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Abstract—BACKGROUND: Timing properties are hard to spec-
ify, and even harder to analyse as interactions may arise from
multiple independent properties.
OBJECTIVE: We introduce the notion of timing feature in-
teraction (TFI), and show how to automatically detect many
TFIs.
METHOD: We identify common structural patterns of timing
specifications and show how they can be translated into UML 2
interactions with time constraints. We define a semantics
that allows us to define and check coherence and consistency
conditions of timing specifications.
RESULTS: We provide a systematic process for mapping timing
requirements into timed UML interactions and algorithms for
checking their coherence and consistency.
CONCLUSIONS: With our approach, it becomes easier to check
and validate timing specifications. It is not our ambition to
achieve complete coverage, i.e., discovering all timing specifi-
cation defects. Instead, we focus on practical specifications that
have numerous but comparatively simple properties.

1. Introduction

We have known for a long time that “the hardest part
of the software task is arriving at a complete and consistent
specification” [1]. Similarly, it is plain that “errors are most
frequent during the requirements and design activities and are
the more expensive the later they are removed” (“Boehm’s
law” [2], [3, p. 17]). Furthermore, beyond being frequent,
these errors are also the most difficult (and expensive) to
find and fix.1 For instance, McConnell claims that “for
each requirement that is incorrectly specified, you will pay
50–200 times as much to correct the mistake downstream
as you would pay to correct the mistake at requirements
time” [5]. Thus, it is highly relevant and worthwhile to
provide methods and tools to detect defects in specifications
as early as possible.

A particularly difficult form of requirements defect are so-
called features interactions [6], that is, defects that arise out of
the interplay of two or more features, each of which is correct
by itself. It is important to notice that feature interactions

1. “the most pernicious and subtle bugs are system bugs arising from
mismatched assumptions made by the authors of various components” [4,
p. 142].

are not implementation defects: While the fault arising from
the defect will only become apparent during integration
testing (or even later), the root cause is the inconsistency
of requirements, which is not discovered at design time.
Conventionally, only interactions of functional properties are
considered. However, it is equally possible that defects arise
out of the interplay of timing properties of different features.
We call this phenomenon Timing Feature Interaction (TFI).

In this article, we characterise TFIs, and show how they
may arise from sets of straightforward, individually coherent
timing property specifications. We also describe a way of
detecting TFIs, and provide an efficient algorithm to help
doing so. Our solution is implemented prototypically in the
HUGO/RT tool [7]. Our approach is based on representing
timing properties as UML 2 interactions, equipped with a
suitable semantics based on Difference Bounded Matrices
(DBMs, see [8]).

2. Expressing Timing Properties in UML 2
Interactions

Our starting point is the precise characterization of timing
properties as UML 2 interactions [9]. It can be argued
that the expressiveness of UML 2 interactions, Message
Sequence Charts, and similar notations is somewhat limited:
other, more complex formalisms such as Live Sequence
Charts [10] have been proposed to express more complex
modal properties like may and must scenarios. However,
the given level of expressiveness seems to be adequate for
practical usage in many domains and for many purposes.
After all, interactions are widely used in the software and
telecommunication industries, and it is common practice to
specify timing requirements, service level agreements, and
measurements of actual system performance using sequence
and timing diagrams [11, 12]. So, UML 2 interactions seem
to be a reasonable approach, striking a good balance between
generality and practicality.

UML 2 interactions can be represented in different
formats, though sequence and timing diagrams are the most
commonly used ones. For better understanding, we generally
use sequence diagrams to represent required properties,
whereas timing diagrams are used to represent actual behavior.
A sample UML 2 interaction is shown by the sequence
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Figure 1. A first example of a UML 2 interaction specifying two timing requirements from a user perspective. Time constraints are highlighted in red,
explanations of UML concepts are shown in blue.

diagram presented in Fig. 1. The basic concepts of UML 2
interactions are explained as call-outs. We describe timing
constraints on traces of occurrences by visually relating the
respective occurrence specifications and attaching a temporal
expression.

Consider now an example where a customer uses a mobile
app to manage his bank account. In a system development
process, we might specify usability requirements of the app
in terms of response times, and success rates. From the
user’s point of view, we might end up with the following
requirements.

(R1) Server delay (success): For successful service calls, the
overall delay experienced by a user is supposed to stay
below 0.6 s.

(R2) Server delay (failure): For failing service calls, the
overall delay experienced by a user is supposed to stay
below 1 s.

(R3) Server success rate: In 95% of the calls of a service,
the call will be successful.

This prose description is already much more precise
and detailed than what is found in the conventional textual
descriptions of many software and system development
projects today. Yet, it is obviously not formal enough to
allow any kind of automated analysis. As a first step towards
making this possible, we express these usability requirements
as UML 2 interactions, see Fig. 2. Observe, that there is no
straightforward way to express (R3) in simple interactions.
Thus, we are forced to combine all three requirements into
one complex interaction using the alt-operator and express
(R3) as a branch probability.

For the sake of our example, let us now assume, that
the app interacts with a remote server to provide services to
the user. Let us further assume that other requirements are
present that address the acceptable handling delay between
incoming and outgoing messages at the app, the delay of
sending messages between the app and the server, and the
processing time spent at the server while executing service
requests. These properties might be defined as follows.

(P1) Message handling: The handling delay at the app is
below 30ms, for both directions.

(P2) Line delay: The in-transit and handling delays of
sending messages between app and server is specified
to stay below 80ms, for both directions.

(P3) Service execution: The actual execution of a service is
specified to take less than 500ms.

(P4) Time-out: If the service cannot be provided within
850± 75ms, it aborts.

These properties exist at a lower level of abstraction than
the requirements (R1) to (R3) defined above as they speak
about characteristics of the implementation. In fact, these
properties may arise from concrete measurements of existing
infrastructure rather than being demanded from a client per-
spective. A similar situation arises, when considering service
level agreements as specifications. Figure 3 expresses (P1)
to (P4) as sequence diagrams.2 Observe that these sequence
diagrams are patterns, that is, they omit some details. For
instance, (P1) does not define a particular message, but a
message variable (indicated by a dollar sign prefix and use
of italics). So, (P1) is a family of properties rather than a
single property. In contrast, (P3) specifies particular messages,
though the parameter x turns it into a family of traces rather
than a single trace.

This example illustrates the set of timing properties that
UML 2 interactions allow us to express. In general, there are
two kinds of timing properties, as illustrated by Fig. 4: (1)
duration constraints between two occurrence specifications
on the same lifeline, and (2) delay constraints between two
occurrence specifications on different lifelines. Both of these
can be constrained with a maximum time, minimum time, or
time interval. Figure 4 summarizes these timing properties
and how they may be expressed in sequence diagrams. Note
that timing properties are structurally simpler than the safety
and liveness properties typically expressed in temporal logic
formalisms. However, practical specifications will typically
express large numbers of fairly simple properties.

We will assume in the remainder that the constants used in
timing constraints are always positive, that is, it is impossible

2. We take some liberty with the UML notation here: the “warp lines”
in (P1) and (P2) allow us to condense two separate interactions into one
diagram. While this is a very useful convention, it has no influence on the
semantics, as such condensed diagrams can always be expanded accordingly.
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Figure 4. UML 2 interactions allow to express durations and delays with minimum and/or maximum times. Combinations of minimum and maximum
constraints are called time level constraints; they may also be expressed as a given time plus/minus a deviation (cf. [11]).

to specify negative amounts of time. Obviously, this can
trivially be achieved by input validation. Similarly, we shall
assume that logically impossible time properties such as
δ < x ∧ δ > x for a constant x and a duration δ do not arise.

The timing property templates shown in Fig. 4 also
allow us to define the types of weaknesses timing property
specifications may exhibit, in particular those that arise from
the interaction of timing properties (see Fig. 5). There are
two levels of severity of weaknesses.

At the first level, there are outright errors, that make
the overall specification inconsistent and prevent it from
being implemented altogether. For instance, on a sequence
of four occurrence specifications a1, . . . , a4, a specification
demands that the time between a2 and a3 is larger than

the time between a1 and a4, but a1 comes before a2, and
a4 comes after a3. Clearly, such a specification cannot be
satisfied.

At the second level of severity, there are redundancies
between time specifications. For instance, for the same
sequence of occurrence specifications a1, . . . , a4 considered
before, a specification might demand that the time between
a1 and a4 is larger than a given limit, but the time between
a2 and a3 is even larger (again, we assume that a1 comes
before a2, and a4 comes after a3). Clearly, the time constraint
between a1 and a4 is a consequence of the time constraint
between a2 and a3. So, at best, the former constraint is
redundant and causes confusion and additional work. At
worst, out of this confusion and extra work, new errors
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Figure 5. Patterns of timing flaws in UML 2 interactions.

arise, in particular, when multiple parties collaborate over
time. More importantly, however, in our experience such
redundancies tend to hide misunderstandings, or specification
typos (i.e., the constraint was intended to say something
different than it does). Therefore, we argue that redundancies
should be considered weaknesses of a specification, and
eliminating them increases the quality. Observe, that both
errors and redundancies arise out of the interplay between
several timing properties.

3. Timing Feature Interactions

In the previous section we have described how to capture
many common temporal properties in requirement specifi-
cations in a precise way. We have also described some of
the issues that arise in individual timing properties. A more
difficult problem arises when timing properties interact in a
way that each of them is satisfied, but together they are not,
which we call Timing Feature Interaction (TFI). Since this
is the central notion of this paper, we explicitly define it as
follows.

Definition 1. A Timing Feature Interaction (TFI) is a re-
quirement defect that arises from the interaction of timing
properties, each of which is correct by itself.

Many TFIs can be identified by experienced developers,
when the interacting timing properties are presented together
in the same sequence diagram. However, this is rarely the case
in practical specifications. There, large numbers of individual
properties are specified in different places. Finding those
subsets of properties that, together, give rise to a defect
is a major challenge. It is very easy to overlook any such
situation, in particular, when a specification is created as a
collaboration of many co-workers.

Consider the four different implementations A through
D of our online banking app example shown in the last

four columns of Tab. 1. Each implementation has slightly
different performance properties, but all of them are within
the individual system properties (P1) to (P4) defined by the
interaction in Fig. 3. Together, however, the global timing
requirements (R1) and (R2) defined in Fig. 1 may or may
not be satisfied (see last two rows). Figure 6 shows the two
cases answering a request with or without success. We have
highlighted the two cases of implementation C in Fig. 6:
the successful call violates the timing constraints, while the
failing call satisfies them. This is an instance of Timing
Feature Interaction.

As we have said before, finding a TFI in an interaction
like Fig. 7 is feasible for engineers. It is not practical, though,
as real specifications may contain hundreds and thousands of
requirements, and it is simply too much effort to manually
compare all individual timing properties, combine them into
complex interactions, and scrutinize them for interactions.
Even if this is can be done once, for smaller specifications,
say, it becomes excessively tedious (and error prone) to
repeat the process after each change of the requirements.
This is where our approach comes in.

We are now considering how to detect Timing Feature
Interactions in such specifications. Our approach consists
of three steps: First, we show how interactions with timing
constraints can be translated in to Difference Bound Matrices
(DBMs). Second, we present an algorithm of combining
sets of individual simple timing properties into a single
complex timing specification. Third, we show how TFIs can
be detected in DBMs, thus leading to the detection of TFIs
in complex timing specifications.

4. Formalising Timing Specifications by DBMs

We now show how UML interactions may be represented
as “difference bound matrices” (DBMs [8]). In its original
form, a DBM describes constraints on real-valued clocks



Table 1. FOUR DIFFERENT IMPLEMENTATIONS MAY HAVE DIFFERENT TIMING PROPERTIES (A THROUGH D), ALL OF WHICH SATISFY THE INDIVIDUAL
SYSTEM REQUIREMENTS DEFINED IN FIG. 3 (FIRST FOUR ROWS). YET, WHEN COMBINING THE PROPERTIES, THE SYSTEMS MAY OR MAY NOT SATISFY

THE USER REQUIREMENTS DEFINED IN FIG. 1 (LAST TWO ROWS).

Implementation
Property Constraint A B C D

P1 (handle) < 30ms 20ms 25ms 25ms 25ms
P2 (transmit) < 80ms 70ms 70ms 78ms 75ms
P3 (service) < 500ms 400ms 400ms 400ms 420ms
P4 (time-out) 850± 75ms 850ms 920ms 850ms 920ms
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R2 (fail) < 1 s 940ms 3 1015ms 7 955ms 3 1020ms 7
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Figure 6. A UML 2 timing diagram representing a trace as it may occur in an actual implementation: The “call succeeds” timing requirement is violated
while the “call fails” timing requirement is met.

by bounding the difference between each pair of clocks. If,
for example, we have three clocks x1, x2, and x3 with the
constraints that x1 must be strictly before x2, that x2 must
be strictly before x3, and, finally, that the difference between
x3 and x1 must be less than 30, we obtain the following
DBM

D =


x1 x2 x3

x1 (≤, 0) (<, 0) ∞
x2 ∞ (≤, 0) (<, 0)
x3 (<, 30) ∞ (≤, 0)

 .

An entry D(xi , xj ) = (4, δ) with 4 ∈ {<,≤} and δ ∈ R at
row i and column j in the matrix D represents a difference
bound xi − xj 4 δ; the entry ∞ denotes that there is no
bound. In particular, the entries on the diagonal are of the

form (≤, 0), expressing that the difference between some
clock and itself is exactly 0.

Alternatively, a DBM may be interpreted as the adjacency
matrix of a “temporal constraint graph” [13, 14]; e.g., for D

x1(≤, 0) x2 (≤, 0)

x3 (≤, 0)

(<, 0)

∞
(<, 0)∞∞

(<, 30)

The satisfying clock valuations JDK of a DBM D with
clocks X are those maps ν : X → R≥0 such that ν(xi) −
ν(xj ) 4 δ is fulfilled for all {xi , xj} ⊆ X with D(xi , xj ) =
(4, δ).



We apply this formalism to UML interactions by inter-
preting each occurrence specification o of an interaction by
a clock. Specifically, in each basic interaction fragment (not
involving any interaction operators), the sending occurrence
specification SND(s,m, r) of a message m from a sending
lifeline s to a receiving lifeline r has to occur strictly before
the receiving occurrence specification RCV(s,m, r) of this
message, i.e., SND(s,m, r)− RCV(s,m, r) < 0; moreover,
the ordering on each lifeline has to be obeyed, i.e., if o1
is before o2 on some lifeline, then o1 − o2 < 0. These
requirements are complemented by the timing constraints
defined explicitly in the interaction. We will, however, leave
out the time units (ms for our examples) from the DBM
representation, and just operate on the real numbers assuming
that some common time unit has been fixed.

For example, for the first part of property 1 (Handle)
defined in Fig. 3 up to the warp lines (expressing part of (P1))
we obtain as representation exactly the DBM D introduced
above with

x1 = RCV(−,m1, App) ,
x2 = SND(App,m2, Server) ,
x3 = RCV(App,m2, Server) .

A DBM need not specify the tightest bounds on clock
differences, however, but these have to be inferred: In our
example, D(x3, x2) is specified as ∞, though, in fact, x3 −
x1 < 30 and x1 − x2 < 0, i.e., x3 − x2 < 30 has to hold in
every satisfying clock valuation. Indeed, in our instantiation
to (P1), the time for the message transfer of m2, given by the
difference x3−x2 must not exceed 30ms, since otherwise the
overall requirement of processing m1, given by the difference
x3 − x1, within 30ms cannot be satisfied any more as x3
occurs after x2.

It is therefore useful to proceed to canonical DBMs where
the entries cannot be tightened any more without losing any
satisfying clock valuations. Such tightest bounds correspond
to the shortest distance between two clocks when employing
a suitable addition of entries. Formally, an entry b is strictly
tighter than an entry b′, written as b @ b′, if either

b = (4, δ) and b′ =∞, or
b = (4, δ), b′ = (4′, δ′), and δ < δ′, or
b = (<, δ) and b′ = (≤, δ);

this yields a total order v on entries. The (associative and
commutative) sum of two entries, denoted by an ⊕, is defined
by

b ⊕∞ =∞ ,
(4, δ)⊕ (4, δ′) = (4, δ + δ′) , and
(<, δ)⊕ (≤, δ′) = (<, δ + δ′) .

A DBM D for clocks {x1, . . . , xn} is canonical if

D(xi , xj ) v D(xi , xk )⊕D(xk , xj )

for all 1 ≤ i , j , k ≤ n .

The canonical form D of a given DBM D can thus be derived
by applying an “all-pairs shortest path” computation w.r.t.

⊕ and v, like the Floyd-Warshall-algorithm; in particular,
JDK = JDK.

For our example, the canonization of D yields

D =


x1 x2 x3

x1 (≤, 0) (<, 0) (<, 0)
x2 (<, 30) (≤, 0) (<, 0)
x3 (<, 30) (<, 30) (≤, 0)

 .

Here it is inferred that x1 has to be strictly before x3; that
the time bound between x3 and x2 is less than 30, as derived
above; and that the time bound between x2 and x1 also
is less than 30, since x3 − x1 < 30 and x2 − x3 < 0. As
temporal constraint graph for this DBM we obtain

x1(≤, 0) x2 (≤, 0)

x3 (≤, 0)

(<, 0)

(<, 30)
(<, 0)(<, 30)(<, 0)

(<, 30)

A DBM is consistent if there is a valuation of its clocks
in R≥0 such that all entries of the matrix are satisfied, i.e.,
JDK 6= ∅. In fact, consistency can be readily read off from the
canonical form: If an entry on the diagonal of the canonical
form is (4, δ) with δ < 0, then the bounds cannot be satisfied,
both in the original and the canonical DBM as they represent
the same overall bounds; otherwise all diagonal entries have
to be of the form (≤, 0) and both DBMs are consistent.

The canonical DBM D for our example is consistent,
thus the first part of the property pattern for (P1) can be
implemented.

5. Timing Feature Interaction Analysis

Now that we have shown how sets of timing properties
can be expressed using UML 2 Interactions, and formalized
as DBMs, we shall exploit this representation to analyze our
running example for TFIs.

5.1. Aggregating overlapping timing properties by
matching

As we have mentioned before, the largest part of the
problem with realistic specifications is their size: they may
contain hundreds if not thousands of requirements. Even if
all of these requirements are simple in themselves, finding
inconsistencies between them is usually not a practical
task. The first step, thus, is to find and combine individual
specifications that are overlapping, and thus potentially
interacting. One could think of this as a complex model
transformation not unlike UML’s package merge [9, p. 240],
though targeted at interactions, and instantiating templates.

Figures 2 and 3 define sets of timing properties, and
timing property templates, respectively. As they are all part of
the same overall requirements specification, we should expect
the terminology used in the specification to be consistent:



Whenever two different parts of the specification speak about
two entities with the same name, they actually refer to
the same entity (i.e., they overlap). Conversely, using the
same name for different entities amounts to inconsistent
terminology, and should be considered a specification flaw.
In multi-view modeling tools, this identity can be expressed
directly, that is, different diagrams may refer to the same
model element. We will give a more formal definition
of matching in terms of conjunction of difference bound
matrices in Sect. 5.2 below. In this particular context, we
can simply take two interactions to be overlapping, if they
contain matching lifelines.

However, there are modeling languages and tools where
this is not possible: All too often, the modeling tool of choice
in the real world is PowerPoint or Visio [15]. And even using
“proper” UML modeling tools, we frequently see multiple
model element of the same type and name (“model clones”,
see [16, 17]). So, we must not assume that model elements
are actually identified across diagrams.

As the next step, potential overlaps are registered
(“matched”). With respect to UML interactions, there are
three kinds of potentially overlapping model elements across
different diagrams that we must consider.

• Lifelines: Two lifelines in two different diagrams match,
if their names match.

• Messages: Two messages in two different diagrams match,
if the names of the messages match, and the lifelines
sending and receiving the messages match.

• OccurrenceSpecifications: Two occurrence specifications
in different diagrams match, if the lifelines and messages
to which they belong match.

Two names of any two elements of the same type match, if
(1) they are the same string, (2) one of them is a variable,
or (3) one of them is the empty string. For simplicity, we
assume that interaction operators and interaction operands
are generally to be considered different from one another.
Matching shall instantiate variable names consistently, sim-
ilar to the PROLOG unification algorithm. This kind of
matching is defined in greater detail and implemented in the
Visual Model Transformation Language (VMTL, [18]). This
gives rise to the following procedure for merging a set of
interactions (see Algorithm 1).

Obviously, this simple fixed-point algorithm terminates
for finite k (typically, k < 5 suffices for all realistic models).
The selection of p in Line 2 is irrelevant as all operations
are symmetric. In order to optimize run time, though, it is
advisable to prefer large interactions with concrete names
over small interactions with empty or variable names.

Applying this straightforward algorithm to the interac-
tions defined in Figs. 2 and 3, yields a combined, single
sequence diagram shown in Fig. 7. In this combined interac-
tion, it is fairly easy to see that all of the timing constraints
specified can be satisfied simultaneously. It is also clear, that
it is possible to implement systems that satisfy each constraint
individually, but not all of them together as discussed in
Sect. 3.

Algorithm 1: MERGE aggregates simple interactions
into complex ones. The functions MATCH and OVERLAP
are explained in Sect. 5.1.

Input: A finite set S of (simple) timing properties
expressed as interactions, and a positive
integer k to limit the iterations.

Output: A finite set C of (complex) timing
properties aggregated from simple ones

1 C ← ∅
2 for p ∈ S do
3 change ← true
4 i ← k
5 while change ∧ i > 0 do
6 i ← i − 1
7 change ← false
8 for r ∈ S \ {p} do
9 if OVERLAP(r , p) then

10 p ← MATCH(p, r)
11 change ← true

12 C ← C ∪ {p}
13 return C

5.2. Checking for TFIs with DBMs

Our prototypical implementation in HUGO/RT transforms
UML interactions consisting of interaction fragments with oc-
currence specifications combined by the interaction operators
seq, strict, par, and alt as well as timing specifications between
the occurrence specifications into difference bound matrices.
The ordering of occurrence specifications in interaction
operands is translated into entries for a DBM as explained
in Sect. 4. The handling of the interaction operators follows
their semantics given in [19, 20]. While the sequential (seq,
strict) and parallel (par) composition operators produce a
single DBM from the DBMs for the operands, the interaction
operator for alternatives (alt) yields several DBMs, viz. as
many as it shows operands. The resulting set of DBMs is then
checked for inconsistencies by computing their canonical
forms and checking the diagonals (see Sect. 4).

The interaction in Fig. 7 contains an alt with two operands
and thus yields two DBMs, one showing eight occurrence
specifications, and the other six. The timing constraints for
HUGO/RT read as follows (A abbreviates “App”, S “Server”,
and U “User” where the order of the letters indicates the
direction of the underlying messages, i.e., requestAS
denotes the request message from the app to the server):

snd(requestAS) - rcv(requestUA) < 30; // (P1) prop.
snd(replyAU) - rcv(replySA) < 30; // (P1)
rcv(requestAS) - snd(requestAS) < 80; // (P2)
rcv(replySA) - snd(replySA) < 80; // (P2)
snd(replySA) - rcv(requestAS) < 500; // (P3)
rcv(failed) - snd(requestAS) <= 925; // (P4)
snd(requestAS) - rcv(failed) <= -775; // (P4)
rcv(replyAU) - snd(requestUA) < 600; // (R1) req.
rcv(failed) - snd(requestUA) < 1000; // (R2)
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Figure 7. Combining the requirements and system properties from Figs. 1 and 3 (blue labels). Time constraints are highlighted in red.

Not surprisingly, HUGO/RT confirms that no inconsistencies
occur by reporting those diagonal entries from the resulting
canonical DBMs that are strictly negative:
Inconsistencies: { } // upper operand
Inconsistencies: { } // lower operand

In order to check the conformance of a particular imple-
mentation, say implementation C from Tab. 1, with these
requirements, the timings of the implementation have to
be added (in HUGO/RT, a timing constraint of the form
o1−o2 = δ is transformed into two DBM entries representing
o1 − o2 ≤ δ and o2 − o1 ≤ −δ):
snd(requestAS) - rcv(requestUA) == 25; // (P1) impl.
snd(replyAU) - rcv(replySA) == 25; // (P1)
rcv(requestAS) - snd(requestAS) == 78; // (P2)
rcv(replySA) - snd(replySA) == 78; // (P2)
snd(replySA) - rcv(requestAS) == 400; // (P3)
rcv(failed) - snd(requestAS) == 850; // (P4)

Combining two sets of timing requirements amounts to
building the “conjunction” of their DBMs using the minima
of their corresponding entries. Formally, the greatest lower
bound (infimum) of two DBMs D and E over clocks X and
Y , respectively, is the DBM D uE over clocks X ∪Y such
that

(D u E )(z1, z2) = minv{D(z1, z2),E (z1, z2)}

with D(z1, z2) =∞ if {z1, z2} 6⊆ X and E (z1, z2) =∞ if
{z1, z2} 6⊆ Y . The overall consistency of two DBMs can thus
be read from building the canonical form of their infimum
and checking the diagonal.

In fact, for implementation C, HUGO/RT reports the
following inconsistencies in line with the manual calculation
in Tab. 1:
Inconsistencies: { rcv(requestAS), snd(replySA),

rcv(requestUA), snd(requestAS),
rcv(replySA), snd(replyAU),
rcv(replyAU), snd(requestUA)

} // upper operand
Inconsistencies: { } // lower operand

More generally, the property patterns introduced in Sect. 3
can be represented as DBMs, though this time as generic
matrices which have to be instantiated later on. Both the
consistency of such patterns as well as their redundancy with
a particular interaction, as discussed in Sect. 2, can then be
checked using DBM techniques.

Consider, for example, the Duration property pattern of
Fig. 4 in its “maximum” variant with annotation 4 δ saying
that the duration constraint SND(b,mr, a)− RCV(a,m, b) 4
δ has to hold (where mr represents the return message for
m). We can render this property pattern as the following
generic DBM Duration((x1, x2, x3, x4), (4, δ)) such that

Duration((SND(a,m, b), RCV(a,m, b),
SND(b,mr, a), RCV(b,mr, a)), (4, δ))

yields Duration:

Duration((x1, x2, x3, x4), (4, δ)) =


x1 x2 x3 x4

x1 (≤, 0) (<, 0) ∞ (<, 0)

x2 ∞ (≤, 0) (<, 0) ∞
x3 ∞ (4, δ) (≤, 0) (<, 0)

x4 ∞ ∞ ∞ (≤, 0)

 .

Instantiating this pattern simply means to bind the occurrence
specification variables x1, . . . , x4 and the bound variable
(4, δ) to particular occurrence specifications and a particular
bound of a given interaction.

For consistency of a pattern instantiation with a given
interaction, assume that the interaction is represented by the
DBM D and that the instantiation of the pattern yields the
DBM Dp . Then the overall DBM with the pattern applied is
the infimum of D and Dp , i.e., D uDp . Thus the application



of a pattern is consistent with the given interaction to which
it is applied if the infimum of their representing DBMs shows
only diagonal entries of the form (≤, 0).

Finally, a timing constraint x1 − x2 4 δ is redundant
for a DBM D over the clocks X if {x1, x2} ⊆ X and
D(x1, x2) v (4, δ), i.e., if no tightening of the difference
bound between x1 and x2 would be achieved if the constraints
were added. More generally, a complete DBM E over the
clocks Y is redundant w.r.t. a DBM D over clocks X if
Y ⊆ X and E (y1, y2) v D(y1, y2) for all y1, y2 ∈ Y ; this
may equally be expressed as D u E = D , for which we
shall simply write D v E . Obviously, a check whether a
pattern instantiation DBM Dp is redundant for an interaction
DBM D , i.e., checking whether D v Dp , should only be
performed if the involved DBMs are canonical.

Not all property patterns, however, lend themselves easily
to a representation as a DBM. For instance, requiring that
two occurrence specifications have to be maximally δ time
units apart, no matter, in which order they occur, leads to a
pattern involving an alt-interaction operator. Its representation
as a DBM hence involves two DBMs and both have to be
handled, though conjointly, when checking consistency and
redundancy.

6. Related Work

A comprehensive survey of UML 2 interaction seman-
tics is found in [21]. Among other things, the transition
from UML 1 to UML 2 introduced a novel semantics for
interactions, which is why the first investigations of UML 2
interactions [19, 22] focused on understanding and interpret-
ing the standard document. Since the UML specification
informally suggests that the meaning of interactions are sets
of sequences of so-called “interaction occurrences”, this is
what the first semantics defined formally. However, when the
challenge is to support automated verification of properties,
existing semantics are not efficient for practical cases.

The authors have recently introduced a more efficient
semantics [23], but it is restricted to the efficient analysis
of trace containment. Other, more general approaches based
on theorem proving or model checking [24] can in principle
detect TFIs in aggregated interactions, but still require the
aggregation step, and also are overkill in the sense that they
require high (computational) cost. It is unclear whether they
are efficient enough today to solve this problem for realistic
cases.

Consistency of timing properties in UML interactions has
been studied in particular in the fields of embedded real-time
computing and telecommunications [25, 26]; for a recent ap-
proach and overview of the literature see [27]. In fact, several
efforts have been undertaken to enhance the expressiveness
of UML to these fields by different profiles, like UML-RT,
SPT (Schedulability, Performance, and Time), as well as
MARTE (Modeling and Analysis of Real-Time Embedded
Systems). The most prominent approach of ensuring timing
consistency in UML models, be it in UML proper or one
of the profiles, is the use of model checking [7, 27]. For
“Message Sequence Charts” (MSCs), the main predecessor

and competitor of UML interactions, the use of “temporal
constraint graphs” mentioned in Sect. 4 has been studied
extensively for timing consistency checking [13, 14]. The
data structure is a bit more elaborate than DBMs, allowing
also the checking of (unbounded) loops; for basic interactions,
the checking process, however, similarly involves an “all-
pairs shortest paths” computation. In fact, the results have
been transferred to UML 1 [28] and also extensions, e.g., for
time models involving clock drift, have been investigated [29].
The use of simple DBMs on the other hand makes some
analyses somewhat more perspicuous, in particular when it
comes to features expressed as patterns and their consistency
and redundancy.

Feature interaction [6, 30] is a known problem since the
1980s, and has been the topic of its own conference series.3
A survey of research results regarding feature interactions
is presented in [6]. It is currently an open issue, what
kind of feature interactions occur with what frequency, and
how much of a problem feature interaction is in industry,
actually [30]. To the best of our knowledge, the interaction
of timing features has not been considered before. There
is evidence, though, that (conventional) feature interaction
is a considerable problem in some industries [31]. Thus,
for the application scenario explored in this paper, model
checking is too heavy-weight an approach: The challenge of
feature interactions derives from the exponential number of
potential interactions that are to be checked. Our approach, in
contrast, is based on combining overlapping interactions and
translating them into DBMs, a very compact data structure.
This way, detecting interactions is so efficient, that it can be
done as a simple background check to inform the modelers
while they work on a given specification.

7. Conclusions

Summary. There is a strong incentive for finding specifica-
tion flaws early. In many cases, the flaws as such are not
terribly complex, but the size of the specification makes
them difficult to detect. Thus, it is often not practical to try
and detect them manually. In that sense, automation is much
welcome, even if it covers only some potential flaws.

In this article, we characterize Timing Feature Interac-
tions (TFIs), which are inconsistent timing properties in
requirements specifications. We show how they may arise
from sets of straightforward, individually coherent timing
property specifications. We describe how to represent timing
properties as UML 2 interactions with time constraints, and
provide a simple formal semantics of systems of timing
constraints as Difference Bounded Matrices (DBMs, see [8]).
This representation does not aspire to cover the full meaning
of interactions (see [19, 20, 23] for that), but is geared
towards automatically detecting TFIs. We have implemented
our approach prototypically in the HUGO/RT tool [7] and
demonstrate its viability with an extended example.

3. The International Conference on Feature Interactions, see http://www27.
cs.kobe-u.ac.jp/wiki/icfi/ for the latest installment.

http://www27.cs.kobe-u.ac.jp/wiki/icfi/
http://www27.cs.kobe-u.ac.jp/wiki/icfi/


Discussion. Our article has three main contributions. First,
we introduce the notion of Timing Feature Interaction, which
we believe is both novel and relevant. Second, we propose a
procedure how such requirement defects may be discovered
automatically. It involves the novel concept of aggregating
sets of simple timing properties into more complex ones,
which one may describe as a complex model transformation
not unlike UML’s package merge [9, p. 240], though targeted
at interactions.

Limitations and future work. At current time, our approach
is prototype with little validation; its practical utility remains
to be demonstrated. In particular, it is not clear how many
such flaws are contained in practical specifications, and how
helpful it is to discover them: there are no comprehensive
studies that inform us reliably about the distribution of
various types of errors in realistic settings (cf. [30]). Our
personal experience in industry tells us, though, that while
these cases do not occur very frequently, when they do occur,
their effects can be quite damaging if they go undetected.
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