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Uncertainty Assessment of Equations of State with Application to an 

Organic Rankine Cycle 

Evaluations of equations of state (EoS) should include uncertainty. This study 

presents a generic method to analyse EoS from a detailed uncertainty analysis of 

the mathematical form and the data used to obtain EoS parameter values. The 

method is illustrated by comparison of Soave–Redlich– Kwong (SRK) cubic 

EoS with perturbed-chain statistical associating fluid theory (PC-SAFT) EoS for 

an organic Rankine cycle (ORC) for heat recovery to power from the exhaust 

gas of a marine diesel engine using cyclopentane as working fluid. Uncertainties 

of the EoS input parameters including their corresponding correlation structure, 

are quantified from experimental measurements using a bootstrap method. 

Variance-based sensitivity analysis is used to compare the uncertainties from the 

departure function and the ideal-gas contribution. A Monte Carlo procedure 

propagates fluid parameter input uncertainty onto the model outputs. 

Uncertainties in the departure function (SRK or PC-SAFT EoS) dominate the 

total uncertainties of the ORC model output. For this application and working 

fluid, SRK EoS has less predictive uncertainty in the process model output than 

does PC-SAFT EoS, though it cannot be determined if this is due to differences 

in the data for parameter estimation or in the mathematical form of the EoS or 

both.  

Keywords: uncertainty analysis, parameter correlation, cubic EoS, PC-SAFT, organic 

Rankine cycle 
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Introduction 

Low-temperature Organic Rankine Cycles (ORC) systems are used to produce electrical 

power from waste heat (e.g. in marine diesel engine applications [1]). The basic ORC is 

a power cycle consisting of a pump, an evaporator, an expansion machine and a 

condenser [2], with a working fluid continuously circulating through the units [3]. In 

order to evaluate and test promising fluid candidates for a cycle, an equation of state 

(EoS) is commonly used. In recent years, there has been significant interest in the 

selection of working fluids for ORCs and optimizing their application.  

Screening techniques and multi-criteria database searches [3] as well as 

Computer Aided Molecular Design (CAMD) [4] have been extensively applied to find 

appropriate working fluids for ORCs. The reviews by Bao et al. [5] on fluid selection, 

and by Linke et al. [6] on molecular fluid design, reference studies concerning working 

fluids for ORCs.  

Several families of EoS have been used for ORC working fluid design and 

selection studies. Forms of the Helmholtz EoS (as implemented in the well-established 

REFPROP library [7], or alternatively in the CoolProp library [8]) have been used. The 

works of Wang et al. [9], Chys et al. [10], Andreasen et al. [11], Zhai et al. [12], Luo et 

al. [13], Rödder et al. [14], Hærvig et al. [15], and Xu et al. [16] are examples of 

screening fluids using high-accuracy fundamental EoS of this form. While libraries like 

REFPROP or CoolProp implement the most accurate equations of state available in the 

literature, only a limited number of fluids have been treated with these EoS, preventing 

wide-range database searches or molecular design studies. However, the rapid 

development of novel high-performance working fluids that satisfy rigorous safety 

requirements with low environmental impact [17][18] demand such capabilities. 

Cubic EoS, such as Peng-Robinson (PR) [19], Soave-Redlich-Kwong (SRK) 

[20], and Predictive Soave-Redlich-Kwong (PSRK) [21], have also been used for 

calculating the thermodynamic properties of ORC working fluids. PR and SRK are 

particularly convenient for working fluid design studies, because they only require three 

fluid-specific input properties to their EoS: the critical temperature, Tc, the critical 

pressure, Pc, and the acentric factor, ω. The PR EoS [19] was implemented into 
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molecular design frameworks for working fluids by Papadopoulos et al. [4], [22]. Also, 

Drescher et al. [23], Brown et al. [24], Liu et al. [25] and Frutiger et al. [26] used the 

PR EoS to screen a large number of working fluids, while Roskosch et al. [27] 

implemented the PR EoS into their reverse engineering methodology for fluid selection. 

Finally, Sanchez et al. [28] predicted the thermodynamic properties of the working 

fluids in their cycle application with SRK, while Molina-Thierry et al. [29] chose PSRK 

for their CAMD framework. 

In addition, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) 

[30] has also been used for working fluid properties due to its relatively small number 

of adjustable parameters that are conceptually related to molecular characteristics. Thus, 

Lai et al. [3][31] applied PC-SAFT to a working fluid analysis of an ORC and a SAFT-

type EoS was also used for fluid modeling in the work of Oyeniyi et al. [32]. Most 

recently PC-SAFT was also implemented in a molecular design framework for ORC 

working fluids by Lampe et al. [33]. 

Additional EoS models have been reported in the literature for prediction of 

thermophysical properties of working fluids: e.g. BACKONE EoS [34], Martin-Hou 

EoS [35], and Patel-Teja EoS [36]. However, it seems that extended database screening 

and molecular design for novel fluids is most often performed with either cubic forms, 

due to their simple structure, or the PC-SAFT EoS with a more complex form but a 

limited number of parameters. 

For ORC applications, an EoS is commonly selected based on goodness-of-fits 

to data, range of availability of fluid data, limited complexity of model formulation as 

related to numerical complexity [37], and/or ease of implementation. For example, 

Kumar et al. [38] compared the results of thermodynamic properties obtained from a 

variety of EoS for gas turbine applications to those from a complex, but highly accurate 

multi-parameter Helmholtz energy-explicit EoS [39], to determine which simple EOS 

would best describe compressor efficiency. 

In all of these works, when comparisons have been made among different 

models, there was little concern shown about variations in the number of parameters and 

their origin from experiment. Analyses were based on the typical application approaches 
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of users who normally select models based on simplicity of form and calculation versus 

capability to replicate particular experimental data. 

However, an additional criterion for the choice of an EoS, that seems not to have 

been explored thoroughly, is the influence of the uncertainty of the fluid-specific 

parameters of the EoS on the ORC model output. It should be expected that lower 

uncertainties would provide more reliable process designs from models.  

Experimental property data (e.g. critical properties, saturation pressures, and 

liquid densities) have been normally used to determine parameters of an EoS. These 

data have associated uncertainties arising from the measurements [40] and how the 

model incorporates the values [41]. We believe that these property uncertainties should 

be taken into account when applying an EoS to  processes such as ORC [42]. 

We distinguish the difference between accuracy and uncertainty in the context of 

computational models for property prediction or process design. Accuracy is the 

difference between the output predicted by the model and a particular set of 

experimental measurements of the property or process output. Uncertainty is the range 

of statistically possible outcomes of the model (usually assumed to be a normal 

distribution and reported with 95 % confidence). The sources of uncertainty are: 1) the 

model parameters representing incomplete knowledge of fixed values (input 

uncertainty); 2) the mathematical formulation of the model only approximating nature 

(structural uncertainty); and 3) stochastic components of a process simulation 

(stochastic uncertainty) [42]. The current study focuses on uncertainties of the 

parameters of the EoS and their impacts on the uncertainties of ORC process 

calculations.  

In non-linear regression theory, the uncertainties of parameters are defined by 

the parameter covariance matrix, which should be generated by the developers of the 

models after parameter optimization. However, developers often do not provide the 

covariance matrix for EoS studies. 

In the preliminary phase of conceptual process design, such as for a new ORC, 

experimental temperature and pressure data at the process states are often unavailable. 

Thus, model accuracy and the complementary uncertainty are the only means available 

to assess potential errors in process design and simulation.  
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Feistel et al. [43] analyzed the uncertainties of empirical reference EoS. They 

used generalized least squares for parameter regression and propagated the covariance 

of the input data uncertainties into the calculated values, and into the fitted value 

covariance matrix. In this way, estimates of the uncertainties of the derived quantities 

(e.g., the second and third virial coefficients of water) were provided. 

Frutiger et al. [26] recently presented a methodology to propagate and quantify 

the impact of parameter uncertainty on an ORC model output, using the PR EoS for 

thermodynamic properties. A Monte Carlo method was used to propagate the 

uncertainty of the fluid-specific EoS parameters to the ORC model output. This 

provided distributions of the cycle power output resulting from fluid property 

uncertainties. The uncertainties of fluid properties were assumed to be known a priori, 

based on information reported in databases or from information reported in predictive 

models of pure component properties (e.g., the study of Hukkerikar et al. [41]). Several 

candidate fluids were compared and ranked according to ORC model output 

uncertainties. This approach allowed the use of uncertainty as an additional dimension 

in the fluid selection process [26]. 

A comprehensive methodology to include assessment of model parameter 

uncertainty based on experimental data is needed. Toward this end, we investigate the 

following items: 

• Quantification of uncertainty and the correlation structure of input properties and 

parameters based on experimental data 

• Sensitivity analysis of the different contributions to the uncertainty of a given 

EoS, such as ideal-gas versus departure function contributions 

• Comparisons of different types of EoS based on fluid-specific uncertainties 

propagated to the model output of an ORC 

• Uncertainty analysis to complement accuracy in selecting an EoS for a given 

application 

We apply a Monte Carlo method for analysis of the commonly used types of 

EoS in the field of working fluids: cubic (i.e., SRK) and PC-SAFT. Apart from the work 

of Feistel et al. [43], we do not know of any systematic assessments of EoS in terms of 
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uncertainty propagation. We apply this generalized procedure to an ORC application for 

power generation using a low-temperature heat source of exhaust gas from a marine 

diesel engine. 

The paper is organized as follows: (i) the overall methodology is outlined; (ii) 

cubic EoS and PC-SAFT, as well as the ORC model formulation, are briefly presented; 

(iii) the method to obtain the input uncertainties by quantifying experimental error is 

shown; (iv) the Monte Carlo procedure used to perform uncertainty analysis and 

variance-based sensitivity analysis is explained; (v) the results of the uncertainty 

analysis of cubic and PC-SAFT EoS are compared. 
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Method and Tools 

The methodology involves the set of steps given in Table 1. 

Table 1. Overview of the methodology. 

Step 1 Formulation of EoS and fluid selection 

Step 2 
Organic Rankine cycle (ORC) process model formulation and optimization 

of process parameters 

Step 3 
Quantification of uncertainties in fluid-specific EoS parameters based on 

experimental data  

 
Step 3.1 

Quantification of uncertainty for critical properties and acentric factor 

for cubic SRK EoS  

 
Step 3.2  Quantification of uncertainty for parameters of PC-SAFT EoS 

 
Step 3.3  Quantification of uncertainty for ideal-gas heat capacity parameters 

Step 4 
Monte Carlo procedure for input uncertainty propagation to ORC process 

model output of cubic SRK and PC-SAFT EoS  

 
Step 4.1   Specification of fluid property and parameter input uncertainties 

 
Step 4.2  Sampling of property and parameter search spaces 

 
Step 4.3  Evaluation of ORC model for each property and parameter sample 

Step 5 Variance-based sensitivity analysis and EoS selection  

 
Step 5.1   Calculation of variance-based sensitivity measures 

 Step 5.2  Analysis and selection of EoS based on accuracy and uncertainty 

 

Step 1: Formulation of EoS and fluid selection 

Models of process cycles require evaluation of thermodynamic properties (e.g. 

enthalpies, entropies, fugacities). The enthalpy, , and entropy, s, have an ideal 

contribution (i.e. the ideal-gas enthalpy and entropy) and a nonideal gas contribution 

(departure function, [47]) for the difference between ideal- and real-fluid behaviors:  
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 (1) 

 (2) 

where P is the pressure and T the temperature. The reference enthalpy and entropy,  

and , are those defined at the reference state of Tref = 273.15 K and . 

The enthalpy and entropy of the ideal gas at T, are  and , while 

 and  are the respective departure functions. Fugacities can be 

directly calculated from EoS departure functions, but also more generally from 

derivatives of the Helmholtz energy [37][44]. Here we use departure functions from two 

different EoS for uncertainty analysis: the cubic Soave-Redlich-Kwong (SRK) EoS and 

the non-associating Perturbed Chain Statistical Association Fluid Theory (PC-SAFT) 

EoS. The equations differ in mathematical form. A detailed description of the physical 

background of both cubic and SAFT-type EoS can be found in the work of 

Kontogeorgis et al. [45]. 

The SRK EoS originates from Van der Waals-type EoS, in particular the 

Redlich-Kwong EoS [46]. The underlying principle of van der Waals EoS is to improve 

upon the ideal-gas law by including attractive and repulsive terms. Soave [20] extended 

the Redlich-Kwong EoS, by making the a parameter a function of temperature and the 

acentric factor, ω, 

 

 (3) 

In Eq. (3)  is the universal gas constant,  is the absolute temperature, P is the 

absolute pressure and  is the molar volume. Soave defined the α function as: 

 (4) 

 (5) 

 (6) 
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 (7) 

Eq. (7) defines  as used in Eq. (6). Thus, knowing the three primary properties 

,  and  for a fluid, its departure thermodynamic properties can be calculated from 

the SRK EoS. The formulations for fugacity, enthalpy, and entropy can be found in 

Soave [20] and Poling, et al. [47]. The Peng-Robinson EoS [19] is a cubic model 

closely related to SRK and performs similarly for any given process model. The 

computational implementation of SRK EoS was done by Liu et. al [25]. The uncertainty 

propagation of Peng-Robinson EoS has been investigated by Frutiger et al. [26] 

Statistical Associating Fluid Theory (SAFT), is based on a statistical 

thermodynamic theory for fluids with a repulsive core and directional short-range 

attractive sites. Economou [48] has reviewed the development of SAFT-type EoS. The 

Perturbed chain-SAFT (PC-SAFT) EoS for non-associating fluids [30] treats molecules 

as chains of spherical elements with a pair potential. A temperature-dependent hard 

sphere diameter d(T) for the segments is used to describe the soft repulsion of molecules 

[49]  

 

 (8) 

In Eq. (8)  is the segment diameter (size parameter),  is the depth of the intersegment 

molecular pair potential (energy parameter), and k is the Boltzmann constant. 

In the PC-SAFT EoS, thermodynamic properties become a sum of a hard chain 

contribution and perturbation terms according to the second-order perturbation theory of 

Barker and Henderson [49]. Thus, the nonideal Helmholtz energy, Ares of a system of N 

chain molecules has the form 

 

 (9) 

where Ahc is the hard-chain reference contribution and Adisp is the dispersion 

contribution. The detailed expressions for all thermodynamic properties can be found in 

the work of Gross et al. [30]. In addition to  , and , a chain length parameter, m, is 
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included. The energy parameter is generally reported as . The computational 

implementation of PC-SAFT EoS is based on the work of Gross et al. [30] and of 

Fakouri Baygi et al. [50]. 

Both SRK and PC-SAFT require three fluid-specific parameters. However, SRK 

uses properties ( ,  and ), which can be measured. Typically Tc is determined 

directly, while  and  are obtained from vapor pressure curves [51]. The PC-SAFT 

parameters ( ,  and m) must be obtained by fitting the EoS to a combination of 

property data, e.g., vapor pressure and (liquid) density data as functions of temperature 

[30]. Experimental data used to determine the EoS parameters are often subject to non-

negligible uncertainties [40], so this needs to be included in any uncertainty analysis. 

The ideal-gas enthalpy and entropy terms are obtained by integrating a 

temperature-dependent ideal-gas heat capacity function, cp(T), with parameters obtained 

from fitting thermal or spectroscopic measurements combined with molecular theory. 

We use the Aly-Lee ideal-gas heat capacity form with five compound-specific input 

parameters (A, B, C, D, E) [52].  

 

 (10) 

For the present fluid, cyclopentane, fluid property data were obtained from NIST 

ThermoData Engine [53][54] for Tc, Pc, ω; the DIPPR 801 AIChE database [55] for A, 

B, C, D, E; and from Gross and Sadowski [30] for , , and m. 

Natural refrigerants, such as cyclopentane show promising performance in 

Organic Rankine cycles, have no ozone depletion potential, and possess much lower 

global warming potential compared to fluorinated and chlorinated compounds [56] 

some of which are being phased-out in Europe [17]. The disadvantage of natural 

refrigerants is that many, including cyclopentane, are highly flammable. The input 

property and parameter data of cyclopentane are listed in Table 2. 
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Table 2. EoS input property and parameter data for cyclopentane. 

Input properties 

to cubic SRK 

Tc 

[K] 

Pc 

[Pa] 

 

[-] 
Ref. 

511.7 4.51106 0.19 [67] 

Input parameters 

to PC-SAFT 

 

[Å] 

 

[J/K] 

m 

[-] 
Ref. 

3.7114 265.83 2.3655 [30] 

Input parameters 

to Aly-Lee heat 

capacity 

A 

[J/(kmolK)] 

B 

[J/(kmolK)] 

C 

[K] 

D 

[J/(kmolK)] 

E 

[K] 
Ref. 

41600 301400 1462 180950 669 [55] 

 

We have compared the accuracy of SRK and PC-SAFT for cyclopentane with a 

reference EoS [57]. For the calculation of saturation pressure as function of temperature 

from 290 K to 510 K, the PC-SAFT EoS had an average relative error of 0.05%, while 

SRK had 0.20%. Hence, although both agree well, the PC-SAFT EoS was found to be 

more accurate, at least for saturation pressure. However, this is not unexpected, because 

PC-SAFT parameters were fitted to vapour pressure data. We have not compared the 

results for liquid densities. 

 

Step 2: Organic Rankine cycle (ORC) model formulation and optimization of 

process parameters 

The Organic Rankine Cycle (ORC) process of this study is a waste heat recovery 

(WHR) system for electricity production on a large container ship [58]. The process 

model is based on the work of Andreasen et al. [59] and Frutiger et al. [26]. Frutiger et 

al. provided a detailed description of the process model. 

In the ORC process, the exhaust gas of an on-board MAN diesel engine provides 

the high temperature heat, with the low temperature heat rejected to sea water [60]. The 

ORC system has five main components: pump, evaporator (preheater, evaporator and 
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superheater), turbine, condenser, and recuperator (see Figure 1). The working fluid is 

saturated liquid at low pressure at the pump inlet (state 1). The pump pressurizes it to 

state 2. It is then directed through the recuperator, to heat up the stream to state 3. It 

enters the evaporator for preheating to the saturated liquid state 4, evaporating and 

(optionally) superheating to state 5. In the turbine, the hot pressurized vapor expands to 

state 6, producing mechanical power which is converted to electricity by a generator 

connected to the turbine. The low pressure vapor condenses in the recuperator (state 7) 

and in the condenser completes the cycle to state 1.  

 13 



 

Figure 1. An overview over the ORC process adapted from Andreasen et al. [59]. 

The process data were provided by MAN Diesel and Turbo [61]. The modelling 

constraints of the process and of the hot fluid are summarized in Table 3. Engine 

exhaust gas (i.e. air), at a temperature of 222 °C and mass flow rate of 95.4 kg/s, serves 

as the heat source. Further constraints are: 1) the exhaust gas (air) outlet temperature is 
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limited to 160 °C; 2) at the turbine inlet and outlet, as well as at the saturated liquid 

point, the minimum temperature difference between the hot and cold streams in the 

evaporator is set to 10 K; 3) the whole cycle operates at subcritical conditions with the 

maximum evaporator pressure limited to 0.95 Pc. 

 

Table 3. Constraints for the ORC process model. 

Process parameter Value 

Exhaust gas (hot fluid) inlet temperature 222 °C 

Exhaust gas (hot fluid) outlet temperature 160 °C 

Exhaust gas (hot fluid) mass flow rate 95.4 kg/s 

Exhaust gas (hot fluid) pressure 0.11 MPa 

Condensation temperature 

Condenser outlet vapor quality (state 1) 

30 °C  

0 

Pump isentropic efficiency 0.8 

Minimum evaporater temperature difference 10 K 

Minimum recuperator temperature difference 10 K 

Turbine isentropic efficiency 0.8 

Minimum turbine outlet vapor quality (state 6) 1 

 

The assumptions used in the numerical modeling are: No pressure losses in 

piping or heat exchangers, no heat loss from the system, and steady state operation [26]. 

The outputs from the ORC process model are the net power output , the 

mass flow  of the working fluid, and state variables such as pressures , 

temperatures , entropies , and enthalpies , (see Figure 1). The net power output 

 (i.e. the difference between turbine power production and pump power 

consumption) can be calculated from Eq.(11). 

 
 (11) 
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 (12) 

 (13) 

where hi is the enthalpy at state i (see Figure 1) and  is the mass flow rate of the 

working fluid, given by energy balances over the evaporator, preheater, and superheater: 

 (14) 

In Eq. (14)  is the heat capacity of the hot air (exhaust gas), which is 

assumed constant; , the temperature of the air flowing into the ORC (i.e. the output 

temperature of the diesel engine); , the temperature of air leaving the ORC; and 

, the exhaust gas mass flow rate.  

The thermal efficiency of the cycle can be expressed as 

 (15) 

A degrees of freedom analysis of the cycle suggests that two process variables 

can be solved for and optimized. We choose the turbine inlet pressure, , and the 

turbine inlet temperature, . The optimal process conditions were identified by 

performing particle swarm optimization [62] for cyclopentane. 

 

Step 3: Quantification of uncertainty of fluid-specific EoS parameters based on 

experimental data 

The goal of this step is to obtain the uncertainties and the correlation matrix of 

the cubic SRK input parameters ( , , ), the PC-SAFT parameters ( , , m), and 

the Aly-Lee heat capacity parameters (A, B, C, D, E). The quantification is based on the 

thermodynamic property data. In order to achieve this, the bootstrap method described 

by Efron [63] is used. 

The bootstrap method attempts to quantify the underlying distributions of 

residual errors commonly defined in statistical contexts as the differences between the 
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experimental data and their corresponding model calculations. This should not be 

confused with the thermodynamic term “residual function”, which is related to the 

thermodynamic departure function [47]. The residual errors are used to obtain synthetic 

data sets for parameter estimation by using random sampling with replacement. This 

procedure is a form of nonlinear propagation of measurement errors to errors as 

parameter estimators. It is different from non-linear regression theory which relies on 

asymptotic approximation of the parameter covariance matrix that requires calculation 

of the jacobian matrix and the assumption that measurement errors are independently 

identically distributed and follow normal distribution with means equal to zero [64]. In 

many practical application, this assumption is rarely met (see for instance the residual 

plots in Hukkerikar et al. [41]. Therefore, the bootstrap method that works with the 

actual distribution of residuals is more appropriate to use in such situations. The method 

has previously been applied to the development of group contribution methods by 

Frutiger et al. [65]. 

We now outline the bootstrap method [63]. A generic model ([ ])F θ   with 

parameters [ ] to predict variable  is given by 

 

 (16) 

The goal is to fit the model parameters giving  to the experimental data set, 

, of Ndata data points, obtaining the parameter estimates  and their corresponding 

uncertainties. 

(1) A reference parameter estimation is made using a non-linear least squares 

method to obtain the first parameter estimates [ ]:  

(2) The residual error for each data point is defined as: 

  (17) 

Each residual error  has equal probability of occurring, with a probability of 1/

. 
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(3) New synthetic data sets are produced via the bootstrap method.  Random sample 

replacements are made of residual errors  to generate k synthetic data sets 

(y*(1); y*(2), …, y*(k)), each with Ndata data points. In practice, this bootstrap 

method simply samples errors and adds them randomly to the estimated 

properties in the reference step above (i.e., it rearranges the errors):  

  (18) 

where i (from 1 to Ndata) stands for the index of measured data and  is the 

probability function of  (with probability of realization of 1/  for all ) 

(4) The least squares parameter estimation is repeated using each synthetic data set 

y*(k), which results in a new set of estimated parameters θ*(k) and a new set of 

predicted values, ypred*(k). In this way, distributions of the parameters as well as 

of the predicted values are obtained for representing the uncertainty in the 

estimated values.  

(5) Inference statistics can be used to estimate the mean and standard deviation (SD) 

of the distributions: 

  (19) 

In Eq. (20),  are the estimated parameters from the kth synthetic data set and 

 is its mean value, which is given by 

  (20) 

The obtained standard deviations are estimates of the parameter uncertainties. 

Another important feature of the bootstrap method is that it allows estimation of 

the correlation structure between the errors of the different parameters (e.g. for PC-

SAFT: the correlation structure between the residual errors associated with values of , 

 and m). It is essential for the uncertainty analysis (Step 4 of the methodology) to 
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preserve the original correlation structure, to avoid the output variance calculation being 

incorrect [66]. 

Quantification of uncertainty for critical properties and acentric factor for cubic 

SRK EoS 

For many hydrocarbons, Tc has been measured experimentally [47][67]. Hence, its 

measurement uncertainty serves as input uncertainty for the EoS in this study. However, 

 and  are often obtained from vapor pressure curves as described by Patel and 

Ambrose [51][47]. As an example, the Antoine equation [68] can be used: 

 

  (21) 

  (22) 

where , , and  are the respective Antoine parameters. 

Experimental data for the vapor pressure as a function of temperature for the 

working fluid cyclopentane were taken from the literature [69]. Afterwards a bootstrap 

method, as described above, was applied: 1) the experimental vapor pressure curve was 

fitted to an initial set of parameters; 2) new synthetic data sets were generated by 

random sampling of the errors; and 3) parameter estimation was repeated using each 

synthetic data set and subsequently  and  were calculated at . Then  was 

perturbed within its stated measurement uncertainty [67]. In order to propagate the 

measurement errors in temperature to other experimentally measured variables, the 

Monte Carlo procedure was used. In the Monte Carlo method, 150 random samples 

from the measurement errors of the temperature were taken and for each sample, 

variables (AAnt, BAnt, CAnt) were calculated using Eq. (22) and Eq. (23). For the Antoine 

model, Eq. (23) is usually reliable for ω, but Eq. (22) may not be very good for Pc. 

However, for estimating uncertainties both should be adequate. 

The uncertainties of  and  are defined as two standard deviations ( ) of 

the distributions obtained by the bootstrap method. This is an engineering standard to 

account for uncertainty with 95% confidence. Figure 2 shows the distribution of , , 
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and  as obtained from the bootstrap method; the forms are similar to normal 

distributions. A summary of results obtained by the bootstrap method for all of the 

parameters is given in Table 7. The correlation structure was obtained by calculating the 

correlation matrix of the errors of , , and  (see Table 4). The cubic EoS parameters 

were highly correlated (i.e. the elements of the correlation matrix were larger than 0.7). 

The estimated uncertainties in Tc, Pc, and ω are given in Table 7.  

 

Table 4. Correlation matrix of errors of , , and  from the bootstrap method. 

    

 1   

 0.96 1  

 -0.93 -0.85 1 

 

 

Figure 2. Distribution of SRK parameters from the bootstrap method. 

Quantification of uncertainty for parameters of PC-SAFT EoS 

The PC-SAFT parameters are usually obtained by fitting residual functions of PC-SAFT 

[30] to vapor pressure and saturated liquid density data. However, Gross and Sadowski 

[30] did not report uncertainties of ,  and m, for use in our uncertainty propagation 

analysis. 

As a result, we applied the bootstrap method using collected experimental data 

for vapor pressure [69] over the temperature range of 230-350 K and saturated liquid 
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densities [70] for a temperature range of 190-310 K. Following the methodology as 

outlined above, 1) the experimental data were fitted to the PC-SAFT EoS; 2) new 

synthetic data sets were obtained; and 3) parameter estimation was repeated (with 150 

random samples) using each synthetic data set. The uncertainties of , , and m were 

obtained by calculating the standard deviation of the respective distributions, and the 

correlation structure was calculated through the matrix of errors of , , and m (see 

Table 5). The parameters  and m were highly correlated, but  was not strongly 

correlated with the other parameters. Figure 3 shows the distribution of , , and m 

as obtained from the bootstrap method. The distributions are only roughly in normalized 

form. The estimated uncertainties for , , and m can be found in Table 7. 

 

Table 5. Correlation matrix of errors of , , and m from the bootstrap method. 

   m 

 1   
 0.05 1  

m -0.36 -0.94 1 

 

 

Figure 3. Distribution of PC-SAFT parameters from bootstrap method. 
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Quantification of uncertainty for ideal-gas heat capacity parameters 

The bootstrap method was also applied to obtain the uncertainties and the correlation 

structure of the respective Aly-Lee heat capacity parameters from experimental data 

[71]. As for the examples above, the standard deviation of the respective bootstrap-

derived distributions for parameters A, B, C, D, E quantified the uncertainties, and the 

matrix of errors allowed for the calculation of the correlation structure (see Table 6). 

With the exception of parameter B, all heat capacity parameters were highly correlated 

with each other. The quantified input uncertainties for A, B, C, D, E can be found in 

Table 7. Figure 4 shows the distribution of A, B, C, D, E as obtained from the bootstrap 

method; these are similar to a normalized distribution. 

 

Table 6. Correlation matrix of errors of A, B, C, D, E from the bootstrap method. 

 A B C D E 

A 1     

B 0.28 1    

C 0.92 0.63 1   

D 0.96 0.51 0.99 1  

E 0.99 0.40 0.96 0.99 1 

 

 

Figure 4. Distribution of heat capacity parameters from the bootstrap method. 

 22 



Table 7. Estimated uncertainties for the respective SRK, PC-SAFT, and heat capacity 

parameters in %, as calculated from the ratio between calculated two standard 

deviations (SD) and the actual value from the literature. 

Uncertainties in 

cubic SRK EoS 

   Ref. 

0.70 %* 3.82 % 5.65 % [67] 

Uncertainties in 

PC-SAFT EoS 

   Ref. 

3.05 % 2.89 % 4.61 % [30] 

Uncertainties in 

Aly-Lee heat 

capacity model 

     Ref. 

0.34 % 0.46 % 0.79 % 0.61 % 0.34 % [55] 

*directly from experimental measurement uncertainty 

 

Step 4: Monte Carlo procedure for input uncertainty propagation to ORC model 

output of cubic SRK and PC-SAFT EoS 

A Monte Carlo procedure was used to propagate uncertainties in the fluid-specific EoS 

parameters to the ORC model output. The procedure follows the work of Frutiger et al. 

[26] as summarized below. 

Specification of fluid property and parameter input uncertainties 

The quantified uncertainties of the fluid parameters (from Step 3) serve as input 

uncertainties to be propagated through the ORC model. We do not intend to improve the 

accuracy of primary property or parameter data values. On the contrary, we use the 

reported parameter values of Table 2 together with the estimated uncertainties. 
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Sampling of property and parameter search spaces 

Sampling is the key step of the Monte Carlo procedure. The Latin Hypercube Sampling 

method [72] was utilized for probabilistic sampling of 250 values from the fluid 

property parameter input space of each EoS. The respective uncertainty defined the 

range of each property parameter. The parameters were assumed to be distributed as 

found in Step 3. The calculated correlations between the respective parameters were 

taken into account using the rank-based method for correlation control of Iman and 

Conover [66]. For the obtained heat capacity constants (A, B, C, D, E), the sampling 

procedure was performed twice, once with the SRK parameters ( , , ) and a second 

time with the PC-SAFT parameters ( , , m).  

Evaluation of ORC model for each property and parameter sample 

The ORC model was evaluated for each of the 250 input property parameter samples 

resulting from Step 4.2. The ORC model simulations for the SRK EoS were carried out 

as follows: 

(1) The sample sets for the heat capacity input A, B, C, D and E (input for the 

ideal-gas contribution) and the SRK input properties (Tc, Pc, ω) were evaluated 

together. 

(2) The heat capacity parameters were kept constant, while every sample for the 

SRK input properties was evaluated. 

(3) The SRK input properties were kept constant and every sample for the heat 

capacity input parameters was evaluated. 

This procedure was repeated with the samples from the PC-SAFT parameters 

and the sample set of heat capacity parameters. In this way, it was possible to quantify 

the influence of the model output uncertainties caused by the ideal-gas and residual 

functions contributions. Furthermore, the uncertainty propagations of SRK could be 

directly analyzed, and compared with the ones of PC-SAFT. 

Although the error quantification by the bootstrap method and the Monte Carlo 

procedure were applied only to the SRK and PC-SAFT EoS in this study, the approach 
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is completely general, and can be applied to any type of EoS to analyze the propagation 

of input uncertainty to the output of the EoS model. 

The uncertainty analysis was implemented in Matlab (Mathworks, R14) [73]. 

The software for performing the uncertainty analysis can be provided as m-script files 

upon request to the corresponding author. 

 

Step 5: Variance-based sensitivity analysis and EoS selection 

The results of the Monte Carlo uncertainty propagations were distributions of the model 

outputs (e.g. the net power output of the ORC ). The broader a model output 

distribution is, the more uncertain is the model output value. The variance of a 

distribution is a measure of its width and can be used to quantify output uncertainties, 

subject to the property uncertainties. Given the distribution of a variable from the Monte 

Carlo sample evaluation, the associated variance of the distribution can be defined. For  

 this is 

 (23) 

where  is the net power output of one Monte Carlo simulation, n is the number 

of simulations, and  is the mean value of the distribution, defined as 

 (24) 

The standard deviation is the square root of the variance, 

 (25) 

To compare the different uncertainty propagations, subject to the EoS parameter 

uncertainties, a variance-based sensitivity analysis was performed. Sensitivity analysis 

yields the impact of model parameter uncertainty on the model output uncertainties 

[74]. 
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Step 5.1: Calculation of variance-based sensitivity measures 

The influence of different uncertainty sources on the ORC model outputs may be 

analyzed by comparing the different variances and standard deviations. As a result, we 

can compare ideal-gas contributions to uncertainties with those from the nonideal 

departure functions, and SRK can be considered relative to PC-SAFT. In order to 

facilitate such comparisons, a sensitivity measure is useful. An example is the 

sensitivity measure described by Saltelli et al. [75] for the net power output  of the 

ORC.  

First, we denote the variance of the specific distribution of  that results 

from only the input uncertainties of the SRK EoS (keeping heat capacity parameters 

constant) by . Then, the variance of the specific distribution of 

 that results from input uncertainties of both the SRK EoS and the heat capacity 

parameters is denoted . The sensitivity measure for SRK input 

properties, , with respect to the model output uncertainties is then given by 

 (26) 

Eq. (27) quantifies the influence of a propagated input property uncertainty of the SRK 

EoS on the overall propagated uncertainty. Similarly, the sensitivity measure for the 

influence of other input parameter uncertainties (heat capacity, PC-SAFT parameters) to 

other ORC model output properties (i.e., enthalpies, entropies, temperatures and 

pressures at different stages) can be evaluated. 

Step 5.2: Analysis and selection of EoS based on uncertainty 

Based on the sensitivity measures and the distributions of the model outputs from the 

Monte Carlo simulations, we can address the following questions: 

(1) Do input uncertainties originating from the ideal-gas contribution or from the 

departure functions have stronger influence on the model output? 

(2) Which of the two departure function input uncertainties (SRK or PC-SAFT) 

has the stronger effect on the model output? 
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(3) Which of the two departure functions (SRK or PC-SAFT) has a lower standard 

deviation in the ORC model output uncertainty and, consequently, might be 

preferred from the standpoint of process uncertainty? 
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Results and Discussion 

The results are now presented as follows: (1) an overview of the uncertainty analysis 

results; (2) the sensitivity of the ideal-gas contribution compared to the sensitivity of the 

departure functions (residual functions); and (3) the uncertainty of SRK compared to 

that of PC-SAFT. 

Overview of the output uncertainties in log(P)-h and T-s diagrams 

The outcome of the Monte Carlo methods is shown on temperature-entropy (T-s) and 

logarithmic pressure-enthalpy (log(P)-h) diagrams in Figure 5. The uncertainty is a 

varying band for both the saturation curves (yellow) and the cycle design (red). All the 

simulation results obtained from each single property parameter sample are overlaid. 

The solid black line represents the mean values of the model outputs. From a statistical 

point of view, the uncertainty bands correspond to the distribution of the model outputs 

and directly show the sensitivities with respect to the fluid property values. The larger 

the width of the band, the greater the uncertainty. Hence, Figure 5 gives an overview of 

all the uncertainty analyses for the SRK EoS (left hand side) and the PC-SAFT EoS 

(right hand side). These results are analyzed in more detail in the following sections. 

Figure 5 also gives an overview of the different ORC model outputs that have been 

further considered for sensitivity analysis in the following results sections (see also 

Table 8). 
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Figure 5. Representation of uncertainty with respect to the fluid properties in the T-s 

diagram and log(P)-h diagram for cyclopentane for SRK and PC-SAFT input 

uncertainty: Monte Carlo simulations overlaid (yellow/red) and mean (solid black line). 

The numbers refer to the states of the ORC cycle according to Figure 1. Table 8 lists the 

symbols for model outputs. 
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Table 8. Considered model outputs. 

ORC net power output   [kW] 

Turbine output  [kW] 

Pump work input  [kW] 

Thermal efficiency  [-] 

Mass flow of the working fluid   

Evaporation temperature  [K] 

Lower pressure level  [kPa] 

Condensation entropy   

Condensation enthalpy   

Evaporation entropy   

Evaporation enthalpy   

Slope of the expansion line in 

log(P)-h diagram 
  

Slope of the expansion line in 

T-s diagram 
  

Slope of the saturated vapor 

line in log(P)-h diagram 
  

Slope of the saturated vapor 

line in T-s diagram 
  

Slope of the saturated liquid 

line in log(P)-h diagram 
  

Slope of the saturated liquid 

line T-s diagram 
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As shown in Figure 5, the critical regions of the PC-SAFT log(P)-h and T-s 

diagrams have large uncertainties due to high sensitivity to the EoS parameter 

uncertainties. However, since our ORC model was operated subcritically, well away 

from the critical region, poor modelling of the critical region should not affect the ORC 

model outputs. Although the mean of the saturation line (solid line) was modelled 

smoothly, parameter uncertainty (orange) caused some outliers of this property. 

From the overview figures, it is possible to visually analyze the results of the 

fluid-specific EoS parameter uncertainty propagation. For example, from the output 

uncertainty from the SRK EoS shown on the T-s diagram (top of Figure 5), the 

expansion process uncertainty (states 5 to 6) is larger than the uncertainty in the 

evaporation line (states 4 to 5). This is also shown in the expansion lines and lower 

pressure line of the log(P)-h diagram (bottom of Figure 5). For the PC-SAFT EoS, a 

comparatively wide band can be seen for the evaporation temperature (states 2 to 5) as 

well as for the saturated liquid line (states 3 to 4) on the T-s diagram. Furthermore, the 

pump (states 1 to 2) and the low pressure process have high uncertainty on the log(P)-h 

diagram. Note that the uncertainties of PC-SAFT and SRK cannot be compared directly 

using Figure 5 because the outputs are normalized by the different EoS mass flow rates. 

A more appropriate comparison of SRK and PC-SAFT EoS is made below. 

 

Ideal-gas contribution versus departure function: Comparison of uncertainty 

propagation of input uncertainties for cyclopentane 

The effects of the parameter uncertainties on the ideal-gas contribution (i.e., the 

heat capacity expression) can be compared to those from the departure functions (i.e., 

SRK and PC-SAFT). Figure 6 shows the output distributions of the ORC net power 

output  as obtained from the evaluated Monte Carlo samples. The results of the 

combined uncertainty propagations of the departure functions (SRK and PC-SAFT) and 

the ideal-gas contributions are shown together with the results from the uncertainty 

analysis when only the departure functions or the ideal-gas contributions were varied 

subject to their uncertainties. Figure 6 is divided in two parts: On the left hand side, the 

propagated input uncertainties of PC-SAFT (red) are compared to the ideal-gas 
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contribution, while on the right hand side, results are shown for SRK (yellow) and the 

ideal gas contribution. The distributions from PC-SAFT and SRK overlap, though the 

percentage variations can be considered acceptable. However, the mean value of  

for the PC-SAFT uncertainty was 2.83 % higher than for the SRK. 

 

 

Figure 6. Output distributions of the ORC net power output  from Monte Carlo 

simulations. Subfigures a, b and c compare the output distributions of the propagated 

input uncertainties of the departure functions SRK (yellow) and PC-SAFT (red) with the 

ideal-gas contribution (i.e., from heat capacity parameter uncertainties). 

Considering the differences in the widths of the distributions of the net power output 

 in Figure 6, the influence of the propagated heat capacity uncertainties on the 
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model output was small compared to the effect of the uncertainties in the departure 

functions for both SRK and PC-SAFT. The mean of the thermal efficiency of the ORC 

 was 15.05 % for SRK and 14.63 % for PC-SAFT. Hence, it should be noted that 

the ORC model outputs obtained whith PC-SAFT and SRK do not differ strongly. 

Leekumjorn et al. [76] thoroughly analyzed the relative errors of both PC-SAFT 

and SRK compared to experimental values of vapor pressures as functions of 

temperatures. These authors showed deviations of 2-6 % for a variety of hydrocarbon 

fluids.  

The uncertainty analysis results for other ORC model outputs were analyzed by 

their respective sensitivity measures, taking into account that the ORC model and the 

EoS were highly non-linear and the different fluid properties and parameters could 

potentially influence every model output. Figures 7 (SRK) and 8 (PC-SAFT) give an 

overview of the results of the uncertainty analysis of all the output variables considered. 

The sensitivity measures of the input uncertainties from the heat capacity correlation are 

plotted together with those from the SRK and PC-SAFT EoS. 

As Figures 7 and 8 show, the two sensitivities for ideal and nonideal gas 

contributions sum to unity, because these are additive in  the enthalpy and entropy 

calculations [75]. 

 

 

Figure 7. Sensitivity measures Si for influence of propagated heat capacity parameter 

uncertainties as well as SRK EoS input uncertainties on the respective model outputs 

(see also Table 8). 
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Figure 8. Sensitivity measures Si for influence of propagated heat capacity parameter 

uncertainties as well as PC-SAFT EoS input uncertainties on the respective model 

outputs (see also Table 8). 

 

Sensitivity of the departure functions of SRK and PC-SAFT was much larger 

than that of the ideal-gas contribution for all the output variables. This is expected since 

in the ORC both gas and liquid states exist at high pressures. Therefore, the real-gas 

deviation from the ideal-gas becomes important. Small changes in the ideal-gas 

enthalpy or entropy contribution do not affect the system strongly, whereas changes of 

the departure functions will.  

There are studies in the literature suggesting that the heat capacity correlation 

can strongly affect cycle performance [77]. Here, the Aly-Lee heat capacity correlation 

fitted the experimental data very well over the given temperature range, leading to small 

uncertainties in the heat capacity parameters (as estimated by the bootstrap method). In 

addition, the correlation structure was retained. This prevented overestimation of the 

corresponding uncertainty. The uncertainty in the heat capacity itself was very low (< 1 

% uncertainty), which propagates to a small uncertainty in the ideal-gas contribution.  
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SRK versus PC-SAFT: Comparison of input uncertainties propagation of and 

selection of EoS for cyclopentane  

In step 1 of Methods and Tools, we compared the accuracy of the two EoS, looking at 

the differences of experimental and predicted data. The PC-SAFT EoS had an average 

relative error of 0.05%, while the SRK EoS had 0.20%. Hence, the accuracy of PC-

SAFT was superior. 

As an additional tool, the SRK and PC-SAFT EoS can be compared in terms of input 

uncertainty propagation to the ORC model outputs by analyzing the standard deviations 

of the model output distributions (e.g. the distribution of  in Figure 6). The 

standard deviations of the ORC model output distributions for the different ORC model 

outputs are shown in Figures 9 and 10. Unlike the section before, the sensitivity 

measure could not be used for the comparison, because the two EoS did not have the 

same reference variance. Instead the standard deviations of the respective output 

distributions have been compared. 
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Figure 9. Standard deviations SD of the different ORC model output distributions 

obtained from propagating input parameter uncertainties for SRK (yellow) and input 

parameters of PC-SAFT (red) (see also Table 8).  
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Figure 10. Standard deviations SD of the different ORC model output distributions 

obtained from propagating input parameter uncertainties for SRK (yellow) and input 

parameters of PC-SAFT (red) (see also Table 8). 
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The standard deviations of the model output distributions are larger for PC-

SAFT. This can also be seen from the width of the distributions of the net power output 

in Figure 6, which are much larger for PC-SAFT than SRK. However, the parameter 

uncertainties of SRK and PC-SAFT were similar (see Table 7). Even small uncertainties 

in the PC-SAFT parameters apparently lead to relatively large output standard 

deviations, at least compared to the SRK. The uncertainty analysis shows that the 

uncertainties in the PC-SAFT parameters interact more strongly than do those of the 

SRK, leading to a higher output uncertainty. The cause of this could be the differences 

in mathematical form, or the different data used to obtain the parameters, or both. The 

PC-SAFT parameters enter into several different functions, which are (from a model 

point of view) highly nested and often of contrasting effects whereas the SRK 

parameterization is more direct. In addition, many temperature-dependent data were 

used to obtain the PC-SAFT parameters while only constant critical property data were 

used for SRK. Given that the effects are lumped together, it is not possible to separate 

them. We note that Peng-Robinson cubic EoS gives very similar results to the SRK 

when put through the same analysis [76]. The difference between them for  was 

only 0.54%. 

The Monte Carlo uncertainty analysis used here can be used as an additional 

criterion to justify the choice of an EoS (in addition to accuracy and computational 

efficiency). Lower output uncertainties would be desirable from a modeling point of 

view because the results are expected to be more reliable, especially over extended 

ranges of conditions. Considering the used experimental data of the thermo-physical 

properties (i.e. vapour pressure), the SRK EoS is slightly less accurate than PC-SAFT in 

predicting properties. However, for the present ORC model and working fluid 

(cyclopentane), one needs to have experimental evaluation of the proposed ORC 

process design and measure the power output ( ) in order to calculate the accuracy 

of the two candidate models: namely ORC model including SRK versus ORC model 

including PC-SAFT. Such experimental data for ideally more than one working fluid 

candidates will enable statistical evaluation of accuracy of both models for ORC process 

design. In the absence of such experimental data, one has the model output uncertainty 

for both models to work with. As demonstrated in Frutiger et al. [26], the uncertainty in 
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the predicted power output can be used cautiously or optimistically when searching for 

alternative candidates.  

  

 39 



Conclusions 

Uncertainties of EoS can be analyzed as an additional, complementary tool to EoS 

accuracy also in situations where experimental data are not available to calculate 

accuracy. This study developed parameter uncertainties for two types of equations of 

state (SRK and PC-SAFT) from measured data using a bootstrap method. These EoS 

parameter uncertainties were propagated via a Monte Carlo procedure to the output of 

an organic Rankine cycle model for power production via waste heat recovery from the 

exhaust gas of a marine diesel engine. Variance-based sensitivity analysis allowed for 

the comparison of the different outcomes of the uncertainty analyses.  

It was found that: 

• The bootstrap method allowed for the quantification of the uncertainties of the 

fluid-specific parameters of both EoS, including their corresponding correlation 

structure, from experimental data. 

• The propagated output uncertainties of the ORC model were determined more 

by uncertainties in the EoS departure functions than uncertainties from the ideal-

gas contribution from the heat capacity model. 

• The PC-SAFT EoS had an average relative error between experimental and 

predicted vapor pressure data of 0.05%, while SRK had an error of 0.20%. This 

suggests that the PC-SAFT EoS seems more accurate. However, this is not 

unexpected, since PC-SAFT was fitted to a wide range of vapor pressure data on 

cyclopentane, while SRK was not. 

• The range of the ORC model output uncertainties (i.e. the standard deviations of 

the respective distributions) were smaller for SRK than for PC-SAFT, indicating 

that, from an uncertainty point of view, the SRK EoS could be preferable for this 

application, i.e. performance evaluation of working fluid in ORC process design. 

It cannot be determined if the higher uncertainty of PC-SAFT is due to 

differences in data for parameter estimation or in the mathematical forms of the 

EoS. One needs to have experimental evaluation of the proposed ORC process 

design and measure the power output ( ) in order to calculate the accuracy 

of the two candidate models. At this stage, given that the distribution of 
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uncertainties of PC-SAFT is much broader than that from the SRK, while the 

property accuracy is not dramatically different, SRK seems preferable. 

We suggest that future process modelling studies should examine uncertainty as 

well as accuracy of potential EoS models in order to gain additional insights about 

uncertainties in fluid properties, parameters, and EoS model structure. In particular, 

measurement errors in data should be taken into account when developing and reporting 

EoS models and the resulting covariance matrix of model parameters should be 

calculated and reported. This allows direct propagation of parameter uncertainties to 

model output uncertainties, which provides another and important criterion for property 

model selection for process design.  
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