of the two mode

mixtures is seen in Fig. 6.11. For the phase retrieval at 837 nm 37 images are used, and at

850 nm 45 images are used.

The phase retrieval method is employed to retrieve the phase distribution for both conver-

sion efficiencies, the result is plotted in Fig. 6.12. A very different number of iterations are used

for the two modes mixtures. The same principle - of starting at the plane furthest away from

the fiber end facet, first stepping backwards, then forwards, then backwards again and so on

as presented in [98] - is employed for both measurements. Assuming no phase change at the

fiber end facet, the phase distribution inside the fiber is found. At 837 nm where there is a dom-

inating mode, 51 iterations is used, starting the phase retrieval process at the plane furthest

away from the end facet. When using such a large number of iterations, a sign difference in

between the lobes of in the mode mixture is retrieved as expected. For the mode mixture at 850

nm, only 3 iterations is used, using more iterations causes the boundary effects to dominate.

Using only 3 iterations, the expected sign difference between the lobes in the mode cannot be

found. It is expected, that a larger an measurement area could mitigate some of the boundary

effects and thus allowing for the use of more iteration. Using more iterations would likely reveal

a phase difference between the lobes. Note that as for the simulated mode the phase can only
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(a) (b)

Figure 6.11: Near field images of mode mixtures at (a) 837 nm and (b) 850 nm, which corresponds
to conversion efficiencies of 88.0 % and 50.4 %, respectively.

be retrieved in the area where there is a signal. As opposed to the numerical example, there

is no ripples in the retrieved phase, that is likely due to the background noise which acts as a

smoothing mechanism.

-π /2

0

π /2

(a)

-π /2

0

π /2

(b)

Figure 6.12: The retrieved phase for the two mode mixtures (a) 837 nm using 51 iterations and
(b) 850 nm using 3 iterations.

The retrieved intensity is plotted in Fig. 6.13 along with the measured intensity for both

measured mode mixtures. Note that in the high intensity areas, the error in the retrived inten-

sity is limited to 16 %. The error is significantly larger compared with the simulated fiber but

that is expected due to originate from the background noise in the measurement.

Summing up, it is concluded that this very simple measurement setup is able to retrieve
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Figure 6.13: The retrieved intensity, the measured intensity and the error made the by the phase
retrieval algorithm for the two mode mixtures (a), (b), (c) 837 nm using 51 iterations and (d), (e),
(f) 850 nm using 3 iterations.

the phase of mode mixture, and that the retrieved intensity distribution is found with less than

16 % error in the high intensity areas.

6.3 Determining the Group Velocity Dispersion by Field
Analysis for the LP0X , LP1X , and LP2XMode Groups
Independently of the Fiber Length

Determining the GVD in optical fibers has been an important discipline for example for the de-

sign of optical resonators and amplifiers [33, 101] and for designing setups for parametric pro-

cesses such as four wave mixing where the selection of the relevant HOM enables the process

[63]. Standard techniques for measuring the GVD include time-of-flight measurements, phase

shift measurements and interferometric techniques [101]. Both time-of-flight and phase-shift

measurements require relatively long fiber lengths [101]. Stable propagation of HOMs in long

lengths of fiber is difficult due to mode mixing and determination of the GVD using the standard

techniques is thus not straight forward. A few demonstrations of GVD measurements of HOMs
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using long fiber length have been demonstrated - however only in few moded fibers [39, 102].

Newer interferometric techniques include S2 and C2, though mainly developed for determin-

ing the modal content, these methods also yield the GVD of all modes in the decomposition

[70, 73, 74]. S2 and C2 require fiber lengths in the order of meters and are both comparatively

complicated setups as is customary for interferometric techniques. A simpler interferometric

technique for measuring the GVD of a HOM was first presented by Menashe et al.; in this tech-

nique the fundamental mode and a selected HOM are exicted simultaneously and the modal

beating is used to determine the GVD [103]. However, this method requires knowledge of the

GVD of the fundamental mode.

In this section, the GVD is determined independently of the fiber length of weakly guiding

step index fiber by determining the intensity profile of a pure mode in the near field as function

of the wavelength. This method was first presentented by Israelsen et al. [104].

The only requirement for the determination of the GVD using this method is the field distribu-

tion of a purely guided mode, hence it is possible to use this method on very short fiber lengths

as opposed to the other methods mentioned. A very simple method for determining the GVD

of a HOM without the need for propagation of the mode which may result in mode coupling is

here presented. The GVD of HOMs may thus be determined even in fibers where the HOM have

poor propagation properties. Depending on the exciting source, the method is potentially very

broadband. A predecessor for this method is the mode-field-diameter method, which considers a

single mode fiber only and assumes that the field can be described by a Gaussian [105, 106]. In

this work no such assumption is made [104].

Initially, the theory of the method is reviewed, then numerical results based on a multimoded

fiber is presented, and lastly preliminary experimental results are presented.

The well known solution to the wave equation governing the field of a weakly guiding step

index fiber in the core (and cladding) of the fiber is exploited [1]. It is assumed that for a weakly

guiding fiber, the modulus of the field is proportional to the square root of the intensity. For

weakly guiding fibers the radial field distribution in the core is described by Jx(κr), where κ is

given by:

κ2 = k2
0(n2

c −n2
e f f ), (6.1)

and k0 is the wave number, nc is the refractive index of the core, and ne f f is the effective

refractive index of the mode. Initially, following assumption is made for the refractive index

of the core nc = nSiO2(λ)+∆n, where nSiO2(λ) is the refractive index of silica and ∆n is the

refractive index step between the core and the cladding [104]. The wavelength dependence of

silica is given by Sellmeier’s formula [1]. The wavelength dependence of germanium, which is

generally used as index raising codopant of the core, is assumed to be negligible compared to
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that of silica. ne f f can then be expressed as:

ne f f =
√

(nSiO2(λ)+∆n)2 −κ2/k2
0 . (6.2)

The GVD parameter, D, may be determined by [1]

D =−λ
c
∂2ne f f

∂λ2 . (6.3)

Thus the parameter to determine is κ. In the following paragraphs, procedures to find κ is out-

lined. To a rough approximation the wavelength dependence of the square of the refractive index

of the fiber core is equal to the wavelength dependence of silica: n2
c ≈ n2

SiO2
, and the expression

for ne f f , see Eq. (6.2), simplifies as does the needed parameters for the FUT.

In the following section, the procedures to find κ for LP0X , LP1X , and LP2X modes are out-

lined.

For the LP0X modes, the normalized electric field strength is equal to Ψ(r) = J0(κr) [1]. As

there is no azimuthal dependence the orientation of the electric field, it is not considered for this

mode group. The first step is to differentiate the radial dependence of the field:Ψ′(r)=−κJ1(κr).

One approach to find κ could be to evaluate the maximum of the derivative which is κ, but the

point of evaluation is for LP0X very close to the core-cladding interface and there is uncertainty

to the validity of the solution to the electric field strength. Secondly, this evaluation form also be

strongly depends on the radial resolution of the field [104]. To have a method valid for all modes

in the mode group, instead a Taylor approximation of Ψ′(r) around r = 0 is calculated.

TLP0X (r) = −κJ1(0)−κ2
(
J0(0)− J1(κr′)

r′

∣∣∣∣
r′→0

)
r

→ −1
2
κ2r for r → 0. (6.4)

The derivative of the radial field distribution is then approximated with a straight line through

origin to find κ [104].

For the LP1X mode group, the azimuthal dependence may not be neglected. However con-

sidering the the radial dependence for the angle yielding the maximum intensity, it possible

to omit the azimuthal dependence. The radial dependence of the LP1X mode group may be de-

scribed as: Ψ(r) = J1(κr) [1]. Performing a Taylor expansion to first order directly on the radial

field distribution around r = 0 yields:

TLP1X (r) = κJ1(0)+κ
(
J0(0)− J1(κr′)

κr′

∣∣∣∣
r′→0

)
r

→ 1
2
κr for r → 0. (6.5)
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This procedure is valid for all modes in the LP1X mode group. The radial field distribution is

then approximated with a straight line through origin that can used to find κ [104].

As with the LP1X mode group, the azimuthal dependence of the LP2X mode group cannot be

neglected. The same approach as for the LP1X mode group is used, the radial field dependence

for the angle yielding the maximum intensity is considered. For the LP2X mode group it is neces-

sary to differentiate the radial field distribution. The radial field distribution may be described

by:Ψ(r)= J2(κr). The derivative of the radial field distribution is thenΨ′(r)= κ
(
J1(κr)+ 2J2(κr)

κr

)
.

As for the LP0X mode group, a Taylor approximation on the derivative of the radial field distri-

bution around r = 0 is performed.

TLP2X (r)=κ
(
J1(0)+ 2J2(κr)

κr

∣∣∣
r→0

)
+κ

[
κ

(
J0(0)− J1(κr)

κr

∣∣∣
r→0

)
+ 2J2(κr)

κr2

∣∣∣
r→0

−
2

(
J1(κr)− 2J2(κr)

κr

)
r

∣∣∣
r→0

 r

→1
4
κ2r for r → 0. (6.6)

The derivative of the radial field distribution is then approximated with a straight line through

origin to find κ.

In principle, this form could be expanded to include HOM groups but at the expense of hav-

ing to expand to higher orders in the Taylor approximation. The investigations are limited to the

mode groups where the considered Taylor expansions are straight lines through origin [104].

6.3.1 Numerical results

In this section, a numerical example is presented. This does not represent all weakly guiding

step index fibers but illustrates the workings of the method very well. A multimode step index

fiber with a numerical aperture of 0.149 and a core radius of 8 µm is considered. The modes

in the fiber are found with a scalar mode solver. The fiber supports all three considered mode

groups.

Initially, the LP0X mode group is considered. In Fig. 6.14a, κ is plotted for all guided LP0X

modes in the guided regions as function of the normalized frequency. The simulated κ from the

scalar mode solver is also plotted as a dotted line. Excellent agreement between the simulated

values of κ and the κ-values found by the Taylor approximation method is observed. The devia-

tion in κ is less than 1 % for all modes considered [104].

In Fig. 6.14b, the GVD found numerically by differentiating the effective refractive index

calculated using the κ found by applying the Tailor approximation method of the LP0X modes
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Figure 6.14: (a) κ found using the Taylor approximation method on the differentiated radial
mode field profile plotted for all guided modes in the LP0X mode group. (b) The GVD found
using κ is found. The plots are limited to above cutoff. The lower plot shows a zoom in of the
GVD plot. For all plots the solid lines correspond to the Taylor approximation method and the
dotted lines to the data from the scalar mode solver.

are plotted above cutoff along with the result for the GVD found with the scalar mode solver.

Despite the approximation to the squared refractive index of the core, the method is able to very

accurately determine the GVD. In the zoom in, the lower plot in Fig. 6.14b, it can be observed,

that the method is sufficiently accurate for also determining the modal spacing in the GVD and

the spacing in the ZDW [104] - both very important parameters in GVD tailoring using HOMs

[33, 63].

In Fig. 6.15a, κ for the LP1X mode group retrieved using the Taylor approximation method

is plotted along with κ calculated by the scalar mode solver. Good accordance between the two

data sets is observed, the deviation is less than 10 % for all considered modes in the mode group

[104]. However, the data agreement decreases with mode order. That is a result of the resolution

of the radial dependence of the electric field strength [104]. The resolution used in these simu-

lations is 0.04 µm. In Fig. 6.15b, the GVD of the LP1X mode group based on the data for κ is

plotted along with the GVD found with the scalar mode solver. As for the LP0X mode group, the

GVD may be determined very accurately, this includes important figures such as the intermodal
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Figure 6.15: (a) κ found using the Taylor approximation method on the radial mode field profile
plotted for all guided modes in the LP1X mode group. (b) The GVD found using κ is found. The
plots are limited to above cutoff. The lower plot shows a zoom in of the GVD plot. For all plots
the solid lines correspond to the Taylor approximation method and the dotted lines to the data
from the scalar mode solver.

spacing and the spacing in the ZDW. The peaks in the plot that do not follow the curve of the

GVD yielded by the scalar mode solver are artifacts of the numerical differentiation performed

on the effective refractive index [104].

Lastly, the LP2X mode group is considered. The values for κ retrieved with the Taylor ap-

proximation method, which are in good accordance with the simulated κ-values, are plotted in

Fig. 6.16b, with a deviation less than 1 %. These values are used to find the GVD.

For all considered mode groups, an error in the calculation of κ less than 10 % is achieved.

For the LP1X mode group where the analysis is based directly on the electric field profile, the

error is significantly larger than for the LP0X and LP2X mode groups, where the analysis is

based on the derivative of the electric field. This is intuitive as the derivative is a more sensitive

feature [104].

In the calculation of the GVD, some artifacts caused by the numerical differentiation of the

effective refractive index. However, good consistency between the two data sets are observed
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Figure 6.16: (a) κ found using the Taylor approximation method on the differentiated radial
mode field profile plotted for all guided modes in the LP2X mode group. (b) The GVD found
using κ is found. The lower plot shows a zoom in of the GVD plot. For all plots the solid lines
correspond to the Taylor approximation method and the dotted lines to the data from the scalar
mode solver.

showing this method’s use in the design process for setups making use of the GVD tailorability

of HOMs [33, 39, 63, 102, 104].

For all considered mode groups, the method provides an easy way to find GVD based solely

on the radial field profile away from cutoff. As the method only rely on the data in the center of

the mode, the method does not depend on the phase of the radial field profile even though that

may also be determined easily by a phase retrieval process as presented in Sec. 6.2 [67, 68, 104].

Several fiber types may be considered in a step index fiber approximation [107] and despite the

crude approximation, the results show that the method provides significant insight.

A limitation to the method, given that it is to be implemented experimentally, is the ability

to excite the HOMs purely [104]. However recently, it has been demonstrated that HOMs may

be excited very easily and with good mode discrimination using SLMs [46].

6.3.2 Experimental results

In this section, preliminary experimental results are presented. A series of near field images of

the fundamental mode of 780HP from Thorlabs [100]. A narrowband tunable source is coupled
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into the fiber, and the near field images are recorded in the spectrum from 727 to 970 nm.

Secondly, a line through the center is extracted. The data is filtered for noise and numerically

differentiated. The radius axis is scaled to the mode field diameter of the fundamental mode

at 850 nm, which is given in the specifications for the fiber [100]. A plot of the raw data at

727 nm, and the noise filtered data is plotted in Fig. 6.17 along the left y-axis. The noise filtering

is based on a smoothing mechanism which finds a moving average. Along the right y-axis, the

numerical differential of the normalized field strength is plotted. This differential is based on

the smoothed data set. The differential of the normalized field strength close to zero is fitted

with a linear function through origin to find κ.
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Figure 6.17: Normalized field strength as function of the radius plotted along the left y-axis.
Both the raw data and the smoothed data - smoothed with moving average routine - are plotted.
At the right y-axis, the differential of the smoothed normalized electric field strength is plotted
as function of the radius, a linear fit through the origin based on the center data, is plotted as
well. The slope of this function is used to find κ.

In Fig. 6.18, the derived value of κ is plotted as function of the wavelength. An average of

the data set is plotted as well along with the data for κ based on the solution from a scalar mode

solver. Large fluctuations in κ is observed, but the trend shows the same as the data from the

scalar mode solver. However the precision in the data is however to poor for a calculation of the

GVD.

The large fluctuations observed in κ is mainly due to the noise in the measurement. Both

in terms of finding the correct shape of the measured mode as well as finding the center. When

using a Taylor approximation around the origin, the correct position of the origin is of very high
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Figure 6.18: κ found using the Taylor approximation method on the differentiated radial mode
field profile plotted for the LP01-mode measured in a HP780-fiber. Also plotted is the value of κ
found using a scalar mode solver.

importance.

Summing up, it has been showed that the measurement is able to produce the trend in κ.

6.4 Summary

In summary, it has been shown that the divergence angle, which is an easily measurable quan-

tity, may be used as a quality factor for HOMs in fibers.

In the second subsection, phase retrieval of mixed optical fiber modes has been reviewed.

Initially, the method is demonstrated with a numerical example. Secondly, the phase of two

experimentally measured mode mixes is retrieved.

Lastly, a new method for determining the GVD is presented. The GVD is found based on

field analysis of a near field measurement. Very precise numerical determination of the GVD

is presented. Preliminary experimental results are also presented. The experimental results

however lack precision due to noise and may not be used to determine the GVD.

66



C
H

A
P

T
E

R

7
CONCLUSION

This chapter sums up the research described in this thesis and provides an outlook for

new investigations. The work presented in this thesis generally concerns HOMs in opti-

cal fibers including their excitation and characterization. The work falls in three parts.

The first part considers the break of the azimuthal symmetry of Bessel-like modes which oc-

curs when increasing the mode order and/or the refractive index difference, this effect is named

the bowtie effect after the characteristic shape of the mode. The first time demonstration of the

bowtie effect is reported. The effect is demonstrated in an aircladding double cladding structure,

later demonstrations also reports the effect in solid perfectly symmetric fibers. In the aircladding

fiber, the bowtie effect sets in for modes larger than LP011, this is shown using full vectorial mode

solver. The break of the azimuthal symmetry does not significantly inhibit the properties usually

associated with Bessel-like fiber modes such a long diffraction free length and selfhealing. The

bowtie modes are shown to have a quasi-radial polarization as opposed to the linear polarization

of the LP0X modes. Considering the full vectorial solutions to a perfectly symmetric optical fiber,

it is seen that increasing the refractive index difference responsible for the guiding or the mode

order, the modes assumes a bowtie-like shape. These investigations are expected to be followed

up by a more thorough analysis of the mechanisms in the full vectorial method which includes

coupling to EH1X modes which have been documented to assume a quasi-azimuthal polarization

in the bowtie limit.

In the second part of the thesis, a new scheme for constructing chirped microbend LPGs is

presented. The method uses a versatile platform for tailoring the chirp to the phase matching

profile of the targeted HOM conversion in the FUT. This implementation allows for the use of

a nonlinear chirp. This is the first time demonstration of microbend LPGs with a nonlinear
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CHAPTER 7. CONCLUSION

chirp. The results are modelled using coupled mode theory and it is shown that the conversion

bandwidth may be increased more than four fold. In the experimental implementation, coupling

from LP01 to LP11 in a fewmoded fiber using second order diffraction is demonstrated. The

conversion bandwidth is more than doubled. The implementation is limited by the use of second

order diffraction. In future implementations it is expected that the increase in the conversion

bandwidth may be significantly improved using first order diffraction.

In the final part of the thesis, imaging as a characterization tool for HOMs is considered.

Three different characterization methods are considered. First, the divergence angle is intro-

duced as a quality parameter to replace the conventional M2 which compares the diffraction to

that of a Gaussian and suffers from ambiguity when considering mode mixtures, and it is es-

tablished that several HOMs diverge comparable to the fundamental mode. Secondly, the phase

retrieval method is used to retrieve the phase profile of a mode mixture in fewmoded fiber based

on volume intensity measurement. A mixture of LP01 and LP11 is considered both using a nu-

merical example to establish the workings of the method and experimental investigations. In

the experimental investigation, both a 50/50 and 88/12 mixture is considered, and in both cases

the method shows reliable results. Future investigations may consider the use of the volume

intensity measurement for mode decomposition without the need for a priori information of the

fiber composition. Last, a new method for determining independent of the fiber length the group

velocity dispersion of modes in the LP0X , LP1X , and LP2X mode groups based on an analysis

of the field profile is presented. The method reproduces the group velocity dispersion spectra

obtained analyzing a test fiber with a scalar mode solver. Preliminary experimental results are

also presented. With further noise reductions, it is expected that the GVD can be found using

this method.
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Here follows the manuscript for the paper "Broadband Higher Order Mode Conversion

using Chirped Microbend Long Period Gratings" submitted for Optics Express.
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Broadband Higher Order Mode Conversion
using Chirped Microbend Long Period Gratings

STINE MØLLER ISRAELSEN,1 , AND KARSTEN ROTTWITT1,*

1DTU Fotonik, Ørsteds Plads byg. 343, 2800 Kgs. Lyngby, Denmark
*karo@fotonik.dtu.dk

Abstract: We suggest a new scheme to create chirped microbend long period gratings. Employing
this scheme, the bandwidth of mode conversion between LP01 to LP11 is increased 4.8-fold with
a conversion efficiency of 20 dB. This scheme includes a first time demonstration of a nonlinearly
chirped long period grating. The scheme is investigated both numerically using coupled mode
equations as well as experimentally.
© 2016 Optical Society of America
OCIS codes: (050.1590) Chirping, (060.2310) Fiber Optics, (060.2340) Fiber Optics Components.

References and links
1. C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation

using higher order modes near cutoff,” Lightwave Technology, Journal of 12, 1746–1758 (1994).
2. S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in

few-mode fibers,” Optics letters 27, 698–700 (2002).
3. S. H. M. Larsen, M. E. V. Pedersen, L. Grüner-Nielsen, M. Yan, E. Monberg, P. Wisk, and K. Rottwitt, “Polarization-

maintaining higher-order mode fiber module with anomalous dispersion at 1 µm,” Optics letters 37, 4170–4172
(2012).

4. L. Zhu, A. Verhoef, K. Jespersen, V. Kalashnikov, L. Grüner-Nielsen, D. Lorenc, A. Baltuška, and A. Fernández,
“Generation of high fidelity 62-fs, 7-nj pulses at 1035 nm from a net normal-dispersion yb-fiber laser with anomalous
dispersion higher-order-mode fiber,” Optics express 21, 16255–16262 (2013).

5. A. Verhoef, L. Zhu, S. M. Israelsen, L. Grüner-Nielsen, A. Unterhuber, W. Kautek, K. Rottwitt, A. Baltuška,
and A. Fernández, “Sub-100 fs pulses from an all-polarization maintaining yb-fiber oscillator with an anomalous
dispersion higher-order-mode fiber,” Optics express 23, 26139–26145 (2015).

6. S. Ramachandran, “Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices,” Lightwave
Technology, Journal of 23, 3426–3443 (2005).

7. V. Grubsky and J. Feinberg, “Long-period fiber gratings with variable coupling for real-time sensing applications,”
Opt. Lett. 25, 203–205 (2000).

8. C. Poole, H. Presby, and J. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,”
Electronics letters 30, 1437–1438 (1994).

9. P. Steinvurzel, K. Tantiwanichapan, M. Goto, and S. Ramachandran, “Fiber-based bessel beams with controllable
diffraction-resistant distance,” Opt. Lett. 36, 4671–4673 (2011).

10. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber
gratings by focused irradiation of infrared femtosecond laser pulses,” Optics letters 24, 646–648 (1999).

11. D. B. Stegall and T. Erdogan, “Dispersion control with use of long-period fiber gratings,” J. Opt. Soc. Am. A 17,
304–312 (2000).

12. T. He, L. Rishoj, J. Demas, and S. Ramachandran, “Dispersion compensation using chirped long period gratings,”
CLEO: Science and Innovations pp. STu3P–7 (2016).

13. D. Östling and H. E. Engan, “Broadband spatial mode conversion by chirped fiber bending,” Optics letters 21,
192–194 (1996).

14. S. Ramachandran, J. Wagener, R. Espindola, and T. A. Strasser, “Effects of chirp in long period gratings,” Bragg
Gratings, Photosensitivity, and Poling in Glass Waveguides p. BE1 (1999).

15. L. Grüner-Nielsen and J. W. Nicholson, “Stable mode converter for conversion between lp01 and lp11 using a
thermally induced long period grating,” Proceedings of IEEE Summer Topical Meeting pp. 214–215 (2012).

16. R. C. Youngquist, J. L. Brooks, and H. J. Shaw, “Two-mode fiber modal coupler,” Opt. Lett. 9, 177–179 (1984).
17. R. Kashyap, Fiber bragg gratings (Academic press, 1999).
18. X. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Optics

communications 203, 277–281 (2002).
19. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as

band-rejection filters,” Lightwave Technology, Journal of 14, 58–65 (1996).

Broadband mode conversion have several applications e.g. within group velocity dispersion

APPENDIX A. APPENDIX A

70



(GVD) compensation [1–3] which may be used in ultrashort pulsed lasers [4, 5], but also within
sensing [6]. The ability to achieve a broader and tailorable conversion bandwidth is thus highly
desirable. This is possible either by engineering the fiber and using the point where the group
delay difference between the two modes in the conversion process is zero [1–3, 7] or as we
demonstrate in this work using a chirped long period (LPG). LPGs have been demonstrated in
many forms including microbend [1], CO2-formed [8], UV-induced [2, 9] and formed using
high intensity light [10]. Chirped LPGs are more versatile in the way that we only need to
design the chirp of the LPG to achieve broadband conversion and the method is thus in principle
applicable to all fibers. It has also been showed that chirped LPGs have a GVD compensating
effect by them selves. This has been demonstrated both theoretically [11] and recently also
experimentally [12]. However, in this work, we focus on broadband mode conversion. Chirped
fiber LPGs for broadband mode conversion was first suggested by Östling et al. [13]. The scheme
presented in this work elaborates the idea presented by Östling and shows a straight forward way
to implement linear and nonlinear chirp in a microbend LPG. Note that employing a microbend
LPG limits the mode conversion to conversion between symmetric and anti-symmetric modes [1].
Chirping have also been demonstrated for UV-induced LPGs [12, 14] which allows for coupling
to symmetric modes.

The principle of implementation of chirped microbend LPGs is outlined in Fig. 1.

SMF

Microbend

grating

FUT

Rubber pad

Force

Rubber pad with V-groove

FUT

Fig. 1. Principle of the chirped microbend LPG. The fiber under test (FUT) is perturbed by a
microbend LPG. The chirp in the LPG is made by a curved groove in the rubberpad used to
press the fiber onto microbend LPG.

We employ microbend LPGs as higher order mode converters. However, instead of holding the
fiber under test (FUT) straight as is customary [15], the FUT is curved upon the microbend LPG.
The curve is achieved by placing the FUT in a groove in the rubber pad pressing the FUT onto
the microbend LPG. The groove feature enables a simple and versatile tool for tailoring the chirp
of the LPG; the shape of the groove simply defines the chirp.

Initially, the mode conversion is considered numerically. Östling et al. limit their investigation
to linearly chirped microbend LPGs [13]. Here we also consider nonlinearly chirped LPGs. This
is to our knowledge the first demonstration of nonlinearly chirped LPGs.

We use coupled mode theory to simulate the conversion efficiency of the chirped microbend
LPG [13]. If a01 and a11 are the complex modal amplitudes of LP01 and LP11, respectively, and
κ is the coupling coefficient, then

da01
dz

= −iκa11 exp
(
i
∫ z

0
∆β(λ, x)dx

)
(1)

da11
dz

= −iκ∗a01 exp
(
−i

∫ z

0
∆β(λ, x)dx

)
, (2)

where
∆β(λ, z) = 2π[1/LB (λ) − 1/Λ(z)], (3)
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where LB (λ) is the measurable beat length between the two modes and Λ(z) is the pitch of the
LPG [16]. The pitch of the LPG in the fiber may be described asΛ(z) = Λ0+ δ(z), whereΛ is the
unperturbed pitch of the LPG while the perturbation, δ(z), describes the linear or nonlinear chirp.
κ is the coupling coefficient proportional to the force applied to the rubber pad; κ is assumed
constant along z. Changing κ along z would beneficial in the design of LPG spectra for example
when reducing the number of sidebands for GVD compensation [12]. However, this is difficult
to implement in this scheme as it requires very high precision in the design of the rubber pad
thickness as well as knowledge of the material properties of the used rubber. The coupled mode
equations are solved numerically employing an ODE solver, as Eq. (2) does not yield a physically
intuitive closed form solution [14].

To achieve the widest conversion bandwidth, we employ a nonlinearly chirped LPG with pitch
in form of a 2nd order polynomial. To find the set of coupled differential equations to implement
in the ODE solver, the integral

∫ z

0
∆β(λ, x)dx =

∫ z

0
2π

(
1

LB (λ)
− 1
Λ(x)

)
dx

=

∫ z

0
2π

(
1

LB (λ)
− 1

ax2 + bx + c

)
dx (4)

is solved.

We consider a TrueWave® fiber operated at 800 nm, where it is fewmoded and guides LP01 and
LP11. We want to couple from LP01 to LP11. We employ a higher order diffraction LPG to achieve
phase matching [17]. The first order diffraction is not achievable due to a mechanical constraint:
For pitches comparable to the fiber diameter (that is including the coating), the mechanical
grating is not able to bend and perturb the fiber.
To find the fitting parameters of the chirp, the beat length within the desired wavelength range
is approximated with a second order polynomial using the longitudinal axis of the LPG as the
independent variable of the fit. The second order polynomial is used in accordance with (4). The
aim is to achieve broadband conversion without overcoupling around 800 nm and the optimization
of the chirp parameters is limited to the lower wavelength limit of the beat length measurement
and the turn-around-point around 870 nm [7].
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Fig. 2. Phase matching curves for the conversion of LP01 to LP11 in a TrueWave® fiber
operated in a fewmoded regime. (a) Full measurement of phase matching curves for higher
order conversions corresponding to Λ = 2LB , Λ = 3LB , Λ = 4LB , and Λ = 5LB . The
red lines in the plot correspond to 4th order polynomial fit in (b) scaled to the order of
conversion. (b) Selected data for the pitch corresponding to Λ = 2LB . The data is fitted to
4th order polynomial.
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Fig. 3. Transmission data for the conversion of LP01 to LP11 in a TrueWave® fiber operated
in a fewmoded regime. The applied mode converter is an unchirped LPG with a pitch of
525 µm which corresponds to conversion at 800 nm.
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Fig. 4. Transmission data for the conversion of LP01 to LP11 in a TrueWave® fiber operated
in a fewmoded regime. The applied mode converter is a nonlinearly chirped LPG where the
chirp is optimized for conversion around 800 nm.

In Fig. 2(a), the full measurement of the beat length is plotted. The multiple curves are a
result of the higher order diffraction and their sidebands. The higher order diffraction curves are
marked with a red a red line corresponding to the fit in Fig. 2(b) scaled to the diffraction order.
The remaining points are sidebands. Sidebands have previously been observed using higher order
diffraction [18]. The first order diffraction is not achievable as previously explained. The phase
matching measurement corresponding to second order diffraction is plotted in Fig. 2(b), the order
of the diffraction is identified from the full phase matching measurement in Fig. 2(a). The phase
matching measurement is fitted to a fourth order polynomial. In Fig. 3 the transmission, that is the
remaining power in the fundamental mode after the LPG, is plotted as function of the wavelength
and conversion efficiency for an unchirped LPG with a Λ = 525 µm which corresponds to
conversion at 800 nm employing second order diffraction. -20 dB transmission is achieved with a
1.8 nm bandwidth without overcoupling, that corresponds to the lowest conversion efficiency κ
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that allows for -20 dB transmission. The transmission of a nonlinearly chirped LPG optimized for
broadband conversion around 800 nm is plotted in Fig. 4 as a function of the wavelength and the
conversion efficiency. With a -20 dB transmission across a 8.6 nm bandwidth, a 4.8-fold increase
of the bandwidth is achieved. As for the unchirped LPG, the transmission is found using coupled
mode theory as described in (2) with the condition of (4). Note that the conversion to LP11 is
achieved for higher values of the coupling coefficient, κ, corresponding to a larger force upon the
rubber pad, hence there is a trade off between conversion bandwidth and possible permanent
mechanical deformation of the fiber due to the larger load.

For closer examination, the transmission of the microbend LPGs in the chirped and unchirped
configuration is plotted in Fig. 5 applying the conversion coefficient κ yielding the largest dip
in transmission without overcoupling. In this figure, it is evident that the chirped LPG has a
significantly broader bandwidth, if we consider the 3 dB bandwidth there is an 23-fold increment.
However with conversion efficiencies of 0.026 mm−1 and 0.081 mm−1 for the unchirped and
chirped configuration, respectively, the risk of permanent deformation of the fiber is much larger
for the chirped LPG.
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Fig. 5. Numerically determined transmission plot of the chirped and the unchiped LPG. For
the chirped LPG, a conversion efficiency of 0.08115 mm−1 is applied and for the unchirped
LPG, a conversion efficiency of 0.0258 mm−1.

For the experimental investigations, the shape of the V-groove must be designed according
desired nonlinear chirp. Thus the parametric curve describing the chirp, r(u) is written as

∮

L

=

∫ z

0
|r′(u) |du = Λ(z) (5)

Thus the line integral along the V-groove is equal to the pitch as function of z. This is however
not easily solved. Instead, we approximate with a piecewise linear function, the pieces correspond
to each step as the rubberpad is pressed on to the alumina block creating the microbends. To
carve a smooth curve in the rubberpad, the piecewise linear function is approximated with a third
order polynomia.

In this section, a physical realization of the setup in Fig. 1 is considered. We consider the
results of an experimental realization of the nonlinearly chirped LPG. The chirp is tailored to the
phase matching curve as for the numerical calculation in Fig. 4. The transmission is measured by
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launching a broadband source in to the fundamental mode of the FUT as illustrated in Fig. 1 and
after the chirped microbend LPG the FUT is spliced to a single mode fiber (@ 800 nm). This
is a standard method for characterizing the conversion of LPG to the higher order mode [19].
Secondly, the transmission plot shows very little multipath interference indicating excitation of a
single mode by the LPG, which verifies the assumption of no other losses in the transmission
measurement. The transmission is measured as function of the translation of the stage controlling
the position of the rubber pad. Note, that the force on the rubber pad increase with a descreasing
value of the translation. In principle, the translation of the rubber pad is linearly proportional
to the force on the rubber pad and thereby the conversion efficiency, κ, but due to mechanical
restraints of the setup and the mechanical properties of the rubber pad, the relation between
translation and force is not complete linear.

Initially, we measure a reference given by a nonchirped microbend LPG tailored for conversion
at 800 nm corresponding to pitch of 525nm. The transmission mapping as function of the
translation of the rubber pad is plotted in Fig. 6.
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Fig. 6. Experimental transmission data for the conversion of LP01 to LP11 in a TrueWave®

fiber operated in a fewmoded regime. The conversion efficiency is given by the translation of
the rubber pad given by the translation of the stage controlling the position of the rubber band.
The applied mode converter is an unchirped LPG with a pitch of 525 µm which corresponds
to conversion at 800 nm.

Transmission as function of the wavelength and the translation of the stage, i.e. the conversion
efficiency, κ, for the nonlinearly chirped LPG applying second order diffraction tailored for
conversion at 800 nm using the measured phase matching curves plotted in Fig. 2 is plotted in
Fig. 7. In both the transmission wavelength spectra of the chirped and the unchirped LPG, there
are some features around 1050 nm independently of the translation, which is a result of unstable
excitation source and not the microbend LPGs.

In the experimental transmission spectra of the nonlinearly chirped LPG, we observe many of
the same features as we see in the numerical results. Unfortunately, we are not able to map some
of the high conversion efficiency effects. That is a result of the use of second order diffraction in
the LPG demanding higher conversion efficiencies than first order diffraction and the mechanical
constraint of a microbend LPG limiting the conversion to HOMs to what is possible without
permanently damaging or potentially breaking the fiber. The linearity between the plotted load
and the conversion efficiency is also limited by the relaxation of the microbend LPG as described
by G.-Nielsen et al. [15]. However, as we employ a rubber pad the relaxation is reduced.

In Fig. 8, the best possible conversion for the chirped and the unchirped LPG in the TrueWave
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Fig. 7. Experimental transmission data for the conversion from LP01 to LP11 in a TrueWave®

fiber operated in a fewmoded regime. The conversion efficiency is given by the translation of
the rubber pad given in the translation of the stage controlling the position of the rubber
band. The applied mode converter is a nonlinearly chirped LPG where the chirp is optimized
for conversion around 800 nm.
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Fig. 8. Measured transmission plot of the chirped and the unchiped LPG in the TW fiber.
For the chirped LPG, a translation of -0.41 mm is used and for the unchirped LPG, a load of
-1 mm is used.

fiber is plotted. In both the numerical and experimental studies, the chirped LPG requires a higher
coupling efficiency, κ, - given by the translation of the rubber pad - for optimum coupling. There
are several features to notice in this plot: The first is that the transmission plot for the unchirped
LPG does not only show one dip as the simulations. We expect that this is a result of the second
order diffraction used. The second is the squareness of the transmission spectrum for the chirped
LPG, a feature which has been achieved without overcoupling and unwanted spectral oscillatory
behavior [14]. This feature is very attractive for GVD compensation using chirped LPGs [11, 12].
There is no significant broadening in the chirped LPG if we consider both dips in the transmission
spectrum close to 800 nm for the unchirped LPG. However, we recall that the chirp was designed
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only for the dip at 800 nm. Using this fact, the conversion bandwidth is enhanced 2.7-fold at
5 dB conversion. Due to mechanical constraints of this system, it is unfortunately not possible to
achieve higher conversion efficiencies for this system, which would most likely have resulted in
larger conversion. There is increased need for the high conversion efficiencies in this system due
to the use of higher order diffraction.
In summary, we have demonstrated a new and versatile platform for chirped LPGs coupling

from a symmetrical to an anti-symmetrical mode and vice versa. The transmission characteristics
of this scheme has been modelled using coupled mode theory and a 4.8-fold increase of the
bandwidth is achieved for conversion from LP01 to LP11 in a TrueWave® fiber operated in a
fewmoded regime.
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Here follows the manuscript for the paper "Determining the Group Velocity Dispersion

by Field Analysis for the LP0X , LP1X , and LP2X Mode Groups Independently of the
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Determining the Group Velocity Dispersion by Field
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By knowing the electric field distribution of a guided
mode in an optical fiber, we are able to evaluate the
group velocity dispersion in a weakly guiding step in-
dex fiber for a pure mode in the LP0X , LP1X , and LP2X
mode groups independently of the fiber length. We
demonstrate the method numerically for all three mode
groups. © 2016 Optical Society of America
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Determining the group velocity dispersion (GVD) in optical
fibers has been an important discipline for instance for the
design of optical resonators and amplifiers [1, 2] and for
designing setups for parametric processes including research on
four wave mixing enabled by higher order modes (HOMs) [3].
There are a number of standard techniques for measuring the
GVD which include time-of-flight measurements, phase shift
measurements and interferometric techniques [1]. However,
both time-of-flight and phase-shift measurements require
relatively long fiber lengths [1]. Stable propagation of HOMs
in long lengths of fiber is difficult due to mode mixing and
determination of the GVD using the standard methods is
thus not straight forward. A few demonstrations of GVD
measurements of very stably propagating HOMs using long
fiber lengths have been demonstrated - however, only in few
moded fibers [4, 5]. Newer interferometric techniques include
S2 and C2, though primarily developed for determining the
modal content, these methods also yield the GVD of all modes
in the decomposition [6–8]. These methods require fiber lengths
in the order of meters and both have relatively complicated
setups as is customary for interferometric techniques. A simpler
interferometric technique for measuring the GVD of a HOM was
presented by Menashe et al.; in this technique the fundamental
mode and a selected HOM are exicted simultaneously and the
modal beating is used to extract the GVD [9]. However, this
method requires knowledge of the GVD of the fundamental
mode.

In this paper, we determine the GVD of weakly guiding step
index fiber by determining the intensity profile of a pure mode
in the near field as function of the wavelength. This method is an
extension of the mode field diameter method [10, 11]. The mode-
field-diameter method considers only a single mode fiber and
assumes that the field can be described by a Gaussian [10, 11].
In this work no such assumption is made in stead the complete
intensity profile is used which allows us to consider a variety of
modes.

As the determination of the GVD relies only on the inten-
sity profile, our method thus works independently of the fiber
length. The only thing needed is the intensity distribution of a
purely guided mode. As a consequence, it is possible to use this
method on very short fiber lengths as opposed to the other meth-
ods mentioned. We thus present the first very simple method
for determining the GVD of a HOM without the need for prop-
agation of the mode which may result in mode coupling. The
method enables us to determine the GVD of HOMs in fibers
where the HOM have poor propagation properties. Depending
on the source used to excite the relevant mode, the method is
potentially very broadband.

We exploit that the solution to the wave equation governing
the field of a weakly guiding step index fiber in the core (and
cladding) of the fiber is well known [12]. It is noted that despite
the fact that our method of determining the GVD of HOMs is
based on using a weakly guiding step index fiber, this is an
approximation that provide significant insight and is often used
for more complex fiber types [12, 13]. We assume that for a
weakly guiding fiber, the modulus of the field is proportional to
the square root of the intensity. For weakly guiding fibers the
radial field distribution in the core is described by the Bessel
function Jx(κr), with x describing the aximuthal mode order,
where the parameter κ is given by:

κ2 = k2
0(n

2
c − n2

e f f ), (1)

and k0 is the wave number, nc is the refractive index of the
core, and ne f f is the effective refractive index of the mode. Ini-
tially, we assume that nc = nSiO2 (λ) + ∆n, where nSiO2 is the
refractive index of silica and δn is the refractive index step be-
tween core and cladding. The wavelength dependence of the
refractive index of silica, nSiO2 , is given by Sellmeier’s formula
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[12]. The wavelength dependence of germanium, responsible
for ∆n, is negligible compared to that of silica [12]. That allows
us to express ne f f as:

ne f f (λ) =
√
(nSiO2 (λ) + ∆n)2 − κ(λ)2/k2

0. (2)

The GVD parameter, D, is determined by

D = −λ

c
∂2ne f f

∂λ2 . (3)

If we find κ as outlined in the following sections, we may
numerically determine the GVD. To a rough approximation the
wavelength dependence of the square of the refractive index of
the fiber core is equal to the wavelength dependence of silica:
n2

c ≈ n2
SiO2

, and the expression for ne f f simplifies, as does the
needed parameters for the fiber under test. In the following
section, we outline the procedures to find κ for the LP0X , LP1X ,
and LP2X modes.

For the LP0X modes the normalized electric field strength is
equal to Ψ(r) = J0(κr). As there is no azimuthal dependence of
the electric field, it is not considered for this mode group. The
first step is to differentiate the radial dependence of the field:
Ψ′(r) = −κ J1(κr).

One approach to find κ could be to evaluate the maximum of
the derivative which is κ, but the point of evaluation is for LP0X
very close to the core-cladding interface leading to uncertainty
of the validity of the solution of the electric field strength. Sec-
ondly, this evaluation form would also be strongly dependent
on the radial resolution of the field. To have a method valid
for all modes in the mode group, we instead perform a Taylor
approximation of Ψ′(r) around r = 0.

TLP0X (r) = −κ J1(0)− κ2
(

J0(0)−
J1(κr′)

r′

∣∣∣∣
r′→0

)
r

→ −1
2

κ2r for r → 0. (4)

The derivative of the radial field distribution is thus to be
approximated with a straight line through origin to find κ.

For the LP1X mode group, we cannot neglect the azimuthal
dependence. However, considering the radial dependence for
the angle yielding the maximum intensity allows us to omit
the azimuthal dependence. The radial dependence of the LP1X
mode group may be described as: Ψ(r) = J1(κr). Performing a
Taylor expansion directly on the radial field distribution r = 0
to first order gives:

TLP1X (r) = κ J1(0) + κ

(
J0(0)−

J1(κr′)
κr′

∣∣∣∣
r′→0

)
r

→ 1
2

κr for r → 0. (5)

This procedure is valid for all modes in the LP1X mode group.
The radial field distribution is then approximated with a straight
line through the origin that can used to find κ.

As with the LP1X mode group, the azimuthal dependence
of the LP2X mode group cannot be neglected. We use the same
approach and consider the radial field dependence for the angle
yielding the maximum intensity. For the LP2X mode group, it
is necessary to differentiate the radial field distribution. The ra-
dial field distribution may be described by: Ψ(r) = J2(κr). The

derivative with respect to the radius of the radial field distribu-

tion is then Ψ′(r) = κ
(

J1(κr) + 2J2(κr)
κr

)
. As for the LP0X mode

group, we perform a Taylor approximation on the derivative of
the radial field distribution around r = 0.

TLP2X (r) =κ

(
J1(0) +

2J2(κr)
κr

∣∣∣∣
r→0

)

+ κ

[
κ

(
J0(0)−

J1(κr)
κr

∣∣∣∣
r→0

)
+

2J2(κr)
κr2

∣∣∣∣
r→0

−
2
(

J1(κr)− 2J2(κr)
κr

)

r

∣∣∣∣
r→0


 r

→1
4

κ2r for r → 0. (6)

The derivative of the radial field distribution is then approxi-
mated with a straight line through origin to find κ.
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Fig. 1. (a) κ found using the Taylor approximation method
on the differentiated radial mode field profile plotted for all
guided modes in the LP0X mode group. (b) The GVD found
using κ is found. We only plot above cutoff. (c) A zoom in of
the GVD plot. For all plots the solid lines correspond to the
Taylor approximation method and the dotted lines to the data
from the scalar mode solver.

In principle, this form could be expanded to include HOM
groups but at the expense of having to expand to higher orders
in the Taylor approximation. We limit the investigations to
the mode groups where the considered Taylor expansions are
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Fig. 2. (a) κ found using the Taylor approximation method on
the radial mode field profile plotted for all guided modes in
the LP1X mode group. (b) The GVD found using κ is found.
We only plot above cutoff. (c) A zoom in of the GVD plot. For
all plots the solid lines correspond to the Taylor approximation
method and the dotted lines to the data from the scalar mode
solver.

straight lines through origin.

In this section, we consider a numerical example to demon-
strate how the method works. The considered case is a multi-
mode step index fiber with a numerical aperture of 0.149 and
a core radius of 8 µm. The modes in the fiber are found with
a scalar mode solver. The fiber supports all three considered
mode groups.

Initially, we consider the LP0X mode group. In Fig. 1a, κ
is plotted for all guided LP0X modes in the guided regions as

function of the normalized frequency: V = ka
√

n2
c − n2

cl . The
simulated κ from the scalar mode solver is also plotted as a dot-
ted line. We observe excellent agreement between the simulated
values of κ and the κ-values found by the Taylor approxima-
tion method. The deviation in κ is less than 1 % for all modes
considered.

In Fig. 1b, the GVD found using the Tailor approximation
method of the LP0X modes is plotted above cutoff along with the
result for the GVD found with the scalar mode solver. Despite
the approximation of the squared refractive index of the core,
we are able to determine the GVD very accurately. In the zoom
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Fig. 3. (a) κ found using the Taylor approximation method
on the differentiated radial mode field profile plotted for all
guided modes in the LP2X mode group. (b) The GVD found
using κ is found. We only plot above cutoff. (c) A zoom in of
the GVD plot. For all plots the solid lines correspond to the
Taylor approximation method and the dotted lines to the data
from the scalar mode solver.

in, Fig. 1c, we see that the method is sufficiently accurate for
also determining the modal spacing in the GVD and the spacing
in the zero dispersion wavelength (ZDW) - both very important
parameters in GVD tailoring using HOMs [2, 3].

In Fig. 2a, κ for the LP1X mode group retrieved from the
Taylor approximation method is plotted along with κ provided
by the scalar mode solver. We observe good accordance between
the two data sets, the deviation is less than 10 % for all con-
sidered modes. However, the agreement decreases with mode
order. That is a result of the resolution of the radial dependence
of the electric field strength.

In Fig. 2(b) and 2(c), the GVD of the LP1X mode group based
on the data for κ is plotted along with the GVD found with the
scalar mode solver. As for the LP0X mode group, we are able
to determine the GVD very accurately, this includes important
figures such as the intermodal spacing and the spacing in the
ZDW. The peaks in the plot that do not follow the curve of the
GVD evaluated by the scalar mode solver are artifacts of the
numerical differentiation performed on the effective refractive
index.

Lastly, we consider the LP2X mode group. The values for κ
retrieved with the Taylor approximation method which are in
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good accordance with the simulated κ-values are plotted in Fig.
3a, with a deviation less than 1 % between the κ-values deter-
mined by the Taylor approximation method and those evaluated
by the scalar mode solver. These values of κ are used to find the
GVD. In the calculation of the GVD, we observe some artifacts
caused by the numerical differentiation of the effective refractive
index. We, however, observe good consistency between the two
data sets. Consequently, we suggest that this method may be
used in the design process for setups making use of the GVD
tailorability of HOMs [2–5].

For all considered mode groups, we conclude that the method
provides an easy way to find GVD based solely on the radial
field profile. The method works well when the considered wave-
length is not in the vicinity of cutoff wavelength for the respec-
tive mode.

A limitation of the method, given that it is to be implemented
experimentally, is the ability to excite the HOMs purely. How-
ever recently, it has been demonstrated that HOMs may be ex-
cited with very good mode discrimination using spatial light
modulators [14].

In conclusion; we have demonstrated the first, to our knowl-
edge, method to determine the GVD of HOMs independently of
the fiber length in a weakly guiding step index fiber by analysis
of the radial electric field profile. The κ-value used in the eval-
uation of the GVD is determined with a accuracy of maximum
10 % across all considered mode groups. We speculate that the
higher deviation for the LP1X mode group compared to that of
the LP0X and LP2X mode groups is a result of the direct analysis
on the electric field and not on the derivative of the electric field
which is used for LP0X and LP2X mode groups. The method
may be applied to three mode groups LP0X , LP1X , and LP2X
modes which covers most modes commonly used in step index
fibers.
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• HOM: Higher order mode

• LPG: Long period grating

• GVD: Group velocity dispersion

• SLM: Spatial light modulator

• TAP: Turn-around-point

• MIMO: Multiple input multiple output

• PM: Polarization maintaining

• SMF: Single mode fiber

• ZDW: Zero dispersion wavelength

• FUT: Fiber under test

• MPI: Multi path interference

• FFT: Fast fourier transformation

• OSA: Optical spectrum analyzer
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