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Abstract:
This paper describes a generic data-driven model of the threshing, separation and cleaning
process in a combine harvester. The aim is a model that describes the actual material flow and
sensor values for relevant actuator configurations and measured environmental disturbances
in order to facilitate Hardware In the Loop (HIL) simulation and sensor based material flow
estimation. A modular data-driven model structure is chosen as it maintains the actual steady-
state values and facilitates verification and debugging using laboratory and field data. The
overall model structure, model generation procedure, and estimation of parameters from field
data are described, as well as simulation results are presented.
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1. INTRODUCTION

Combine harvesters are harvesting various crop types un-
der varying environmental conditions all over the world.
The threshing, separation and cleaning sub-processes
should be adjusted continuously by the operator in order
to optimise yield and crop quality. However actuator set-
tings are often not accommodated due to lack of operator
experience or information about the harvesting process.
These processes are assigned to numerous uncontrollable
biological variables and many of the optimisation param-
eters are even conflicting. Like loss, throughput, tailings,
straw quality, grain cleanliness and power consumption.
The aim is to obtain a total material flow model in order
to increase the general process knowledge as well as facili-
tating HIL simulations and estimation of non-measurable
process variables. The model inputs will be are material
flows, biological parameters and actuators settings, and
the outputs will be internal material flows, material residue
flows and sensor readings.

Previous research has focused on an overall model struc-
ture with sub-models for threshing, separation, grain pans,
cleaning shoe and return system, (Eggerl et al., 2010) and
(Maertens et al., 2001). In addition to this a variety of
sub-models has been presented for material distribution,
throughput estimation and simulation purposes.

Within the last decade advances within sensor technolo-
gies have been driven by the desire for increased process
transparency for the operator and towards computer based
systems for automatic adjustments of the machine settings
for threshing, separation, and cleaning system. The focus is
not to generate an advanced Computational Fluid Dynam-
ics (CFD) model (Korn et al., 2013), but a material flow

model that facilitates state estimation and simulations to
the executed in real-time.

A generic procedure for mapping interdependencies be-
tween material flow, actuator excitation and sensor mea-
surements on a combine harvester was presented by Craes-
saerts et al. (2007a) and Craessaerts et al. (2007b). Liter-
ature summaries for material separation and loss models
are found in Kutzbach (2003) and Miu (2003).

Based on laboratory and field data from a threshing and
separation unit Maertens and Baerdemaeker (2003) has
compared mathematical separation models from literature
and Maertens et al. (2003) has compared throughput-to-
loss models from literature.

Based on 250 cleaning shoe laboratory experiments Miu
(2003) has shown a coefficient of determination of R2 ≥
0.99 using a Weibull separation model, Craessaerts et al.
(2008) presented af Fuzzy model for MOG content in the
grain bin, and Craessaerts et al. (2010) presented a Fuzzy
model for prediction of sieve losses.

The paper is structured as follows. Model block diagram
and component description are given in Section 2. Model
variables and the model generation procedure is outlined
in Section 3. Acquisition of dynamic, steady-state, and
stochastic model parameters from field data is described
in Section 4. Simulation results from the obtained model
parameters are presented in Section 5.

2. MODEL STRUCTURE

The crop processing in a combine harvesters is divided into
three processes: threshing, separation and cleaning, see
Fig. 1. The threshing and separation process is combined
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mechanically into one unit whether is a traditional con-
figuration of transverse threshing rotor with straw walker
separation, a hybrid configuration with transverse thresh-
ing rotor and longitudinal separation rotor, or an axial
configuration with threshing and separation on the same
longitudinal rotor. The resisting blocks are a traditional
cleaning system with two sieves and one fan, grain pans
delivering material from the threshing and separation pro-
cess to the cleaning system at one single point, and a
tailings return system. The overall philosophy of the model
design is to facilitate high modularity with respect to the
individual process modules and sensors, hence

• All modules can be built individually and compiled
to the virtual combine

• Data obtained from laboratory and field can be com-
bined

• New sensors can be included without re-acquiring all
process data

The modelled state variables are actual material flows of
grain or Material Others than Grain (MOG) in (ton/h),
which facilitate verification using obtained laboratory and
field data. In between model inputs and outputs the
steady-state (static) material flows are modelled with a
grey-box model structure, where parameters are fitted to
a mathematical description using experimental laboratory
and field data, i.e. a data-driven model. The mathematical
description is based on expressions from literature and
findings from experimental data.

Straw-
elevator

Threshing & 
separation

Grain pans

Return system

Cleaning
system

MOG residue

Grain loss

Grain loss

MOG residue

Unthreshed
Grain
MOG

Fig. 1. Generic combine model

The virtual combine harvester functions as a basic tool
that facilitates design of a variety of functionalities as

• Sensor fusion and material flow estimation
• Model based control
• Actuator, system, and sensor fault detection
• HIL simulation and virtual sensors
• Operator training

The model is built from four basic building blocks, see Fig.
2. First order average filters are used to model the dynamic
part of material flows, e.g. characterising cleaning shoe
material flow dynamics, fan speed dynamic response and
sensor response. Time delays are used to model material
transport delays, e.g. in the tailings return system and
grain elevator for the yield sensor. The dynamic param-
eters are assumed to be reasonably consistent through
various crop types, as it primarily depends on the speed of
rotors, augers, and elevators on the combine. The third

Input
Output

Input
Output

Dynamics - Time constants

Dynamics - Time delays

Steady-State – Fits

Stochastic Model

Fig. 2. Building blocks for generic combine model

block is the fitted trends for static material flow and
sensor response based on laboratory and field data, e.g
characterising a relation from throughput to loss, fan speed
to tailings flow or tailings flow to sensor reading. Together
with the dynamic parameters the material flow is modelled
using the Wiener model method (Nelles, 2001), see Fig. 3.
The fourth building block is the stochastic noise from crop

Wiener model structure

Dynamic model
Linear

Output

Static model
Non-linear

Input

Fig. 3. Wiener model structure

flow variations and sensors readings. The noise is modelled
as band-width limited white noise, e.g. characterising vari-
ations in material flow or noise in the yield sensor reading.

The relevant actuators, material flows and sensors for
the model generation are given in Table 1. By using
the modular structure of the presented model additional
sensors can be added virtually to facilitate material flow
estimation, e.g. of cleaning MOG or HIL simulation of a
control system for loss reduction.

Table 1. List of actuators, material flows and
sensors relevant for the virtual combine model.

Actuator Material flow Sensors

Rotor speed Total throughput Rotor torque
Concave spacing Separation loss Separation loss

Threshing loss
Broken grain

Fan speed Grain throughput Yield
Upper sieve spacing Cleaning grain loss Cleaning loss
Lower sieve spacing Grain tailings Tailings

MOG throughput Grain moisture
MOG tailings
MOG in grain tank
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flow variations and sensors readings. The noise is modelled
as band-width limited white noise, e.g. characterising vari-
ations in material flow or noise in the yield sensor reading.

The relevant actuators, material flows and sensors for
the model generation are given in Table 1. By using
the modular structure of the presented model additional
sensors can be added virtually to facilitate material flow
estimation, e.g. of cleaning MOG or HIL simulation of a
control system for loss reduction.

Table 1. List of actuators, material flows and
sensors relevant for the virtual combine model.

Actuator Material flow Sensors

Rotor speed Total throughput Rotor torque
Concave spacing Separation loss Separation loss

Threshing loss
Broken grain

Fan speed Grain throughput Yield
Upper sieve spacing Cleaning grain loss Cleaning loss
Lower sieve spacing Grain tailings Tailings

MOG throughput Grain moisture
MOG tailings
MOG in grain tank
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3. MODEL GENERATION

The virtual combine is built using data acquired from a
large number of data sets obtained from both laboratory
and field experiments. The dynamic parameters can be
obtained from the standard machine sensors. Steady-
state material flows collected in laboratory test stands
are more consistent and repeatable than field data and
provide more options for designed experiments. However
laboratory experiments are more time consuming and
requires large amounts of material to be stored.

The steps towards generation of the virtual combine model
are as follows

• Data collection
• Obtaining time constants, time delays, steady-state
values stochastic variables

• Generating individual trend fits
• Compile models for all sub-modules
• Compile virtual combine from sub-modules

The first step is acquisition of data sets from designed
experiments or measurements acquired for other purposes
that can be useful for modelling. The material flows to
be obtained in order generate a material flow model are
given in Table 1 for upper and lower block for thresh-
ing/separation and cleaning shoe respectively.

From the acquired data sets dynamic parameters and
steady-state values are obtained as will be described in
Section 4. From the obtained steady-state values fitted
trends representing material flows and sensor readings
are generated. This is the most time consuming and
challenging part of the modelling process. Initially it
requires mapping of the relationships between material
flow, actuator excitation and sensor measurements.

Subsequently an evaluation of the interdependencies in
order to obtain a mathematically description that provides
an adequate representation of the chosen linear or non-
linear relationship.

A model for each of the four main components (sub-
modules) in the block diagram in Fig. 1 are generated from
the obtained dynamic and stochastic parameters, as well
as fitted trends obtained from laboratory and field data.
The modular structure facilitates the individual system
parameters and modelled trends to be utilised for online
state estimators, model based control or fault detection.

The last step is compilation of the virtual combine which
connects all the materials flows of the sub-modules to one
model that describes the material flow throughout the
machine.

4. PARAMETER ESTIMATION

The parameter estimation process often requires analysis
of several hundred data sets which each contain numer-
ous sensor values. This calls for an automatic or semi-
automatic routine for detecting steady-state periods, time
constants, time delays and stochastic variables from the
available data sets.

Fig. 4 shows collected field data from a Massey Ferguson
9540 driving from headland an into a crop row at constant

forward speed. In the top plot the forward speed is shown,
the middle plot shows the hydraulic oil pressure from the
rotor belt drive variator which is roughly proportional to
the rotor torque and the yield sensor in the lower plot. The
step response observed for the rotor pressure and yield
sensor plot will be modelled using a first order average
filter. The time delay between the rotor pressure and yield
sensor impact is modelled by a delay chain. Steady-state
values are obtained from 15s− 60s. Finally the stochastic
variables will be obtained from the data in the steady-state
period.

4.1 Steady-state

All data sets are evaluated using a Steady-State Detection
(SSD) algorithm (Kelly and Hedengren, 2013). In order to
obtain a steady-state set the relevant actuators and sensors
for the relationship are all required to be in steady-state.
E.g. for the rotor pressure sensor steady-state would be
required for forward speed, rotor speed, concave spacing
and rotor pressure sensor. The steady-state set is then
obtained from the averages in the joint steady-state period.
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Forward speed
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Rotor pressure sensor

Sensor
Fitted step

Time (s)
0 10 20 30 40 50 60

to
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Yield sensor
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Fitted step

Fig. 4. Automatic steady-state detection. Top plot shows
forward speed, middle plot rotor pressure and bottom
plot the yield sensor. Steady-state periods are marked
with dashed black lines.

4.2 Time constants

The first order time constants τ are obtained using a first
order unit step function
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f(x) =

{
b+ a(1− e−(t−ts)/τ ) if t ≥ ts
b else

, (1)

where the step response starts at ts for the time t, with b as
the steady-state value before the step occurs with step size
a. The modelled time constants are obtained as an average
of the observed time constants τ from several data sets, see
Fig. 5.
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Fig. 5. Combine first order time constant statistic for rotor
pressure and yield sensor

4.3 Time delays

Transport time delays are occurring at several locations in
the machine. The dominant time constants to be identified
are

• Header to threshing and separation unit
• Threshing and separation unit to cleaning shoe (ma-
terial pan delay)

• Tailings return system
• Elevator for yield sensor reading

In Fig. 4 the delay is evident from the rotor pressure step
(ts,r) after 5s and yield step (ts,y) after 11s. The tailings
return delay can be found by opening the upper sieve and
closing the lower sieve in order to achieve a high tailings
volume that is observable using the yield sensor, see Fig. 6.
The figure shows the yield sensor reading where Eq. (1) is
fitted to the first step for material impact in the cleaning
system (black) and again to the second step caused by the
tailings return material (red). The tailings delay is found
to be 6s.

4.4 Stochastic variables

In practical systems various noise sources contribute to the
reading at the individual sensors located in the combine.
E.g. for the rotor pressure sensor noise are contributed
from electrical magnetic noise are picked up in the cable,
crop variations in hydraulic oil temperature, noise orig-
inating from variations in the field crop density, feeding

Time [s]
0 5 10 15 20 25 30 35

to
n/

h

0

10

20

30

40

50

Tailings return delay

Yield sensor
No tailings return fit
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Fig. 6. Combine tailings delay

variations to the rotor etc. Where the dynamic parame-
ters and the steady-state fits represent the general trends
in the machine, the stochastic model represents the real
variations occurring in the machine in order to increase
the realism of the simulated material flows and sensor
output. For the simulation model the noise is modelled
using data obtained during the steady-state period in Fig.
4. The noise is modelled as bandwidth limited white noise,
see noise model in Fig. 7. The model is given by the

+
Input Output

White noise Low pass filter

Fig. 7. Stochastic noise model

white noise variance σ2
n and bandwidth ωn of the low-pass

filter H(ωn). For the rotor pressure sensor σ2
n is obtained

from the variance of the steady-state period. In order
to obtain the noise band-width parameter ωn the Power
Spectral Density function (PSD) Syy is utilised, see Fig. 8.
The parameter ωn is obtained by solving the optimisation
problem in Eq. (2) for the data set y obtained from the
steady-state period.

arg min
ωn

= ||Syy(y)/σ
2
n − |H(ωn)|2|| (2)

Normalised frequency
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Fig. 8. Rotor pressure power spectrum density
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f(x) =

{
b+ a(1− e−(t−ts)/τ ) if t ≥ ts
b else

, (1)

where the step response starts at ts for the time t, with b as
the steady-state value before the step occurs with step size
a. The modelled time constants are obtained as an average
of the observed time constants τ from several data sets, see
Fig. 5.
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4.3 Time delays

Transport time delays are occurring at several locations in
the machine. The dominant time constants to be identified
are

• Header to threshing and separation unit
• Threshing and separation unit to cleaning shoe (ma-
terial pan delay)

• Tailings return system
• Elevator for yield sensor reading

In Fig. 4 the delay is evident from the rotor pressure step
(ts,r) after 5s and yield step (ts,y) after 11s. The tailings
return delay can be found by opening the upper sieve and
closing the lower sieve in order to achieve a high tailings
volume that is observable using the yield sensor, see Fig. 6.
The figure shows the yield sensor reading where Eq. (1) is
fitted to the first step for material impact in the cleaning
system (black) and again to the second step caused by the
tailings return material (red). The tailings delay is found
to be 6s.

4.4 Stochastic variables

In practical systems various noise sources contribute to the
reading at the individual sensors located in the combine.
E.g. for the rotor pressure sensor noise are contributed
from electrical magnetic noise are picked up in the cable,
crop variations in hydraulic oil temperature, noise orig-
inating from variations in the field crop density, feeding
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variations to the rotor etc. Where the dynamic parame-
ters and the steady-state fits represent the general trends
in the machine, the stochastic model represents the real
variations occurring in the machine in order to increase
the realism of the simulated material flows and sensor
output. For the simulation model the noise is modelled
using data obtained during the steady-state period in Fig.
4. The noise is modelled as bandwidth limited white noise,
see noise model in Fig. 7. The model is given by the
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Fig. 7. Stochastic noise model

white noise variance σ2
n and bandwidth ωn of the low-pass

filter H(ωn). For the rotor pressure sensor σ2
n is obtained

from the variance of the steady-state period. In order
to obtain the noise band-width parameter ωn the Power
Spectral Density function (PSD) Syy is utilised, see Fig. 8.
The parameter ωn is obtained by solving the optimisation
problem in Eq. (2) for the data set y obtained from the
steady-state period.

arg min
ωn
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n − |H(ωn)|2|| (2)
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Fig. 9. Simulation of rotor pressure and yield sensor value
for step input

5. SIMULATION RESULTS

When all the dynamic, steady-state and stochastic pa-
rameters are obtained for the four individual sub-models
in Fig. 1, the full model for the virtual combine can be
compiled. The interface between the individual sub-models
is the material flow of grain and MOG in (ton/h). The sim-
ulation will provide the current state (material flow) and
the associated sensor readings for the given throughput
and actuator settings.

The simulation results are shown in Fig. 9 for a step
response occurring after 15s.

The total throughput from the straw elevator is shown
in the top plot. For a practical measurement the total
throughput would also have a stochastic component, how-
ever it is disabled in the plot in order to clarify the
difference between the actual material flows (state).

In the middle plot the rotor pressure is shown as the true
value (dashed) and the stochastic component (solid) cor-
responding to the actual sensor reading from the machine.

As for the rotor pressure sensor the true yield sensor flow
is shown with the dashed line and the sensor output with a
solid line. For the lower plot the actual shoe load is added
to the plot with yield sensor. The delay from the tailings
return loop of 6s is clearly visible in the extra contribution
added to the grain load after 23s. Compared to the field
data in Fig. 4 a similar noise level and time response
is observed, hence the model is considered to provide a

reasonable good simulation result. However, as seen in Fig.
5 the time constant vary significantly between various runs
in the same field.

6. CONCLUSION

A generalised data-driven model structure for at combine
harvester is presented, that models the actual material flow
using a combination of average filters, time delays, fitted
trends, and a bandwidth limited white noise stochastic
model.

The model generation procedure is outlined with examples
of how to obtain the model parameters from field data. The
average filter time constants and time delays where found
by fitting a first order step response, detection of steady-
state periods using a SSD algorithm and stochastic model
parameters using PSD from the steady-state period.

Simulation results were presented for the generated model
with parameters obtained field data. Using the modular
structure of the presented model additional sensors can be
added virtually to facilitate material flow estimation, e.g.
of cleaning MOG or HIL simulation of a control system
for loss reduction.
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