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Zibar Member IEEE

Abstract—Linear signal processing algorithms are effec-
tive in dealing with linear transmission channel and linear
signal detection, while the nonlinear signal processing
algorithms, from the machine learning community, are
effective in dealing with nonlinear transmission channel
and nonlinear signal detection. In this paper, a brief
overview of the various machine learning methods and
their application in optical communication is presented and
discussed. Moreover, supervised machine learning methods,
such as neural networks and support vector machine, are
experimentally demonstrated for in-band optical signal to
noise ratio (OSNR) estimation and modulation format clas-
sification, respectively. The proposed methods accurately
evaluate optical signals employing up to 64 quadrature
amplitude modulation (QAM), at 32 Gbaud, using only
directly-detected data.

Index Terms—optical communication, machine learning,
performance monitoring, neural networks, support vector
machines

I. INTRODUCTION

The field of machine learning offers many powerful
techniques to: estimate parameters from noisy measure-
ment data, determine complex mapping between input
and output data, infer probability distributions, predict
the output based on the past input data and perform clas-
sification [1], [2]. Choosing the right machine learning
algorithm strongly depends on the problem that needs to
be solved.

The challenges associated with the optical commu-
nication is that, the optical fibre channel is nonlinear,
due to the Kerr nonlinearity, and also the optical signal
detection may be nonlinear as in the case of direct
detection. However, many of the tasks addressed by the
machine learning community are of the nonlinear nature
and we therefore believe that machine learning tech-
niques may prove useful to combat optical fibre channel

J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones and
D. Zibar are with DTU Fotonik, Department of Photonics Engineering,
Technical University of Denmark, Kgs. Lyngby, Denmark, (email:
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nonlinearities and also extract useful information about
the optical signal after direct detection. An overview
of the machine learning methods applied to optical
communication, together with the references is shown
in Fig. 1. In the following, a brief description of the
methods and their application to optical communication
is discussed.

Recently, several methods within the framework of
nonlinear state-space based Bayesian filtering, (extended
Kalman and particle filter), have been employed for time-
varying parameter estimation such as: amplitude and
phase noise, cross-polarization and cross-phase modu-
lation induced polarization scattering and polarization
mode dispersion [3]-[8]. The advantages of the state-
space based Bayesian filtering for time-varying param-
eter estimation are that: 1) the framework is very well
suited for joint parameter estimation, 2) it allows for
the inclusion of the underlying physics of optical com-
ponents and optical fibre channel into the estimation
algorithms and 3) it allows for more complicated models
of the time-varying parameters.

Machine learning methods have also been employed
for optical performance monitoring for optical communi-
cation systems employing advanced modulation formats.
It has been shown that various algorithms such as:
neural networks, k-means, variational Bayesian meth-
ods for mixture models and statistical methods using
cumulants, can be used to perform blind modulation
format classification [9]-[12]. Neural networks have also
been employed for optical channel parameters estimation
such as: chromatic dispersion, differential group delay,
baud rate and optical signal to noise ratio [13]-[15]. An
interesting application of well-known and widely used
machine learning algorithms such as independent and
principal component analysis have also been demon-
strated for signal demodulation, modulation format and
bit rate identification [12], [16], [17].

One of the main applications of the machine learning
techniques is to perform optimum classification. The
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Diagram showing the experimental back-to-back setup. The power eyediagrams produced from photodetection are sampled to extract

minimum and maximum variance features (A and B, respectively) for signal evaluation.

optimum classification directly translates into optimum
symbol detection for the optical communication systems.
For the case of memoryless nonlinearity such as: nonlin-
ear phase noise, I/Q modulator and driving electronics
nonlinearity, Euclidean distance metric, resulting in lin-
ear decision boundaries, is no longer optimum. For those
particular cases, optimum symbol detection and thereby
decision boundaries, can be obtained by using machine
learning techniques such as: support vector machines,
kernel density estimator and Gaussian mixture models
[18]-[22].

Finally, for the nonlinearity mitigation, factor graphs
and message passing algorithms have been applied to
include the effects of noise in the digital backpropagation
(DBP) and thereby perform optimum symbol detection.
This has resulted in significant gains compared to the
deterministic DBP [23].

In this paper, the application of machine learning
techniques for optical performance monitoring are in-
vestigated. Optical performance monitoring is vital to
ensure robust and reliable networks [15], [24], [25].
The modulation format and the optical signal to noise

0733-8724 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JLT.2016.2590989, Journal of

Lightwave Technology

ratio (OSNR) are key parameters for assessing the per-
formance of optical transmission links. In-band OSNR
estimation is especially important in next generation
wavelength division multiplexed (WDM) systems where
the channel spacing approaches signal baud rate. To this
end, systems based on back-to-back transmission char-
acteristics and pilot sequences have been demonstrated
[24]-[26]. However, such approaches require complete
demodulation and hence are too complex and costly for
mid-span monitoring points. One promising approach in
this area is to use intensity information coupled with
advanced signal processing to extract the relevant infor-
mation using only one photodiode and ADC [15], but
this has yet to be demonstrated for polarization division
multiplexed signals or higher-order QAM formats.

To address those challenges classification scheme
based on Support Vector Machines (SVM) is investi-
gated for modulation format recognition and nonlinear
regression technique, employing neural network, is in-
vestigated for in-band optical-signal-to-noise-ratio mon-
itoring. Both of the techniques are applied to directly
detected polarization multiplexed quadrature amplitude
modulated optical signals. In short, this means that mod-
ulation format can be classified and in-band OSNR can
be estimated by employing a single photodiode followed
by a analogue-to-digital converter. It is envisioned that
the proposed techniques can be very useful for mid-span
monitoring systems.

The remainder of this paper is organized as follows. In
section II, the main principles on how to perform mod-
ulation format classification and in-band OSNR mon-
itoring from directly detected polarization multiplexed
QAM modulated optical signals are outlined. Moreover,
main operating principles behind neural networks and
support vector machines are presented. The theory on
how to optimize neural networks is briefly discussed as
well. In section III, the experimental set-up is presented
and described. In section IV, the effectiveness of support
vector machines and neural networks for modulation
format classification and in-band OSNR estimation is
investigated using the experimental results. The conclu-
sions of the investigations are summarized in Section V.

II. PERFORMANCE MONITORING USING INTENSITY
INFORMATION

The reason why the focus is on the direction detection
and thereby intensity information is because if OSNR
monitoring is going to be widely employed along the link
then the monitoring unit needs to be relatively simple and
cost effective. We would like to avoid solutions that rely
on coherent detection and full signal demodulation as

this is quite complex and costly. One of the simplest
approaches to perform OSNR monitoring is therefore
to employ a single photodiode and then estimate the
OSNR directly after the photodetection without prior
signal demodulation.

In this paper, supervised learning, based on support
vector machines and neural networks, is considered. This
means that the machine learning algorithms need to infer
a mapping function from the labeled training data. The
training data consists of training examples pairs, each
containing input features and targets (modulation format
and OSNR). The crucial part is to extract the relevant
features, from the directly detected optical signal, that
are representative for the target data. For instance, we
need to extract the features that vary as the modulation
format and OSNR are varied.

As already states, the modulation format classifier and
OSNR estimator operate on directly-detected (DD) data.
This is illustrated along with the complete experimental
setup, in Fig. 2. From the power eyediagram after the
photodetector, we extract eight features. The OSNR
estimator only considers one feature but the modulation
format classification considers all of them. The mean
values and variances of the eye diagram at points A
and B are four of the eight extracted features used by
the machine learning blocks. Obtaining the maximum
and minimum variance has been performed using a
simple method based on a sliding window principle: The
signal was upsampled to 10 samples/symbol and split
up into 50 frames consisting of 80000 symbols, where
the minimum and maximum variance of each frame,
along with the mean was computed. Averaging over the
results from all the frames obtains an approximation of
the variance at the maximum and minimum eye opening
points. The four additional features, only used by the
modulation format classifier, are another mean value,
the difference and the ratio of the variances of the two
distinct eyediagram positions as well as a last mean
value of the two positions’ mean values. The various
features are chosen to vary with and, therefore, be
dependent on different modulation formats or OSNRs.
Both methods follow the same general structure: 1)
sample the eyediagram of different modulation formats
or OSNRs and extract dependent features, 2) train the
classifier or the neural network on various instances of
the extracted features for the given modulation format or
OSNR, and 3) use the trained classifier or neural network
to classify the modulation format or predict the OSNR
of new observed eyediagrams/features.

The task of the classifier is to learn a mapping function
from the extracted features to the used modulation for-
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mat. During training, we pass several 8-D input vectors
of features, paired up with their corresponding target
class, here the modulation format, to a linear support
vector machine classifier. The goal is not to reproduce
the mapping of the just mentioned training cases, but let
the SVM generalize the mapping between input vector
of features and modulation format. Hence, the goal is to
correctly classify the modulation format for new input
vectors of yet unseen eyediagrams. For this reason,
validation is performed on traces that are not used during
the training phase.

The OSNR estimator, unlike the classifier, is designed
to learn a continuous mapping function between the
input feature and the OSNR. It also differs in that only
one feature, the minimum variance (A), is used. To
accomplish this, several instances of this feature with
its corresponding OSNR are used to train the neural
network. Comparable to the classification, which pre-
dicts the modulation format, the trained neural network
attempts to predict the correct OSNR for new inputs
extracted from so far unseen eyediagrams.

A. Neural networks

The structure of the employed neural network to
perform the nonlinear regression is shown in Fig. 3. The
type of network presented in Fig. 3 is a feed-forward
neural network, also known as the multilayer perceptron
as described by [1]. The neural network can be seen as a
series of functional transformations of the input, some of
which are performed by non-linear activation functions
h(-). For the considered case, the non-linear activation
function is tanh(-). The feed-forward, one hidden layer,
neural network shown in Fig. 3 can be expressed as:

3
1
y(z, w) = ngj)h(wg(l)x) (D
j=1
where « is the input variable, i.e. variance
extracted from the eyediagram and w =
[wﬁ),wél), gll),wﬁ), f‘;),wa] is the weight vector.

The superscript of each weight denotes the layer of
the network. The weights are adaptive and to solve
the regression problem, they have to be adjusted to fit
the data during a training phase. Since this function
depends on adaptive parameters, the transformation will
also be adaptive even though the function itself is fixed.

To find the optimal weight vector w, the neural
network has to be trained in a supervised manner. For
the training of the neural network, a dataset S of IV ob-
servations is used: S = {(¢2,0SNR,)|n = 1,...,N}.
For the considered case, the training points consist of

a variance value (input) and a corresponding known
OSNR values (target). Since the neural network is used
for regression, we will assume that the target values
n = OSN R, have a Gaussian distribution with an input
dependent mean given by the output of the neural net-
work. This means that the output of the neural network
can be expressed as:

tn = y(o,, W) +e€ 2

where € is a zero mean Gaussian random variable with
variance 3. By assuming that the target values ¢,, have
Gaussian distribution, an analytical expression for the
likelihood function of the target variables is available.
The availability of the likelihood function eases the
implementation of the learning algorithm to optimize
the network parameters w. However, the distribution
after the photodetection is best described by non-central
chi distribution and in order to approach the Gaus-
sian distribution traces are superimposed. According to
the central limit theorem, the distribution after direct
detection approaches the Gaussian distribution as the
number of superimposed traces tend to infinity. The
results presented in the section IV which show the ability
to accurately estimate the OSNR indicate that we are
well within the limits of the approximation.

Considering a data set of inputs X = [0%, ..., 03] and
targets t = [t1,...,tn]), the likelihood functlon of the
neural network parameters, w, is expressed as:

(tn|y(aivw)aﬁ71)

,’:12

p(tIX,w, B) =

3
Il
—

1
S RVori

To optimize the network parameters, w, we need to max-
imize the likelihood function consisting of N indepen-
dent, identically distributed observations. From equation
(3), the negative log likelihood function takes the form:

g (y(”ivw)—tn)Q(:z,)

|
{:] =z

[3 N
—lnp(t]X, w,8) = 52 —tn}?

- ln e ) @

Maximizing the negative l1kel1hood functlon is equiv-
alent to minimizing the sum-of-squares error function
given by:

—tn}? (5)

Z{y
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Fig. 4. Classification results shown in data input space consisting of feature 5 and 8, corresponding to the mean and the absolute difference in
variance respectively. Shown by triangles are classification errors preformed by a trained linear SVM. Feature space is conceptually illustrated
with a probable decision boundary between two arbitary classes.

Since it is not possible to find the optimal solution to the described by [1]. When the training phase has been
error function with an analytical expression, the solution completed, the neural network has been optimized to
is found iteratively using the gradient descent technique the training data, and can now estimate OSNR from
which is built on the idea of error backpropagation as  variance measures. It should be noted that the number of
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training points is vital to the accuracy of the regression
solution, and to avoid severe over-fitting. The number of
training points should be taken into consideration when
determining the complexity of the neural network.

B. Support vector machine

Support Vector Machine (SVM) became popular
solving problems in classification and regression due
to it’s kernel-based algorithms that have a sparse
solution. Kernel methods use kernel functions to
express similarities over all pairs of raw input data. This
results in a large training matrix consisting of metrics
of similarities between all input data points. Usually,
kernel-based methods store the entire training matrix
for predictions and classification of new inputs, SVM
however only store a subset and these are known as
support vectors. For this particular property SVM is
considered computational efficient compared to many
other algorithms that take use of kernel functions, as
making predictions based on a large training matrix can
be computationally infeasible. In general, the SVM is
based on a geometric mindset which aims to maximize
the margin. The margin is a measure of how well
classes can be separated by a given decision boundary.
The optimization problem of SVM consists of finding a
decision boundary where the margin is maximized i.e.
where the classes are most separated.

Being a kernel-based method, SVM seeks to take
advantage of the so called “kernel trick” which enables
operation in high-dimensional feature space without the
computational cost of computing the actual coordinates.
Typically, the kernel function is given as an inner prod-
uct in a feature space, k(x,x’) = ¢(x)T¢(x’) where
nonlinear feature space mapping is ¢(x) and x is an
input vector and ¢(-) is a mapping function. The Kernel
trick essentially is to define the kernel k(x,x’) in terms
of original input vector x without even defining or
even knowing, the transformation function ¢(-). The
task is then to find the kernel function k(x,x’). For
that purpose, in this paper, K-fold was used as cross-
validation, more specifically we used a 5-fold split on a
data set of the size 53 x 4. This results in 32 training
points per fold. So in short, the results are obtained
training 5 different kernels (5-fold cross-validation) and
picking the best preforming one which for the considered
case is a linear kernel. The illustration of SVM for
modulation format classification is shown in Fig. 4.

The main idea behind Fig. 4 is to illustrate the
feature space for modulation format classification. The
reason why we use features 5 and 8 is because the

classes (modulation formats) are most distinguishable
for those two features in the two dimensional space.
The reviewer is correct that by only employing those
two features (5 and 8) it is not possible to distinguish
between 16QAM and 64QAM. Increasing the features
space to three dimensions does not help either and that
was the reason why we did not plot higher dimensional
feature space. It is only by employing all 8 features that
the modulation formats become distinguishable.

III. EXPERIMENTAL SET-UP

To verify the proposed method, an optical channel
is set up as illustrated in Fig. 2. An external cavity
laser ( 100 kHz linewidth) is used as a transmitter. The
laser output is modulated by an electrical signal using
an 1/Q optical modulator. The 3-dB bandwidth of the
I/Q modulator is 22 GHz. The electrical driving signal
for the I/Q modulator is generated by an electrical
arbitrary waveform generator with 64 GS/s and 20
GHz bandwidth. The symbol rate is 32 Gbd with 2
samples per symbol. Polarization multiplexing of the
I/Q modulated signal is emulated by introducing a
delay. Noise is added to the generated modulated PDM
signal using an EDFA and an optical coupler. One
output of the coupler is sent to a photodiode, sampled
at 80 GS/s and connected to machine learning block for
modulation format classification and OSNR estimation.
The other output of the coupler is connected to an
optical spectrum analyzer to obtain an OSNR reference
value used for training during the supervised learning.
The OSNR reference values are obtained for both
NRZ and RC pulseshapes using rolloff factors at 0.01,
0.1 and 0.2. Overall, we obtained 3 measurements at
every OSNR value for each of the 16 combinations of
modulation format and pulseshape. The OSNR values
range from 4-30 dB with steps of 0.5 dB.

The parameters of the neural network were found
using the MATLAB toolbox which optimizes the weights
given in eq. 5. The training data is provided to the tool-
box and we only need to select the optimization routine.
The MATLAB toolbox then finds the NN parameters.
The methods we selected for finding the parameters
is gradient descent based on error backpropagation in
combination with Bayesian Regularization to reduce
overfitting. This was additionally cross-validated by the
toolbox which takes use of the entire available data set
(K-fold) as to further reduce the chance of overfitting.
The number of hidden nodes in the single hidden-layer
NN construction has been determined by model selection
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methods using the above explained optimization process
to find the appropriate model complexity. The support
vectors and the parameters required for the linear SVM
classifier were obtained by employing the similar ap-
proach. The training data is provided to the toolbox and
the model selection of different kernels is performed
using cross-validation to reduce overfitting. The toolbox
determines automatically the kernel parameters using the
provided training data. The best performing kernel is
then selected.

IV. RESULTS

The modulation format classification is trained for
different OSNRs, thus it does not require knowledge of
the OSNR. For each considered pulseshape we trained
one classifier with four target classes: QPSK, 8QAM,
16QAM and 64QAM. Training is done using the MAT-
LAB R2015b classification toolbox. The training set
consists of two feature measurements for each OSNR
value. The classification model is evaluated using a third
independent feature measurement. Fig. 5 displays the
classification results of a trained linear SVM classifier
using 8-D input feature vector. An average classification
accuracy of 94 is obtained. Similar classification accu-
racy has been achieved for less aggressive rolloff factors
for RC pulseshaping as well as NRZ. As seen in Fig. 5,
no uncertainty is present when classifying signals em-
ploying 8QAM and almost no uncertainty when classify-
ing QPSK regardless of the present OSNR. However,
signals employing 16QAM or 64QAM involve a small
risk (approximately 8-13 on average) of misclassification
towards each other. Investigating this misclassification
rate further, we observed that the misclassification rate
is reduced to less than 3 when operating above 11 dB
OSNR. However, below 11 dB OSNR, it increases to
around 35. Hence, the classification is more challenging
below 11 dB OSNR as features exhibit a high degree of
similarity.

The OSNR estimation requires knowledge of the
pulseshape and the modulation format, thus one neu-
ral network is trained per combination of pulse-
shape/modulation format. Training is done using MAT-
LAB R2015b neural networks toolbox. The training set
consists of two feature measurements for each OSNR
value. In Fig. 6, the feature measurements obtained from
DD eyediagrams are plotted as a function of the known
OSNR. The measurements are plotted for optical PDM
signals employing various modulation formats using
0.01 RC pulseshaping. The feature and target value
(OSNR) have a clear nonlinear relationship and depict
the mapping function, which the corresponding neural

Predicted
64Q0AM 16QAM 8QAM QPSK

QPSK 8QAM 16QAM 64QAM
Pre-set

Fig. 5. Mean misclassification for 4-30 dB OSNR using a linear SVM
classifier with 8 features and RC 0.01 pulseshaping.
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Fig. 6. Minimum variance measurements for QPSK, 8 QAM, 16 QAM
and 64 QAM with RC 0.01 pulseshaping.

network learns by adjusting its weights. This makes the
OSNR prediction possible. ! Fig. 7 displays the OSNR
estimation as function of the OSNR reference values
for PDM-64QAM signals using RC pulseshaping with
rolloff 0.01.

Fig. 8 illustrates the corresponding squared training
and test (estimation) error as function of target OSNR
to assess potential model overfitting. As seen, estimation
is most accurate from 4-17 dB OSNR with a mean
estimation error of 0.2 dB and worst-case error of 1.0 dB.
When the signal quality exceeds this interval, estimation
is less accurate with a mean estimation error of 1.2 dB

IThe fact that very simple neural network consisting of one hidden
layer and three hidden neuron, is employed demonstrates that the
regression is relatively simple. Indeed, also polynomial regression
could also have been used.
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Fig. 7. OSNR estimation using minimum variance feature with trained
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and 3.5 dB worst-case error. As seen in Fig. 6, the feature
does not vary much from 17-30 dB, which increases
the uncertainty on the final OSNR estimation. A total
mean OSNR estimation error of 0.7 dB is achieved with
a worst-case estimation error of 3.5 dB. Results with
similar estimation accuracy have been obtained for less
aggressive rolloffs for RC pulseshaping as well as NRZ.

| w==Train
= Test

é lb 1‘5 2‘0 25 30
OSNR [dB]

Fig. 8. Squared error of OSNR estimation for training and test data
using DP-64 QAM and RC 0.01 pulseshaping.

The presented results, so far, have only been verified for
the back-to-back case and thereby only in the presence
of the white Gaussian noise. For a real transmission
scenario, linear optical fibre impairments (chromatic dis-
persion, polarization mode dispersion, PMD, and polar-
ization dependent loss, PDL) and nonlinear impairments
(intra- and interchannel nonlinear distortions) must also
be considered.

To investigate the impact of the chromatic dispersion,
we have run a numerical simulation and tested the

Fig. 9. OSNR estimation after 250 km of dispersion uncompensated
transmission.

method for up to 250 km of transmission through a
dispersion uncompensated link. The modulation format
is still dual polarization 64 QAM at 32 Gbaud and
the results are shown in Fig. 9. For the considered
transmission distance, the method still works and is
not impacted by the chromatic dispersion. Going be-
yond 250 km of uncompensated transmission distance
is more challenging as the extracted features from the
eyediagram flatten out. Therefore, to go beyond 250
km we will need to explore different features than the
ones we are using now. We have not tested the method
for dependence on the polarization dependent loss and
polarization mode dispersion. However, it can be said
that if the extracted features from the eyediagram are
affected by PMD and PDL then the method will suffer
in accuracy. One way around it is to find features that do
vary with OSNR but are independent to PMD and PDL
or to design training stage where the effects of PMD and
PDL are taken into consideration. The same argument
can be used for the nonlinear optical fibre impairments.
In conclusion, more investigations are need to determine
the accuracy of the proposed method in the presence of
linear and nonlinear optical fibre impairments and these
tasks remain for the future work.

A. Feasibility for the real-time implementation

Typically, optical performance monitoring unit does
not necessarily have to run in real-time. It can run in
quasi real-time similar to digital sampling oscilloscopes.
When running in quasi real-time the requirements on
the latency are not as stringent as in the case of the
real-time operation. This of means that higher degree of
complexity and latency can be considered. We have not
done any evaluation on the feasibility of the method for
the real and -quasi-real time implementation. However,
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this important topic will be considered for the next
publication.

V. CONCLUSION

The presented results show that techniques from ma-
chine learning such as neural networks based nonlin-
ear regression and support vector machine classifiers
are beneficial for optical-signal-to-noise ratio estimation
and modulation format classification. The method for
the OSNR estimation is independent of the modulation
format, however, the prerequisite is that the training
stage is performed using the modulation format that
is going to be employed for the transmission. It has
been shown experimentally that estimation of in-band
OSNR and modulation format classification is achievable
from directly detected PDM signals employing advanced
modulation formats of up to 64QAM with varying puls-
eshapes.
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