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ABSTRACT: Electron energy-loss spectroscopy (EELS) has become increasingly popular for detailed 

characterization of plasmonic nanostructures, owing to the unparalleled spatial resolution of this 

technique. The typical setup in EELS requires nanoparticles to be supported on thin substrates. However, 

as in optical measurements, the substrate material can modify the acquired signal. Here, we have 

investigated how the EELS signal recorded from supported silver and gold spheroidal nanoparticles at 

different electron beam impact parameter positions is affected by the choice of a dielectric substrate 

material and thickness. Consistent with previous optical studies, the presence of a dielectric substrate is 

found to redshift localized surface plasmons, increase their line-widths, and lead to increased prominence 

of higher order modes. The extent of these modifications heightens with increasing substrate permittivity 

and thickness. Specific to EELS, the results highlight the importance of the beam impact parameter and 

substrate related Čerenkov losses and charging. Our experimental results are compared with and 

corroborated by full-wave electromagnetic simulations based on the boundary element method. The 

results present a comprehensive study of substrate induced modifications in EELS and allow 

identification of optimal substrates relevant for EELS studies of plasmonic structures.    
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Noble metal nanoparticles have been studied extensively in the last few decades due to their remarkable optical 

properties, arising from the resonant interaction of their conduction electrons with incident light1. This phenomenon, 

known as localized surface plasmon (LSP) resonances, has enabled major developments in nanophotonics, with 

applications ranging from integrated optics and electronics2 to solar cells3 and biosensing4. The majority of these 

applications involve metallic nanoparticles and nanostructures supported on dielectric substrates. While several 

qualitative aspects of such setups can be appreciated and understood without an account of the neighboring dielectric 

environment5,6, a complete account necessarily requires a full treatment of the entire optical environment, including 

the substrate. Partial accounts, which incorporate some features of the neighboring dielectric environment, for 

instance through effective homogeneous cladding approximations7,8, have been shown to improve quantitative 

agreement between measurements and theory. However, they omit several important characteristics of the 

compound system, whose properties require a fuller description9–13. Several of those features can be treated within 

the image dipole perspective; there, the induced polarization of the nanoparticle introduces an induced polarization 

in the substrate, taking the form of a sum of multipoles at the image position. This multiple scattering coupling 

between the nanoparticle and its images may significantly modify several key optical features of unsupported 

nanoparticles, exemplified by highly non-uniform field distributions in the nanoparticle-substrate vicinity, spectral 

shifts, and increased coupling to higher-order (HO) multipoles13,14.   

Several previous studies have experimentally explored the substrate effect in the context of ensemble-averaged 

optical measurements on nanoparticle arrays fabricated by electron beam lithography15–17, demonstrating a clear 

dependence of the LSP energy on substrate dielectric properties. However, averaging and convoluting the influence 

of the substrate with, for example, nanoparticle size or shape variation, cannot be avoided in ensemble studies. 

Correlative probing of the optical response and structural properties at single particle level, using optical and ex-

situ transmission electron microscopes (TEMs) studies, has been carried out for gold (Au) and silver (Ag) 

nanocubes, where both the dielectric properties and the thickness of a substrate were found to have a large effect on 

optical properties18,19. A powerful technique for the characterization of plasmonic properties is EELS performed in 

a TEM, which enables in-situ correlative studies of optical and structural properties20,21. Improvements made in the 

energy resolution in TEM to below 0.2 eV in the last two decades has made the optical energy range in EELS 



3 

 

accessible, allowing LSPs to be probed and studied with sub-nanometer spatial resolution6,8,22–26. TEM requires 

specimens thin enough to be electron transparent (typically below 100 nm) and therefore, plasmonic nanoparticles 

studied by EELS are typically supported on thin membranes6,8,27 or buried in a thin embedding material28. In many 

cases, modest attention has been given to the influence of the substrate, where it is either not taken into account6,8,29 

or assumed to act as a homogeneous background medium, whose effective permittivity is fitted by comparing 

simulations to experimental results27,30,31. More recently, a number of studies have focused on specific substrate 

induced effects in EELS, such as mode splitting and energy transfer between LSPs and the substrate in the optical 

response of truncated nanospheres and nanocubes32–35. In this work, we investigate the substrate effect in EELS 

through a systematic study of the LSP resonances appearing in the EELS spectra of Ag and Au nanoparticles 

supported on a variety of substrates, allowing a full examination of the role of substrate material composition and 

thickness. Furthermore, motivated by our recent findings of strong dependence of the EELS signal on the position 

of the electron beam relative to the particle (impact parameter)28, we additionally investigate this dependence and 

its interplay with substrate parameters. Throughout, the experimental findings are compared with accurate and fully 

retarded simulations of the EELS signal computed using the boundary element method.  

RESULTS 

AG NANOPARTICLES. STEM images of the Ag and Au nanoparticles and a schematic illustration of the 

relative geometric parameters are presented in Figure 1. The examined nanoparticles were found to have close to 

spherical geometries with diameters 2R = 20.4 ± 1.5 nm in the case of Ag, and 2R = 53.5 ± 2.3 nm in the case of 

Au (averaged measurements from 30 nanoparticles in each case). The particle diameters fall outside the range of 

significant non-classical corrections, e.g. due to nonlocality36, thus justifying the local response treatment of the 

EELS signal. Larger Au particles were deliberately chosen to ensure satisfactory levels of signal in the experimental 

EELS data, as EELS data collected from Au particles generally contain low signal to noise ratios.  
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Figure 1: High-angle annular dark-field STEM images of (a) Ag and (b) Au nanoparticles. The length of the scale 

bar in each case is 20 nm. (c) A schematic illustration of the considered setup, highlighting the relevant 

parameters in the experiments.  

The simulated EEL spectra calculated for a 2R = 20 nm Ag nanosphere in vacuum and embedded in infinitely 

thick SiO2, SiNx and Si media as functions of the beam impact parameter b are summarized in Figure 2. While these 

setups are unrealizable experimentally, they provide a useful point of reference for comparison with the substrate-

supported particles. In the case of Ag particle in vacuum (Figure 2 (a, e)), three distinct regions within the examined 

impact parameter range are identified:  

Region (i): 1.5R (15 nm) < b < 2R (20 nm): a single peak at ~ 3.5 eV, corresponding to the dipole excitation, 

is observed. 

Region (ii): 1R (10 nm) < b < 1.5R (15 nm): in this region additional peaks, corresponding to the excitation of 

HO modes, appear and intensify with decreasing b. It is important to stress here that while distinct 

HO modes can clearly be distinguished in the unbroadened simulated data, we will in general not 

have sufficient energy resolution to resolve individual multipole peaks experimentally28. Instead, a 

single broad peak will be observed in the EEL spectrum; this is reproduced by the broadened 

simulated data, which accounts qualitatively for this finite energy resolution.  
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Region (iii): b < R (10 nm): in this region a final additional peak emerges at ~ 3.8 eV, corresponding to the 

excitation of the bulk plasmon. In contrast to regions (i) and (ii), HO modes have magnitudes 

comparable to or higher than the dipole LSP mode in this region. 

 

Figure 2: Simulated EELS intensity maps and spectra at selected impact parameter positions simulated for a 2R = 

20 nm Ag nanosphere fully embedded in (a, e) vacuum, (b, f) SiO2, (c, g) SiNx, and (d, h) Si. Pink filled areas in 

(e – h) denote the simulated spectra convoluted with a Gaussian envelope with FWHM of 0.15 eV, accounting for 

the energy resolution of the experiments. 

Overall, the same trend can be identified in the EELS response of the embedded particles, with the dipole LSP 

being largely the dominant feature in region (i), HO LSPs intensifying in region (ii) and the bulk plasmon, as well 

as the dipole and HO LSPs being present in region (iii). However, two major distinctions in the plasmonic response 

of the embedded Ag particles relative to that of the Ag particle in vacuum can be observed: one is the redshift of 

the LSPs, increasing from SiO2 to Si (the center energy of the dipole LSP occurring at ~ 3.1 eV, ~ 2.5 eV and ~ 1.5 
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eV for particles embedded in SiO2, SiNx and Si, respectively), and the other is the higher number of HO modes 

discernable in the spectra at given b positions.  

The following observations are made when examining the simulated EELS spectra of Ag nanoparticles 

supported on SiO2 substrates with thicknesses t = 8 nm and 20 nm, presented in Figure 3: In region (i) (b > 1.5 R) 

the dipole LSP mode is the main feature in the EEL spectra, although a weak shoulder due to HO modes can also 

be discerned in Figure 3d. Only a slight redshift of the dipole LSP with respect to its frequency in vacuum (~ 0.05 

eV) is observed here compared to the embedded scenario. Broadening the simulations with a Gaussian function 

increases the line-width of the plasmon feature but the center energy of this feature remains unchanged, since the 

probability of exciting HO modes within this impact parameter range remains low. This indicates that the main 

plasmon feature in the EEL spectra acquired in this region can be directly interpreted as the dipole LSP mode. In 

region (ii) (R < b < 1.5 R) the spectral features associated with HO modes become increasingly prominent, with the 

onset of significant modifications to the dipole-only response occurring at comparatively larger b than that for an 

unsupported particle. Broadening the simulated data here smears out the dipole and HO modes and produces a 

single broad peak encompassing all LSP excitations. As the result, the LSP feature in the broadened data is 

blueshifted relative to the dipole mode, due to the increasing intensity of the HO modes. In region (iii) (b < R) the 

bulk plasmon, as well as the dipole and HO modes are present. The HO modes in this region have intensities 

comparable to that of the dipole mode. Subsequently, the single LSP feature in the broadened spectra is further 

blueshifted relative to the dipole LSP mode.  

Comparing the spectra in Figures 3(e) and (f) shows that broadening the simulated data reproduces many of the 

features observed experimentally. In particular, there is good agreement between the energies at which different 

spectral features occur. However, all excitations still have wider line-widths in the experimental data and the bulk 

plasmon intensity is consistently overestimated in the simulations. The overestimation of the bulk plasmon intensity 

in similar simulations has been observed by others29,37,38 and has been ascribed to further attenuation of the beam 

inside the metallic nanoparticles in experiments, not accounted for in the simulations37. Moreover, the simulations 

assume a normal incident angle of electrons relative to the substrate and negligibly small post specimen scattering 

collection angles, while the experiments employ a convergent electron probe with convergence semi-angle of ~ 25 
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mrad and a collection semi-angle of ~ 28 mrad. The plasmon energy is a function of the scattering vector and shifts 

to larger values at higher scattering angles39. The relatively large acceptance angle of the EELS spectrometer here 

allows collection of a range of scattering angles, resulting in a slight blueshift and broadening of the recorded 

plasmon features. Additional damping of the plasmon excitations through transfer of energy to single electron 

transitions, given the relatively large scattering collection angle in the experiments is also possible40. Other possible 

contributing factors to the observed increased line-widths of the plasmon features include Kreibig damping41,42 and 

structural defects43,44 and impurities present in the Ag nanoparticles.   

 

Figure 3: EELS intensity maps and selected spectra at different impact parameter positions simulated for a 2R = 

20 nm Ag nanoparticle (a, b, d, e) and experimentally acquired from 2R ~ 20 nm Ag nanoparticles (c, f) supported 

on t = 8 nm and 20 nm SiO2 substrates. 

Overall, only minor differences are observed between the EEL spectra of particles on t = 8 nm and 20 nm SiO2: 

in both experimental and simulated spectra, the relative intensity of HO to dipole modes is slightly increased for the 

thicker substrate, and a slightly larger redshift of the LSP modes for the thicker substrate is found in the simulations. 
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The experimental and simulated EEL spectra for Ag nanoparticles supported on t = 5 nm and 20 nm SiNx 

substrates are shown in Figure 4. The simulated results show significant changes in the EEL spectra of the Ag 

nanoparticle compared to those in vacuum and SiNx media and on a SiO2 substrate: while previously only one 

dominant feature was present in region (i), in the case of the Ag nanoparticle on SiNx, at least 3 different features 

with similar intensities are present. The energies at which the dipole and HO modes occur are redshifted compared 

to both particles in vacuum and on a SiO2 substrate (the dipole mode shifted by ~ 0.2 eV for Ag supported on a t = 

5 nm substrate relative to Ag in vacuum). Increasing substrate thickness results in larger levels of background signal, 

increasing redshift of the LSP modes and increasing relative intensity of HO to dipole modes. The separate dipole 

and HO modes present in the simulated spectra disappear after applying Gaussian broadening (due to comparable 

intensities of the dipole and HO LSPs in this region) and are replaced with a broad feature, whose center energy 

does not correspond to that of the dipole LSP.  This implies that the LSP feature recorded experimentally from Ag 

nanoparticles on SiNx substrates in region (i) can no longer be interpreted as having mainly dipolar characteristics. 

Obtaining EEL spectra containing primarily the contribution from the dipolar LSP consequently requires acquisition 

at even larger impact parameters. However, acquiring EEL spectra with adequate signal to noise ratios at b > 2 R 

can prove to be a challenge. In region (ii), the intensity of the HO modes continues to increase and exceeds that of 

the dipole mode. Accordingly, the center energy of the broadened LSP feature in this region continually blueshifts 

with decreasing b.  Region (iii) in the experimental data is again marked by the appearance of the bulk plasmon. 

The same discrepancy between the intensity of the bulk in the simulated and experimental spectra exists here as did 

in the case of Ag particles on SiO2 substrates.  
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Figure 4: EELS intensity maps and selected spectra at different impact parameter positions (a, b, d, e) simulated 

for a 2R = 20 nm Ag nanoparticle (a, b, d, e) and experimentally acquired from 2R ~ 20 nm Ag nanoparticles (c, f) 

supported on t = 5 nm and 20 nm SiNx substrates. 

The most considerable modification in the plasmonic response of the Ag nanoparticles is seen in the case of 

particles on a Si substrate, as the EEL spectra in Figure 5 do not resemble those of nanoparticles in vacuum or 

embedded in Si: all spectral features in the simulated data are much broader and are strongly redshifted compared 

to those calculated for particles in vacuum, on SiO2 or SiNx substrates. Two prominent spectral features can be seen 

in region (i): the dipole LSP mode at ~ 2.9 eV and a HO LSP mode at ~ 3.5 eV. The relative intensity of the HO to 

dipole modes increases with decreasing b and similar to what was observed for SiNx, the intensity of the HO LSPs 

already exceeds that of the dipole LSP in this region. This trend continues throughout the studied impact parameter 

range. No additional features appear in region (ii). The bulk plasmon feature is present at ~ 3.8 eV in region (iii), 

as expected. Contrary to what was observed for SiO2 and SiNx substrates, broadening the simulated data here makes 

little difference to the overall appearance of the EEL spectra, since all the features present are already quite broad. 

Increasing t produces the same effect on the center energy, relative intensity of the dipole to HO modes and the 
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background signal, as discussed previously. A practical implication of the broad line-widths of the features and the 

large background signal from the substrate is reduced signal to noise ratio and poor visibility of spectral features, 

making analyzing the experimental data particularly challenging. This is evident in the experimental results in 

Figure 5, where the HO mode at 3.5 eV and the bulk plasmon at 3.8 eV are difficult to resolve.  

 

Figure 5: EELS intensity maps and selected spectra at different impact parameter positions (a, b, d, e) simulated 

for a 2R = 20 nm Ag nanoparticle (a, b, d, e) and experimentally acquired from 2R ~ 20 nm Ag nanoparticles (c, f) 

supported on t = 5 nm and 15 nm Si substrates. 

 

AU NANOPARTICLES. Simulated intensity images and selected EELS spectra computed for 2R = 50 nm 

Au nanoparticles in vacuum and embedded in SiO2, SiNx and Si media are presented in Figure 6. In the case of an 

Au particle in vacuum, little difference is found between regions (i) (1.5R < b < 2R) and (ii) (R < b < 1.5 R), where 

all spectra contain a single broad peak at ~ 2.4 eV.  In region (iii) (b < R), still only a single broad peak is present 

in the spectra but at a slightly higher energy of ~ 2.5 eV. Since here the electron beam transverses the particle and 

that the bulk plasmon in Au occurs at 2.5 eV25,45, this observed energy shift signifies the predominantly bulk 
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plasmon nature of this peak in region (iii). The simulated EELS response of an Au nanoparticle embedded in SiO2 

features the dipole LSP at ~ 2.3 eV in regions (i) and (ii) and the bulk plasmon at ~ 2.5 eV in region (iii). The dipole 

LSP of Au nanoparticles embedded in SiNx and Si are additionally redshifted compared to particles in vacuum 

(occurring at ~ 2.0 eV and ~ 1.25 eV, respectively). Moreover, similar to the EELS response of Ag particles in 

Figure 2, HO LSP modes are also present in the spectra simulated for Au particles embedded in SiNx and Si, and 

increase in magnitude with decreasing b.  

 

Figure 6: Simulated EELS intensity maps and spectra at selected impact parameter positions simulated for a 2R = 

50 nm Au nanoparticle fully embedded in (a, e) vacuum, (b, f) SiO2, (c, g) SiNx, and (d, h) Si. Pink filled areas in 

(e – h) denote the simulated spectra convoluted with a Gaussian envelope with FWHM of 0.15 eV. 

Figure 7 summarizes the simulated and experimental results acquired for Au nanoparticles supported on various 

substrate materials and thicknesses. Overall, little difference is detected between the simulated EEL spectra of 

supported Au particles and in vacuum: regions (i) and (ii) feature only the dipole LSP (redshifted by 0.04 eV for 

Au particle supported on 5 nm thick Si substrate relative to the dipole LSP of particle in vacuum) and region (iii) 
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contains predominantly the bulk plasmon. The same pattern is observed in the experimental data, with the LSP at ~ 

2.4 eV present in regions (i) and (ii) and the bulk plasmon in region (iii).  Throughout, much poorer signal to noise 

ratio is detected from Au particles compared to Ag, as it is clear from the spectra in Figure 7(f).  

 
Figure 7: EELS intensity maps and selected spectra at different impact parameter positions simulated for a 2R = 

50 nm Au nanoparticle (a, b, d, e) and experimentally acquired from 2R ~ 50 nm Au nanoparticles (c, f) supported 

on SiO2, SiNx and Si substrates. The spectra in (d – f) follow the same color presentation as in Figures 3 – 5 (SiO2: 

t = 8 nm in black and t = 20 nm in brown; SiNx: t = 5 nm in dark gray and t = 20 nm in red; Si: t = 5 nm in light 

gray). 

 



13 

 

DISCUSSIONS 

The results presented demonstrate that the substrate can significantly affect the EELS measurements of LSPs. 

For a dielectric substrate, the modifications induced include redshift in the resonance energy of LSPs, increased 

probability of exciting higher order modes and increased damping of the LSPs. Here, we explore how different 

parameters influence the extent of these modifications.    

SUBSTRATE MATERIAL. Of the three substrate materials studied, SiO2 and SiNx are insulators and are 

expected to be effectively lossless in the energy range considered. For non-insulating substrate materials, 

contributions in EEL spectra due to substrate losses are anticipated. Si, for instance, is a semiconductor with a 

bandgap of ~ 1.4 eV and subsequently, loss features due to the substrate itself can be present above the bandgap. 

Moreover, due to the close proximity of the nanoparticles and the substrate, LSPs are afforded an additional decay 

channel via the lossy substrate, which leads to increased plasmon line-width35, as observed here. Additionally, the 

substrate induced redshift in the LSP energy and the probability of exciting HO modes exhibit dependence on 

substrate material. The influence of the substrate on the properties of the dipole LSP can be assessed qualitatively 

by considering the semi-infinite substrate in an image-dipole approximation: the dipole resonance condition for a 

spherical nanoparticle with permittivity ε, supported on an infinitely thick substrate with permittivity εsub and 

embedded in a medium with permittivity εmed can be described by a quasistatic resonance condition within the 

image-dipole approximation46–48: 

𝜀med + 𝐿∥,⊥(𝜀 − 𝜀med) = 0                   (1) 

with so-called depolarization factors49 defined by: 𝐿∥,⊥ = 1
3⁄ {1 −

𝜂∥,⊥

8

𝜀sub−𝜀med

(𝜀sub+𝜀med)
} . Here, 𝜂∥,⊥ expresses the 

fact that the substrate splits the three-fold dipole-degeneracy into two partitions based on the orientation of the LSP 

dipole moment (in-plane 𝜂∥ = 1 and out-of-plane 𝜂⊥ = 2). The influence of the substrate, relative to its absence, is 

thus to redshift the dipole LSP: e.g., for a pure Drude metal (𝜀 = 1 − 𝜔p
2/𝜔2) in a vacuum embedding (𝜀med = 1), 

the resonance frequency is shifted from 𝜔p/√3 to 𝜔p√𝐿∥,⊥, i.e. to the red since 𝐿∥,⊥ < 1/3  for 𝜀sub > 1. The 

splitting between in- and out-of-plane oriented dipole LSPs, is too small to observe in the present experiments, 

contributing instead as additional broadening to the main dipole peak. Overall, the depolarization factors 𝐿∥,⊥ 

decrease monotonically with increasing 𝜀sub, forcing the redshift to similarly increase with the substrate 
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permittivity: the same trend is observed in our experimental results (see Figures S1 and S2 in the Supporting 

Information (SI)). Moreover, the probability of exciting HO LSPs increases with increasing εsub, since the local 

contrast in dielectric environment acts to break the translational symmetry of the embedding material, thereby 

providing an additional source of momentum through secondary scattering of the incident field of the electron 

probe9,50.   

A further consideration for choosing a substrate is its tendency to charge when exposed to an electron beam, due 

to, for example, secondary electron emission from the irradiated area. For metals or good conductors, any net local 

charge is neutralized on a time scale that is much smaller than the dwell-time of the beam at a particular position 

during image acquisition. For poor conductors, the dielectric relaxation time, 𝜏d =  𝜌𝜀sub, where 𝜌 is the nominal 

film resistivity, may become comparable to the beam dwell-time, resulting in injection of charges (which can be 

mobile or non-mobile depending on the specific inelastic processes involved) in the illuminated area of the substrate. 

In extreme cases, substrate charging can inhibit data acquisition by causing the electron beam to be deflected51 and 

therefore, wide bandgap substrate materials are in general not favorable when charging is concerned. When 

employing insulating substrates, it could be necessary to reduce the electron beam current or beam dwell time per 

image pixel in order to mitigate the practical implications of charging. In our case, some levels of image drift and 

specimen instability were experienced during data acquisition from particles supported on SiO2 and SiNx substrates, 

but only when higher acquisition times or beam currents were used. Besides these practical implications, charging 

can also modify the EELS signal: if injected charges are mobile and confined to the surface of the substrate, their 

role can qualitatively be described as a change in the (quasistatic) reflection coefficient, which contributes to the 

polarizability tensor. In cases where 𝜏d is comparable to the acquisition time at each point along a line-scan, the 

electron beam will effectively be dragging a localized charge spot along and would require the treatment of the 

particle interacting with an external point charge. In all cases, a systematic study of beam-induced charge dynamics 

is necessary to properly comprehend the consequences of charging in EELS. Here, while substrate charging was 

not found to interfere with data acquisitions, we cannot exclude the role of substrate charging in the observed 

discrepancies between theory and simulations, in particular the excessive broadening and the differences in the 

observed probabilities. 
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SUBSTRATE THICKNESS. The assumption of a semi-infinite substrate underlying Eq. (1) necessarily entails 

an overestimation of the substrate-induced redshift and also neglects the thickness-dependence of the substrate. The 

treatment can be generalized, however, by introducing an additional image dipole to account for the finite substrate 

thickness, t. Doing so (for weakly reflective substrates with 𝑡/𝑅 ≫ 1), the depolarization factors generalize to 

𝐿∥,⊥(𝑡) ≃
1

3
{1 −

𝜂∥,⊥

8

𝜀sub−𝜀med

𝜀sub+𝜀med
 [1 − 𝑓(𝑡)]} with a thickness-dependent factor 𝑓(𝑡) =

4𝜀sub𝜀med

(𝜀sub+𝜀med)2 (
1

1+𝑡/𝑅
)

3
. 

Accordingly, the substrate-dependent redshift reduces with decreasing t; a feature which is supported by the results 

presented here.  

Moreover, we observe an increased background signal with increasing t, most notable for particles supported on 

Si and SiNx substrates. The appearance of a substrate related background signal in SiNx is surprising, given that no 

losses are expected in this material below ~ 5 eV (see permittivity functions in Figures S1 and S2 in SI). We attribute 

this effect to Čerenkov losses, which occur when the speed of electrons exceeds the speed of light in a material 52,53. 

The probability of Čerenkov radiation emission increases with the refractive index of a material and thickness (see 

Figures S3, S4 and S5 in SI). At the accelerating voltage employed in our experiments (120 kV) electrons travel at 

the speed 0.59c, where c is the speed of light, and Čerenkov losses are expected to be emitted in materials with 

refractive indices above ~ 1.7. The refractive index of SiNx remains above this threshold value within the whole 

energy range studied and consequently, Čerenkov losses are present in our spectra. An even larger Čerenkov 

contribution is present for Si, which has a larger refractive index than SiNx. Conversely, the refractive index of SiO2 

remains below the threshold value and minimal background signal is detected, even from thicker substrates.  

NANOPARTICLE MATERIAL. Besides substrate related properties, the nanoparticle itself also has a striking 

influence on the extent of modifications introduced by the substrate: contrary to Ag nanoparticles, the plasmonic 

response of Au nanoparticles shows only a weak dependence on the presence or choice of a substrate. This 

anomalous difference in the behaviour of Au arises from the strong screening of plasmon excitations by its bound 

electrons9,54,55 and can be understood by considering a simple non-retarded description of the LSP frequency of a 

nanosphere in a homogeneous embedding. For a metallic nanosphere with permittivity 𝜀(𝜔) = 𝜀B(𝜔) −
𝜔P

2

𝜔2⁄  

and fully embedded in a medium with permittivity εmed, the lth order LSP frequency is given by56: 
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𝜔𝑙 =
𝜔p

√𝜀B + 
𝒍+1

𝑙
 𝜀med

                   (2) 

where ωp is the bulk plasmon frequency and εB is the contribution of the bound electrons to the permittivity of 

the metal, i.e. εB’s deviation from unity accounts for effects beyond the free-electron, or Drude behavior (e.g. due 

to interband transitions). It is clear that in cases where εB >> εmed, the LSP frequency shows only a weak dependence 

on changes in εmed. This effect is further accentuated for particles supported on a substrate (in effect, being partially 

embedded). As a result, the large bound response of Au near the LSP frequencies (see Figure S6 in SI) masks the 

influence of the substrate dielectric properties, explaining the observed weak LSP dependence on substrate material 

for Au nanoparticles. In comparison, the bound response of Ag is significantly less pronounced than that of Au near 

the LSP resonance and accordingly, the substrate dependence is clearly discernible for Ag. 

SUMMARY AND CONCLUSIONS 

Our systematic investigation of the substrate effect on the EELS measurements of LSPs in nanoparticles 

confirms the considerable influence of both the substrate material and thickness. In particular, in the case of Ag 

nanoparticles, the presence of a dielectric substrate was shown to lead to redshift of the LSPs, higher probability of 

exciting HO modes and increasing line-widths of the plasmon features. The plasmonic response of Au nanoparticles 

were to a significantly smaller extent affected by the substrate choice, owing to the large contribution from the 

bound polarization in Au. More relevant to the EELS analysis of Au nanoparticles is the signal to noise ratio of the 

measurements, as the LSPs in Au are highly damped due to interband transitions. Substrate-related losses in the 

EELS signal exacerbated this issue by further reducing the visibility of the signal from the nanoparticles. Our results 

also demonstrate the paramount importance of the choice of electron beam impact parameter when probing distinct 

plasmonic modes is intended, as the EELS signal features most prominently the HO LSPs at small b and the dipolar 

LSP at large b. The threshold b for these two regions, however, is strongly dependent on substrate material and 

thickness. 

Given that the typical set-up in EELS relies on a substrate to support the particles during the examination, a 

pertinent question is which substrate to choose. Our results demonstrate that the extent of substrate induced 

modifications generally increase with εsub and t and thus, if probing the plasmonic properties of nanostructures in 

vacuum is desired, substrates with large εsub and t should be avoided. Choosing substrates with large εsub and t 
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provide the opportunity to study, for example, HO LSPs28 and energy transfer between the LSPs and the substrate35. 

However, it could be necessary to take Čerenkov radiations or other substrate related losses into consideration when 

analyzing the results. Finally, care must be taken in interpretation of EEL spectra with regards to the electron beam 

impact parameter: a pitfall lies in cases where dipolar and HO modes are excited with comparable probabilities (for 

example, when b ~ R or when employing a substrate with large εsub and t) but cannot be resolved individually, due 

to insufficient energy resolution in EELS, resulting instead in the detection of a broad compounding peak, whose 

center energy does not necessarily correspond to any dipole or HO LSPs. Examining the evolution of the signal 

with beam impact parameter position is thus imperative in EELS analysis of plasmonic structures. 

METHODS 

Colloidal Ag and Au nanoparticles with respective diameters of 20 nm and 50 nm and approximately spherical 

geometries were studied here. Ag nanoparticles in an aqueous 2 mM citrate solution were purchased from 

nanoComposix, Inc. and an aqueous solution containing the Au nanoparticles were purchased from BBI Life 

Sciences. TEM specimens were prepared by depositing a drop of the solution containing the nanoparticles on a 

TEM grid and allowing the liquid to evaporate before examination with TEM.  Three popular amorphous substrate 

materials (purchased from TEMwindows), spanning a range of optical material properties, were examined: silicon 

dioxide (SiO2), silicon nitride (SiNx), and silicon (Si). In each case the influence of the substrate thickness was also 

investigated by repeating the experiment for two different thicknesses. Scanning TEM (STEM) images and EELS 

measurements were carried out using an FEI TEM instrument fitted with a monochromator, probe aberration 

corrector and Gatan GIF Tridium 865 spectrometer. The TEM instrument was operated at an accelerating voltage 

of 120 kV, probe convergence angle of 25 mrad, EELS collection angle of 28 mrad and with a resulting imaging 

resolution of ~ 5 Å and energy resolution of ~ 0.15 eV. EELS spectra in the form of line scans across the particles 

were acquired with typical dwell time of ~ 100 ms. The EELS spectra were analyzed after deconvolution of the 

zero-loss peak (ZLP), using a power law function to fit the tail of the ZLP57. Resonance peak positions and full 

widths at half maximum were estimated by fitting features to a Gaussian model.  

Theoretical simulations were computed by means of the retarded boundary element method58, as implemented in 

the MNPBEM toolbox59,60, which solves Maxwell’s equations in the presence of a swift electron (accelerating 
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voltage of 120 keV) normally incident upon the nanoparticle-substrate plane. Both nanoparticle and substrate were 

discretized in triangular elements, and the substrate was treated as a finite radial disk with open lateral boundaries 

of sufficient radial extent to ensure convergence. Similarly, to ensure convergence the nanoparticles were artificially 

shifted 2 Å above the substrate. The dielectric properties of the constituent materials were taken from measured 

data, including spectral dispersion, specifically from Johnson and Christie45 and Palik61 for nanoparticle and 

substrate properties, respectively. For the purpose of comparison with the experimental data, the simulated EEL 

spectra were convolved with a Gaussian function with full width at half maximum equal to the energy resolution of 

the experiments (0.15 eV). The simulations performed for embedded nanoparticles do not include bulk and 

Čerenkov contributions from the embedding media. 

ASSOCIATED CONTENT 

Supporting Information containing additional figures accompanies this paper.  

AUTHOR INFORMATION 

Corresponding author: 

* E-mail: shka@cen.dtu.dk 

Notes: 

The authors declare no competing financial interest. 

ACKNOWLEDGMENTS 

T.C. thanks Wei Yan for fruitful discussions. The A. P. Møller and Chastine Mc-Kinney Møller Foundation is 

gratefully acknowledged for their contribution towards the establishment of the Centre for Electron Nanoscopy at 

the Technical University of Denmark. T.C. acknowledges support from Villum Fonden. 

REFERENCES 

(1)  Giannini, V.; Fernández-Domínguez, A. I.; Heck, S. C.; Maier, S. A. Plasmonic Nanoantennas: 

Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chem. Rev. 2011, 

111, 3888–3912. 

(2)  Zia, R.; Schuller, J. A.; Chandran, A.; Brongersma, M. L. Plasmonics: The next Chip-Scale Technology. 

Mater. Today 2006, 9, 20–27. 

mailto:shka@cen.dtu.dk


19 

 

(3)  Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-Metal Nanostructures for Efficient Conversion of Solar 

to Chemical Energy. Nat. Mater. 2011, 10, 911–921. 

(4)  Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with 

Plasmonic Nanosensors. Nat. Mater. 2008, 7, 442–453. 

(5)  Jain, P. K.; El-Sayed, M. A. Surface Plasmon Coupling and Its Universal Size Scaling in Metal 

Nanostructures of Complex Geometry: Elongated Particle Pairs and Nanosphere Trimers. J. Phys. Chem. 

C 2008, 112, 4954–4960. 

(6)  Rossouw, D.; Couillard, M.; Vickery, J.; Kumacheva, E.; Botton, G. A. Multipolar Plasmonic Resonances 

in Silver Nanowire Antennas Imaged with a Subnanometer Electron Probe. Nano Lett. 2011, 11, 1499–

1504. 

(7)  Sherry, L. J.; Chang, S.-H.; Schatz, G. C.; Duyne, R. P. Van; Wiley, B. J.; Xia, Y. Localized Surface 

Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Lett. 2005, 5, 2034–2038. 

(8)  Koh, A. L.; Bao, K.; Khan, I.; Smith, W. E.; Kothleitner, G.; Nordlander, P.; Maier, S. A.; McComb, D. 

W. Electron Energy-Loss Spectroscopy (EELS) of Surface Plasmons in Single Silver Nanoparticles and 

Dimers: Influence of Beam Damage and Mapping of Dark Modes. ACS Nano 2009, 3, 3015–3022. 

(9)  Lermé, J.; Bonnet, C.; Broyer, M.; Cottancin, E.; Manchon, D.; Pellarin, M. Optical Properties of a Particle 

above a Dielectric Interface: Cross Sections, Benchmark Calculations, and Analysis of the Intrinsic 

Substrate Effects. J. Phys. Chem. C 2013, 117, 6383–6398. 

(10)  Venkatapathi, M.; Kumar Tiwari, A. Radiative and Non-Radiative Effects of a Substrate on Localized 

Plasmon Resonance of Particles. J. Appl. Phys. 2012, 112, 13529. 

(11)  Swanglap, P.; Slaughter, L. S.; Chang, W. S.; Willingham, B.; Khanal, B. P.; Zubarev, E. R.; Link, S. 

Seeing Double: Coupling between Substrate Image Charges and Collective Plasmon Modes in Self-

Assembled Nanoparticle Superstructures. ACS Nano 2011, 5, 4892–4901. 

(12)  Lermé, J. Plasmon Hybridization Model for a Nanoparticle above a Dielectric Interface: Dielectric Effects, 

Comparison with the Dimer System, Range of Applicability, and Limits. J. Phys. Chem. C 2015, 119, 

21087–21104. 

(13)  Noguez, C. Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment. 



20 

 

J. Phys. Chem. C 2007, 111, 3806–3819. 

(14)  Yamagushi, T.; Yoshida, S.; Kinbara, A. Optical Effect of the Substrate on the Anomalous Absorption of 

Aggregated Silver Films. Thin Solid Films 1974, 21, 173–187. 

(15)  Jensen, T. R.; Duval, M. L.; Kelly, K. L.; Lazarides, A. A.; Schatz, G. C.; Van Duyne, R. P. Nanosphere 

Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a 

Periodic Array of Silver Nanoparticles. J. Phys. Chem. B 1999, 103, 9846–9853. 

(16)  Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; Van Duyne, R. P. Nanosphere Lithography: Effect of 

Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles. J. Phys. Chem. 

B 2001, 105, 2343–2350. 

(17)  Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J.; Schider, G.; Leitner,  a.; Aussenegg, F. Enhanced Substrate-

Induced Coupling in Two-Dimensional Gold Nanoparticle Arrays. Phys. Rev. B 2002, 66, 1–7. 

(18)  McMahon, J. M.; Wang, Y.; Sherry, L. J.; Duyne, R. P. Van; Marks, L. D.; Gray, S. K.; Schatz, G. C. 

Correlating the Structure, Optical Spectra, and Electrodynamics of Single Silver Nanocubes. J. Phys. 

Chem. C 2009, 113, 2731–2735. 

(19)  Ringe, E.; McMahon, J. M.; Sohn, K.; Cobley, C.; Xia, Y. N.; Huang, J. X.; Schatz, G. C.; Marks, L. D.; 

Van Duyne, R. P. Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface 

Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach. J. 

Phys. Chem. C 2010, 114, 12511–12516. 

(20)  García de Abajo, F. J. Optical Excitations in Electron Microscopy. Rev. Mod. Phys. 2010, 82, 209–275. 

(21)  Colliex, C.; Kociak, M.; Stéphan, O. Electron Energy Loss Spectroscopy Imaging of Surface Plasmons at 

the Nanometer Scale. Ultramicroscopy 2015, 162, A1–A24. 

(22)  Iberi, V.; Mirsaleh-Kohan, N.; Camden, J. P. Understanding Plasmonic Properties in Metallic 

Nanostructures by Correlating Photonic and Electronic Excitations. J. Phys. Chem. Lett. 2013, 4, 1070–

1078. 

(23)  Nelayah, J.; Kociak, M.; Stéphan, O.; García de Abajo, F. J.; Tencé, M.; Henrard, L.; Taverna, D.; 

Pastoriza-Santos, I.; Liz-Marzán, L. M.; Colliex, C. Mapping Surface Plasmons on a Single Metallic 

Nanoparticle. Nat. Phys. 2007, 3, 348–353. 



21 

 

(24)  Nicoletti, O.; de la Peña, F.; Leary, R. K.; Holland, D. J.; Ducati, C.; Midgley, P. A. Three-Dimensional 

Imaging of Localized Surface Plasmon Resonances of Metal Nanoparticles. Nature 2013, 502, 80–84. 

(25)  Raza, S.; Stenger, N.; Pors, A.; Holmgaard, T.; Kadkhodazadeh, S.; Wagner, J. B.; Pedersen, K.; Wubs, 

M.; Bozhevolnyi, S. I.; Mortensen, N. A. Extremely Confined Gap Surface-Plasmon Modes Excited by 

Electrons. Nat. Commun. 2014, 5, 4125. 

(26)  Hobbs, R. G.; Manfrinato, V. R.; Yang, Y.; Goodman, S. A.; Zhang, L.; Stach, E. A.; Berggren, K. K. 

High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 Nm Aluminum Nanostructures. 

Nano Lett. 2016, 16, 4149–4157. 

(27)  Kadkhodazadeh, S.; de Lasson, J. R.; Beleggia, M.; Kneipp, H.; Wagner, J. B.; Kneipp, K. Scaling of the 

Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS. J. Phys. Chem. C 2014, 118, 

5478–5485. 

(28)  Raza, S.; Kadkhodazadeh, S.; Christensen, T.; Di Vece, M.; Wubs, M.; Mortensen, N. A.; Stenger, N. 

Multipole Plasmons and Their Disappearance in Few-Nanometre Silver Nanoparticles. Nat. Commun. 

2015, 6, 8788. 

(29)  Goris, B.; Guzzinati, G.; Fernández-López, C.; Pérez-Juste, J.; Liz-Marzán, L. M.; Trügler, A.; 

Hohenester, U.; Verbeeck, J.; Bals, S.; Van Tendeloo, G. Plasmon Mapping in Au@Ag Nanocube 

Assemblies. J. Phys. Chem. C 2014, 118, 15356–15362. 

(30)  Raza, S.; Stenger, N.; Kadkhodazadeh, S.; Fischer, S. V.; Kostesha, N.; Jauho, A. P.; Burrows, A.; Wubs, 

M.; Mortensen, N. A. Blueshift of the Surface Plasmon Resonance in Silver Nanoparticles Studied with 

EELS. Nanophotonics 2013, 2, 131–138. 

(31)  Guiton, B. S.; Iberi, V.; Li, S.; Leonard, D. N.; Parish, C. M.; Kotula, P. G.; Varela, M.; Schatz, G. C.; 

Pennycook, S. J.; Camden, J. P. Correlated Optical Measurements and Plasmon Mapping of Silver 

Nanorods. Nano Lett. 2011, 11, 3482–3488. 

(32)  Li, G.; Cherqui, C.; Wu, Y.; Bigelow, N. W.; Simmons, P. D.; Rack, P. D.; Masiello, D. J.; Camden, J. P. 

Examining Substrate-Induced Plasmon Mode Splitting and Localization in Truncated Silver Nanospheres 

with Electron Energy Loss Spectroscopy. J. Phys. Chem. Lett. 2015, 6, 2569–2576. 

(33)  Wu, Y.; Li, G.; Cherqui, C.; Bigelow, N. W.; Thakkar, N.; Masiello, D. J.; Camden, J. P.; Rack, P. D. 



22 

 

Electron Energy Loss Spectroscopy Study of the Full Plasmonic Spectrum of Self-Assembled Au − Ag 

Alloy Nanoparticles: Unraveling Size, Composition, and Substrate Effects. ACS Photonics 2016, 3, 130–

138. 

(34)  Fujiyoshi, Y.; Nemoto, T.; Kurata, H. Substrate Effects on LSP of a Truncated Silver Nano-Sphere 

Observed by EELS. Microscopy 2015, 64, i99. 

(35)  Li, G.; Cherqui, C.; Bigelow, N. W.; Duscher, G.; Straney, P. J.; Millstone, J. E.; Masiello, D. J.; Camden, 

J. P. Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via 

STEM/EELS. Nano Lett. 2015, 15, 3465–3471. 

(36)  Christensen, T.; Yan, W.; Raza, S.; Jauho, A. P.; Mortensen, N. A.; Wubs, M. Nonlocal Response of 

Metallic Nanospheres Probed by Light, Electrons, and Atoms. ACS Nano 2014, 8, 1745–1758. 

(37)  Zhou, X.; Hörl, A.; Trögler, A.; Hohenester, U.; Norris, T. B.; Herzing, A. A. Effect of Multipole 

Excitations in Electron Energy-Loss Spectroscopy of Surface Plasmon Modes in Silver Nanowires. J. 

Appl. Phys. 2014, 116, 223101. 

(38)  Keast, V. J.; Walhout, C. J.; Pedersen, T.; Shahcheraghi, N.; Cortie, M. B.; Mitchell, D. R. G. Higher 

Order Plasmonic Modes Excited in Ag Triangular Nanoplates by an Electron Beam. Plasmonics 2016, 11, 

1081–1086. 

(39)  Walter, J. P.; Cohen, M. L. Frequency- and Wave-Vector-Dependent Dielectric Function for Silicon. Phys. 

Rev. B 1972, 5, 3101–3110. 

(40)  Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed.; Plenum Press: 

New York, 2011; pp 148. 

(41)  Kreibig, U.; Gonzel, L. Optical Absorption of Small Metallic Particles. Surf. Sci. 1985, 156, 678–700. 

(42)  Mortensen;, N. A.; Raza, S.; Wubs, M.; Søndergaard, T.; Bozhevolnyi, S. I. A Generalized Non-Local 

Optical Response Theory for Plasmonic Nanostructures. Nat. Commun. 2014, 5, 3809. 

(43)  v. Festenberg, C. Zur Dämpfung Des Al-15 eV-Plasmaverlustes in Abhängigkeit Vom Streuwinkel Und 

Der Kristallitgröße. Zeitschrift Fur Phys. 1967, 55, 47–55. 

(44)  Krishan, V.; Ritchie, R. H. Anomalous Damping of Volume Plasmons in Polycrystalline Metals. Phys. 

Rev. Lett. 1970, 24, 1117–1119. 



23 

 

(45)  Johnson, P. B.; Christy, R. W. Optical Constants of the Noble Metals. Phys. Status Solidi 1972, 1318, 

4370–4379. 

(46)  Wind, M. M.; Vlieger, J.; Bedeaux, D. The Polarizability of a Truncated Sphere on a Substrate I. Physica 

A 1987, 141, 33–57. 

(47)  Gozhenko, V.; Grechko, L.; Whites, K. Electrodynamics of Spatial Clusters of Spheres: Substrate Effects. 

Phys. Rev. B 2003, 68, 1–16. 

(48)  Quinten, M. Optical Properties of Nanoparticle System; Wiley-VCH: Weinheim, 2011; pp 199. 

(49)  Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley-VCH, 1998; 

pp 147. 

(50)  Yan, W.; Mortensen, N. A.; Wubs, M. Green’s Function Surface-Integral Method for Nonlocal Response 

of Plasmonic Nanowires in Arbitrary Dielectric Environments. Phys. Rev. B 2013, 88, 25–27. 

(51)  Egerton, R. F. Control of Radiation Damage in the TEM. Ultramicroscopy 2013, 127, 100–108. 

(52)  Stoger-Pollach, M.; Franco, H.; Schattschneider, P.; Lazar, S.; Schaffer, B.; Grogger, W.; Zandbergen, H. 

W. Cerenkov Losses: A Limit for Bandgap Determination and Kramers-Kronig Analysis. Micron 2006, 

37, 396–402. 

(53)  Stoger-Pollach, M. Optical Properties and Bandgaps from Low Loss EELS: Pitfalls and Solutions. Micron 

2008, 39, 1092–1110. 

(54)  Lazzari, R.; Jupille, J.; Cavallotti, R.; Simonsen, I. Model-Free Unraveling of Supported Nanoparticles 

Plasmon Resonance Modes. J. Phys. Chem. C 2014, 118, 7032–7048. 

(55)  Pakizeh, T. Optical Absorption of Plasmonic Nanoparticles in Presence of a Local Interband Transition. J. 

Phys. Chem. C 2011, 115, 21826–21831. 

(56)  Sernelius, B. E. Surface Modes in Physics; Wiley-VCH: Berlin, 2001; pp 261. 

(57)  Rafferty, B.; Pennycook, S. J.; Brown, L. M. Zero Loss Peak Deconvolution for Bandgap EEL Spectra. J. 

Electron Microsc. (Tokyo). 2000, 49, 517–524. 

(58)  García de Abajo, F. J.; Howie, A. Retarded Field Calculation of Electron Energy Loss in Inhomogeneous 

Dielectrics. Phys. Rev. B 2002, 65, 115418–17. 

(59)  Hohenester, U.; Trügler, A. MNPBEM - A Matlab Toolbox for the Simulation of Plasmonic 



24 

 

Nanoparticles. Comput. Phys. Commun. 2012, 183, 370–381. 

(60)  Hohenester, U. Simulating Electron Energy Loss Spectroscopy with the MNPBEM Toolbox. Comput. 

Phys. Commun. 2014, 185, 1177–1187. 

(61)  Handbook of Optical Constants of Solids; Palik, E. D., Ed.; Academic Press: San Diego, 1985. 

 


