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Light-actuated microrobots for
biomedical science
Jesper Glückstad, Mark J. Villangca, Darwin Z. Palima, and

Andrew R. Bañas

Light can be used to fabricate, handle, power, and actuate microrobotics

functionalities, such as the loading and unloading of micro-cargo,

showing promise for drug delivery and biological-testing applications.

Light is an important research tool. It enables us to see things at a

range of scales, from the macroscopic to the microscopic (where

our own cells, bacteria, and other microorganisms proliferate).

A less familiar property of light is the momentum that it carries.

This feature enables focused light to trap, move, and position mi-

croscopic objects.1 This has had significant implications, partic-

ularly in biomedical science, by enabling researchers to use light

to extend their ‘hands,’ and manipulate biological samples with

great precision. Additionally, optical forces are non-invasive (be-

cause of their pico-Newton magnitude) and can operate through

sealed and sterile biological chambers.

In addition to exploiting momentum to trap and move ob-

jects, light can now be used to generate secondary effects, such

as heat. Previously, local heating in a microfluidic environment

was achieved by using metal surfaces and metallic nanoparti-

cles. These methods have enabled valve action,2 flow control,3

and mixing.4 They can also operate as catalysts for chemical

reactions,5 and have even been applied for cancer therapy.6

However, a limitation faced when using metal layers in microflu-

idic devices arises because they are usually fixed to a certain re-

gion. In contrast, the motion and position of nanoparticles are

difficult to control.

To solve this maneuverability problem, we have integrated

metallic structures into a new type of light-driven microrobot.

Recent improvements in the fields of optical manipulation and

microfabrication can cater to increasingly sophisticated objects.

We leveraged these developments to create new functional

robotic tools for light-based microbiological experiments.

We employed a custom-fabrication technique, known as two-

photon polymerization, to achieve 3D microprinting. In this pro-

cess, focused laser beams are used to solidify a liquid polymer

resin, achieving printed feature sizes of down to a fraction of the

Figure 1. (a) An artist’s rendition of a multitude of light-driven micro-

robots working together to probe a cell. (b) A hollow microrobot, de-

signed for material transport, interacting with an oil droplet. (c) Scan-

ning electron microscope image of the hollow microrobot. A mask is

fabricated on top of the structure to secure exposure of only certain

regions by metal-vapor deposition.

writing wavelength. As with 3D printers, different designs can

be fabricated to perfectly suit particular applications. The struc-

tures that we have designed and demonstrated include wave-

guided optical waveguides7 (WOWs) and, more recently, hollow

microrobots for material transport, as illustrated in Figure 1. Fur-

thermore, light-initiated physical reactions enable new function-

alities in these optical microrobots.8 Among the functionalities

that we have incorporated, a syringe action enables the optical

microrobots to load and unload a tiny cargo, making them capa-

ble of material transport.8

The photoresist that we use in the fabrication of these light

Continued on next page
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robots is practically transparent to the trapping beam wave-

length and thus generates very little heat. Metals are efficient

energy-to-heat converters of light so, to enhance laser-induced

heat generation in the polymerized light robots, we embedded a

thin metallic layer inside each of the light robots by using vapor

deposition. For this purpose, we deposited a titanium adhesion

layer and a gold layer (of 1 and 5nm thickness, respectively) as a

circular disk inside the body of each light robot.

Once the microrobots are introduced into a cytometry cu-

vette, they are individually maneuverable using four counter-

propagating beams that trap each of the spherical handles. Fur-

ther, an extra beam is used for controlled heating of the inter-

nal metallic layer. Sufficient laser heating forms a microbubble

around which strong convection currents are generated. The re-

sults of our experiments, shown in Figure 2, demonstrate that the

convection currents can draw 2�m-diameter silica beads into the

structure. By combining convection currents with optical manip-

ulation, each microrobot is made capable of picking up cargo at

different locations. The hydrodynamic effect that is used to move

particles can be quite strong and, in contrast to optical trapping

and manipulation, does not rely on the refractive-index contrast.

Micro-cargo can subsequently be ejected by moving the heat-

ing beam across the body of the micro-tool, as shown in Fig-

ure 3. Many interesting phenomena can be observed here, such

as thermo-capillary bubble migration,9 a directional change of

the thermal gradient,10 and reversal of Marangoni convection

(due to the presence of many particles).11 A video presentation

of our recent results, published in Nature, is available online.12

In summary, we have developed optical microrobots with a

Figure 2. A hollow microrobot uses the generated convection current

from a shaped laser beam targeted on the metallic layer to pull in 2�m-

diameter silica beads.8

Figure 3. (a) A collection of 1�m-diameter polystyrene beads are loaded

inside a microrobot because of convection currents and (b) ejected by

moving the heating beam across the body of the microrobot.8

variety of novel capabilities and features. Among these, the abil-

ity to optically control loading and unloading could have poten-

tial use in new drug-delivery approaches for single-cell exper-

iments. Our light-driven microrobots can also be used to pro-

vide physical and chemical stimuli to biological samples. This

control is not limited to a single robot and could potentially

extended to a large handful by using advanced software (i.e.,

swarm robotics), thereby enabling microrobots to mutually co-

ordinate to unveil new ways of interacting, probing, and acquir-

ing information (e.g., for 3D microbiology). Ultimately, we fore-

cast that light robotics will lead to completely new and disrup-

tive schemes for real-time 3D interactions with the microscopic

world.12, 13 In our future work we will be investigating a range

of applications for light robotics, particularly those relating to

nanobiophotonics.14

We acknowledge support from the Innovation Fund Denmark under

the project Enhanced Spatial Light Control in Advanced Optical Fi-

bres.
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