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Abstract

Motivation: The increase in available microbial genome sequences has resulted in an increase in

the size of the pangenomes being analyzed. Current pangenome visualizations are not intended for

the pangenome sizes possible today and new approaches are necessary in order to convert the in-

crease in available information to increase in knowledge. As the pangenome data structure is es-

sentially a collection of sets we explore the potential for scalable set visualization as a tool for pan-

genome analysis.

Results: We present a new hierarchical clustering algorithm based on set arithmetics that optimizes

the intersection sizes along the branches. The intersection and union sizes along the hierarchy are

visualized using a composite dendrogram and icicle plot, which, in pangenome context, shows the

evolution of pangenome and core size along the evolutionary hierarchy. Outlying elements, i.e.

elements whose presence pattern do not correspond with the hierarchy, can be visualized using

hierarchical edge bundles. When applied to pangenome data this plot shows putative horizontal

gene transfers between the genomes and can highlight relationships between genomes that is not

represented by the hierarchy. We illustrate the utility of hierarchical sets by applying it to a pange-

nome based on 113 Escherichia and Shigella genomes and find it provides a powerful addition to

pangenome analysis.

Availability and Implementation: The described clustering algorithm and visualizations are imple-

mented in the hierarchicalSets R package available from CRAN (https://cran.r-project.org/web/pack

ages/hierarchicalSets)

Contact: thomasp85@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Pangenome analysis is concerned with the investigation of multiple

bacterial genomes whose genes have been grouped according to simi-

larity. A pangenome is thus defined as a set of gene groups containing

members from one or more genomes. Figure 1 shows the general

structure of a pangenome as visualized by a presence/absence matrix.

Gene groups are often classified by their ubiquity in the genomes

making up the pangenome. Core gene groups are present in all gen-

omes, accessory gene groups are present in more than one, but not all

genomes and singleton gene groups are only present in one genome.

This classification of gene groups gives a broad overview of the het-

erogeneity of the pangenome through the number of core gene groups

and total gene groups, but is also used to pinpoint the nature of the

genes within each group. Core genes are likely genes that define the

unique traits of the genomes under investigation, while accessory

genes are disposable genes that define more specialized behavior.

Singleton genes can be strain specific genes, pseudogenes, or annota-

tion errors. As is evident from Figure 1, there are clear overlaps be-

tween the nomenclature associated with pangenome data and that of

set algebra, where genomes can be considered sets and gene groups
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elements in these sets. Furthermore, intersection and core size, as well

as pangenome and union size, are equivalent.

The first published pangenome covered eight strains of

Streptococcus agalactiae (Tettelin et al., 2005), reflecting the num-

ber of available genome sequences for that species at the time. The

number of genomes included in pangenome analyses has since

increased along with the increased availability of sequenced bacter-

ial genomes and now contains 100s or 1000s of genomes (Jun et al.,

2014; Kaas et al., 2011; Land et al., 2015; Leekitcharoenphon et al.,

2016; Méric et al., 2013; Snipen and Ussery, 2012) resulting in >10

000 gene groups. A main concern when evaluating the result of pan-

genome analyses is how the pangenome and core size change as gen-

omes are added to the pangenome. Sudden drops in core size or

jumps in pangenome size indicate the addition of a genome deviat-

ing strongly from the genomes already present in the pangenome.

The standard approach to show this evolution in pangenome and

core size is through a simple line-plot as shown in Figure 3A (De

Maayer et al., 2014; Lukjancenko et al., 2010; Smokvina et al.,

2012). This approach has considerable drawbacks as the shape of

the line is determined by the order in which genomes are added.

Although it is possible to define a progression of genomes that en-

sures that similar genomes follow each other, changes between gen-

omes will still be obscured by the level of heterogeneity between the

genomes that comes before it. The extreme case is a pangenome

without any core gene groups. At some point along the line-plot the

core line will drop to zero and any difference between genomes that

follows this point will be invisible. The set nature of pangenome

data could offer a better way of visualizing the change in core and

pangenome size without imposing a specific order to the genomes.

Set algebra has been used sparingly in pangenome visualizations.

GenoSets (Cain et al., 2012) and PanViz (Pedersen et al., 2017) both

apply set arithmetic to create visual queries for gene group subsets.

Apart from query construction though, set algebra is largely unex-

plored when it comes to visualizing the relational structure between

genomes. Although visualizing relations between large numbers of

sets is difficult due to the combinatorial explosion of possible set

combinations, different visualization techniques have been de-

veloped to show intersection sizes between sets in a scalable manner,

such as, UpSet (Lex et al., 2014) and Radial Sets (Alsallakh et al.,

2013). These techniques do not scale to the number of sets that is

exposed in contemporary pangenomes though and are thus a poor

fit for investigating all but the smallest pangenomes.

Here, we present a new approach to set analysis and visualiza-

tion called Hierarchical Sets that works particularly well on large

structured collections of sets such as pangenomes. Hierarchical Sets

limits the comparisons between sets to branch points of a hierarch-

ical clustering. In that way it achieves good scalability at the expense

of not showing direct comparisons between very dissimilar sets.

Although the focus in this paper is on the use of Hierarchical Sets in

pangenome visualization, the technique can be applied equally well

to other problems involving large numbers of sets.

2 Data

The data set used for the examples is a pangenome based on 54

Escherichia and 59 Shigella genomes. The genomes were selected by

retrieving all genomes from the two genera in the NCBI Assembly data-

base that had either ‘Scaffold’ or ‘Complete Genome’ status. Genomes

that deviated>25% from the median genome length for its species were

removed and at most 15 genomes from each species were selected. The

pangenome was created using FindMyFriends (Pedersen, 2015) with de-

fault parameters and consists of 57,664 gene groups classified into 23

core groups, 29 132 accessory groups and 28 509 singleton groups. As

such the genome selection is a compromise between species coverage and

sequence quality. Escherichia is a genus dominated by E.coli but consist-

ing of seven species in total (Gaastra et al., 2014). Shigella is a genus often

considered to be genetically indistinct from E.coli (Lukjancenko et al.,

2010; Ogura et al., 2009; Pupo et al., 2000; Sims and Kim, 2011) as it

often clusters within E.coli in genome based analyses.

3 Algorithm

Existing approaches for hierarchical clustering of sets or pangenomes

usually follows a conversion of the data into a distance matrix followed

by an agglomerative clustering. For pangenomes several distance meas-

ures have been used, e.g. binary (Richards et al., 2014), Jaccard (Kuenne

et al., 2013) or Manhattan distance (Jacobsen et al., 2011) as well as sev-

eral clustering algorithms, such as, average (Karlsson et al., 2011) or sin-

gle linkage (Tettelin et al., 2005). These approaches have several

drawbacks when it comes to interpreting the results in a set algebraic

context. The reliance of a conversion to a distance matrix makes the

clustering extremely sensitive to the choice of clustering algorithm as the

clustering is no longer based on the original data. Furthermore, it implies

that a distance exists for some combinations of sets which might not

make sense if two groups of sets are fully independent (no intersecting

elements). The consequence of the former is that the result of standard

hierarchical clusterings can be hard to translate back to features of the

set data, while the latter results in all sets are being merged into a final

cluster even though there might not be any similarity between all sets in

the analysis. To address these shortcomings we introduce a new agglom-

erative hierarchical clustering approach for sets that works directly with

the set data itself, by means of a set family homogeneity measure defined

below. The clustering happens through the following steps:

Fig. 1. Overview of the nature of pangenome data and the nomenclature

associated with it. Equivalent set algebra terms are shown in italic. Columns

define genomes and rows gene groups. A filled circle indicates the presence

of a member of the respective gene group in the genome while an empty cir-

cle indicates absence
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1. Let each set in the analysis define their own set family of size 1.

2. For each pair of set families calculate the homogeneity, k, of the

combined set family.

3. Choose the pair that exhibit the highest k (on ties choose the

pair with the smallest union) and let the pair define a new set

family.

4. Repeat 2–3 until all available set family pairs have k¼0 or all

sets have been joined in a single set family.

Note that this approach specifically terminates the clustering be-

fore all sets have been combined to a single cluster if the remaining

clusters have no pairwise homogeneity.

3.1 Set family homogeneity and heterogeneity measure
Similarity between two sets is often measured using Jaccard similar-

ity defined as the size of their intersection divided by the size of their

union. The similarity between two sets can also be thought of as the

homogeneity of a set family consisting of the two sets. The Jaccard

similarity can then be generalized to a measure of set family homo-

geneity for set families of any size by dividing the total intersection

size with the total union size. Formally, for a set family A, the set

family homogeneity k is defined by:

kðAÞ ¼ j \ ðAÞjj [ ðAÞj

In the case of pangenomes, the data is often incomplete as there

is a chance to miss genes during sequencing, de novo assembly, and

annotation. Therefore, core size can be underestimated and it is a

custom to loosen the requirement for gene groups to be considered

core by requiring the fraction of genomes represented in a core

group to be above a fixed threshold (such as 0.95). The set family

homogeneity definition can be modified to accommodate this prac-

tice by introducing a parameter t 2 ½0; 1�
that defines the ratio threshold for an element to be considered

part of the intersection (t ¼ 1 will result in the standard intersection

definition). The set family homogeneity subject to t can thus be

defined as:

kðAÞt ¼
Pn

i¼1

Pm

j¼1
Ai;j

m � t

j [ ðAÞj

where A is the set family, n is the universe size, m is the number of

sets in the family, and t a value between 0 and 1. Ai;j is 1 if element i

is present in set j and 0 otherwise. Similar to the Jaccard similarity

the set family homogeneity is bound between 0 and 1 (k 2 ½0; 1�).
Conversely, the set family heterogeneity is defined as:

k0ðAÞt ¼ kðAÞ�1
t � 1

And it follows that k0 2 ½0;1�. This definition makes k0 un-

defined for set families with k ¼ 0, which is sensible as the hetero-

geneity of a collection with no homogeneity must be undefined.

4 Results

4.1 Visualizing set family heterogeneity
An obvious way to present the result of the clustering is through the

use of a dendrogram. By encoding the height of the branch points to

k0, the dendrogram will illustrate how the heterogeneity increases as

set families are combined. This dendrogram encoding is particularly

good at identifying clusters of highly homogeneous sets as well as in-

dependent clusters (Fig. 2).

It is apparent that Hierarchical Sets clustering makes different

choices than average linkage applied to Jaccard distances. Although

Fig. 2. Comparison of hierarchical set clustering and complete linkage clustering based on Jaccard distance as performed on a pangenome based on 54

Escherichia and 59 Shigella strains. A colored link joins the same strains between the two clusterings with the color denoting the species. Unnamed species have

been combined in the E.sp. and S.sp. groups. Both dendrograms have been sorted to best match the order in the other, so as to limit crossing of the links
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there is general agreement at the species level, there are some differ-

ences in the clustering within each species as well as major differences

in how the clustering is defined between the species. Further, the inter-

pretation of the x-axis differs substantially. Although k0can clearly be

interpreted as the ratio of intersection to union for the sets contained

in each branch point, average linkage shows the average distance

(here Jaccard distance) between all pairs of sets between the joining

clusters. Average linkage can tend to created top-heavy dendrograms

in combination with Jaccard distance since addition of smaller clusters

to larger ones does relatively little to the average distance. The end re-

sult of this is a dendrogram where clusters are difficult to visually sep-

arate and where the overall structure of the clustering is less apparent.

Hierarchical Sets generally provides a more balanced dendrogram as

k0 tend to increases at a larger rate as larger and larger clusters are

joined. This means that the clustering structure is apparent at all levels

of the hierarchy providing better overview.

4.2 Visualizing intersection and union sizes
Often in set analysis there is an interest in the intersection sizes of

the different combinations of sets. For a number of sets, n, the num-

ber of possible set families are 2n � 1, resulting in 10e33 possible

set families for the 113 sets used as example in this paper. This com-

binatorial explosion has made it difficult to visualize intersection

sizes for large numbers of sets. The Hierarchical Sets clustering

offers a way to decrease the number of set families by only consider-

ing set families at branch points. The intersection sizes of each

branch point can be visualized while preserving the hierarchical lay-

out by using an inverted icicle plot with bar height encoded to inter-

section size (Fig. 3B, bottom). The plot can be envisioned as a stack

of blocks where the height of the stack denotes the total value and

the height of the block denotes the contribution of that single block

Based on this plot a lot of information can be decoded. The inter-

section size of the different set families defined by the branch points

A

B

Fig. 3. (A) A standard pangenome line plot showing the evolution in pangenome and core sizes as genomes are added to the pangenome. A soft core of 95% is used

for calculating the core size. The order in which the genomes are added is determined by the ordering from the hierarchical set clustering visualized in B and A and B

are thus sharing the x-axis. (B) Intersection and union sizes at the branch points in a hierarchical set clustering with t ¼ 0.95, visualized as an icicle plot for the intersec-

tions and a dendrogram for the unions. The intersection size of each set family is encoded to the height of the bar and the size of the set family is encoded to the color

of the bar. The area of each rectangle is thus proportional to the number of sets it represents and the increase in intersection size relative to the next branch point
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are shown as the absolute height of the stacks while the drop in

intersection size is shown as the height of each block. To improve

visual separation of the blocks, their fill color is encoded to the num-

ber of the sets represented by the family. This type of plot can show

relational structure between the different sets: Dark, narrow bars

starting close to the x-axis (e.g. rightmost S.boydii cluster in Fig. 3B)

represent sets having little overlap with the rest of the sets, while

light and wide bars represent larger collections of sets showing large

overlaps. The near absence of single-width bars (e.g. Escherichia

marmotae in Fig. 3B) indicates near-similar sets and the absolute

height of each single-width bar shows the total size of each set.

In the same way as intersection at each branch point can be shown,

so can the union. In contrast to the intersection, the union decreases as

you approach the leaves of the hierarchy, making a dendrogram a better

choice for this (Fig. 3B, top). Although the union dendrogram would ex-

tend naturally from the top of the bars in the icicle plot, as the union

and intersection of a single set are equal, the range of union sizes often

vary substantially from that of intersection sizes (in this case almost ten-

fold). Thus, it is a better choice to plot them in separate plots, but

stacked so that they share the x-axis. The addition of the union dendro-

gram reinforces the hierarchical nature of the data as well as providing

the means to assess the homogeneity of the different clusters.

4.3 Visualizing deviations from hierarchy
Imposing a hierarchy on a dataset is likely to distort the data as com-

plete adherence to a hierarchical structure is rare. In the case of a hier-

archical set analysis, deviations from the hierarchy materialize as

elements shared by two sets, but not by all sets in their common set

family (Fig. 4). More formally outlying elements bx can be defined as

bx 2 \ðA;BÞ ^ bx 62 \ðCA;BÞ

Where A and B are sets and CA;B the smallest set family containing

A and B derived from the hierarchical clustering.

The concept of outlying elements is important since Hierarchical

Sets purposefully limits the amount of information it shows in order

to achieve scalability. Assessing the magnitude and structure of outly-

ing elements provides a way to investigate how well the imposed hier-

archy matches the underlying data and whether certain pairs or

clusters of sets have been separated despite large overlaps.

Visualizations of outlying elements can be either set- or element cen-

tric, depending on whether the focus is on how pairs of sets deviate

from the hierarchy or on the individual elements that make up the de-

viation. Showing statistics on pairs of sets can be done effectively

using a heatmap. By overlaying both hierarchy information and pair

information in the same way as done by dendrogramix (Blanch et al.,

2015), it is possible to get a matrix plot that both shows the intersec-

tion at each branch point, as well as the intersection and union size of

each set pair. The contrasts between the branch point intersections

and the set pair intersections are thus indicative of the amount of devi-

ation from the hierarchy that each pair of sets exhibit (see Fig. 5).

An alternative way to show connections between leaves in a hier-

archical clustering is by using hierarchical edge bundling (Holten,

2006). To avoid overplotting, edges can be filtered by weight (num-

ber of outlying elements), in order to only show the strongest devi-

ations from the structure (Fig. 6).

The elements themselves can be investigated as well, based on the

outlying elements approach outlined earlier. Counting the number of

times each element appears as outlying will give an indication of each

elements propensity to not conform with the hierarchy. As the number

of times an element can appear as an outlier is governed by the num-

ber of times it appears in a set, these two values can be shown in a

scatter plot (see Supplementary Fig. S1) to quickly identify elements

exhibiting unexpectedly high or low deviation. In Supplementary

Figure S1 it can be seen that there are two bands of elements pos-

itioned below the main band indicating that while the elements are

prevalent in the sets, they only deviate in a subset of the clusters.

5 Discussion

We have presented a new approach to hierarchical clustering of set

data, a range of scalable visualizations that builds on top of the clus-

tering, and an outlier definition for elements based on the clustering.

Hierarchical Set analysis optimizes intersection size at each branch

point, making it easier to reason about the clustering and, as a con-

sequence, the visualizations. Hierarchical Set analysis is particularly

well-suited for pangenome analysis as pangenome data often con-

sists of a large number of sets with a clear hierarchical structure due

to the evolutionary nature of genomes.

5.1 Pangenome evolution
In the context of pangenomes the intersection is equivalent to the core,

while the union equates the pangenome. As such there is strong similar-

ity between Figure 3A and B as they both try to convey the same type of

information (i.e. the change in pangenome and core size as additional

genomes are added). The main difference is that Figure 3B shows the

core and pangenome sizes along a hierarchy instead of along a linear

progression as in Figure 3A. The benefit of the hierarchical sets ap-

proach is that evolutionary features are not obscured. The line-plot

hardly shows any change in core size in the last half of the plot despite

the fact that this group of genomes are just as diverse as the first half.

Further, the pangenome size evolution is not able to show the introduc-

tion of new species very clearly after the first appearance of S.boydii. In

addition, Figure 3B also conveys the hierarchical structure of the pange-

nome, information that is very relevant when evaluating core and pan-

genome sizes of different subsets of the pangenome. Based on Figure 3B

Fig. 4. Definition of outlying elements: set A–D are sets defined by the pres-

ence of elements 1–7. Blue filled circles indicate presence while empty circles

indicate absence. The shaded circles on the dashed lines show the set family

intersection of the families defined by the clustering. The red arrows show

outlying elements, i.e. elements that are shared by two sets but not shared by

all sets in their common set family
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it is obvious that three sets (the rightmost S.boydii strains) deviate

strongly from rest of the sets while showing high internal overlap. It is

also easy to quickly compare the sizes of these three sets with the sizes

of sets supposedly related to them (the other S.boydii) and determine

that they are consistently larger. Large set families with many shared

elements (e.g. Escherichia albertii and Shigella sonnei) are easily visible

and clearly distinguishable from set families with a more heterogeneous

composition (the central E.coli dominated cluster. Large jumps in inter-

section sizes and/or union sizes can, in the same way as in the line-plot,

be interpreted as possible merging of species, but in Figure 3B these

jumps are not masked by the heterogeneity of the species to the left

removing the bias for a small subset of the samples.)

5.2 Deviations from the hierarchy
There is a clear similarity between the Hierarchical Sets based heat-

map visualization (Fig. 5) and the BLAST matrices often used to

show similarities between genomes in a pangenome, e.g. Figure 3 in

Lukjancenko et al. (2012). The Hierarchical Sets heatmap provides

additional information though, allowing for both an assessment of

the pairwise similarities as well as deviation between the pairwise

similarity and the similarity defined by their common ancestor. The

deviation, defined as outlying elements in the context of

Hierarchical Sets, has a clear analogy in gene deletion and horizon-

tal gene transfer events. Such events results in distributions of gene

groups not governed by the evolutionary hierarchy of the genomes

itself but more related to shared environment. These events can be

of just as much interest as the hierarchical structure itself. Detecting

structure in where these events occur, in relation to the evolutionary

hierarchy, can help researchers detect strong cross-talk between evo-

lutionary unrelated organisms. In contrast to the heatmap approach

used in Figure 5, hierarchical edge bundles puts focus on larger

structures in the deviation, while obscuring the single pairwise
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Fig. 5. A dendrogramix inspired heatmap showing pairwise intersection and union sizes. The hierarchical clustering has been overlaid with white lines on top of

the union sizes while the set family intersection size for each cluster has been indicated as a backdrop color below the pairwise intersections. The contrast be-

tween the set family intersection sizes and the pairwise intersection size is indicative of how well the hierarchy describe the relationship between the two sets
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values due to overplotting e.g. the high number of outlying elements

between the E. coli and the S.sonnei cluster. The use of negative

space also draws attention to clusters that lacks outlying elements

(e.g. Shigella dysenteria) and single sets that shares some outlying

elements within a group of sets that do not (e.g. E. sp. KTE159 and

E. sp. KTE114).

5.3 Deviating gene groups
Looking into the diverging elements themselves and the number of

times elements appear as outliers can guide researchers looking into

mobile elements. The elements appearing as outliers constitute rows

of the presence/absence matrix not conforming to the hierarchical

structure. Extracting these rows and performing a second

Hierarchical Sets analysis based on them will reveal the second most

dominant structure in the dataset. Conceptually, this is equivalent to

a principal component analysis (PCA) where components gradually

diminish in explanatory power as they focus on structures not cap-

tured by the components before them. In an evolutionary context

the main hierarchy revealed by Hierarchical Sets analysis is likely

related (but not necessary identical) to the evolutionary tree of the

genomes under investigation, while a secondary hierarchy based on

outlying elements could reveal structures pertaining to increased

strain interactions such as ecological niches. It is possible to continue

creating sub-hierarchies based on outlying elements, but as with

PCA the likelihood of beginning to model noise will increase with

each step.

5.4 Escherichia and Shigella through hierarchical sets
Based on the figures provided in this article, it is possible to get a

good overview of the Escherichia and Shigella pangenome. The first

observation is that the two species are not clearly separated (Figs 2

and 3B). These results are not supportive of the notion that Shigella

is part of E.coli specifically (Lukjancenko et al., 2010; Ogura et al.,

2009; Pupo et al., 2000; Sims and Kim, 2011) it supports recent

findings that Shigella spp. and Escherichia spp. are species within

the same genus (Zuo et al., 2013). At a soft core threshold of 95%

the core sizes for almost all included species are around 3000

(Fig. 3B). E.albertii, S.sonnei and Shigella flexneri appears to be

very well defined species with relatively little internal difference,

whereas E.coli shows much more variation in the core sizes of the

internal subclusters. This difference is also pronounced in the heat-

map representation in Figure 5 in both the upper and lower triangle.

Figure 5 also shows that while S.boydii strains are scattered

throughout the clustering they retain a large pairwise overlap.

S.boydii is the most heterogeneous of the Shigella species (Feng

et al., 2004) and these results indicate that they have a complicated

relationship with the rest of the Shigella/Escherichia species.

Although a subset of S.boydii strains shares a larger core with other

species than with other S.boydii strains it is difficult to determine

whether S.boydii should be split up or whether the defining traits of

the species are simply encoded in a relatively small part of the gen-

ome, leaving a large variable portion of genes that can be inter-

changed with other species. A similar pattern can be found in

S.dysenteriae where a single strain is placed outside the main cluster

but retains a large pairwise overlap with the other strains from its

species. It is important to emphasize that the scattering of the

S.boydii and S.dysenteriae species is not a unique artifact of the

Hierarchical Sets clustering as the same pattern is found using

Jaccard distance and average linkage (Fig. 2). Although existence of

large numbers of outlying elements between strains is interesting, so

is the opposite. Escherichia fergusonii show almost no outlying

elements with any of the other strains included in the pangenome,

indicating a very stable and well-defined genome. E.albertii and

S.sonnei shows an interesting relationship in that each species cluster

is very well defined and that the two species, despite being closely

related, have almost no outlying elements between their strains

(Fig. 5). S.sonnei is a clonal species thought to have developed re-

cently in Europe (Holt et al., 2012), whereas E.albertii has only re-

cently been classified (Ooka et al., 2015) and have a less described

lineage. It could be hypothesized based on the Hierarchical Sets re-

sults that these two species have evolved recently from a common

ancestor and have lacked contact and exchange of genetic material

since delineation.

S. sp. FC130 represents a challenge for the use of a soft core,

both generally as well as when performing Hierarchical Set cluster-

ing. In the case of large and very homogeneous clusters such as the

S.sonnei cluster the inclusion of a very distantly related genome will

give almost no penalty as the core will remain unchanged. This

problem is uniquely present when using a soft threshold in situations

where both large homogeneous clusters and single, outlying sets are

present and is easily identified with Figure 5. Still, work should be

done to ensure that these situations are captured during clustering

and penalized.

6 Implementation and availability

The described clustering algorithm as well as the different visual-

izations are implemented in the hierarchicalSets R package and

available for free (GPLv2 license) on all major platforms through

CRAN (R Core Team, 2016) as well as on https://github.com/tho

masp85/hierarchicalSets. hierarchicalSets takes as input either a

presence–absence matrix with sets as columns and elements as

rows, or a list of sets defined by their elements. For use in pange-

nome analysis, hierarchicalSets can work directly with the the data

Fig. 6. Hierarchical edge bundling showing the 15% strongest deviations from

the hierarchy defined by a hierarchical set analysis (measured in number of

outlying elements). Color is mapped to number of outlying elements
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structures defined in the FindMyFriends package (Pedersen, 2015).

hierarchicalSets uses common, memory efficient R data-structures

and the clustering algorithm is written in Cþþ for speed, and has

been tested on set collection up to 3800 sets with a universe size of

5.5 million.

7 Conclusion

Pangenome analyses continue to increase in scope, and visualization

approaches that gracefully handle this increased complexity are

paramount to extract knowledge from the results. Recent advances

in pangenome analysis algorithms have facilitated the creation of

pangenomes spanning thousands of genomes, covering the full bac-

terial domain and current visualization techniques do not ad-

equately support such large and heterogeneous pangenomes. Based

on the overlap between common set arithmetics and pangenome

summaries, different approaches to scalable set visualization has

been explored in order to address the challenges posed by large pan-

genome datasets. This article presents a new range of set visualiza-

tion approaches well-suited to large collections of structured sets,

such as genomes in a pangenome. All presented visualizations are

centered around a new hierarchical clustering technique, called

Hierarchical Sets, that optimizes the intersection size along the

branch points. Based on this clustering it is possible to create scal-

able visualizations of intersection and union sizes (core and pange-

nome size), as well as visualizing elements (gene groups) that deviate

from the overall structure of the data. We show the utility of hier-

archical sets in pangenome analysis by applying it to a pangenome

based on 113 genomes from the Shigella and Escherichia genera.

The visualizations clearly showed how the different species under in-

vestigation differed in homogeneity and confirmed that the two gen-

era should be merged, while also pointing towards interesting

evolutionary relationships that should be further investigated. The

visualizations presented here do not rely on interactions in order to

communicate their message, making them easy to incorporate into

composite visualization frameworks or directly augment with inter-

activity. Although Hierarchical Sets has been developed for the pur-

pose of visualizing pangenome data, the approach is agnostic to the

underlying data type, and it could potentially be applied to other

large-scale set visualization problems, especially set data with a clear

hierarchical interpretation.
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