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The few-cycle pulses of mid-infrared (mid-IR, wavelength 2-10 microns) have attracted increasing 

attention owing to their great potentials for high order harmonic generation, time-resolved spectroscopy, 

precision of cutting and biomedical science.  

In this thesis, mid-IR frequency conversion by the ultra-fast soliton was proposed, which exploit optical 

solitons in near-IR for generating the mid-IR pulses. 

Firstly, we show numerically that ultrashort self-defocusing temporal solitons colliding with a weak 

pulsed probe in the near-IR can convert the probe to the mid-IR. A near perfect conversion efficiency is 

possible for a high effective soliton order. The near-IR self-defocusing soliton can form in a quadratic 

nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) 

second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime 

between 𝜆 = 2.2 − 2.4 μm as a resonant dispersive wave. This process relies on non-degenerate four-wave 

mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe 

sum-frequency generation. 

Secondly, a self-pumped soliton-driven tunable mid-IR optical parametric amplifier is demonstrated for 

the first time in a standard periodically poled lithium niobate (PPLN) bulk crystal. The new type of resonant 

radiation is generated through a three wave mixing (TWM) process. The poling pitch gives a parametrically 

tunable resonant radiation from 𝜆 =4.2 - 5.5 μm with only one fixed pump wavelength, a feature absent in 

Kerr media. 

Finally, we experimentally observe supercontinuum generation spanning 1.5 octaves, generated in a 10 

mm long silicon-rich nitride waveguide pumped by 100 pJ femtosecond pulses from an erbium fiber laser. 

The waveguide has a large nonlinear Kerr coefficient and two zero dispersion wavelengths giving broadband 

anomalous dispersion centered around the pump wavelength. This is achieved by slightly increasing the 

silicon content over stoichiometric silicon nitride and waveguide geometry engineering. The spectral 

broadening relies on exciting a soliton and two dispersive waves. In the same waveguide using orthogonal 

pump polarization, optical wave-breaking occurs as the pump dispersion becomes normal. The numerical 

simulations indicate that the supercontinua are highly coherent.  
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Through numerical simulations and experiments, we find out soliton based on generating the mid-IR is a 

compact and simple approach, and could have great potentials. 
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Impulser med varighed af få optiske cyklusser med bølgelængder i det melleminfrarøde (MIR, 

bølgelængde 2-20 mikrometer) har fået stigende opmærksomhed på grund af deres store potentiale til høj-

harmonisk generering, tidsopløst spektroskopi, og biomedicinsk videnskab. 

I denne afhandling blev en ny teknik til MIR frekvenskonvertering af en ultra-kort soliton foreslået, der 

udnytter optiske solitoner i nær-IR til generering af MIR impulser. 

For det første viser vi numerisk at når ultrakorte selv-defokuserende tidslige solitoner kolliderer med en 

svag pulseret probeimpuls i nær-IR, kan dette konvertere proben til MIR. En næsten perfekt virkningsgrad er 

muligt for en højere ordens effektiv solitontal. Den nær-IR selv-defokuserende soliton kan dannes i en 

kvadratisk ikke-lineær krystal (beta-bariumborat) i det normale dispersionsområde via kaskade (fase-

mismatched) anden-harmonisk generering, og den MIR konverterede bølge dannes i det anormale 

dispersionsområde mellem 2,2-2,4 mikrometer som en resonant dispersiv bølge. Denne proces bygger på 

ikke-degenereret fire-bølge blanding medieret af en effektiv negativ kryds-fasemodulation som er forårsaget 

af kaskade soliton-probe sum-frekvens generering. 

For det andet, bliver en selv-pumpet soliton-drevet tunbar MIR optisk parametrisk forstærker demonstreret 

for første gang i en standard periodisk polet lithium niobat (PPLN) krystal. Denne nye type resonant stråling 

frembringes gennem en tre bølge blanding proces. Afstanden mellem polingdomænerne giver en parametrisk 

tunbar resonant stråling fra 4,2 - 5.5 mikrometer med kun én enkelt pumpe bølgelængde, en funktion som 

ikke kan genskabes i Kerr ikke-lineære medier. 

Endelig har vi eksperimentelt observeret superkontinuum generering der spænder over 1,5 oktaver, 

genereret i en 10 mm lang silicium-rig nitrid bølgeleder pumpet af 100 pJ femtosekund impulser fra en 

erbium fiberlaser. Bølgelederen har en stor ulineær Kerr koefficient og to nul-dispersions bølgelængder, 

hvilket giver bredbåndet anormal dispersion centreret omkring pumpens bølgelængde. Dette opnås ved at 

bruge en smule større silicium indhold i forhold til støkiometrisk siliciumnitrid og ved hjælp af en passende 

konstrueret bølgeledergeometri. Den spektrale udvidelse er afhængig af eksitere en soliton og to dispersive 

bølger. I samme bølgeleder ved anvendelse ortogonal polarisering af pumpen, observerede vi optisk bølge-

brydning som forekommer fordi pumpens dispersion bliver normal. De numeriske simulationer viser, at de 

dannede superkontinua er meget kohærente. 
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Gennem numeriske simuleringer og eksperimenter har vi vist, at soliton-baseret generering af MIR 

bredbåndet stråling er en kompakt og enkel metode som har et stort potentiale. 
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1.1 Project Background 

Over the past decade, ultrashort pulse have become an indispensable tool in the physics, medical, 

telecommunication sectors, time-resolved spectroscopy in chemistry, biology, materials science and 

defense security. In particular, ultrashort pulses in the mid-infrared (mid-IR, wavelength 2-10 

microns) have great potential for probing and manipulating atomic and molecular dynamics, which 

provide a powerful tool for imaging molecular structure by detecting the chemical bonds, such as 

the important C-H,O-H and N-H bonds. For the industrial applications, mid-infrared laser dominate 

in materials processing, precision of cutting and medical treatment applications [1].  

 

 

 

 

 

 

 

Fig 1 Molecular resonances in the mid-IR spectral region [8] 

Much effort has been invested in developing mid-IR sources in the past few years. With the 

development of novel mid-IR materials and technology, the availability of mid-IR light sources 

have been the dramatic increasing and improvement recently. The commonly used methods for 

generating ultrashort mid-IR radiation are based on nonlinear optical parametric processes—

including difference frequency generation (DFG) [9], optical parametric amplification (OPA) [11], 

and optical parametric oscillators (OPO) [13] and quantum cascade lasers (QCL) [14]. These 

technologies can span much of the mid-IR spectral region using tunable or broadband pump sources. 

Such devices pumped by solid-state laser systems operating in the near-infrared require critical 
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phase-matching condition, synchronized pump wavelengths or low conversion efficiencies [7], 

which results in a need to find a new alternative solution for generating mid-IR.  

The motivation behind the new project is to bridge the near-IR ultrafast laser technology and the 

demand of ultrashort pulses in the mid-IR. One possible method relies on ultra-fast frequency 

conversion by the soliton, which potentially can generate mid-infrared pulses.  

1.2 Project Description 

The temporal soliton is a fascinating and ubiquitous property of nonlinear waves which can 

maintain their temporal shape by balance between the effects of dispersion and nonlinearity. 

Solitons have been found to play the major role for supercontinuum generation (SCG) in photonic 

crystal fiber (PCF) since 2000[15]. When pumping a PCF in the region of anomalous 

dispersion leads to the broadest spectrum broadening, which determined by soliton-related 

dynamics, especially dispersion wave (DW) generation [16].The spectral of DW location is a result 

of a phase-matching condition to the soliton [19]. The SCG is achieved through complex processes 

in the PCF including self-phase modulation (SPM) effect, dispersive radiation emitted by soliton, 

four wave mixing (FWM), and Raman nonlinearity etc. Although SC sources operating in the 

visible and near-infrared (NIR) spectral regions have been great developed and commercialized [20], 

it is still a challenging to achieve the SC generation in the mid-IR regions. The common used fiber 

is the silica PCF, because its dispersion and zero-dispersion wavelength (ZDW) can be tailored. 

However, the transmission window is determined by the multi phonon absorption, the maximum 

phonon energy of silica glass limits the emission wavelength up to 2.5µm [22]. The soft-glass 

including fluoride, tellurite, and chalcogenide fibers is a platform highly suitable for mid-IR 

generation, exhibit high Kerr nonlinearities and excellent transmission properties in the mid-IR [24]. 

However, the material ZDW of e.g. As2Se3 is 7.4 µm. It is challenging to shift down the ZDW that 

operating wavelengths of common ultrafast pulsed lasers. 
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One possible method is to exploit ultrashort self-defocusing nonlinearity solitons generated in the 

quadratic crystals [32]. When the SHG is phase mismatched, the energy conversion between the 

fundamental wave (FW) and the second harmonic (SH) will become weak and periodically repeated. 

In this process, FW can be given rise to an intensity-related nonlinear phase shift, like the cubic 

Kerr nonlinearity. Therefore, such energy and phase shifts can also be used to dynamically 

counteract the spreading caused by nonlinearity and dispersion, forming a temporal quadratic 

solitons. The compressed temporal solitons have been experimentally demonstrated in the barium 

borate (BBO) [35] and lithium niobate (LN) [37].Spectrally soliton dominate in the infrared, where 

the group velocity dispersion (GVD) is typically normal. The longer part of SC in the mid-infrared 

range most often spans through the range of anomalous GVD and is associated with an ultrashort 

DW, which has been experimentally observed in the crystal lithium thioindate (LIS) [38], LN 

crystal [40], BBO crystal [41] and waveguides [42]. 

Another possible method is to employ silicon nitride which transparency window covers from the 

UV to > 6 µm. The nonlinear coefficient in bulk is ten times larger than silica glass. This material 

does not display two-photon absorption in the telecommunications wavelength band and 

waveguides can be engineered with very low propagation losses. More importantly the waveguide 

have also the ability to tailor the dispersion in a wide range. Such features indicate that silicon 

nitride is a good candidate material for mid-IR [43]. 

Therefore, based on above descriptions, we proposed the project “Femtosecond few-cycle mid-

infrared laser pulses”. What was out looked in this project is the fact that interaction of solitons with 

DW, in this process associated frequency conversion processes can be efficient and practically 

important for mid-IR. The idea is to explore the soliton interaction with dispersive wave from a 

PCF to a quadratic crystal and CMOS-compatible waveguide. Our primary aims here are to explain 
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the frequency conversion effects resulting from the soliton-radiation interaction and leading to SCG, 

which will bring the new insights into nonlinear optics. 

1.3 Achievements and Milestones 

The achievements and milestones of this project are listed as follows: 

• We numerically for the first time demonstrated in a quadratic nonlinear crystal a self-defocusing 

near-IR soliton colliding with a weak near-IR probe induces a cascaded SFG nonlinearity 

generating a self- defocusing Kerr-like cross phase modulation term. This allows a resonant mid-IR 

wave to become phase matched. A complete probe-resonant wave conversion is possible when 

colliding with a higher-order soliton. 

• We developed couple analytic wave equations (CAWEs), which firstly confirmed the new mid-

IR radiation a standard periodically poled lithium niobate (PPLN) bulk crystal. The soliton drives 

resonant radiation in the mid-IR, through a three-wave mixing process with a large degree of 

tunability in the wavelength.  

• We investigate the SCG in a dispersion engineered silicon-rich nitride waveguide by pumping 

with low-energy pulses (80-140 pJ ) from an erbium fiber oscillator. In the transverse-electric (TE) 

polarization case a soliton and two dispersive waves were excited to give a 1.5 octave SC (from 

800-2250 nm at -30 dB).  
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2.1 Introduction  

In this chapter we will derive the numerical models describing the propagation of ultrashort laser 

pulses. We will refer to three main models: nonlinear wave equations in frequency domain (NWEF), 

nonlinear envelope equation (NEE) and coupled wave equations (CWEs) for field propagation. 

2.2 Maxwell equations 

Starting from Maxwell equations in a nonmagnetic dielectric medium [1]: 

∇ × E +
∂B

∂t
= 0 

∇ × H +
∂𝐃

∂t
= J 

∇ ∙ B = 0 

                                                                      ∇ ∙ J = ρ                                                                (2.1)                                                        

where D is the displacement filed, J the total current density and H is the magnetizing field at the 

positions and time (x, y, z, t). For the electric displacement field we have the relation 

                                            𝐃 = ε0E + 𝐏                                                           (2.2) 

where ε0  is the vacuum permittivity P is the polarization density . 

It is useful to write this decomposition in the frequency domain. With the Fourier 

transform  F̂(ω) = ∫ F(t)e−iωtdt
∞

−∞
, the nonlinear polarization in frequency domain is: 

                                                 P̂(z, ω) = ε0χ(1)(ω)Ê(z, ω) + P̂NL(z, ω)                                    (2.3)  

where χ(1)(ω) is the linear electric susceptibility. The electric displacement is rewritten as: 

D̂ = ε0n2(ω)Ê + P̂NL                                                (2.4) 

where n(ω) = (1 + χ(1)(ω))1/2 is the frequency-dependent refractive index of the medium. 

   Applying the operator ∇ × (∇ × Ê) = ∇(∇ ∙ Ê) − ∇2Ê to Eq. (2.1) and combining its temporal 

Fourier counterpart with Eq. (2.2) and Eq. (2.4), we can obtain: 

 ∇2Ê + k2(ω)Ê = −μ0ω2P̂NL                                                      (2.5) 
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where k(ω) = ωn(ω)/c is the wave-vector at the frequency ω. 

In the time domain: 

   ∇2E −
1

c2

∂2E

∂t2 = μ0
∂2P

∂t2                                                                    (2.6) 

2.3 Nonlinear wave equations in frequency domain (NWEFs) 

Let us consider the quadratic and cubic polarization when the ultrashort pulse propagation in the 

nonlinear medium. The second nonlinear polarization occur only in a non-centrosymmetric crystal 

can arise from a χ
(2)

 nonlinearity [2]. The component of second nonlinear polarization depends 

quadratically on the electric field of an incident light: 

 P̂𝑖
(2)(ω) = ε0 ∑ (χ̂j;𝑚,n

(2)
F[E𝑚En])𝑚,n                                               (2.7) 

where i,m,n =o or e,  χ̂j;m,n
(2)

 is the effective second-order nonlinear susceptibility.  

The third-order nonlinear polarization can be written as: 

 P̂𝑖
(3)(ω) = ε0 ∑ (χ̂j;a1,a2,a3

(3) [1 − fR]F[Ea1
Ea2

Ea3
] + fRF[Ea1

Ea2
Ea3

])a1,a2,a3
                   (2-8) 

where χ̂j;a1,a2,a3

(3)
 is the effective third-order nonlinear susceptibility, fR indicates the relative fraction 

of the material Raman effects. Thus, the Eq. (2-5) can be expanded to two equations corresponding 

to the ordinary and extraordinary waves in frequency domain with the slowly varying spectral 

amplitude approximation (SVSAA) [4]: 

 ∂Ẽo

∂z
+ iko(ω) = −i

ω2

2ko(ω)c2 {∑ (χ̂o:α1α2

(2)
α1,α2

F[Eα1
Eα2,

] + ∑ (o:α1α2α3
χ̂o:α1α2α3

(3)
(1 − fR)F[Eα1

Eα2,
Eα3,

] +fR ∙

 F[F−1 [h̅R(ω)F[Eα1
Eα2,

]] Ẽα3,
]))}                                                            (2-9) 

 ∂Ẽe

∂z
+ ike(ω) = −i

ω2

2ke(ω)c2 {∑ (χ̂e:α1α2

(2)
α1,α2

F[Eα1
Eα2,

] + ∑ (e:α1α2α3
χ̂e:α1α2α3

(3)
(1 − fR)F[Eα1

Eα2,
Eα3,

] +fR ∙

 F[F−1 [h̅R(ω)F[Eα1
Eα2,

]] Ẽα3,
]))}                                                            (2-10) 

where h̅R(ω) is the Raman response function in the frequency domain, the NWEF [5] provides a 

power tool for modelling the ultrashort pulse propagation in the nonlinear medium , automatically 
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including  all types of nonlinear interactions and the anisotropy of the nonlinearities. 

 2.4 The analytic Signal 

We consider now real electric field E(z,t) the nonlinear polarization PNL(z,t) propagating in the 

nonlinear medium: 

        E(z, t) = [A(z, t)e−iβ0z+iω0t + c. c]/2,                                       (2-11) 

                  PNL(z, t) = [AP(z, t)e−iβ0z+iω0t + c. c]/2,                                  (2-12) 

where z is the propagation direction, t is the time variable and ω0 is a reference frequency. The 

Fourier transform of the analytic signal which is a complex function is denoted by: 

                              Eω =
1

2π
∫ E(z, t)exp (−iωt)dt

+∞

−∞
,                                         (2-13) 

                        PNL,ω =
1

2π
∫  PNL(z, t)exp (−iωt)dt

+∞

−∞
                                   (2-14) 

The analytic signal can also be defined alternatively by using the Hilbert transform:  

                     ε(z, t) = E(z, t) + iϰ[E(z, t)]                                         (2-15) 

where the Hilbert transform of the electric field is ϰ[E(z, t)] =
1

π
ℙ ∫ dt′+∞

−∞
E(z, t′)/(t − t′), the 

symbol ℙ ∫  indicates
+∞

−∞
 that the integral must be taken in the sense of the Cauchy principal value.  

 Due to the electric field E(z, t) is real, its Fourier transform has Hermitian symmetry, since only the 

positive (or negative) frequency part of the spectrum carries information. With these definitions, the 

Fourier transform of the analytic signal:Eω = [ℰω + (ℰ−ω)∗]/2.The analytic signal satisfies the 

following requirements:  

                                                                             ℰω>0 = 2Eω, 

                                                                       ℰω=0 = 0, 

        ℰω<0 = 0.                                                              (2-16) 

Finically, we can define the complex electric field envelope as: 

A(z, t) = ℰ(z, t)e−iβ0z+iω0t                                                  (2-17) 

2.5 Nonlinear Analytical Envelope Equation (NAEE) 
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The unidirectional pulse propagation equation (UPPE) can be derive from Maxwell’s equations 

with the SVSAA, which only accounts for the forward propagating part of the electric field but uses 

the full oscillating electric field: 

                                      i
∂Eω

∂z
+ k(ω)Eω +

ω

2cn(ω)
PNL,ω = 0                                              (2-18) 

where k(ω) the full propagation is constant of the medium, c is the speed of light in vacuum, n(ω) 

is the linear refractive index.  

We now introduce the complex envelopes A and their Fourier transforms, 

                                          Eω(z, ω − ω0) = [A(z, t)e−ik0z + c. c]/2,                                          (2-19) 

                                         PNL,ω(z, ω − ω0) = [AP(z, t)e−ik0z + c. c]/2,                                     (2-20)      

Substituting envelopes (2-19), (2-20) into equations (2-18), we can obtain the nonlinear analytical 

envelope equation (NEE) by using co-moving frame: 

                    
 ∂A(z,τ)

∂ξ
+ DA(z, τ) = −i

ω0

2cε0n(ω0)
(1 −

i

ω0

∂

∂τ
)AP (z, τ)                              (2-21) 

where dispersion operator is D = ∑
1

m!

dmβ(ω0)

dωm
∞
m=2 (−i

∂m

∂τm), k1(ω0) is reference group velocity at 

𝜔0.The co-moving frame is  ξ = z,τ = t − k1(ω0)z . 

In order to obtain the NEE for the analytic signal, we defined the analytic signal of the electric field 

which only the positive frequency part of the field [6]: 

                                      ℰ(z, t) =
1

π
∫ E(z, t)exp (−iωt)dt

+∞

0
                                          (2-22) 

With the above definitions, we now consider an instantaneous second-order χ(2) nonlinearity and 

χ(3) nonlinearity, the nonlinear polarization can be written as: 

 PNL,ω = PNL,ω
(2)

+ PNL,ω
(3)

                                                 (2-23)  

and in time domain they are given by: 

             PNL
(2)(z, t) = ∫ dt1 ∫ χ(2)(t, t1, t2)E(t1)E(t2)dt2

+∞

−∞

+∞

−∞
                                 (2-24) 

PNL
(3)(z, t) =  ∫ dt1 ∫ dt2 ∫ χ(3)(t, t1, t2,t3)E(t1)E(t2)E(t3)dt3

+∞

−∞

+∞

−∞

+∞

−∞
           (2-25) 
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We consider an instantaneousχ(2)(t, t1, t2) = χ(2)δ(t − t1)δ(t1 − t2) nonlinearity, so that nonlinear 

polarization PNL
(2)(z, t) = χ(2)E(z, t)2. 

For the cubic case, the standard Born-Oppenheimer approximation implies that for optical fields 

one can write: 

   PNL
(3)(z, t) = χel

(3)
E3(z, t) + E(t) ∫ dsχR

(3)
(t − s)E2(s)

+∞

−∞
                         (2-26) 

which is equivalent to taking χ(3)(t, t1, t2, t3) = χel
(3)

δ(t − t1)δ(t1 − t2)δ(t2 − t3) + δ(t −

t1)χR
(3)

(t − s)δ(t2 − t3).To be simple, we ignored the Raman nonlinearity. 

In frequency domain only have the Kerr nonlinearity this can be written as, 

PNL
(3)(ω) = χel

(3)
ℱ[E3(z, t)] = χel

(3)
ℱ[E3(z, t)]                                     (2-27) 

The total nonlinear polarization is：  

PNL(z, t) = χ2[E(z, t)2] + χel
(3)[E(z, t)3] =

χ2

4
[A2e2iβ0z−2iω0t + A∗2e−2iβ0z+2iω0t + 2AA∗] +

χel
(3)

8
[A3e3iβ0z−3iω0t + A∗3e−3iβ0z+3iω0t + 3|A|2Aeiβ0z−iω0t +

3|A|2A∗e−iβ0z+iω0t]                                         (2-28) 

The nonlinear polarization envelope can write: 

    AP(z, t) = �̃�(PNL(z, t))e−iβ0z+iω0t 

    =
χ2

2
[A2eiβ0z−iω0t + 2AA∗e−iβ0z+iω0t ]

+
 +

3χ3

4
[|A|2A + |A|2A∗e−2iβ0z+2iω0t +

1

3
A3e2iβ0z−2iω0t]+                                                                                    

(2-29) 

where �̃�(PNL(z, t)) is the analytic signal for the nonlinear polarization, the ’+’ subscript indicates 

that only the positive frequencies must be accounted for.  By using operated in the time domain by 

the Hilbert transform, the  A∗2
 and A∗3

 term are no longer present. 

We can write Eq. (2-21) for the analytic signal envelope A, which only positive frequencies, 
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i ∂ξA + D̂(i ∂τ)A = −
χ2

2
i

ω0

2cε0n(ω0)
[A2eiβ0z−iω0t + 2AA∗e−iβ0z+iω0t ]

+
− i

ω0

2cε0n(ω0)

3χel
(3)

4
[|A|2A +

|A|2A∗e−2iβ0z+2iω0t +
1

3
A3e2iβ0z−2iω0t]

+
                                  (2-30) 

This nonlinear envelope equation (2-30) provides a powerful means of describing light pulse 

propagation in nonlinear media. The right first term in the first square brackets is responsible for 

second harmonic generation (SHG) which only positive frequencies. But the second term AA∗ so 

called three wave mixing (TWM) like term has both the positive and negative frequencies usually in 

cubic media. This term acts as the TWM process. In the second square brackets, the first |A|2A  is 

typical self-phase modulation term. The interaction between positive and negative frequencies 

|A|2A∗  term was proved to explain the formation of the negative-frequency resonant radiation 

emitted by optical solitons by Matteo Conforti [8]. The  
1

3
A3 term is responsible for third harmonic 

generation (THG).  

2.6 Couple Analytic Wave Equations (CAWEs)  

NAEE can correctly describe the nonlinear interaction between the positive and the negative 

frequency parts of the spectrum of optical pulses. However, in the quadratic nonlinear medium the  

AA∗  called TWM like term brings more physical, such as SHG, SFG, DFG etc. Such an interaction 

is able to generate phase-matched TWM radiation that would not exist in any model based on the 

conventional envelope equation. For one NAEE is not able to distinguish the detailed physical 

processes.  

Thus, in this section work we introduce the CWEs defined complex envelope that is able to capture 

the rich interaction between positive and negative frequency components in quadratic nonlinear 

medium during the propagation of an ultrashort pulse. In order to investigate these TWM process, 

here we ignore all of the 3-order nonlinearity, such as Kerr and Raman nonlinearity. 
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Now, we expand the electric field into waves propagating at the fundamental (FF) and second 

harmonic (SH) frequencies which we assume the FF and SH spectra do not overlap. For the 

noncritical SHG process, the FW and SH have the same polarization direction. 

The FW can be written as: 

   E1(z, t) = [A1(z, t)e−ik(ω1)z+iω1t + c. c]/2,                                      (2-31) 

and then the SH is: 

                E2(z, t) = [A2(z, t)e−ik(ω2)z+iω2t + c. c]/2,                                     (2-32) 

where ω2 = 2ω1, c.c. represents the complex conjugate term since the electric field is real-valued. 

The quadratic nonlinear polarization is： 

                                         PNL (z, t) = χ2[E1(z, t) + E2(z, t)]2 

=
χ2

4
[2A1

∗ A2e−i[k(ω2)−k(ω1)]z+iω1t + 2A2
∗ A1e−i[k(ω1)−k(ω2)]z−iω1t+… 

+A1A1
∗ +   A1A1e−i2k(ω1)z+iω2t + A1

∗ A1
∗ ei2k(ω1)z−iω2t+A2A2

∗ ]        (2-32) 

The nonlinear polarization envelope for the FW is: 

                                 AP,1(z, t)=�̃� (PNL,1(z, t)) eik(ω1)z−iω1t 

                                           =
χ2

4
[4A1

∗ A2e−i∆kz + A1A1
∗ eiβ1(ω1)z−iω1t ]

+
                                     (2-33) 

The nonlinear polarization envelope for the SH is 

                                                  AP,2(z, t) = �̃� (PNL,1(z, t)) eiβ1z−iω1t 

=
χ2

4
[ 4A1A1ei∆kz + A2A2

∗  eiβ2z−iω2t]
+

                            (2-34) 

where the phase match between the FW and SH is ∆k = k(ω2) − 2k(ω1) ,  PNL,1(z, t) and 

PNL,2(z, t) respectively represents the nonlinear polarization regarding the FW and the SH. In these 

expanded equations, terms regarding the FW should has the carrier wave term eiω1t and the SH 

has eiω2t. 
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Substituting envelopes (2-32), (2-33) into Eq. (2-18), the full CWEs regarding the quadratic SHG 

by the analytic signal are derived, i.e.: 

 ∂A1(ξ,τ)

∂ξ
+ iD1A1(ξ, τ) =  i

χ(2)ω

4cn(ω1)
(ω1 − i

 ∂

∂τ
) [4A1

∗ A2e−i∆kξ + A1A1
∗ e−i∆kpgξ−iω1τ    (2-35) 

 ∂A2(ξ,τ)

∂z
+ (−d12

 ∂

∂τ
+ iD2)A2(ξ, τ) =

 
− i

χ(2)ω

4cn(ω2)
(ω2 − i

 ∂

∂τ
)[ 4A1A1ei∆kz + A2A2

∗ eik(ω2)z−iω2τ]+     

(2-36) 

where the group velocity factor  ∆kpg = k1(ω1)ω1 − k(ω1),the dispersion operators are :  D1,2 =

∑
1

m!

dmβ(ω0)

dωm
∞
m=2 (−i

∂m

∂τm),  and the group velocity mismatch  d12  is defined as  d12 =  k1(ω1) −

 k1(ω2). 

2.7 Conclusion 

    As a conclusion, in this chapter we derived the models for pulse propagations in nonlinear media. 

NWEFs are derived from the Maxwell equation with the SVSAA which proved the a generalized 

model for pulse propagations in nonlinear media. By using analytic signal in the optical field, the 

NAEE is derived which can correctly describe the nonlinear interaction between the positive and 

the negative frequency parts of the spectrum of optical pulses. To separate the  AA∗  term, the 

analytic envelope dynamics of the FW and the SH are both formulated with analytic signal.  
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3.1 Introduction 

The optical soliton is remarkably robust as it can both retain its shape despite dispersive or 

dissipative effects and survive wave collisions. Yet it is quite susceptible to perturbations as it can 

shed phase-matched resonant radiation to a so-called soliton-induced optical Cherenkov wave (or 

dispersive wave) when perturbed by higher order dispersion [1]. On the other hand, the soliton can 

also act as a potential barrier when colliding with a linear (i.e. dispersive) wave, creating the 

analogy to an optical equivalent of an ”event horizon” [6]. Such a collision can be well understood 

by generalizing the Cherenkov phase-matching condition – degenerate four wave mixing (FWM) – 

to non-degenerate FWM where a soliton interacts with two linear dispersive waves [8]. This 

interaction is mediated by cross-phase modulation (XPM): the collision between the soliton (ωs) 

and a linear ”probe” wave ( ω𝑝 ) can become resonantly phase-matched to a new frequency 

(the ”resonant” wave ω𝑟 ) according to the FWM phase-matching condition. This frequency-

converts the probe to the resonant wave, which – when completely depleting the probe – gives rise 

to the peculiar appearance of the probe reflecting on the soliton: when the probe group velocity is 

higher than the soliton, the resonant wave group velocity will be lower than the soliton, and 

therefore travel away from the soliton after formation. This frequency-conversion process therefore 

in time domain leads to an apparent reflection of the probe on the soliton. 

Soliton-probe collisions have been studied in fibers, which have a positive Kerr nonlinearity. 

However, through cascaded (strongly phase-mismatched) quadratic nonlinear interactions an 

effective negative Kerr-like nonlinearity may be generated (in bulk this corresponds to a self-

defocusing effect) [12]. As a consequence soliton formation requires normal dispersion [13], and 

Cherenkov phase-matching naturally occurs towards the red side of the soliton spectrum [15]. This 

allows for efficient near- to mid-IR conversion [16]. 

In this chapter, we study the collision of near-IR probe waves and self-defocusing solitons to 

generate long-wavelength resonant waves. The self-defocusing soliton may reflect the probe wave 
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when the probe XPM term is negative, and this is possible if the sum-frequency generation (SFG) 

between soliton and probe is detuned sufficiently away from its phase-matching point to induce a 

negative cascaded XPM term.  

3.2 Theoretical background 

Let us first stress that the code we use models the o-and e-polarized electrical fields and include all 

possible χ（2） and  χ(3) interactions. However, an analytical understanding of the processes behind 

the interaction is more convenient in the slowly varying envelope approximation. We will now 

consider the interaction of a strong soliton envelope Es at the frequency ωs and a weaker (but not 

weak) probe envelope Ep at the frequency ωp. Let us focus on the two equations for the soliton and 

probe and disregard dispersion for the moment. For the soliton 

idzEωs
+

ωsdeff

cno(ωs)
[Eωs

∗ E2ωs
eiΔkωs

SHGz + Eωp
Eωs−ωp

e
−iΔkωs−ωp

DFG z
+ Eωp

∗ Eωs+ωp
e

iΔkωs+ωp
SFG z

] 

              +
3ωs

8cno(ωs)
Eωs

[χSPM
(3)

|Eωs
|

2
+ 2χXPM

(3)
|Eωp

|
2

] = 0                                    (3-1) 

where no is the o polarized refractive index, modelled by the BBO Sellmeier equations. Here we 

have only included the type I oo → e SHG, SFG and DFG possibilities, all having the same 

effective nonlinearity 

deff(θ, ∅) = d31sin θ − d22 cosθ sin 3∅                                    (3-2) 

For the cut we use this is optimized for ∅ = −π/2, d22/d31 < 0, and this implies that deff = 0 

for the type II interaction oe → e and the type 0 interaction oo → o. For the cubic terms only 

included the XPM terms that involve the strong soliton and probe fields, and not the weak e-

polarized SHG, SFG and DFG modes. We also note that even if BBO is anisotropic then the XPM 

term between two o-polarized modes is the same as the SPM term, i.e. χSPM
(3)

= χXPM
(3)

= c11. In this 

identity Miller’s scaling is neglected, as it actually is in our code (a single frequency-
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independent χjk
(3)

 is used for each tensor element). However, for clarity let us keep them separated, 

as one could imagine cases where the probe is not the same polarization as the soliton. For the 

probe we equivalently have 

idzEωp
+

ωpdeff

cno(ωp)
[Eωp

∗ E2ωp
e

iΔkωp
SHGz

+ Eωp
Eωs−ωp

e
−iΔkωs−ωp

DFG z
+ Eωp

∗ Eωs+ωp
e

iΔkωs+ωp
SFG z

] 

+
3ωs

8cno(ωs)
Eωs

[χSPM
(3)

|Eωs
|
2

+ 2χXPM
(3)

|Eωp
|

2
] = 0                        (3-3) 

The phase-mismatch coefficients are: 

∆kωj
SHG(θ) = ke(2ωj, θ) − 2ko(2ωj) 

                    ∆kωj
SFG(θ) = ke(ωs+ωp, θ) − ko(ωs) − ko(ωp) 

∆kωj
DFG(θ) = ko(ωs) − ko(ωp) − ke(ωs − ωp, θ)                      (3-4) 

where ke(ω, θ) = ne(ω, θ)ω/c and as per usual ne(ω, θ) = [cos2 θ/no
2 + sin2 θ/ ne

2(ω)]−1/2, ne(ω, θ) is 

the BBO e-polarized refractive index. In what follows we drop the explicit dependence of the ∆k′s 

and deff on θ and ∅. 

Let us now write the basic plane-wave equations for the SHG, SFG and DFG e-polarized modes, 

disregarding irrelevant quadratic contributions (i.e. the ee → e type 0 interaction, which is very 

weak since it will be heavily phase mismatched and the relevant deff  is not as high as d33 in, e.g., 

LiNbO3), cubic nonlinearities (which we assume to a very good approximation to be irrelevant for 

the harmonics, as the phase mismatch is larger and thus their intensities too low) and chromatic 

dispersion (we are only interested in the nonlinear terms at the moment). 

 idzE2ωj
+

2ωjdeff

cne(ωj,θ)

1

2
Eωj

2 e
−iΔkωj

SHGz
= 0                                                (3-5) 

idzEωs−ωp
+

(ωs−ωp)deff

cne(ωs−ωp,θ)
EsEωp

∗ e
iΔkωs−ωp

DFG z
= 0                                (3-6) 

idzEωs+ωp
+

(ωs+ωp)deff

cne(ωs+ωp,θ)
EsEpe

−iΔkωs+ωp
SFG z

= 0                                (3-7) 

With the usual cascading ansatz ∆kL ≥ 2π we can find the harmonic fields in the cascading limit.  
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E2ωj
= −

2ωjdeff

cne(ωj,θ)Δkωj
SHG Eωj

2 e
−iΔkωj

SHGz
                                               (3-8) 

Eωs−ωp
=

(ωs−ωp)deff

cne(ωs−ωp,θ)Δkωs−ωp
DFG EsEωp

∗ e
iΔkωs−ωp

DFG z
                                 (3-9) 

idzEωs+ωp
=

(ωs+ωp)deff

cne(ωs+ωp,θ)Δkωs+ωp
SFG EsEpe

−iΔkωs+ωp
SFG z

                                 (3-10) 

When plugging these into Eqs. (3-1)-(3-3) we get 

idzEωs
+

3ωs

8cno(ωs)
Eωs

[χeff,SPM
(3)

(ωs)|Eωs
|

2
+ 2χeff,XPM

(3)
|Eωp

|
2

] = 0                       (3-12) 

  idzEωp
+

3ωp

8cno(ωp)
Eωp

[χeff,SPM
(3)

(ωp) |Eωp
|

2
+ 2χeff,XPM

(3)
|Eωs

|
2

] = 0                      (3-13) 

  χeff,SPM
(3)

(ωj) = χSPM
(3)

+ χcas
(3),SHG

(ωj)                                          (3-14) 

     χeff,XPM
(3)

= χXPM
(3)

+ χcas
(3),SFG

(ωs + ωp) + χcas
(3),DFG

(ωs − ωp)                           (3-15) 

      χcas
(2),SHG

(ωj) = −
8ωjdeff

2

3cne(2ωj,θ)Δkωj
SHG                                 (3-16) 

χcas
(2),SFG(ωs + ωp)  = −

4(ωs+ωp)deff
2

3cne((ωs+ωp)θ)Δkωs+ωp
SFG                                 (3-17) 

χcas
(2),DFG(ωs − ωp)  = −

4(ωs−ωp)deff
2

3cne(ωs−ωp，θ)Δkωs−ωp
DFG                               (3-18) 

In the field normalized to the intensity case we have  Aωj
= Eωj√2/ε0cno(ωj) , j = s, p and  

idzAωs
+

ωs

c
Aωs

[n2,eff
SPM(ωs)|Aωs

|
2

+ 2n2,eff
XPM |Aωp

|
2

] = 0                           (3-19) 

idzAωp
+

ωp

c
Aωp

[n2,eff
SPM(ωp) |Eωp

|
2

+ 2n2,eff
XPM|Aωs

|
2

] = 0                        (3-20) 

where       n2,eff
SPM(ωj) = n2,Kerr

SPM (ωj) + n2,cas
SHG (ωj)                                                                          (3-21) 

n2,eff
SPM = n2,Kerr

XPM + n2,cas
SFG (ωs + ωp) + n2,cas

DFG (ωs − ωp)                               (3-22) 

  n2,Kerr
SPM (ωj) =

3χSPM
(3)

4ε0cno(ωj)
                                                            (3-23) 

n2,Kerr
XPM (ωj) =

3χXPM
(3)

4ε0cno(ωs)no(ωp)
                                                  (3-24) 

while the cascading contributions are 
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ncas
(2),SHG(ωj) = −

2ωjdeff
2

ε0c2no
2(ωj)ne(2ωj)Δkωj

SHG                                              (3-25) 

ncas
(2),SFG

(ωs + ωp) = −
(ωs+ωp)deff

2

ε0c2no(ωs)no(ωp)ne(ωs+ωp,θ)Δkωs+ωp
SFG                             (3-26) 

ncas
(2),DFG(ωs − ωp) = −

(ωs−ωp)deff
2

ε0c2no(ωs)no(ωp)ne(ωs−ωp,θ)Δkωs−ωp
DFG                             (3-27) 

A requirement for the soliton to ”reflect” the probe is that the potential imposed by the soliton on 

the probe is scattering, i.e. a barrier. As the probe is launched in the anomalous dispersion regime, a 

scattering potential requires that the XPM effective nonlinear index of the probe ( n2,Kerr
XPM  ) is 

negative, i.e. self-defocusing. As we showed above this has three contributions: 

 n2,eff
XPM = n2,Kerr

XPM + ncas
(2),SFG(ωs + ωp) + ncas

(2),DFG(ωs − ωp)                        (3-28) 

viz. the material Kerr XPM as well as cascaded SFG and DFG between the soliton and probe. 

 
Fig.3-1. The induced cascaded nonlinear refractive indices vs. the SHG phase-mismatch parameter (controlled 

by the crystal angle θ ),calculated for λs = 1.1 μm  and λp = 1.65 μm . The domains are divided as follows: 

(1+4+5) Effective self-focusing SPM regimes (n2,eff
SPM(ωs) > 0), so solitons cannot be excited; (2+3) Effective self-

defocusing SPM regimes (n2,eff
XPM(ωs) < 0 ), i.e. soliton regimes; (1+2+5) positive XPM regimes (n2,eff

XPM(ωs) > 0); 

(3+4) negative XPM regimes (n2,eff
SPM(ωs) < 0); (1+2) resonant nonlocal cascaded SHG regimes; (3+4+5) non-

resonant nonlocal cascaded SHG regimes. 
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In Fig. 3-1 we show how the crystal tuning angle θ controls the regimes; the self-defocusing 

soliton can only be excited in regimes (2+3). In turn the effective XPM term is only negative in 

regimes (3+4); at the boundary to regime (2) it becomes phase matched, and thus in (1+2) it is 

positive. Coincidentally the boundary between regimes (2) and (3) also marks the transition where 

the cascaded SHG becomes non-resonant, which it is in regime (3+4+5). In the non-resonant regime 

the cascading is ultrabroadband and induces minimal self-steepening on the soliton. Thus, for the 

wavelengths and tuning angles considered here, ncas
(2),DFG

(ωs − ωp) is negligible due to a large phase 

mismatch. Therefore the XPM scattering potential sign and magnitude is by and large a competition 

between the material Kerr XPM effect and the cascaded SFG effect. 

3.3 The general FWM phase-matching condition 

The general FWM phase-matching condition is 

klin(ωr) = ksol(ωr) + J[klin(ωr) − ksol(ωp)]                                        (3-29) 

where klin(ω) describes the dispersion relation of the linear wave (in bulk media simply determined, 

e.g., by the Sellmeier equation). ksol(ωr) = klin(ωs) + (ω − ωs)/vg + qsol is the soliton dispersion 

relation; its non-dispersive nature is reflected in the fact it is simply a wave packet with a constant 

group velocity vg. Its accumulated nonlinear phase qsol will cancel out for the J = +1 case that we 

will focus on here. The parameter J switches between the degenerate case (J = 0, Cherenkov 

radiation and the non-degenerate case (J = ±1, where the presence of the probe at frequency ωp 

invokes the FWM resonant phase-matching condition). In a BBO quadratic nonlinear crystal (β-

barium borate, BaB2O4) the resonant waves are phase-matched in the mid-IR beyond λ = 2.0 μm, 

as seen from the dispersion relations in Fig. 3-2 for the main case considered here, namely a 1.65 

μm probe colliding with a 1.1 μm soliton. 



 

27 

 

 

Fig. 3-2 (a) The dispersion relations for BBO in frequency domain, reported in the soliton group-velocity frame. 

Black line: left-hand side of Eq. (3-29), colored lines: right-hand side of Eq. (3-29), taking a soliton at λs =

1.1 μm and a probe at  λp = 1.65 μm. ”A” and ”N” denote regimes with anomalous and normal dispersion, 

respectively. (b) The group velocities of a linear wave (black) and the soliton at λs = 1.1 μm (blue). 

3.4 Mid-IR femtosecond frequency conversion  

 
The BBO crystal is assumed cut for type-I second harmonic generation (SHG), where two o-

polarized photons at the fundamental wave (FW) frequency ω2 generate a second-harmonic (SH) e-

polarized photon at the frequency   ω1 = 2ω2. The numerics use the nonlinear wave equations in 

frequency domain [18] model; the values of the χ(2) and  χ(3)tensor components were chosen from 

[19], and the Raman effect is neglected as it is usually considered weak in BBO. Here we pump in 

the o-wave and through phase-mismatched SHG to the e-wave a nonlinear phase shift accumulates 
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on the pump pulse, which we exploit to excite a self-defocusing soliton. Importantly, since we also 

pump with a weak o-polarized probe wave, the numerical model also includes any possible χ(2) 

interaction, such as sum- and difference frequency generation (SFG and DFG), and both inter- and 

intra-polarization (i.e. type 0, I and II) interactions. For simplicity the BBO mid-IR material loss is 

neglected. 

 

Fig.3-3 Evolution of the o-polarized field in (a) time domain (normalized intensity of the electrical field envelope) 

and (b) wavelength domain. (c) The dispersion curves of Fig. 3-2(a) in wavelength domain for λs = 1.1 μm (thick) 

and λs = 1.075 μm(thin). Input pulses: 50 fs FWHM@λs = 1.1 μm, I1,in = 200 GW/cm
2
 (soliton) and 50 fs 

FWHM@ λp = 1.65 μm , Ip,in =5 GW/cm
2
, T =150 fs (probe). The BBO crystal had ∆kω1

SHG = 60mm−1(θ =

18.8° and φ = −90°).the SHG phase mismatch ∆kω1
SHG = ke(2ω1, θ) − 2ko(ω1) small enough; (b) the group-velocity 

dispersion (GVD) must be normal [ko
(2)

(ω1) > 0], which in BBO means λ1 < 1.488 μm; (c) the effective soliton 

order [21] Neff ≥ 1,where Neff
2 = LDω1Iin|n2,eff

SPM(ω1)|/c, I1,in = ε0n1(ω1)c|E1,in|
2

/2 and LD = T1
2/k0

(2)
(ω1). 
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The collision is modelled by launching two co-propagating o-polarized fields E1,in cos(ω1t) sech(t/

T1) + Ep,in cos(ωpt) sech[(t − τ) /Tp], where τ is the delay time between them and we will use identical 

input pulse durations T1 = Tp.A self-defocusing soliton can form at ω1 = ωs if the following criteria 

are fulfilled:(a) The effective Kerr self-phase modulation (SPM) nonlinearity n2,eff
SPM(ω1) =

n2,casc
SHG (ω1) + n2,kerr must be negative, and this is controlled by n2,casc

SHG (ω1)  ∝  −deff
2 /∆kω1

SHG by making 

Fig. 3-3 shows the results from a typical simulation. The BBO crystal angle is suitably chosen to 

give nonresonant negative SPM and XPM nonlinearities (which occurs between 17.5° < θ < 20.0° . 

The soliton input intensity is chosen so Neff = 2.0, allowing a higher-order self-defocusing soliton 

to form. A weak probe is launched in the anomalous dispersion regime, which from Fig. 3-2(b) 

implies that its group velocity is larger than the soliton. It is therefore suitably delayed at the input 

so the interaction occurs over realistic crystal lengths. The time plot in (a) shows the probe colliding 

with the trailing edge of the strong soliton at around 10 mm. After the collision a reflected wave 

emerges; this is the resonant wave phase-matched to the soliton through the negative XPM 

nonlinearity. According to Fig. 3-2(b) the resonant wave will have a lower group velocity than the 

soliton and this explains why it is traveling away from the soliton trailing edge. In wavelength 

domain (b) the normalized spectral density (SD, calculated as S(λ) = |A(ω = 2πc/λ)|2λ2/c) shows 

that the probe is almost completely converted to the resonant wave, and this occurs between 10 and 

20 mm propagation. It is exactly in this propagation range the collision takes place in time domain. 

There is a good agreement between the predicted phase-matching frequency of the resonant wave, 

which is evident from the wavelength domain phase-matching curves plotted in (c).We note that the 

soliton blue-shifts slightly during propagation as a consequence of cascading-induced self 

steepening. This means that at the final stage  ωs > ω1, and this leads to a new set of soliton curves 

for the phase matching conditions, indicated as thin lines in (c). As these represent solitons they are 

in frequency domain still straight curves, but they are now tilted instead of flat as the group velocity 
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is different from that at ω1; in wavelength domain this means that they are no longer represented as 

straight curves, but this is simply due to the λ ∝ 1/ω  relation. These curves explain how the 

resonant wave is found slightly more red-shifted than the ωs = ω1 case predicted. We also see that 

the Cherenkov (J = 0) case can be seen in the spectrum, accurately predicted by the blue-shifted 

soliton phase-matching condition. This is the degenerate case, where the soliton alone becomes 

phase-matched to a resonant wave. 

 

Fig.3-4. Cuts from Fig. 3-3: (a) the normalized o- (thick) and e-polarized (thin) SD; (b) the band-pass filtered 

probe and (c) the long-pass filtered resonant wave envelopes vs. time.(d+e) Normalized energy vs. z in the 

collision (full) and no collision (dashed) cases of (d) the soliton and (e) the entire e-polarized spectrum, the 

filtered probe and resonant waves. 
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Detailed spectral and temporal cuts are shown in Fig.3-4 (a) shows the SD at input, during (z = 

15 mm) and after collision (z = 30 mm). Since the soliton order is above unity, the o-polarized 

spectra (thick lines) show that the soliton at collision is considerably extended towards the probe 

spectrum, and the final spectrum shows that the probe is almost completely depleted leaving only 

the J = +1 and J = 0 resonant waves. The o-polarized third harmonic is also evident, and in the e- 

polarized spectra (thin lines) the various SHG and SFG components are evident as well. The same 

cuts are shown in time domain focusing in (b) on the probe (using a band-pass filter) and in (c) on 

the resonant wave (using a long-pass filter). The probe at 15 mm is around half depleted, giving 

most of its depleted energy to the resonant wave that is located at the same temporal position. After 

30 mm the weak probe does not show on a linear scale (in the plot it is amplified 10 times). The 

resonant wave is now delayed 400 fs and it is reduced in intensity and increased in time due to 

dispersion. It has a Gaussian profile since it is a linear and not a soliton wave. Finally (d+e) show 

the energy, normalized to the total input energy, of the soliton, probe and resonant waves.The 

soliton initially looses around 2% of its energy through SHG to the e-polarized SH [(e) also shows 

the total e-polarized energy], causing the initial ripples at z < 1 mm. The soliton-probe interaction 

occurs between z = 5 − 20 mm, and the resonant wave builds up in energy. After 20 mm the probe 

is depleted. The energy ratio (conversion efficiency) of the resonant wave to the probe is around 

0.72, close to the limit posed by the photon-to-photon ratio ωr/ωp = 0.73  as dictated by the 

Manley-Rowe relation. The energies from a simulation where the probe never collides with the 

soliton (dashed lines) show as expected no energy at the resonant wave and the probe remains 

unaffected. 

    Fig. 3-4 shows the probe and resonant wave energies vs. Neff (controlled by I1,in) for (a) λp =

1.65 μm fixed and four different Ip,in values, and (b) Ip,in = 10 GW/cm2 fixed and three different 

λp values. In (a) the complete depletion of the probe happens for intensities up to 30 GW/ cm2, all 
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ending up at the same plateau, whose level is dictated by the Manley-Rowe relation (as ωp is fixed). 

For Ip,in = 40 GW/cm2 the probe conversion is incomplete, which is a result of nonlinear spectral 

broadening occurring before collision. It is therefore important that the probe does not experience 

any nonlinear phase shifts before the collision. In (b) a fixed moderate probe intensity was therefore 

used to ensure complete depletion of the probe. Since different probe frequencies are used the 

plateau levels vary, in accordance with the Manley-Rowe relation. Clearly probe depletion requires 

follows a logistic sigmoid function, whose slope scales as Ip,in
−0.5and the midpoint Neff,0 increases 

linearly with Ip,in and decreases linearly with  λp. This latter scaling comes from the fact that as λp 

increases it approaches the zero group-velocity mismatch (GVM) wavelength, where the probe and 

soliton have identical group velocities, see Fig.3-2 (b). The detuning from GVM has traditionally  

 

Fig. 3-4. The probe and resonant wave energies (normalized to probe input energy) vs. Neff at z = 40 mm. (a) 

Fixing λp = 1.65μm and (b) fixing Ip,in = 10 GW/cm2. 
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been kept small to get a large reflection, with the dilemma that the resonant wavelength is almost 

identical to the probe [see again Fig. 3-2(b)] and the collision will only take place through very 

longinteraction distances. Still a decent conversion should be possible even with large detunings 

from the zero GVM point. 

The emission wavelength of the mid-IR resonant wave is tunable from λ = 2.2 − 2.4μm through 

changing the probe wavelength, see Fig. 3-5. Note that the mid-IR wave remains quite significant 

even when probe-depletion is incomplete and when IR losses are taken into account. Besides, this 

process can be generalized to mid-IR transparent crystals like LiNbO3, where the phase matching 

point will also lie further into the mid-IR. 

 

Fig.3-5. Long-wavelength part of the o-polarized SD for various probe wavelengths shown after z = 20 mm 

(except λp = 1.75 μm where z = 30 mm) with (thick) and without (thin) IR losses of BBO. The dashed lines show 

the input states. The soliton was the same as in Fig. 3-2 and Ip,in = 10GW/cm2. 

3.5 Conclusion 

In a quadratic nonlinear crystal multiple cascaded nonlinear effects allow firstly the formation of 

a self-defocusing near-IR soliton (through cascaded SHG generating a self-defocusing Kerr-like 

SPM term), which when colliding with a weak near-IR probe induces a cascaded SFG nonlinearity 

generating a self-defocusing Kerr-like XPM term. This allows a resonant mid-IR wave to become 

phase matched. A complete probe-resonant wave conversion is possible when colliding with a 

higher-order soliton, a case which has not been considered before in Kerr systems, and for a given 

soliton wavelength the resonant wavelength is tunable by varying the probe wavelength. Obtaining 
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phase matching further into the mid-IR is possible in other crystals, and interestingly the system 

allows to change the XPM term sign to study the barrier vs. hole potential effect. 
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Three wave mixing resonant radiation in phase-
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4.1 Introduction  

In the nonlinear optics, the balance of the second order fiber dispersion and the nonlinearity can 

lead to formation a soliton, Cherenkov or resonant radiation (RR) emitted by solitons in the 

presence of higher-order dispersion sheds light through a four wave mixing (FWM) resonant 

process to a new frequency, which determined by a phase-matching condition between the 

dispersive resonant radiation and the soliton. The theoretical and experimental studies have 

demonstrated the crucial role of these processes in the expansion of supercontinuum generated in 

nonlinear fibers [2] and nonlinear bulk crystals [7]. 

Theoretical and experimental studies have also shown the mid-IR Cherenkov wave generated by 

the cascaded quadratic solitons through degenerate FWM resonant interaction[8]. In chapter 3, we 

showna non-degenerate FWM in the quadratic crystal, where a soliton interacts with linear waves. 

While in a nonlinear medium without the center of symmetry (quadratic medium), resonant 

radiation results in parametric three-wave mixing (TWM) when two waves create a third wave is 

possible to appear.  

The aim of this chapter is to develop a physical understanding and analytical methods of the TWM 

RR in phase-mismatched quadratic nonlinear crystals. 

4.2 Three wave mixing radiation phase-matching conditions 

We started with study the couple analytic wave equations (CAWEs) in chapter 2, eliminating the 

Kerr nonlinearity and Raman nonlinearity.  

                                                 
 ∂A1(ξ, τ)

∂ξ
+ iD1A1(ξ, τ) 

                   =   i
χ̂e;ee

(2)

4cn(ω1)
(ω1 −   i

 ∂

∂τ
) [4A1

∗ A2e−i∆kξ + A1A1
∗ e−ikpgξ−iω1τ]+                           (4-1) 

                                             
 ∂A2(ξ,τ)

∂z
+ [−d12

 ∂

∂τ
+ iD2]A2(ξ, τ) 

              = −i
χ̂e;ee

(2)

4cn(ω2)
(ω2 −  i

 ∂

∂τ
)[ 4A1A1ei∆kz + A2A2

∗ eik(ω2)z−iω2τ]+                               (4-2) 

In a largely phase mismatched second-harmonic (SH), we assume a SH A2: 
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   A2(ξ, τ) = φ(τ)ei∆kξ                                                   (4-3) 

Inserting the Eq. (4-3) into Eq. (4-1) gives the SH: 

A2(ξ, τ) = −i
χ̂e;ee

(2)

4cn(ω2)∆k
(ω2 −  i

 ∂

∂τ
)ei∆kξ(R(t) ⊗ A1

2) 

                                        = −i
χ̂e;ee

(2)

4cn(ω2)∆k
(ω2 −  i

 ∂

∂τ
) ei∆kξ ∫ dτ′R(t)A1

2(t − τ′)
+∞

−∞
                       (4-4) 

where R(Ω) =
1

√2π
∆k/(

1

2
β2

(2)
Ω2 − d12Ω + ∆k) is the response function, Ω is set by Ω = ω − ω2, 

R(t) is the inverse Fourier transform of the response function. Inserting A2(ξ, τ) into Eq. (4-1), we 

get the nonlinear Schrödinger-like (NLS-like) equation only contain positive frequency in the 

largely phase mismatched SHG process [14]: 

 
 ∂A1(ξ, τ)

∂ξ
+ iD1A1(ξ, τ) =   

χ̂e;ee
(2)

cn(ω1)
(ω1 − i

 ∂

∂τ
) [(−i

χ̂e;ee
(2)

4cn(ω2)∆k
(ω2 − i

 ∂

∂τ
) (A1

∗ A1
2 − iτ𝑅,𝑆𝐻𝐺

′ A1
∗ ∂

∂𝜏
A1

2)) +
1

4
A1A1

∗ e−i∆k𝑝𝑔ξ−iω1τ]
+

                                                  

(4-5) 

where group velocity match(GVM) term τR,SHG
′ = 2|d12|/∆k,which act as Raman-like redshift of 

the FW. In our case, we eliminated the GVM term, thus the NLS-like equation only have the 

positive frequency can be written as : 

           i
 ∂A1(ξ,τ)

∂ξ
− D1A1(ξ, τ) = [Ncasc

2 |A1|2A1 + κ2A1A1
∗ e−i∆kpgξ−iω1τ]

+
                 (4-6) 

The pre-factor is understood as the dimensionless soliton number Ncasc
2 =

χ̂e;oo
(2) 2

4∆kc2n(ω1)n(ω2)
 and 

κ2 =
χ̂e;oo

(2)

4cn(ω1)
. 

In order to derive three wave mixing radiation phase-matching conditions between a soliton and 

its resonant radiations, we follow a standard procedure described in [5].We look for solutions of Eq. 

(4-5) in the form: 

A1(ξ, τ) = F(τ)eiqξ + g(ξ, τ)                                               (4-7) 
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where F(τ) is the envelope of the optical soliton, q is the shift of the soliton wave number and g is a 

small  amplitude  generated dispersive wave . 

 After substitution into Eq. (4-5), we only consider first order terms for simplicity. Assuming that g 

is a linear wave we derive： 

[i ∂ξ + D̂1(i ∂τ)]g + Ncasc
2 F2(τ)g∗(ξ, τ)e2iqξ + 2Ncasc

2 F2(τ)g(ξ, τ)

+ κ2F(τ)g∗(ξ, τ)e−iω1τ+i∆kpgξ+iqξ 

= −[D̂(i ∂τ) + 1/2β2 ∂τ
2]F(τ)eiqξ                                    (4-8) 

Eq. (4-8）is the solution of dispersive wave which should have continuum mode on the right-hand 

side. Thus, the phase-matching conditions are easily found: 

D1(Ω) = q                                                                         (4-9) 

 D1(Ω) = 2q                                                                    (4-10) 

D1(Ω) = 0                                                                      (4-11) 

  D1(Ω) = q +∆kpg                                                           (4-12) 

Equation (4-9) is Cherenkov resonances, (4-10) and (4-11) are degenerated FWM resonances driven 

between the solitons and generated RR, seeing F2(τ)g∗(ξ, τ)  and F2(τ)g(ξ, τ) terms. The 

term  F(τ)g∗(ξ, τ) contain both positive frequency and negative frequency, which is the typical three 

wave mixing interaction. The g∗(ξ, τ) operator is the classical analogues of the annihilation operator 

in quantum optics, which correspond to absorption and emission of a photon. Thus, this 

F(τ)g∗(ξ, τ) interaction called like difference frequency generation TWM-RR (TWM-RR 

(DFG)).The TWM-RR(DFG) only appears in quadratic nonlinear medium when match the phase 

matching condition (4-12). The TWM-RR(DFG) is strongly detuned to longer wavelength 

(−ω1 represents lower shifted frequency relative to the pumping frequency). Thus, TWM-RR (DFG) 

needs the FW dispersion operator D1(Ω) < 0. But in the bulk crystal we have examined the group 

velocity factor Δkpg > 0, thus TWM-RR (DFG) would not happen. However, there might well be 
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waveguide structures with a range of frequencies for which Δkpg < 0 or slowdown of group 

velocity of light by employing electro-optic effect. 

 For the SH which only have linear wave, 

[i∂ξ+ −d12
 ∂

∂τ
+ iD2]g =   −i

χ̂e;ee
(2)

cn(ω2)
(ω2 −  i

 ∂

∂τ
)F2(τ)ei2qξ+i∆kξ                     (4-13) 

The phase matching condition is： 

     D2(Ω) − d12Ω = Δk                                                      (4-14) 

Equation (4-14) represents the phase-matching condition of the non-solitonic radiation due to SFG, 

called TMW-RR (SFG) or nonlocal side which has been experimental and theoretical proved [14]. 

4.3 Three wave mixing radiation with linear pump 

Parametric amplification based on three-wave mixing is a fundamental process in nonlinear 

optics [17] .They have been widely application for temporal compression, ultrafast all optical 

switching [18]. 

Here, the idea of using cascaded quadratic effects in the SHG process to balance dispersion and 

nonlinearity as to produce solitons. Three-wave resonant interaction is possible in the presence of 

the quadratic nonlinearity. We study parametric generation of new frequencies resulting from TWM 

of solitons and linear wave in quadratic crystal. The phase-matching conditions are expected to be 

different from those generated by the mixing of cw’s.  

A particular case of the three-wave interaction is known in nonlinear optics as type I birefringent 

(o+o→e). The quadratic crystal is assumed cut for type-I SHG for generating the self-defocusing 

soliton field A1, with the weak linear wave A2 input. The interaction is modelled by launching two 

co-propagating o-polarized fields,the generated wave A3 can be described as: 

 ∂A3(ξ,τ)

∂z
+ [−d13

 ∂

∂τ
+ iD3(Ω)]A3(ξ, τ) = χ̃(2) A1A2ei ∆kSFGξ                          (4-15) 

The dispersion operator in Eq. (4-15) is given by: 
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D3(Ω) = ∑
Ωmke

(m)
(ω3)

m!
∞
m=2                                                        (4-16) 

where the phase match of sum frequency ∆kSFG = ke(ω3) − ko(ω1) − ko(ω2),  ko
(1)(ω1) is the 

group velocity of the soliton and d13  is the GVM between the soliton and the SFG ω3 , d13 =

ko
(1)(ω1) − ke

(1)(ω3). 

We launched soliton with optical field A1(ξ, τ) = F(τ)eiqξ, and the weak probe is the linear wave 

which can be written as A2 = g(ξ, τ).For the A3, there only have solution for the linear wave, thus 

we derive, 

                                                      [i∂ξ − d13
 ∂

∂τ
+ iD3]g 

= χ̃(2)(τ)F(τ)g(ξ, τ)eiqξ+i∆kSFGξ                                (4-17) 

The SFG between soliton and probe phase matching condition can be described as:  

 D3(Ω) − d13Ω = ∆kSFG + q                                                    (4-18) 
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Figure 4-1. The TWM-linear resonances wavelengths calculated for type I birefringent (o+o→e) in BBO. 

 

The TWM resonances curve k(Ω) = D3(Ω) − d13Ω + ko(ω2) − ke(ω3)  is tunable through θ 

this is indicated with color curves for taken 0.5
o 
larger and smaller. This resonance is driven by the 
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TWM between the solitons and linear wave pump (see terms F(τ)g(ξ, τ) on Eq. (4-17). Therefore, 

we call them TWM-linear resonances. In a BBO quadratic nonlinear crystal TWM resonant waves 

are phase-matched at θ = 21°, as seen from the phase matching curve in Fig. 4-2. (a 1.65 μm probe 

colliding with a 1.1 μm soliton). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 Figure 4-2. Numerical simulations use the NWEF. (a) Evolution of the o-polarized field in time domain and (b) 

wavelength domain. (c) Evolution of the e-polarized field in time domain and (d) wavelength domain. Input 

pulses: 50 fs FWHM @λ𝑠 = 1.1 μm, Iin = 25 GW/cm
2
 (soliton) and 50 fs FWHM@λp = 1.65 μm, Ipr,in = 1.25 

GW/cm
2
,(probe). The BBO crystal had (θ = 21° and φ = −90°). 

 

Fig. 4-2 shows the results from a typical simulation using NWFWs model, the BBO phase-

mismatch (θ = 21°) where the cascaded SHG becomes non-resonance. The soliton with 50 fs 

duration, pumping wavelength at 𝜆0 =1.1 μm, the peak intensity I=25 Gw/cm
2
 to give an effective 

self-defocusing soliton order Neff=2.0. A weak probe with 50fs duration, pumping wavelength at 

𝜆𝑝 =1.65 μm and input intensity Ip=1.25 Gw/cm
2
 is launched in the normal dispersion regime. As 

we expected, the TWM (o+oe) between soliton and linear wave becomes non-resonant, see the 

21O

kSFG

( )a

( )d( )c

( )b

TWM-linear 

TWM-RR(SFG) 
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TWM-linear resonances curve Fig 4-1. The Fig 4-2 (a) and (c) show the propagation FW and SH 

dynamics time domain, (b) and (d) show the propagation FW and SH dynamics wavelength domain. 

Because of GVD, the linear wave approaches the soliton, until it reaches the soliton. When the 

pulses begin to interact, positive cross phase modulation (chapter 3, Fig 3-1) induces a TWM-linear 

resonant wave formed at wavelength 607 nm at length z=15mm. There is a perfect agreement 

between the predicted phase-matching frequencies of the TWM resonant wave, which is evident 

from the wavelength domain phase-matching curves plotted insert Fig 4-2 (d). 
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Figure 4-3 (a) The energy of soliton, (b) the energy of e-pol except the TWM resonant wave (c) the energy of the 

probe and TWM resonant wave (d) the filtered resonant wave envelopes vs. time. 

 

Fig 4-3(a, b, c) show the energy, normalized to the total input energy, of the soliton, probe and 

resonant waves. The energies from a simulation where the probe never collides with the soliton 

(dashed lines) show as expected no energy at the resonant wave and the probe remains unaffected. 
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The soliton-probe interaction occurs between z = 10 − 20 mm, and the TWM resonant wave builds 

up in energy. After 20 mm the probe is depleted. The energy ratio (conversion efficiency) of the 

resonant wave to the probe is around 2.4, which means this is an optical parametric amplification 

process. The photon of the soliton and the probe convert the energy to the TWM resonant wave by 

TWM process. As the Fig 4-3 (d) show, the duration of the TWM resonant wave is in the fs scale.   

4.4 Conclusion 

In conclusion, we have introduced the concept of TWM radiation in the BBO Crystal and 

demonstrated a possibility of the TWM resonant wave created by soliton in quadratic media. The 

parametric amplification process was also demonstrated by the collision of the soliton and a weak 

probe. We believe our results open a new direction in quadratic soliton, and may bring new ideas 

into other fields of nonlinear optics where parametric wave interactions are important. 
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5.1 Introduction  

Periodically poled lithium niobate (PPLN) is a quasi-phase matched material that offers a high 

nonlinear coefficient, high resistance to photorefractive damage and broad spectral transmission 

range (0.35-5.5 μm), allowing efficient wavelength conversion into the mid-IR from low pulse 

energy. Several approaches have been explored for generating the mid-IR pulse based on the PPLN 

crystal, such as optical parametric oscillators (OPOs)[1], difference frequency generation (DFG)[2], 

and optical parametric pulse amplification (OPA)[4], despite the great complexity implementing 

critical phase-matching conditions and synchronous pumping scheme. 

  In this chapter, a defocusing soliton-driven tunable mid-IR optical parametric amplifier is 

proposed in a standard PPLN bulk crystal. It relies only on a single input pulse entering a quadratic 

nonlinear crystal, which is appropriately phase-mismatched so a self-defocusing temporal soliton 

forms. This temporal soliton drives resonant radiation in the mid-IR through a three-wave mixing 

(TWM) process with a large degree of tunability in the wavelength by shifting the grating pitch 

value.  

 5.2   Quasi-phase-matching  

  Quasi phase-matching (QPM) is a very well-known technique in nonlinear optics which relying on 

the periodic modulation of the nonlinear susceptibility in the nonlinear medium. Momentum is 

conserved, that can compensate for the phase-mismatch between the FF and SH wave-number, 

through an additional momentum contribution corresponding to the wavevector of the periodic 

structure. Moreover, QPM structures can be engineered by varying the period, duty cycle of the 

grating, crystal widths and lengths, enabling several applications for efficient frequency conversion, 

high harmonic generation[8], all-optical processing[9], pulse shaping[10], supercontinuum 

generation[11] and other nonlinear processes.  

  The phases mismatch between FW and SH is for the QPM interaction is given by： 
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∆keff = ∆k −
2πm

Λ
  

where Λ is  the poling period,m the QPM order, ∆k is the natural phase mismatch between FW and 

SH. 

   In a QPM device, the second-order nonlinear optical coefficient distributed along the z-axis 

coinciding with the direction of wave-vectors： 

 

Fig 5-1 The device PPLN [13] 

d(z) = dijg(z)                                                                   (5-1) 

where second-order nonlinear coefficient dij = χikl
(2)

/2, χikl
(2)

 is the second-order susceptibility tensor 

and g(z) can take values of ±1 inside the nonlinear medium. 

  By approximating this periodic modulation of g(z) with discrete Fourier series: 

g(z) =∑ Gm
+−∞
m=−∞ e−im

2π

Λ
z
                                                       (5-2) 

where  Gm =
2

mπ
sin (

mπ

2
) is Fourier coefficients. 

5.3   Soliton generation in QPM crystal 

  The cascading quadratic nonlinearity in a material with first-order QPM structure can be writing as: 

  n2,casc = −
2ω1(

2

π
deff)2

ϵ0c2n(ω2)n2(ω1)∆keff
                                                      (5-3) 

which a positive-valued ∆keff  provide self-defocusing in the normal dispersion region. 

  The cubic nonlinearity stemming from the electronic Kerr effect is always characterized through 

the Z-Scan measurement: 
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n2,cubic =
3χ3(ω)

4ϵ0cn2(ω)
                                                                 (5-4) 

LN is reported to have quite strong Raman response [14], fR > 50%, so the competing Kerr 

nonlinear-rity is n2,kerr = (1 −  f𝑅)n2,cubic. 

  The total nonlinearity is given by a combination of competing cascaded second-order nonlinearity 

and cubic nonlinearity： 

n2 = n2,casc + n2,kerr                                                              (5-5) 

The effective soliton order  is Neff
2 = LDω1I0(|n2,casc

2 | − |n2,Kerr
2 |)/c , where I0 is input 

intensity, LD = T0/k1
(2)

(ω)  is the effective dispersion length, k1
(2)

(ω)  is the GVD coefficient of 

FW and T0 is input pulse duration.  Fig 5.2 shows the nonlinearities n2 as a function of the 

wavelength in the LN crystal and PPLN crystal.  

1000 1500 2000 2500 3000

-80

-40

0

40

80

120

ZDW

Wavelength(nm)

n
2
(1

0
-2

0
 m

2
/W
)

 

 

 LN

 PPLN 

 
Fig. 5-2 The nonlinearities as a function of the wavelength in LN and PPLN cut for the interaction (e; ee); quadratic and cubic 

susceptibilities used are [15] d33 = 15.6 (pm/V), c33 = 75 (pm2/V2), fR =0.35 @ 1060nm.The pith Λ = 29 μm.  

5.3 Phase-matching conditions 

   Since the largest quadratic susceptibility in LN is d33, we consider type 0 QPM geometry in this 

quadratic cascading interaction. The analytic signal coupled wave equations governing the 

propagation of the FF and SH waves in the PPLN can be described as: 

                                
 ∂A1(ξ,τ)

∂ξ
+ iD1A1(ξ, τ) = 
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−i
χ̂e;ee

(2)
ω

4cne(ω1)
(ω1 − i

 ∂

∂τ
)[4A1

∗ A2e−i∆keffξ + A1A1
∗ e−i(∆k𝑝𝑔−

2π

Λ
)ξ−iω1τ]+                            (5-6) 

    
 ∂A2(ξ,τ)

∂z
+ [−d12

 ∂

∂τ
+ iD2]A2(ξ, τ) = −i

χ̂e;ee
(2)

ω

4cne(ω2)
(ω2 −   i

 ∂

∂τ
)[ 4A1A1ei∆keffξ]+                            (5-7)     

wherek1(ω1) is the group velocity, the group velocity phase-mismatch factor is  ∆kpg = k1(ω1)ω1 −

k(ω1),D1,2 = ∑
1

m!

dmβ(ω0)

dωm
∞
m=2 (−i

∂m

∂τm) are group velocity dispersion, the group velocity mismatch is 

defined as d12 =  k1(ω1) −  k1(ω2),  χ̂e;ee
(2)

= 2d33 denotes the effective nonlinear coefficient. 

  The nonlinear Schrödinger-like (NLS-like) equation in the largely phase-mismatched SHG process 

in the PPLN can be derived as the standard procedures[16]： 

                                                i
 ∂A1(ξ,τ)

∂ξ
− D1A1(ξ, τ)   

                = [Ncasc
2 |A1|2A1 + κ2A1A1

∗ e−i(∆kpg−
2π

Λ
)ξ−iω1τ]

+
                                        (5-8) 

The pre-factor is understood as the dimensionless soliton number Ncasc
2 =

χ̂e;ee
(2) 2

4∆keffc2ne(ω1)ne(ω2)
  and 

κ2 =
χ̂e;ee

(2)

4cne(ω1)
. 

We look for solutions of Eq. (5-8) in the form 

  A1(ξ, τ) = F(τ)eiqξ + g(ξ, τ),                                                     (5-9) 

where F(τ) is the envelope of the optical soliton, q is the shift of the soliton wave number and g is a 

small amplitude dispersive wave.After substitution into Eq. (5-8), assuming that g is a linear wave 

we derive： 

[i ∂ξ + D1(i ∂τ)]𝑔 + γ2F2(τ)g∗(ξ, τ)e2iqξ + 2γ2F2(τ)g(ξ, τ) + γ22F(τ)g∗(ξ, τ)eiqξ+i(∆kpg−
2π
Λ

)ξ−iω1τ
 

                                     = −[D1(i ∂τ) + 1/2β2 ∂τ
2]F(τ)eiqξ                              (5-10) 

Eq. (5-10) is the solution of dispersive wave which should have continuum mode on the right-hand 

side. Thus, the phase-matching conditions are easily found: 

D1 (Ω) = q,                                                                                   (5-11) 

D1(Ω) = 2q − D1(dw),                                                              (5-12) 
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D1(Ω) = D1(dw),                                                                       (5-13) 

D1 (Ω) = q +∆k𝑝𝑔 −
2π

Λ
.                                                               (5-14) 

where D1(dw) = q , Equation (5-11) is a well-known condition giving the frequencies of the 

resonance waves emitted by the soliton so-called Cherenkov resonances. Equations (5-12) and (5-

13) are degenerate FWM resonances, which are driven between the solitons and dispersive wave 

see F2(τ)g∗(ξ, τ)e2iqξ and F2(τ)g(ξ, τ) terms on the left-hand side of Eq. (5-10). Equations (5-14) 

give negative frequencies regarding TWM (DFG) resonances which depend on the F(τ)g∗(ξ, τ)  

term. 

For the SH only linear wave: 

[i∂ξ+ −d12
 ∂

∂τ
+ iD2]g =

χ̂e;ee
(2)

ω

cne(ω2)
F2(τ)ei2qξ+i∆keffξ                                          (5-15) 

 

 

 

 

 

 

 

 

 

Fig 5-3.The phase matching conditions in PPLN, The soliton wavelength at 1730nm, and the pith Λ = 29 μm. 

The three wave mixing radiation phase matching is： 

                                                 D2(Ω) = ∆keff + 2q 

= d12Ω − ∑
β(m)(ω2)Ωm

m!

+∞
m=2  

Thus, the phase matching condition depends on the F2(τ)ei2qξ+i∆keffξ term can be written as: 
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D1 (Ω) =−∆kpg +
2π

Λ
+ 2q.                                                       (5-16) 

The TWM (DFG) resonances is strongly redshifted with respect to the pump, if  ∆kpg −
2π

Λ
< 0. 

Figure 5-3 shows the phase matching curve D1  (Ω) versus pump wavelength together with its 

intersections with q, −∆kpg +
2π

Λ
 and ∆kpg −

2π

Λ
, which give respectively the RR, TWM (SFG) and 

TWM (DFG) frequencies.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5-4 (a) Contour plot of the spectral evolution of a short pulse in PPLN, obtained by direct simulation of Eq. 

(5-5) and Eq. (5-6) The pulse is pumped at λ0 =1.730 nm, with a peak intensity of 50 GW/cm
2
 and a duration 60 fs. 

All plots are in logarithmic scale. 

 

Here we support the above theory with numerical simulations performed by analytic signal 

coupled equations Eq. (5-5) and (5.6). Fig. 5-4 we show the spectral evolution in the PPLN crystal, 

with a pump wavelength λ = 1.73 μm,, a 60 fs pulse, and peak intensity I=50 GW/cm
2
. Figure 3(a, d) 

show FW and SH spectral evolution obtained by solving Eq. (5-5) and (5.6). Both TWM-RR (SFG) 

and TWM-RR (DFG) emissions are visible; see Fig. 5-4 (a) and (b). Figure 3(c, d) show the same 

( )a ( )b

( )c ( )d

TWM-RR(DFG) 
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simulation as in Fig. 3(a, b) but when switching off the A1A1
∗  term. No TWM-RR (DFG) is 

generated in this case, showing that such radiation is indeed coming from the interaction between 

the positive and the negative frequency spectral components A1A1
∗ . This resonant radiation is the 

standard three wave mixing process; unlike the well know soliton-induced optical Cherenkov 

radiation which due to degenerate four wave mixing. It is here worth to emphasize that ordinary 

coupled-wave envelope equations do not contain the results shown here, in particular the tunable 

mid-IR RR is absent. 

5.4 Experiments and discuses  

 
Figure 5-5 Parametrically tunable mid-IR dispersive wave for various PPLN grating pitch values. 

 

The pump laser is a 1 kHz OPA system and we tune the OPA output wavelength from 1.55 to 

1.85 μm during the experiment, which in normal dispersion region in LN. The pulse duration of the 

pump is around 60 fs. A few pieces of bulk PPLN crystals with multi-grating structures were 

investigated. All spectra (Fig 5-5) were recorded one after another in the same bulk PPLN crystal 

with the pump laser fixed (λ = 1.73 µm, 60 fs FWHM, peak intensity 55 GW/cm
2
), and the pitch 

was varied by displacing the multiple-grating PPLN crystal. The intensity magnitude of each 

recording is therefore absolute and can be related to the other measurements. The inset bars indicate 

the IR absorption bands present in this range when exciting the main IR stretching modes in the 
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ground tone, which, apart from the well-known band for CO2 in the gas phase, include the 

important alkyne and nitrile stretching modes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-6 Top: Typical decade-spanning supercontinuum, here recorded for λ = 1.73 µm, peak intensity 55 GW/cm
2
 

and Λ= 29 μm. Bottom: NFWEs simulation of PPLN propagation. The pump laser was λ = 1.73 µm, 60 fs FWHM, 

peak intensity 55 GW/cm
2
, and the pitch is  Λ= 29 μm 

 

We have simulated the propagation of a pulse of duration 60 fs launched in a 20-mm PPLN with 

a grating pitch value Λ= 29 μm. Numerical simulation used nonlinear wave equations in frequency 

domain model. The supercontinuum spans over a decade (0.4−5.5 μm), practically the entire LN 

transmission range. At z= 5mm coincides with maximum spectral broadening, there is a RR 

emission in the anomalous dispersion regime at 3000 nm. This phenomenon previously observed 

numerically and experimentally in the LN, can be explained as phase-matched resonant transfer of 

energy between soliton and RR [17].The spectrum around 1.0 μm stems from an up-converted RR 

in the SH sideband [18].The most striking observation in Fig. 5-6 is the strong emission of a band of 
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mid-IR light at ~5μm, which wavelength longer than the RR, exactly like in the experiment (see Fig 

5-5). We verified that it was caused by the TWM phase-matching to the soliton. The recorded MIR 

tuning data shows excellent agreement with the theoretically calculated curve, as shown in Fig.5-7. 

 
 

Fig. 5.7. The tuning curves predicted by theory, showing excellent agreement with the experimental data. 

5.5 Conclusion  

 
In conclusion, we demonstrate the concept by pumping a standard PPLN bulk crystal with an 

energetic near-IR femtosecond pump laser, and show efficient generation of mid-IR broadband 

pulses, tunable in the 4.0-5.5 µm regimes simply by changing the pitch length of the poling. Since 

the whole process requires only a single near-IR pump, it constitutes an entirely different approach 

to ultrafast mid-IR parametric amplification.   
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6.1 Introduction  

Recently, there is a growing interest in supercontinuum generation (SCG) in photonic integrated 

waveguides. This promises highly efficient SCG in different regions of the electromagnetic 

spectrum with extremely low pump pulse energies delivered by near-IR ultrafast femtosecond fiber 

lasers. Some of the recent waveguide platforms that have demonstrated near-IR pumped octave-

spanning broadened spectra include lithium niobate (LN) [1], chalcogenides [4], InGaP membranes 

[5] and silicon [6].  

Silicon nitride is a material platform highly suitable for nonlinear optics applications. The 

nonlinear coefficient in bulk is ten times larger than silica glass and its transparency window covers 

from the UV to >6 mm. This material does not display two-photon absorption in the 

telecommunications wavelength band and waveguides can be engineered with very low propagation 

losses. Nonlinear applications demonstrated so far include microresonator comb generation [7] , 

supercontinuum [8], and other high-speed optical signal processing. 

 However, a well-known challenge with silicon nitride is that in order to achieve anomalous 

dispersion in the telecom band, the waveguide core requires a thickness beyond 500 nm where 

silicon nitride films tend to crack [11].Advanced fabrication methods to overcome film cracking 

have been recently developed [11]. An alternative procedure to circumvent the fabrication 

challenges of thick silicon nitride films is increasing slightly the silicon content during deposition 

(silicon-rich nitride [12]). The resulting material structure shows a higher refractive index and 

nonlinear Kerr coefficient than stoichiometric silicon nitride [13]. 

In this chapter, we report an octave-spanning supercontinuum in a silicon-rich nitride waveguide 

pumped with a mode-locked femtosecond erbium fiber laser. The simulations indicate that the 

spectra are highly coherent. 
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6.2 Supercontinuum generation and results 

Our silicon nitride film is fabricated in a low-pressure chemical vapor deposition process [14]. 

The waveguide patterns are transferred by standard deep UV contact lithography followed by dry 

etching. The silica top cladding is done in a plasma enhanced chemical vapor deposition process. 

The waveguides feature losses of 1.5 dB/cm and a Kerr parameter of 6 (Wm)
-1

 around 1550 nm. 

The waveguide dimensions are displayed in Fig.6-1. The slight tilt in the walls is a consequence of 

the etching process. The effect is included in the numerical finite-element simulations (COMSOL) 

of the group-velocity dispersion (GVD) parameter shown in Fig. 6-1. It has two zero-dispersion 

wavelengths (ZDWs) giving a broad region (spanning 700 nm) with flat and moderate anomalous 

dispersion, centered around 1550 nm. The long-wavelength ZDW is controllable by varying the 

waveguide height. Such a dispersion profile is desired for efficient supercontinuum generation. 

 

Fig. 6-1 Numerically calculated GVD for the waveguide. As described by the shadowed area, by varying the 

height of the waveguide h from 650 nm to 740 nm the second ZDW can be tuned from 1.7 to 2.1 μm. The blue 

solid line corresponds to h= 695 nm. (Inset) Cross-section geometry and modal confinement of power for 

fundamental quasi TE mode. 

 

The experimental setup is displayed in Fig. 6-2.The femtosecond fiber laser (Toptica) produces 

laser pulses at 90 MHz repetition rate, centered at 1550 nm. The bandwidth (33 nm FWHM) 

supports a transform-limited 105 fs (FWHM) Gaussian shaped pulse. The pulses were free-space 

coupled by an objective lens into a DCF that compensated for the accumulated chirp before the 
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waveguide. NDFs were used to control the pulse energy, and the polarization was controlled with 

an FPC. This was followed by a piece of single-mode fiber spliced to a tapered lensed fiber (based 

on SMF-28, from OZ Optics), which focuses to a 2.0 μm FWHM spot size. We used an intensity 

autocorrelator to estimate the pulse duration to 130 fs FWHM (assuming a Gaussian shape) at the 

waveguide entrance, revealing some remaining chirp in the pulse. The maximum total power before 

the waveguide was measured to 42 mW. The output from the waveguide is collected with a tapered 

lensed fiber and sent to an optical spectrum analyzer (OSA). To record the supercontinuum, we 

used two OSAs with spectral ranges 600–1700 nm and 1200–2400 nm, whose spectra were 

overlapped to get the final spectrum. The coupling loss is estimated at 6.5 dB/facet (TE) and 5.3 

dB/facet (TM), providing a maximum input pulse energy of 105 pJ (TE) and 140 pJ (TM) inside the 

waveguide. 

 

 

 

    

 

 

Figure. 6-2 Sketch of experimental setup for supercontinuum generation. DCF: dispersion compensating fiber; 

SMF: single-mode fiber; FPC: fiber polarization controller; OSA: optical spectrum analyzer. 

 

The spectral evolution of the generated supercontinuum With a TE-polarized pump as a function 

of input pulse energy is shown in Fig. 6-3. The spectra for low pulse energies are clearly dominated 

by self-phase modulation (SPM), i.e. early stage broadening before soliton formation occurs. At 78 

pJ the soliton has formed, accompanied by two soliton-induced dispersive waves, one on each side 

of the two ZDWs. The strongest dispersive wave is found at low wavelengths, peaked around 820 

nm, while the mid-IR dispersive wave, peaked around 2250 nm, is less powerful and changes 
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significantly when increasing the pulse energy further to the maximum value of 105 pJ (9 mW 

average power). 

 

Fig.6-3. (a) Experimentally recorded PSD at the end of the waveguide (corrected for end-facet coupling loss). The 

numbers show the estimated input pulse energies in pJ. (b) Results of numerical simulations of the TE FM. The 

spectra show the total PSD at the waveguide end averaged over 50 noise realizations. The pulse was prechirped 

using GDD = +3500 fs
2
, andthe waveguide height was h = 660 nm. The ZDWs are those calculated for a TE-

polarization mode using h = 660 nm. 

 

The results are verified with numerical simulations using the so-called nonlinear analytic envelope 

equation (NAEE) [15], which resolves sub-cycle carrier-wave dynamics and includes a full 

expansion of the cubic nonlinearity. We only model the waveguide fundamental mode (FM). Its 

mode effective index and effective area vs. wavelength from the COMSOL calculations were 

included in the model without truncation. The frequency dependence of the effective mode area was 

modeled as shown in [16]. The cubic nonlinear coefficient was 5.7 (Wm)
-1

, which is a slightly 

modified value to that reported in s due to an improved estimate of the linear propagation loss. This 

propagation loss (1.5 dB/cm was taken constant across the modeled wavelength range. The NAEE 

model was extended to include delayed Raman nonlinearities[15].A simple model was implemented 
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based on the Si-N phonon mode centered at 410 cm
-1

, and having a broadband 70 cm-
1
 linewidth 

(reflecting the amorphous nature of the silicon nitride thin film). The relative Raman strength was 

set to fR = 0.2, which is a typical value for amorphous materials. Generally, the Raman effect gave 

only minor contributions, in line with previous studies of silicon nitride waveguides. An 

explanation might be that the dispersion engineering leaves only a moderate anomalous dispersion 

range where the Raman effect can influence the soliton by red-shifting it. Finally, noisy initial 

conditions were used based on the one-photon-per-mode model [17]. 

 

Fig. 6-4. Calculated ZDWs vs. waveguide height h for TE and TM modes. The phase-matching 

wavelengths for dispersive waves coupling to a soliton at 1555 nm are also shown. Note that for the TM case 

h > 675 nm to support a soliton at 1555 nm, so no DWs can be found for h < 675 nm. 

 

In Fig. 6-3(b) we show a direct comparison of the numerical simulations to the experimental 

spectra. The simulations are able to reproduce the major features of the experimental spectra, but 

noticeably the dispersive waves seem to be narrower in the experimental case, and the near-IR 

dispersive wave is also located at a somewhat lower wavelength. The waveguide height is important 

because as Fig. 6-1(a) indicates, it affects the long-wavelength ZDW. Using a smaller waveguide 
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height will blue-shift this ZDW, the mid-IR dispersive wave, as well as the anomalous dispersion 

regime. The calculations in Fig. 6-4(a) summarize this by showing the change in the dispersion 

landscape when varying the waveguide height from 650 to 750 nm. Along the entire range the TE 

mode has anomalous dispersion at 1555 nm, but only for values below 675 nm was the mid-IR 

dispersive wave (denoted DW 1) found below 2500 nm and the near-IR dispersive wave (denoted 

DW 2) below 900 nm. The best match to the experimental results was found with a 660 nm height; 

similar results were observed in the range 650-675 nm, but for 700 nm and higher the dispersive 

wave positions did not match the experiments very well, especially for the TM results below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6-5. Evolution from a single noise realization of the TE polarization FM (40 pJ total input energy) in 

(a+ b) time and (e) wavelength. The coherence function (c) and FM spectra (d) were averaged over 50 noise 

realizations (each shown in gray for the output pulse). 

 

As mentioned, the simulations only model the FM, but from the higher-order modes (HOMs) 

given by the COMSOL simulations we estimate that around 55% of the input energy will be 
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coupled to the FM, and the rest goes into the HOMs. The HOMs will typically not show any 

spectral broadening due to their lower peak powers, higher GVD and mode areas. Experiments 

therefore often have a portion of the pump input spectrum that remains "undepleted" in the 

supercontinuum. In the numerical spectra shown in Fig. 6-3(b) we have therefore added the 

equivalent energy of the HOMs at the end of the simulation as 45% of the total input spectrum. 

Additionally, combining the 33 nm bandwidth of the input pulse with the measured value of 130 fs 

FWHM corresponds to a group-delay dispersion of GDD =±3500 fs
2
. The simulations used positive 

chirp but similar results were found with negative chirp. We note that the simulations used lower 

energies than the experiments, which can be attributed to uncertainties in coupling efficiencies, 

waveguide nonlinearity and dispersion, input pulse pre-chirp etc. 

In Fig. 6-5 the power was chosen so the soliton forms almost at the waveguide exit. In (a) the 

soliton forms as a single-cycle spike (5 fs FWHM), and after this self-compression point (’max’ 

position) the temporal trace quickly develops interference oscillations. This is because the two 

dispersive waves are now formed by the soliton at the same temporal position but at different 

wavelengths. In the spectral evolution (e) the dispersive waves are seen to be present at the soliton 

formation point (’max’), and after this they grow significantly, see also (d). In (d) the shot to shot 

coherence is shown, as calculated from the first order coherence function. This excellent coherence 

pertains for lower powers, but it degrades for higher powers; this is quite typical as soliton fission 

and other nonlinear processes following the soliton formation stage are quite noise sensitive. 

The TM case shown in Fig. 6-6(a) does not show strong broadening. Noticeably, though, the 

spectrum broadens enough to enter the important 1600-1850 nm wavelength range for 3-photon 

absorption microscopy and coherent anti-Stokes Raman spectroscopy. The spectral shapes indicate 

normal GVD at the pump wavelength, which leads to optical wave breaking: the pulse in time 

domain becomes highly chirped and develops steep shock fronts. In frequency domain this is 
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accompanied by SPM-induced spectral broadening, which has some very characteristic spectral 

ripples. The spectral broadening is typically much weaker than in the soliton case because no 

dispersive waves are formed and the pulse does not self-compress. To understand when TM has 

normal GVD at 1555 nm, Fig. 3 shows this may happen when the height is taken well below 700 

nm, as this changes the higher ZDW (ZDW2) from >1900 nm (700 nm height) to <1500 nm (650 

nm height). The experimental results therefore again indicate a lower height than the nominal 700 

nm, as this would leave the 1555 nm pump pulse in the non-solitonic normal dispersion regime. In 

fact, the numerical simulations shown in (c) agree well with the experimental results using the exact 

same parameters as in the TE case. 

 
Fig. 6-6 (a) Experimental spectra for various TM pump pulse energies; The ZDWs are those calculated for a 

TM-polarization mode using a 660 nm waveguide height. (b) and (c) numerical simulations showing the 

coherence function and average spectra. The simulations used the same waveguide specs (width, height) and input 

pulse pre-chirp as Fig. 6-3(b). 
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6.3 Conclusion  

In conclusion, we have used a dispersion engineered silicon rich nitride waveguide to study 

supercontinuum generation by pumping with low-energy pulses (80-140 pJ) from an erbium fiber 

oscillator. In the TE polarization case a soliton and two dispersive waves were excited to give a 1.5 

octave supercontinuum (from 800-2250 nm at -30 dB). With TM polarized pulses, the continuum 

was generated by optical wave breaking because the waveguide had normal dispersion at the pump 

wavelength. Numerical results indicate that the supercontinua had an excellent coherence. The 

dispersion was controlled by varying the stoichiometry of the core material and the cross-section 

geometry of the waveguide to give anomalous dispersion at the pump wavelength (TE case).  
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7.1 Conclusions 

  In this thesis, we investigated the Ph.D. project: Femtosecond few-cycle mid-infrared laser 

pulses. The works were forced on optical solitons in near-IR for generating the mid-IR pulses. 

Firstly, we demonstrated theoretically and numerically a new method for generating mid-IR 

pulses which based on the collision of the self-defocusing soliton and a weak probe in quadratic 

crystal.  

A near-perfect conversion efficiency is possible for a high effective soliton order. A near-IR 

soliton induced by a cascaded quadratic χ
(2)

 nonlinearity forms in normal GVD regime, and the 

soliton emitted DW in the anomalous GVD regime in the mid-IR by degenerate four wave mixing. 

The higher order of the soliton colliding with a weak near-IR probe induces a cascaded sum-

frequency generation nonlinearity generating a self-defocusing Kerr-like effective negative cross 

phase modulation term. The tunable femtosecond mid-IR converted wave is formed between λ = 2.2 

− 2.4 μm as a resonant dispersive wave by non-degenerate four-wave mixing process.  

Secondly, we theoretically studied three-wave mixing resonant radiation in the quadratic crystal.  

By controlling the angle of incidence light, the higher order of the soliton colliding with a weak 

near-IR probe induces a cascaded sum-frequency generation nonlinearity generating a self-

defocusing Kerr-like effective positive cross phase modulation term. The femtosecond visible 

converted wave is formed as a resonant dispersive wave by three-wave mixing parametric 

amplification process.  

  A defocusing soliton-driven tunable mid-IR optical parametric amplifier is demonstrated for the 

first time in a standard periodically poled lithium niobate (PPLN) bulk crystal with one fixed near-

IR pump wavelength. This unique tunable resonant radiation from λ =4.2− 5.5 μm is generated by 

three-wave mixing process from the self-defocusing soliton simply by changing the pitch length of 

the poling.  
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Finally, a soliton and two dispersive waves were excited in a dispersion engineered silicon rich 

nitride to give waveguide 1.5 octave supercontinuum in the TE polarization case by pumping with 

low-energy pulses (80-140 pJ) from an erbium fiber oscillator.  

7.2 Outlooks 

During the project, we noticed that ultrafast optical solitons in the nonlinear optical not only 

accompanied with the frequency conversion, but also rich in physical meaning. But what are the 

project’s unsolved problems and future challenges? 

 I .The collision of soliton and a weak probe 

We are looking forward to verify experimentally the collision of the soliton and a weak 

probe in the BBO crystal and other mid-IR transparent crystals [1]. This simple and effective 

method provide a good solution for mid-IR ultrashort pulse generation. Moreover, this kind of 

collision contains a lot of physical and applications, such as analog an artificial event horizon 

[2], all-optical transistor [4] and black hole laser [5]. 

  II .Optical parametric amplifier based on the microresonator 

The Kerr comb generation based on continuous-wave-pumped optical microresonators 

utilizes the high quality factor of microresonators which enhances the cubic nonlinearity of the 

material by four wave mixing[6].The DWs can be simultaneously excited when pumping in 

either the anomalous or normal dispersion regimes by four wave mixing. And analogous 

frequency comb based on cascaded quadratic nonlinearities also have been demonstrated [10]. 

Thus, using continuous-wave-pumped quasi phase-matching microresonators generate the 

three-wave mixing resonant radiation will be a promising direction. 

III .The silicon-rich nitride waveguide 

The silicon-rich nitride approach allows increasing the waveguide height to give mid-IR 

dispersive waves beyond 3000 nm, making it feasible to generate >2 octaves of bandwidth 
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with almost perfect coherence. Thus, these show promises for short-range near-IR and mid-IR 

coherent supercontinua generation in a CMOS-compatible waveguide by exploiting the mature 

erbium-fiber laser technology. 

  We are looking forward to more and more researchers interested in the mid-IR pulse, which will 

bring new insights into nonlinear optics, physics and even to our life. 
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Appendix A: 

MATLAB Code:CAWEs Equation 
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clear; 

clc; 

close all; 

format long 

global   chi2 chi3 dt qpm_k  li  omega_e w n_e c t dk_e dz wfh kfhe delta_k wsh ish isw 

li=i; 

qpm_k =2*pi/30;%pith 

c = 0.299792458; % um/fs 

fftw('planner', 'hybrid'); 

%---------------------------------------------------------------- 

% --- chi2 & chi3 --- crystal  PPLN 

deg=90; 

theta = deg*pi/180; 

fai   = pi/6;  

d22 =  1.92e-6; % um/V                    ( 2.60e-6 um/V at 1064nm, HCP Co.) 

d31 = -4.40e-6; % um/V from the handbook! (-4.60e-6 um/V at 1064nm, HCP Co.) 

d33 = 20.5e-6; % um/V from the handbook! (25.00e-6 um/V at 1064nm, HCP Co.) 

deff = zeros(3,6); 

deff(1,1) = -3*d31*cos(theta)^2*sin(theta) ... 

            -d33*sin(theta)^2 ... 

            -d22*cos(theta)^2*sin(3*fai);   % e,ee 

deff(1,2) = -d31*sin(theta) ... 

            +d22*cos(theta)*sin(3*fai);     % e,oo 

deff(1,6) = -2*d22*cos(theta)^2*cos(3*fai); % e,oe or e,eo 

  

deff(2,1) = -d22*cos(theta)^2*cos(3*fai);   % o,ee 

deff(2,2) =  d22*cos(3*fai);                % o,oo 

deff(2,6) = -2*d31*sin(theta) ... 

            +2*d22*cos(theta)*sin(3*fai);   % o,oe or o,eo 

chi2 = deff*2; 

c0   = 299792458; % Vacuum speed of light in m/s 

mu0  = 4e-7*pi;   % [N/A^2] 

eps0 = 1/(c0^2*mu0); % [F/m] 

c11 = 0;      % [um^2/V^2] 

c33 =52e-10; % [um^2/V^2] 

c18 = 0;      % unkown!!! 

c110= 0;      % unkown!!! 

chi3 = zeros(3,10); 

chi3(1,1) =      c11*cos(theta)^4 ... 

            -  4*c110*sin(theta)*cos(theta)^3*sin(3*fai) ... 

            +3/2*c18*sin(2*theta)^2 ... 

            +    c33*sin(theta)^4;                        % e,eee 

chi3(1,2) =      c110*sin(theta)*cos(3*fai);              % e,ooo 

chi3(1,4) =   -9*c110*sin(theta)*cos(theta)^2*cos(3*fai); % e,eeo or e,eoe or e,oee 

chi3(1,6) =      c11*cos(theta)^2 ... 

              +3*c18*sin(theta)^2 ... 

              +3*c110*sin(2*theta)*sin(3*fai);            % e,ooe or e,oeo or e,eoo 

  

chi3(2,1) =   -3*c110*sin(theta)*cos(theta)^2*cos(3*fai); % o,eee 

chi3(2,2) =      c11;                                     % o,ooo 

chi3(2,4) =      c11*cos(theta)^2 ... 



 

 

78 

 

              +3*c18*sin(theta)^2 ... 

              +3*c110*sin(2*theta)*sin(3*fai);            % o,eeo or o,eoe or o,oee 

chi3(2,6) =    3*c110*sin(theta)*cos(3*fai);              % o,ooe or o,oeo or o,eoo 

  

% --- reference: FH: lambda_o & SH: lambda_e% ---------------------------------- 

lambda_e = 1.75; 

omega_e  = 2*pi*c/lambda_e; 

lambda_sh = 1.75/2; 

omega_sh  = 2*pi*c/lambda_sh; 

deg = 90; 

% --- reference wave vector --- 

[k, dk] = MgLN_Wave_Vec_deg(omega_e,1,deg); 

n_e  = k.fhe*c/omega_e; 

dk_e = dk.fhe; 

delta_k = k.she - 2*k.fhe; 

%--------------------------- SH 

[k, dk] = MgLN_Wave_Vec_deg(omega_sh,1,deg); 

n_sh  = k.fhe*c/omega_sh; 

KKK=n_sh*omega_sh/c; 

  

dk_sh = dk.fhe; 

d12=dk_sh -dk_e; 

%------------------------------------------------- 

% --- time --- 

time_span =8000; % fs 

% time_num =10*time_span*c/lambda_e; 

nt = 2^14; 

dt = time_span/nt; 

t  = -time_span/2:dt:time_span/2-dt; 

% --- frequency --- 

omega_span = 2*pi/dt; % fs^-1 

dw = omega_span/nt; 

w  = -omega_span/2:dw:omega_span/2-dw; 

%--------------------------------------------------------- FW 

wfh=w+omega_e; 

lambda_left  = 0.3; 

lambda_right =5.5; 

omega_left  = 2*pi*c/lambda_right; 

omega_right = 2*pi*c/lambda_left; 

w1 = find(wfh > omega_left, 1,'first'); 

w2 = find(wfh< omega_right,1, 'last'); 

  

w3 = find(wfh >-omega_right,1,'first'); 

w4 = find(wfh <-omega_left, 1, 'last'); 

isw = (wfh>=omega_left & wfh<=omega_right); 

%--------------------------------------------------------- SH 

wsh=w+omega_sh; 

w5 = find(wsh > omega_left, 1,'first'); 

w6 = find(wsh< omega_right,1, 'last'); 

  

w7 = find(wsh >-omega_right,1,'first'); 

w8 = find(wsh <-omega_left, 1, 'last'); 

ish = (wsh>=omega_left & wsh<=omega_right); 

% --- wave vector -----------------------------------------  wave vector FW 

k_e_arr = zeros(1,nt); 
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k_right = MgLN_Wave_Vec_deg(wfh(w1:w2),0,deg); 

k_left  = MgLN_Wave_Vec_deg(wfh(w3:w4),0,deg); 

k_e_arr(w1:w2) = k_right.fhe; 

 k_e_arr(w3:w4) =k_left.fhe; 

%   plot(2*pi*c./wfh, [k_e_arr*c./wfh; (k.fhe+dk_es.*(w-omega_e))]); 

   k_e_arr=(k_e_arr-k.fhe-dk_e.*wfh).*isw;      % phase of FW 

   plot(2*pi*c./wfh, k_e_arr) 

%   k_e_arr=(k_e_arr-(dk_e).*wfh+(dk_e).*wfh)*c./wfh;      % phase of FW 

%   plot(2*pi*c./wfh(w1:w2), k_e_arr(w1:w2)) 

% --- wave vector -----------------------------------------  wave vector % SH 

 k_e_arrsh = zeros(1,nt); 

k_right = MgLN_Wave_Vec_deg(wsh(w5:w6),0,deg); 

k_left  = MgLN_Wave_Vec_deg(wsh(w7:w8),0,deg); 

k_e_arrsh(w5:w6) = k_right.fhe; 

 k_e_arrsh(w7:w8) =k_left.fhe; 

  

k_e_arrsh=(k_e_arrsh-KKK-dk_sh.*wfh-(d12).*wfh).*ish;   % phase of SH 

plot(2*pi*c./wfh,k_e_arrsh) 

% --- z ------------------------------------------ 

intp =50; 

zlength =5000; 

    dz =1; 

    nz = ceil(ceil(zlength/dz+1)/intp+1)*intp; 

    z  = 0:dz:(nz-1)*dz; 

fprintf('total steps: %8d\n', nz); 

eps0 = eps0*1e-6; % F/um 

% --- e light 

% -------------------------------------------------------------input pluse 

I_in_e =80e-14; % 1GW/cm^2 = 1e-14 V^2*F/(fs*um^2) 

E_c_e  = sqrt(eps0*n_e*c/2); 

E_in_e = sqrt(I_in_e/E_c_e^2); % V/um 

FWHM_in_e = 50; % fs 

T_in_e = FWHM_in_e/(2*log(1+2^0.5)); % Guassan: exp(-t^2/T0^2).*(cos(t*omega_e )+0*li*sin(t*omega_e )); 

E_in_e_arr = 1*E_in_e*sech((t)/T_in_e); 

height = E_in_e*sum(sech(t.^2/T_in_e^2))*dt; 

%------------------------------------------- 

  E_in_e_arrsh = zeros(1,nt); 

EFE = zeros(nz/intp,w2-w1+1); 

EFSH = zeros(nz/intp,w6-w5+1); 

%%--------------------------------------------------- 

phs_e_arr = exp(-1i*k_e_arr*dz); 

phs_e_arr1 = exp(-1i*k_e_arr*dz/2); 

phs_e_arr2 = exp(1i*k_e_arr*dz/2).*isw;%%%%%%%%%%%%%%%%% FW 

  

phs_e_arrsh = exp(-1i*k_e_arrsh*dz); 

phs_e_arrsh1 = exp(-1i*k_e_arrsh*dz/2); 

phs_e_arrsh2 = exp(1i*k_e_arrsh*dz/2).*ish;%%%%%%%%%%%%%%%%% FW 

%-0------------------------------------------------------------ 

Ef_e_arr = fftshift((fft(E_in_e_arr)*dt)).*phs_e_arr1 ; 

Ef_e_arrsh = fftshift((fft(E_in_e_arrsh)*dt)).*phs_e_arrsh1 ; 

kfhe=k.fhe; 

tic; 

for i = 1:nz  

      [ Ef_e_arr2] = rk4(@nlin_func_fR,[Ef_e_arr;Ef_e_arrsh],z(i),dz); 

      un_fh=Ef_e_arr2(1,:); 
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      un_sh=Ef_e_arr2(2,:); 

       

   Ef_e_arr= un_fh.*phs_e_arr; 

  Ef_e_arrsh= un_sh.*phs_e_arrsh; 

    %     % --- interloop plot --- 

   plot(2*pi*c./wfh,20*log10(abs(Ef_e_arr)/height),2*pi*c./wsh,20*log10(abs(Ef_e_arrsh)/height)); 

%  plot(2*pi*c./wsh,20*log10(abs(Ef_e_arrsh)/height)); 

%  plot(2*pi*c./w(w1:w2),2*(abs(Ef_e_arr(w1:w2))/height)); 

  axis([0.4 5 -100 2]); 

   pause(0.001) 

       if mod(i,intp)==1; 

     disp(i); 

      EFE(floor(i/intp)+1,:) = Ef_e_arr(w1:w2); 

     EFSH(floor(i/intp)+1,:) = Ef_e_arrsh(w5:w6); 

    end 

         

end 

toc; 

 

 

 

function [dEf_e_arr] = nlin_func_fR( Ef_e_arr, z) 

format long 

global   chi2  dt   omega_e wfh li n_e c t  dk_e  qpm_k  kfhe mm delta_k wsh isw ish 

% % .*exp(delta_k*z) 

 dkk=dk_e*omega_e-kfhe; 

% %  

% % dkk2=dk_e*omega_e*2-2*kfhe; 

%  

  

 tt=t-dk_e*z; 

mm=1*(square(qpm_k*z+pi/2)  ); 

  

Ef_e_arr1=Ef_e_arr(1,:); 

Ef_e_arr2=Ef_e_arr(2,:); 

  

  

E_e_arr1 = ifft(fftshift(Ef_e_arr1))/dt; 

E_e_arr2 = ifft(fftshift(Ef_e_arr2))/dt; 

    

% dEf_e_arr1 =-(1./(4*c*n_e))*li.*(1+(wfh-omega_e)/omega_e).* 

fftshift(fft( 1*mm*chi2(1,1)*E_e_arr1.*(E_e_arr1).*exp(1*li*omega_e*tt+li*dkk*z)+2*mm*chi2(1,1)*E_e_arr1.

*conj(E_e_arr1).*exp(-1*li*omega_e*tt-li*dkk*z) )*dt);  

 dEf_e_arr1 =-(1./(4*c*n_e))*li.*(1+(wfh-omega_e)/omega_e).* 

fftshift(fft(  4*mm*chi2(1,1)*(E_e_arr2).*conj(E_e_arr1).*exp(-

li*delta_k*z)+2*mm*chi2(1,1)*E_e_arr1.*conj(E_e_arr1).*exp(-1*li*omega_e*tt-li*dkk*z)   )*dt);  

      

 dEf_e_arr2 =-(1./(4*c*n_e))*li.*(1+(wsh-2*omega_e)/(2*omega_e)).* 

fftshift(fft( 4*mm*chi2(1,1)*E_e_arr1.*E_e_arr1.*exp(li*delta_k*z)+2*mm*chi2(1,1)*E_e_arr2.*conj(E_e_arr2)

.*exp(-1*li*omega_e*tt-li*dkk*z))*dt);   

  

                  

  dEf_e_arr=[dEf_e_arr1;dEf_e_arr2]; 
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function [u_out] = rka(func, u_in, z, dz) 

global dt 

format long 

  

% full step 

u_full = rk4(func, u_in, z, dz); 

  

% half step, twice 

u_half = rk4(func, u_in, z, dz/2); 

u_half = rk4(func, u_half, z+dz/2, dz/2); 

  

I_full = norm(u_full, 2)^2*dt; 

I_half = norm(u_half, 2)^2*dt; 

  

err = (I_full-I_half)/(I_full+I_half); 

  

if (err <= 1e-9) 

    u_out = u_full; 

else 

    u_out_half = rka(func, u_in, z, dz/2); 

    u_out = rka(func, u_out_half, z+dz/2, dz/2); 

end 
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