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Abstract 

Oncogenic human papillomaviruses (HPVs) are in most cases eliminated by 

intervention of T cells. As many other pathogens, these oncogenic HPVs belong to 

an ancient and diverse virus family. Therefore, we found it relevant to investigate the 

potential and limitations of inducing a broad response - either by inducing cross-

reactive T cells or by administering a polyvalent vaccine. To test these strategies, we 

designed 3 ancestral and 2 circulating sequences based on the two domains of the 

E1 and E2 proteins of papillomaviruses (PVs) that exhibit the highest degree of 

conservation in comparison to the other PV proteins. The PV sequences were fused 

to a T cell adjuvant, the murine invariant chain and encoded in a recombinant 

adenoviral vector which was administered to naïve outbred mice. By measuring T 

cell responses induced by these different vaccines and towards peptide pools 

representing 3 circulating strains and a putative ancestor of oncogenic HPVs, we 

showed that the ancestral vaccine antigen has to be approximately 90% identical to 

the circulating PVs before a marked drop of ~90% mean CD8+ T cell responses 

ensues. Interestingly, the combination of two or three type-specific PV vaccines did 

not induce a significant decrease of the CD8+ T cell response to the individual 

targeted PV types. Polyvalent HPV vaccine based on the E1 and E2 proteins seem 

to be capable of triggering responses towards more than one type of PV while the 

cross-reactivity of ancestral vaccine seems insufficient in consideration of the 

sequence diversity between HPV types.  
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Introduction  

In most cases pathogens belong to a very diverse and large family as it is the case 

for HIV, HCV, HPV and Plasmodium falciparum. Therefore developing vaccine 

strategies that can trigger more than one strain of pathogen has been a major focus 

in the vaccinology field. For that purpose, researches have been mostly focuses on 

either developing cross-reactive vaccines using consensus/ancestral sequences or 

developing polyvalent vaccines. Induction of cross-reactivity is appealing as one 

vaccine can target many types of viruses within the family, but the difficulty to induce 

such a response increases with the degree of diversity. A polyvalent vaccine might 

then be more feasible, but variability of responses to the individual types in the 

mixture may ultimately limit the number of targeted types that can be included in 

such vaccines. 

Oncogenic human papillomaviruses (HPVs) are among the viruses that belong to a 

highly diverse family [1]. Until now three prophylactic HPV vaccines (Gardasil, 

Gardasil-9, Cervarix) have been licensed. They are polyvalent vaccines and 

Gardasil-9 that has been recently introduced can induce responses towards 9 

different HPV types [2]. Despite their nearly complete efficacy against vaccine 

targeted papillomavirus (PV) types in naïve women [3], developing  therapeutic 

vaccines is yet an important focus in the scientific literature because of the low 

uptake of the preventive vaccines [4] and their poor therapeutic efficacy [3]. 

Therefore, exploring the possibility to develop either a cross-reactive T cell based 

vaccine or a polyvalent vaccine has additional relevance for combating HPV 

infections. 
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For attempts to induce cross-reactive responses and stimulate normal HPV 

elimination mechanisms, we focused on the E1 and E2 proteins, which are the most 

conserved among the HPV early proteins. Importantly, the selection of the E1 and 

E2 proteins also has consequences for the clinical targeting potential of a vaccine. 

The E1 and E2 early proteins of HPVs are involved in the replication of the virus 

genome and the regulation of E6 and E7 oncogenic proteins [5]. As these two 

proteins are highly expressed during chronic infection and low-grade cervical 

intraepithelial neoplasia (CIN) [6, 7] we are limiting ourselves to targeting the early 

stage of the infection before the cancer is established. This is in contrast to the 

majority of therapeutic strategies that targets the E6 and E7 oncogenes and 

therefore target the more advanced lesions and cancers [5, 8]. Notably, it is at the 

early stages when most spontaneous regression occurs [9] and we therefore 

anticipate that enhancing this regression rate is more feasible than achieving efficacy 

against malignancy.  Regression is correlated with T cell infiltrations in warts [10] and 

with E2 specific T cell responses in previously exposed, now uninfected children [11] 

and therefore vaccination at this time could potentially boost the natural immunity to 

HPV for infected women.  

We used Bayesian methods to reconstruct phylogenic trees and ancestral 

sequences having different degrees of similarity to the circulating sequences. The 

ancestral sequences selected for functional studies included one corresponding to 

the root of a phylogenetic tree of all oncogenic human and macaques PVs 

(CDSE1E2 antigen) as well as two other sequences that were ancestral to the 

clades containing HPV16/31/35 and HPV18/45 respectively. We also designed two 

vaccines encoding circulating human and macaques PVs sequences (HPV16E1E2, 

MfPV3E1E2). The E1 and E2 sequences of Macaca fascicularis type 3 (MfPV3) 
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were also included as it had been shown to be closely related to HPV16 and 

associated with both persistence and intraepithelial neoplasia [12, 13], thus MfPV3 

would potentially offer a test model for vaccines against persisting PV infection.  

In this study, each of our designed antigens (ancestral and circulating) was fused to 

a T cell adjuvant, the murine invariant chain (mIi), encoded in the replication deficient 

human adenovirus type 5 (Ad5) and tested in naïve outbred mice. Fusion of the 

MHC class II associated invariant chain (Ii) to the vaccine antigen leads to an 

increase of the antigen presentation on the surface of transduced dendritic cells 

(DCs) which has been correlated with an increase of the CD4+ and CD8 + T cell 

proliferation and a significant rise of the magnitude of the CD8+ T cell responses 

independent of the CD4 help [14]. Since the design of this novel technology in 2005-

2008, it has been used with different antigens and tested in different strains of mice 

and primates [14-16] and has been highlighted by others to be among the best 

described T cell adjuvants for adenovirus vectored vaccines [17]. We have never 

observed reduced responses to Ii linked antigen as compared to unlinked antigen 

[14, 15, 17, 18] and in a recent study, Capone et al. (2014) showed that chimpanzee 

adenovirus vector encoding the non-structural (NS) protein of the genotype 1b of 

HCV was able to induce a relatively similar T cell response to the NS protein of the 

HCV genotype 3a. Importantly, the breadth of the detectable vaccine induced 

response was enhanced by fusing the protein to the murine invariant chain (mIi) [15]. 

Therefore, the mIi is a relevant tool to include in our vaccine constructs and may 

increase the detection of low magnitude responses that would go unnoticed without 

the use of the invariant chain sequence.  
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By using the CDSE1E2, HPV18_45E1E2, HPV16_31_35E1E2, MfPV3E1E2, 

HPV16E1E2 sequences and peptide pools targeting E1 and E2 from CDS, HPV16, 

HPV18, MfPV3 we showed that ancestral sequences based on the E1 and E2 

proteins of papillomaviruses had to share close to 90% homology to the circulating 

PVs in order to induce a consistent T cell response at a level similar to the vaccine 

antigen. Vaccines with less similarity to the applied peptide pools rapidly dropped in 

response magnitude and consistency in outbred mice. We also showed that the T 

cell responses specific to each vaccine antigen that was induced after vaccination 

with up to three vaccines at once were similar to the T cell responses after 

immunization with one vaccine. A vaccine cocktail or a polygenic vaccine encoding 

up to three antigens could therefore theoretically achieve targeting of a large fraction 

of the circulating oncogenic strains.   

Materials and Methods  

Mice   

Female CD1 mice were obtained from Scanbur (Denmark) and were acclimated for 

at least one week prior to vaccination. For all experiments mice were between seven 

and nine weeks of age at the start. The experimental procedure was approved by the 

national ethics committee on experimental animal welfare (dyreforsøgstilsynet) and 

performed according to the Danish guidelines.  

Generation of the different PVs ancestral sequences   

First, multiple alignments for the E1 and E2 protein of the most frequent HPVs were 

performed using the software MAFFT [19]. For each alignment, the best fitting amino 

acid substitution models was then determined using the ProtTest3 software [20]. For 
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both protein data sets this was found to be JTT + I + G. Phylogeny and ancestral 

sequences were then inferred using the software MrBayes v3.1.2 [21]. For each data 

set the program was run for at least 3,000,000 generations, with two parallel runs of 

5 chains each. Convergence of the Markov chain Monte Carlo run was checked 

using the software Tracer (Tracer v1.6, availablehttp://beast.bio.ed.ac.uk/Tracer) and 

also by using the convergence diagnostics output by MrBayes. Finally, we used 

software written by the authors to automatically infer and remove subsequences 

corresponding to inserts that most likely were not present in a given ancestral 

sequence. Once the ancestral sequences were generated, the relatively conserved 

N- and C- terminal domains of E1 and E2 were selected and separated by GS 

linkers. The sequences are listed in the supplementary figure 1.  

The CDSE1E2 has also been applied in a primate immunogenicity and efficacy study 

against Macaca fascicularis papillomaviruses (Ragonnaud et al., manuscript 

accepted, December 2016) 

Adenoviral vector production and immunizations 

The above ancestral antigens (CDSE1E1, HPV16_31_35E1E2, HPV18_45E1E2) 

and the PV circulating antigens (HPV16E1E2 and MfPV3E1E2) were subcloned 

directly after the full length of the murine invariant chain (mIi) within the same ORF. 

The mIi was in a transgene expression cassette of a shuttle plasmid and flanked by 

a CMV promoter (cytomegalus promoter) with tetracycline operator (TetO) sites [22] 

and a SV40 polyA (simian virus 40 poly A signal).The cassette was then inserted into 

the E1 region of an E1/E3-deleted recombinant human adenovirus type 5 (Ad5) 

genomic plasmid by homologous recombination in BJ5183. The newly generated 

plasmid containing the Ad5 virus genome with the relevant sequence in the E1 locus 
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was linearized and transfected in T-Rex-293 cell line (Thermo Scientific). Each virus 

was propagated in this cell line and purified by CsCl gradient ultracentrifugation as 

previously described [23]. The genome of the purified viruses was isolated and 

genomic DNA sequenced to verify the newly inserted sequence into the E1 deleted 

locus and digest by restriction enzymes digestion for further quality control. The 

number of virus particles (VPs) was identified by measuring the OD value of the 

purified virus on a NanoDrop-2000 (Thermo Scientific). The infectious virus titer 

(IFU) for each vaccine was determined at the same time with the Adeno-X Rapid 

Titer system (Clontech, Mountain View, CA).  

All mice were immunized subcutaneously (s.c.), behind the foot pad in the right leg 

with 2x107 IFU of the corresponding vaccines in 30 µl of PBS as in a number of 

previous studies using Ii adjuvant vaccines[14, 18, 24-27].  

Peptides  

Peptide pools used in this study contained 96 peptides for the CDSE1 protein, 42 

peptides for the CDSE2 protein, 94 peptides for the HPV16E1 protein, 41 peptides 

for the HPV16E2 protein, 97 peptides for the HPV18E1 protein, 40 peptides for the 

HPV18E2 protein, 96 peptides for the MfPVE1 protein, 39 peptides for the MfPV3E2 

protein. In order to span the entire sequence of each protein, peptides were 16 a.a. 

long and overlap by 11 a.a. These different peptides were purified and pooled by 

JPT (Germany) and shipped to Denmark in a lyophilized form.  
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Flow cytometry  

Spleens were collected from mice 14 days after immunizations and each of them 

was mashed through a net to obtain a single cell suspension that was then 

stimulated at 37°C and 5% CO2 for 5 hours with 1µg/ml of relevant peptide pools and 

3µM of Monensin. After incubation, cells were stained according to the standard 

protocols [28, 29]. Briefly, cells were first stained using the following surface anti-

mouse antibodies (Biolegend): CD8_PerCP.Cy5.5, CD4_Pe, CD44_FITC; then fixed 

using a 1% paraformaldehyde (PFA) solution and finally permeabilized to allow the 

entry of the anti-mouse IFN-γ_APC antibody (Biolegend). The data were collected on 

the LSRII and FORTESSA instruments (BD Biosciences).  

Determination of the percentage of identity between the vaccine antigens and 

the proteins used for splenocyte stimulation  

The percentage of identity between the vaccines sequences and the proteins 

sequences (used to produce the different peptide pools for the flow cytometry assay) 

was calculated by multi-alignment using the algorithm “blastp” on the NCBI website. 

Statistical analysis  

Graphs and statistical analysis were performed using Prism software (version 5). 

Quantitative results were compared using two-tailed Mann_Whitney (non-parametric) 

test. p Values (p) > 0.05 were nonsignificant (n.s.) values, p ≤ 0,05 were denoted “*”, 

p ≤ 0,01 were denoted “**” and  p ≤ 0,001 were denoted “***”.  
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Results   

Amino acid sequence homologies between the vaccine antigens and PVs 

proteins  

After phylogenetic reconstruction based on the E1 and E2 proteins of oncogenic 

HPVs, we selected three ancestral sequences (CDSE1E2, HPV16_31_35E1E2 and 

HPV18_45E1E2) that correspond to different internal nodes in the phylogenetic tree, 

as well as two existing PV sequences (MfPV3E1E2 and HPV16E1E2). These 

different sequences (listed in the supplementary figure 1) were fused to the T cell 

adjuvant, the murine invariant chain [14] and encoded in a replication deficient 

adenovirus type 5 (Ad5) as illustrated in figure 1A (Fig. 1A).  

Using standard multiple-alignment tools we identified the percentage of amino acid 

homologies between the vaccine antigen sequences and the peptide pools covering 

the E1 and E2 proteins from ancestral and circulating PVs (Fig. 1B). Through these 

different combinations we cover a distance from 50 % to 100 % identity providing us 

with a novel platform to study cross-reactivity based on the E1 and E2 proteins.   

A high percentage of identity between ancestral and circulating PVs amino 

acid sequences is necessary to induce robust cross-reactive CD8+ T cell 

responses  

We next investigated the ability of our different vaccine constructs to induce cross-

reactive T cell responses. For that purpose, outbred mice were vaccinated with one 

of the 5 vaccines and 14 days later, we analyzed the CD8+ T cell responses towards 

peptide pools covering the E1 and E2 proteins of CDSE1E2, HVP18, HPV16 and 

MfPV3. Here, each vaccinated group was able to induce a strong CD8+ T cell 

response towards the E1 vaccine-encoded antigen in an average of 6x105 IFN-γ 
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producing CD8+ T cells (Fig. 2A). Only the vaccine encoding the ancestral sequence 

corresponding to the internal node closest to HPV18 and HPV45 

(Ad5_mIi_HPV18_45E1E2) and sharing about 92% of identity to the E1 protein of 

HPV18 was able to raise a similar HPV 18 specific CD8+ T cell response in all 

vaccinated mice as it was against homologous vaccine antigens (Fig. 2A and B). 

When the percentage of homology was lower than 92 %, some, but not all, 

vaccinated mice were able to raise cross-reactive CD8+ T cell responses and for 

those responding mice the responses were significantly lower than against vaccine 

antigens with an average drop of about 10 fold (Fig. 2A and B). The CD8+ T cell 

responses raised against the E2 protein were not as consistent as against the E1 

protein. Certainly, not all vaccinated mice were able to induce CD8+ T cell responses 

against the E2 protein encoded in the vaccines, and this antigen was also found to 

provide poor or non-existent cross-reactivity (Fig. 2C and D). Occasionally potent 

responders were detected including quite prominently for the 76% homology group 

(Fig. 2 D).  To get an idea of the overall responses, we added the percentage of the 

IFN-γ producing CD8+ T cells after E2 stimulation to the percentage after E1 

stimulation. This did not result in a higher number of responders which can be 

explained as the few E2 responders had also responded to the E1 protein (Fig. 2E 

and F).  

Combination of up to three PV vaccines does not negatively affect the induced 

CD8+ T cell responses  

The magnitude of the PV-specific T cell responses induced after vaccination in order 

to eliminate PV infections is still unknown. Therefore, we found it interesting to 

investigate whether the combination of two or three vaccines could maintain the 

magnitude and/or consistency of the T cell responses specific to the vaccine-
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encoded antigens. For that purpose we immunized 3 groups of outbred mice, one 

group with the Ad5_mIi_MfPV3E1E2 vaccine, a second group with the 

Ad5_mIi_MfPV3E1E2 and Ad5_mIi_HPV16E1E2 vaccines and a last group with the 

Ad5_mIi_MfPV3E1E2, Ad5_mIi_HPV16E1E2 and Ad5_mIi_CDSE1E2 vaccines. As 

in the previous experiment, we analyzed the CD8+ T cell responses 14 days post 

vaccination from mouse spleen. As seen in figure 3A, all vaccinated group were able 

to raise a similar CD8+ T cell response to the E1 protein of MfPV3, an average of 

2x105 IFN-γ producing CD8+ T cells were induced in each vaccinated group. 

Therefore combination of up to three vaccines did not have any effect on the 

MfPV3E2 specific CD8+ T cell responses. The last group of mice that received 3 

vaccines including the Ad5_mIi_CDSE1E2 vaccine was also able to induce a potent 

CD8+ T cell response to the E1 protein of CDSE1E2 antigen (Fig. 3A) that was 

similar to the group of mice that received only this vaccine in the previous 

experiment (Fig. 2A). A slight, but not statistically significant, decrease of the E1 

HPV16 specific CD8+ T cell response was observed in the group of mice that 

received 3 vaccines in comparison to the combination of the two vaccines (Fig 3A), 

but all animals responded against all antigens used for immunization. As seen in the 

previous experiment, the E2 specific CD8+ T cell responses induced by any of the 

vaccines was low in every group (Fig. 3B).  

Similar conclusions concerning the CD4+ T cell responses 

Adenoviral vaccines, even without using the Ii adjuvant, are first and foremost potent 

stimulators of CD8+ T cell responses [30, 31]. Nevertheless, the CD4+ T cells have 

been shown to have an important role in the regression of HPV infections [10, 23, 

32, 33]. Therefore, we also analyzed the CD4+ T cell response after vaccination at 

the same time as the CD8+ T cell response was measured. The vaccine-induced 
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CD4+ T cell responses were found to be much lower than the CD8+ T cell responses 

and we therefore decided to focus on the total E1 and E2 specific CD4+ T cell 

responses. In this analysis the results for each experiment were similar to the CD8+ 

T cell responses and again, a minimum of 90% of homology between the PV 

ancestral sequences and the circulating PVs was necessary to induce a CD4+ T cell 

response similar in magnitude to the vaccine antigen-specific CD4+ T cell response 

(Fig. 4A and B). Also, the combination of up to three vaccines was still as potent as a 

single vaccine against the same specificity (Fig. 4C). 

Discussion  

The aim of the study was to investigate the possibly to design a therapeutic 

adenoviral vaccine that can elicit T cell responses specific to more than one type of 

circulating oncogenic papillomavirus.  For that purpose, two approaches were tested. 

The first one was to analyze the induced cross-reactive T cell responses after 

vaccination with adenoviral vectors encoding E1 and E2 ancestral sequences 

located at different distances to circulating PVs and to identify the similarity 

requirement for induction of consistent responses. The second approach was to 

investigate the possibility of combining several vaccines and observe if we still 

preserve the T cell responses to each targeted PVs.  

When we investigated the ability of these different ancestral vaccines at inducing 

cross-reactive T cell responses, we discovered that at least 90% of amino acid 

identity between the vaccine antigen and the circulating PV strains was necessary in 

order to match vaccine antigen-specific T cell responses. A percentage of homology 

lower than 90% induced a significant reduction of the cross-reactive T cell-responses 

towards targeted PVs and more variation within the responding mice with a high 
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frequency of non-responders. For the prospects of using ancestral sequences to 

generate very broadly effective vaccines against PVs, this lack of consistency was a 

sobering finding, but it may be sufficient for cross-reactive vaccines against less 

diverse pathogens such as HIV-1 with 90 to 85 % of homology between clades in the 

major structural proteins pol and gag respectively [34]. The rather strict homology-

requirement we observed as necessary to maintain robust T cell responses is 

superficially different from the Capone et al. study where only 70% identity (as 

determined by multiple alignment of the amino acid sequences) between the two 

non-structural (NS) proteins was shared and where cross-reactivity was found in all 

of the vaccinated outbred mice [15]. As we used the human adenoviral vector type 5 

that has shown similar potency to the chimpanzee adenoviral vectors [30] and the 

mIi which was also used in the Capone et al. study [15], our platform should have 

been performing similarly. A potential factor to explain the discrepancies is the size 

of our E1E2 antigen that is much smaller than the NS protein used in Capone et al. 

[15]. A shorter antigen will arguably tend to have fewer MHC binding peptides and 

therefore less epitopes of which a fraction have the capacity to inducing cross-

reactive epitopes. Looking at the individual responding animals in Capone et al. [15] 

it is also evident that the animals responded with heterogeneity and the animals had 

responses towards 4 to 6 of 6 included homologous peptide pools. Our antigen 

(length ~700 a.a.) is considerably shorter than the NS antigen (length ~2000 a.a.), 

and in this light it may not be surprising that we saw less homogeneity in the 

responses and only occasionally responses towards the E2 protein  (~200 a.a.) in 

comparison to the E1 protein (~500 a.a.). Also, if our vaccines induce responses to 

fewer epitopes it is less of a surprise that it sometimes fail completely against strains 

with more than 10% of dissimilarity. Notably, the mean of the responses we 
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observed were approximately 10-15 folds lower which is not too different from the 

responses in Capone et al. [15]. Additionally, it is possible that we, by selecting the 

most conserved regions of the E1 and E2 proteins, may also have selected protein 

domains that are less immunogenic than the highly diverse regions. Such adaptation 

has been recently reported to have happened during the course of HIV evolution 

[35]. Such adaptation might also help explain why the E2 protein was poorly 

immunogenic in most measurements in the study. As a curiosity in our dataset, we 

did observe the group of 76% of E2 homology responding more potently than the 

group of 83-86 % of homology, but the group of 76 % of is also the smallest data set 

and it might be a chance event.   

Importantly, while the ability to eliminate PV infections has been shown to be 

genetically linked to genes within the immune system [23] and correlated with T cell 

infiltration [10], the PV specific T cell responses appear difficult to detect in the blood 

[36]. Therefore, a low cross-reactive T cell responses induced after vaccination with 

an adenovirus vector encoded the PV ancestral sequence might be sufficient to 

eliminate oncogenic PV infections, if it could only be consistently induced.  

In this study, as an alternative to the ancestral antigen design we also showed that it 

was possible to combine up to three PV vaccines while preserving the T cell 

responses to each of the included PV antigens. A vaccine cocktail or a polygenic 

vaccine encoding up to three antigens could theoretically achieve targeting of a large 

fraction of the circulating oncogenic strains. These data are different from the results 

reported in the Larke et al. study (2007) which showed that combining single-clade 

HIV-1 vaccines reduced the breadth of induced T cell responses, although 

simultaneous injection into anatomically separated sites could increase these T cell 

responses [37]. We did not apply different injection sites to avoid immunodominance 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

between the antigens, as this defies the purpose of combining the vaccines to make 

a useful polyvalent vaccine formulation, but we nevertheless achieved strong 

responses to each included antigen.  This could be a benefit of the Ii adjuvant that 

has demonstrated improved capacity to compete with vector derived immune 

responses  for induction of broader responses [38].  

From our findings it is clear that a single short ancestral sequence cannot induce the 

coveted consistent E1 and E2 specific responses, and that relatively close sequence 

similarity is needed, but we have obtained clues to how this could be achieved. 

Simply mixing vaccine vectors seems to be a viable strategy and would presumably 

induce broad if not exactly global coverage. When analyzing the differences and 

similarities to the study by Capone et al. [15] inclusion of larger fragments of the 

papillomavirus genomes and potentially encoding multiple antigens could be seen as 

logical steps forward.  

Accordingly, the information provided in this study may bring us closer to obtain a 

therapeutic vaccine that can trigger more than one type of papillomavirus. 

Furthermore, the basic conclusions obtained may find relevance for vaccination 

attempts against other variable T cell antigens. 
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Figure Legends 

Fig 1. Adenovirus vaccines and amino acid distances between the vaccine 

antigens and papillomavirus proteins. (A) A schematic overview of replicative 

deficient adenovirus vaccines expressing either ancestral (CDS, HPV16_31_35, 

HPV18_45) or circulating (MfPV3, HPV16) of the N (Nterm) and C (Cterm) terminal 

domain of the E1 and E2 proteins of papillomaviruses (PVs). Each of these 

sequences is fused to the murine invariant chain (mIi). The number of amino acid 

(a.a.) is written below each protein.  (B) Tables illustrating the percentage (%) of a.a. 

homology between the different vaccine antigens and the E1 (top table) and E2 

(bottom table) proteins of the ancestral and circulating PVs. The % of homology was 

identified by multi-alignment (blastp) on the NCBI website. 

Fig 2. Cross-reactive CD8+ T cell responses induced by adenoviral vectors. 

Group of 5 CD1 mice were vaccinated with one the adenovirus vaccines at 2x107 

infectious unit (IFU). All mice were euthanized14 days later and total number of 

splenic CD8+ T cells responding to with IFN-γ production to peptide  pools of the 

ancestral  (CDS) and circulating  (HPV16, HPV18, MfPV3) E1 and  E2 proteins of 

PVs (A, C and E). These T cell responses were grouped depeding on the distances 
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(% of a.a. homology) between the vaccines´ antigen and the peptide pools of the E1 

and E2 proteins (B, D and E). These distances were characterized in the previous 

figure. The E1E2 T cell responses (E and F) correspond to the addition of the % of 

IFN-γ CD8+ T cells responding to the E1 pools and to the % of IFN-γ CD8+ T 

responding to the E2 pools. Splenocytes were gated on CD8+, CD44+, and IFN-γ+ T 

cells. Each dot and bar represents a mouse and the mean respectively. This 

experiment was performed twice and the data were pooled. “n.s.” denotes for 

nonsignificant. 

Fig 3. CD8+ T cell responses after vaccination with up to three adenoviral 

vectors. Group of 6-10 CD1 mice were vaccinated either with one vaccine 

(Ad5_mIi_MfPV3E1E2) or two vaccines (Ad5_mIi_MfPV3E1E2, 

Ad5_mIi_HPV16E1E2) or three vaccines (Ad5_mIi_MfPV3E1E2, 

Ad5_mIi_HPV16E1E2, Ad5_mIi_CDSE1E2) at 2x107 IFU for each vaccine.  All mice 

were euthanized14 days later and analysis of splenic CD8+ T cell responses was 

performed by IFN-γ intracellular cytokine staining  after in vitro stimulation with 

peptide pools of the ancestral and circulating  E1 (A) and E2 (B) PVs proteins. 

Splenocytes were gated on CD8+, CD44+, and IFN-γ+ T cells. Each dot and bar 

represents a mouse and the mean respectively. “n.s.” denotes for nonsignificant. The 

experiment was performed once.  

Fig 4. CD4+ T cell responses after vaccination with adenoviral vectors. E1E2 

specific CD4+ T cell responses were analyzed at the same time as the CD8+ T cell 

responses from the 2 previous experiments. (A) and (B) refer to the experiment 

illustrated in figure 2 and (C) refer to the experiment illustrated in figure 3. As it was 

mentioned on the figure 2 legends, the E1E2 T cell responses correspond to the 
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addition of the % of IFN-γ CD8+ T cells responding to the E1 pools and the % of IFN-

γ CD8+ T responding to the E2 pools. “n.s.” denotes for nonsignificant. 

Supplementary figure 1. Amino acid sequences of the different antigenic 

constructs: CDSE1E2, HPV16_31_35E1E2, HPV18_45E1E2, HPV16E1E2 and 

MfPV3E1E2. The sequences were constructed with the following orientation of the 

papillomavirus genes and GS linkers: E1Nterm-GS-E1Cterm-GS-E2Nterm-GS-

E2Cterm. The GS linkers are highlighted in bold and underlined.  
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Figure 3 
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Figure 4 

 

 

 


