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Abstract 
 
The formulation glatiramer acetate (GA) is widely used in therapy of multiple sclerosis. GA 

consists of random copolymers of four amino acids, in ratios that produce a predominantly positive 

charge and an amphipathic character. With the extraordinary complexity of the drug, several 

pharmacological modes-of-action were suggested, but so far none, which rationalizes the cationicity 

and amphipathicity as part of the mode-of-action. Here, we report that GA rapidly kills primary 

human T lymphocytes and, less actively, monocytes. LL-37 is a cleavage product of human 

cathelicidin with important roles in innate immunity. It shares the positive charge and amphipathic 

character of GA, and, as shown here, also the ability to kill human leukocyte. The cytotoxicity of 

both compounds depends on sialic acid in the cell membrane. The killing was associated with the 

generation of CD45+ debris, derived from cell membrane deformation.  Nanoparticle tracking 

analysis confirmed the formation of such debris, even at low GA concentrations. Electric cell-

substrate impedance sensing measurements also recorded stable alterations in T lymphocytes 

following such treatment. LL-37 forms oligomers through weak hydrophobic contacts, which is 

critical for the lytic properties. In our study, SAXS showed that GA also forms this type of contacts.  

Taken together, our study offers new insight on the immunomodulatory mode-of-action of 

positively charged co-polymers. The comparison of LL-37 and GA highlights a consistent 

requirement of certain oligomeric and chemical properties to support cytotoxic effects of cationic 

polymers targeting human leukocytes. 

  

Key words: cationic co-polymers, glatiramoids, immunotherapy, cathelicidins. 
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Introduction 

Polymer-based formulations are currently among the most widely sold drugs (1). One of these is 

Copaxone™ with the pharmaceutical active ingredient glatiramer acetate (GA), approved for 

treatment of relapsing-remitting multiple sclerosis (MS). Both experimental and clinical studies 

suggest that GA has a broad impact on the immune system. Unlike other immunomodulatory MS 

drugs, GA has few side effects and does not increase the incidence of infections in treated patients. 

Among several proposals, the pharmacological mode-of-action appears to involve attenuation of the 

autoimmune response in MS by skewing of the T lymphocyte response from a Th1 to Th2 profile. 

More recently, cellular compartments and molecular mechanisms of the innate immune response 

has also been considered as targets for GA (2-5).  

GA is prepared from random co-polymerization of  N-carboxy-α-amino acid 

anhydrides using well-established polymerization techniques. The copolymers are composed of four 

amino acids, i.e., L-glutamate, L-lysine, L-alanine, and L-tyrosine in molar ratios of 1.4 (Glu): 3.4 

(Ala): 4.2 (Lys): 1 (Tyr) (2). The Mr varies from 5,000-9,000, corresponding to ∼45-80 residues 

with an experimentally mean Mr of 8,030 and a narrow standard deviation of only 170 (6). 

Considering these properties, treatment with GA theoretically could generate more than 1030 

different amino acid sequences (2,7). At physiological pH, the amphipathic co-polymers would 

carry an average net charge of ~+3 as judged from the molar ratios of glutamate and lysine. 

Synchrotron radiation circular dichroism (CD) suggests that the copolymers are largely disordered 

in aqueous solution, while membrane-like environments induce a high level of α-helical structure 

(8). Recently, it was appreciated that GA belongs to the realm of first-generation nanomedicines 

from the observation that co-polymers appear to form oligomers in solution (9 ,10). However, 

structural and functional characteristics of GA are poorly understood, in particular with regard to 
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what forces drive such oligomerization and the significance of this observation in terms of GA 

pharmacology.  

GA treatment involves daily, subcutaneous injections of 18 mg GA or, more recently, 

36 mg GA three times a week. Following subcutaneous injection, a substantial fraction of the GA 

dose is hydrolyzed (11), while the remaining GA copolymers interacts with peripheral blood 

lymphocytes locally in the skin(7). Koenig et al. (12) reported that GA co-polymers binds onto 

human cell lines, apparently through electrostatic contacts with heparan sulfate (HS) as well as 

proteins carrying negatively charged carbohydrates expressed in the cell membrane. It was already 

known that lysine residues are critical for GA prevention in experimental autoimmune 

encephalomyelitis (EAE)(13), an animal model for multiple sclerosis. The simpler poly L-lysine can 

also prevent EAE in guinea pigs (14). Hence, the positively charged residues of GA may play an 

important role in its pharmacological mode-of-action, but insight on mechanisms relating the 

requirement of positive charge to its immunomodulatory effects are lacking.  

The cationicity and amphipathicity of GA are strikingly similar to the positively 

charged antimicrobial peptide (AMP) LL-37, which is the only human cathelicidin among a family 

of proteins widely found in mammals (15). AMPs were originally described on the basis of their 

striking ability to destroy the integrity of microbial membranes. Similar to GA (8), LL-37 also takes 

a mainly helical secondary structure in lipid membranes or membrane-like environments (16). It is 

now clear that functions of AMPs expand into several immunomodulatory properties (15,17-19). In 

psoriatic lesions, concentrations of LL-37 may reach ∼6 mg/ml (20). Intriguingly, this is close to the 

concentration of GA co-polymers injected into the subcutaneous tissue of MS patients. LL-37 has 

long been known to kill leukocyte cell lines (21). While the general chemical nature of GA and its 

similarity with LL-37 does not, per se, dictate similar functions, no previous report has 

experimentally compared GA with such immunomodulatory peptides of the innate immune system.  
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Here, we report that GA kills primary human PBMCs, notably T lymphocytes, but 

also, albeit to a lesser extent, monocytes, at therapeutically relevant dosages. This occurred in the 

presence of albumin, physiological salt concentration, and divalent cations. Decoration with sialic 

acid was critical for such lysis. Both in qualitative and quantitative terms, LL-37 had similar effects. 

Imaging flow cytometry of cells treated with fluorescently-tagged GA found the compound to bind 

T lymphocytes extensively with indications of concomitant cell membrane deformation. LL-37 

fragmented leukocytes into pieces easily quantitated by the forward scatter in flow cytometry. By 

contrast, the fragments generated by GA were smaller, in a size range of 180-500 nm as 

investigated by nanoparticle tracking analysis (NTA). GA was also capable of lysing liposomes 

with a zwitterionic composition similar to mammalian cell membranes. GA or LL-37 reduced the 

ability of T lymphocytes to form contact with the substrate, agreeing well with the notion that these 

compounds influences properties of the cell membranes. Taken together, our report now points to 

GA as a potential limiter of T lymphocyte functions. Surprisingly, the comparison with LL-37 

reveals new aspects of the immunomodulatory effects of both compounds, notably with GA 

potentially mimicking functions of the evolutionary highly conserved LL-37.   
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Materials & Methods 

Blood collection. 

PBMC were isolated from buffy coats from The Blood Bank, Dept. of Clinical Immunology, 

Aarhus University Hospital made available through ethically approved procedures.  

 

T lymphocyte and monocyte viability following GA and LL-37 exposure 

Buffy coats were depleted of erythrocytes by Ficoll-Paque PLUS gradient centrifugation (GE 

Health Care Bioscience AB, Sweden). Immediately afterwards, T lymphocytes and monocytes, 

respectively, were isolated using Dynabeads® Untouched™ Cell Isolation kits according to 

manufacturer's instructions (Thermo Fisher Scientific, Waltham, MA). T lymphocytes and 

monocytes were either left untreated or stimulated for 30 minutes with GA (PubChem CID: 

3081884; Copaxone®, Teva Pharmaceutical Industries Ltd, Petah Tikva, Israel; Batches X07861 & 

P63010) or LL-37 (PubChem CID: 16198951), made by Innovagen, Lund, Sweden as described 

(22), at concentrations of 2, 10, 25, or 50 μg/ml in temperate serum-free Gibco® AIM-V medium 

(Thermo Fisher Scientific) supplemented with 1 % (w/v) GlutaMax (Thermo Fisher Scientific) and 

10 mM HEPES (Thermo Fisher Scientific). All indicated concentrations were calculated from 

dilutions of the Copaxone stock at 20 mg/ml GA. Cells were centrifuged at 230×g for 7 min at room 

temperature. Cells were resuspended in 500 μl PBS. Staining with mAb was conducted at room 

temperature for 20 min by addition of 10 μl of anti CD45-FITC (DAKO A/S, Copenhagen, 

Denmark), 3 μl of CD3-PE (DAKO), 10 μl of CD19-FITC (DAKO), and 10 μl of anti CD14-APC 

(BD Biosciences, Franklin Lakes, NJ). To quantify viability, cells were stained with 10 μl of 7-

amino-actinomycin D (7AAD, BD Biosciences). All samples were stained for 20 min at room 

temperature in complete darkness. Then, cells were washed twice with 2 ml PBS supplemented with 

0.5% (w/v) BSA and 0.09% (w/v) NaN3 and centrifuged at 230×g for 7 min and finally resuspended 
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in 200 μl supplemented PBS. To quantify the absolute count of cells in samples, fluorescent 

counting beads, with laser excitation at 488 nm and light emission at 530-700 nm, were applied 

according to manufacturer’s protocol (Cytocount™, DAKO). In these experiments, all flow 

cytometry data were collected on a LSRFortessa (BD Biosciences) instrument and analyzed using 

FlowJo V.10.0.8 software (FlowJo, Inc., Ashland, OR). 

 

Quantification of cell death induced by GA and LL-37 in physiological media 

Prior to analysis, PBMCs from three separate donors were stored at -134°C in round-bottom cryo 

tubes (Nunc®, Thermo Scientific) in RPMI 1640 with L-glutamine, pH 7.2, 20% (v/v) heat-

inactivated fetal calf serum (FCS; Gibco®, Thermo Fisher Scientific), and 10% (v/v) DMSO. Cells 

were thawed quickly at 37°C, transferred to 15 ml tubes with 9 ml PBS, pH 7.4, and 20% (v/v) 

FCS, and centrifuged for 10 min at 200×g at 20°C with slow braking. Supernatants were discarded 

and cells resuspended in HEPES-Buffered Saline (HBS) (pH 7.4, NaCl 0.15 M, KCl 5 mM, MgCl2 

1 mM, CaCl2 1.8 mM; HEPES 10 mM) or HBS (pH 7.4, NaCl 0.15 M, KCl 5 mM, MgCl2 1 mM, 

CaCl2 1.8 mM; HEPES 10 mM) supplemented with 40 mg/ml of human serum albumin, close to 

the concentration in human plasma (23), to a final concentration of 1×106 cells/ml. PBMCs were 

either left untreated or stimulated for 60 minutes with GA or LL-37 at concentrations of 2, 10, 25, 

or 50 μg/ml. Then, cells were washed once with PBS, stained with 7AAD and prepared for flow 

cytometry following procedures as previously described.  

 

Leukocyte viability following neuraminidase treatment and GA and LL-37 exposure 

Freshly isolated PMNCs were prepared from buffy coats as above. Immediately after isolation, the 

MNCs were either left untreated or incubated with 50 mU/ml neuraminidase obtained from Vibrio 

cholerae (50 mU/ml; Cat.no: 72197-1ML, Sigma-Aldrich, St. Louis, MO) at 37°C for 30 min. 
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Subsequently, cells were left untreated or treated with 50 µg/ml GA (Teva) or LL-37 (Innovagen) 

for 30 min at 37°C as described above. Staining with mAb was conducted in complete darkness at 

room temperature for 20 minutes by addition of 5 µl CD45-FITC+CD14-RPE (FR700, DAKO), 3 

µl of CD3-PE (R0810, DAKO, 10 µl of CD14-PE (345785, BD Bioscience), and 5 µl of CD45-

FITC (F0861, DAKO). To quantify viability, cells were stained with 10 µl of 7AAD. Then, cells 

were washed twice with 2 ml PBS supplemented with 0.5% (w/v) BSA and 0.09% (w/v) NaN3 and 

centrifuged at 230×g for 7 min. Finally, cells were resuspended in 150 μl PBS supplemented with 

0.5% (w/v) BSA and 0.09% (w/v) NaN3. Flow cytometry data were collected on a Novocyte™ 

(ACEA Biosciences Inc., San Diego, CA) and analyzed using FlowJo.  

 

Visualization of fluorescently tagged GA on leukocytes by imaging flow cytometry 

GA was labeled with Pacific Blue (Molecular Probes®, Thermo Fisher Scientific) according to 

manufacturer’s instructions. PBMCs from two donors were thawed and prepared as described 

above. The cells were resuspended in PBS to a final concentration of 2×106 cells/ml and either left 

untreated or treated with 20 µg/ml labeled GA for 30 minutes under conditions as described above 

and resuspended in 1 ml PBS. Staining with monoclonal antibodies was conducted at room 

temperature for 15 min by addition of 20 µl CD3-PE (DAKO), 20 µl CD14-APC (BD) and CD45-

FITC (DAKO). To quantify viability, cells were stained with 20 µl of 7AAD, washed twice in 1 ml 

PBS, and centrifuged at 230×g for 7 min. Finally, cells were resuspended in 50 µl PBS. Flow 

cytometry was made with the Amnis ImageStreamX MKII instrument, using an objective with 60-

times magnification, and analyzed with the IDEAS software package (Amnis Corporation, 

Seattle, WA). Cell membrane circularity (ζ) was calculated from the average distance of the object 

boundary from its center ( iR ) divided by the variation of this distance: 
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(Equation 1)  
)( i

i

RVAR
R

=ζ  (24). 

 

Nanoparticle tracking analysis of leukocyte debris 

Prior to analysis, PBMCs from three separate donors were stored at -134° C in round-bottom cryo 

tubes (Nunc®, Thermo Scientific) in RPMI 1640 with L-glutamine, pH 7.2, 20% (v/v) heat-

inactivated fetal calf serum (FCS; Gibco®, Thermo Fisher Scientific), and 10% (v/v) DMSO. Cells 

were thawed quickly at 37°C, transferred to 15 ml tubes with 9 ml PBS, pH 7.4, and 20% (v/v) 

FCS, and centrifuged for 10 min at 200×g at 20° C with slow braking. Supernatants were discarded 

and cells resuspended in PBS, pH 7.4 to a final concentration of 1×105 cells/ml. One ml of cell 

suspension was aliquoted into 1.5 ml tubes. The cells were then treated with GA (Teva) or LL-37 

(Innovagen) in concentrations of 0.2, 1.0, 5.0, or 10 µg/ml by incubation in a rotator mixer at 10 

rpm shaking 4 times in each half rotation for 30 min at 37°C. Next, to remove intact cells from the 

suspension, the cell suspensions were centrifuged at 2,000×g for 10 min, followed by transfer of 

700 µl of the supernatant to new 1.5 ml tubes while carefully avoiding the pellet. Samples were 

submitted to analysis within less than three hours. Particles present in the sample were analyzed 

using the NanoSight LM10 system (Malvern Instruments Ltd., Malvern, UK). The system was 

configured with a 405-nm laser and a high sensitivity sCMOS camera (OrcaFlash2.8, Hamamatsu 

C11440, Malvern). Videos were recorded and analyzed using the NTA software (version 2.3 build 

0025). The minimum track length, blur, and expected particle size were all set to automatic. The 

room temperature during measurements was recorded manually and ranged from 23°C to 25°C. All 

samples were thoroughly mixed before measurements, which were initialized within 10 s of 

injection into the measurement chamber. Approximately 30-50 particles were in the field of view 

and concentration of particles in samples ranged from 2×108-1.2×109 particles/ml. Typically, the 

number of completed tracks for each measurement exceeded 2000. For the untreated samples as 
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well as for each concentration of either GA or LL-37, three videos of 60 s were recorded. From 

these replicates, an average histogram was calculated. Finally, the mean distribution was calculated 

from the average histograms obtained in experiments with cells from three donors.  

 

GA-induced lysis of lipid vesicles and structural response to contact with liposome  

Phospholipids used were 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-dioleoyl-sn-

glycero-3-phospho-rac-(1-glycerol) (DOPG), both from Avanti Polar Lipids (Alabaster, AL). Large 

unilamellar vesicles (LUV) containing calcein were prepared by vortexing a phospholipid 

suspension in 20 mM Tris HCl, pH 7.5, containing 70 mM calcein sodium salt, to a final 

concentration of 10 g/l phospholipid (∼14 mM). The LUVs were exposed to at least seven cycles of 

freezing in liquid nitrogen, followed by thawing in a 50°C water bath and extrusion through a 200 

nm-pore filter 12 times using a 10 ml thermo barrel extruder (Northern Lipids, Vancouver, Canada). 

The lipid suspensions were run on a PD10 column (GE Healthcare), pre-equilibrated with 20 mM 

Tris HCl, pH 7.5. The release of free calcein from the vesicles and the subsequent increase in 

fluorescence were monitored by excitation at 490 nm, recording emission at 515 nm every second 

using a slit-width of 2.5 nm in a Cary Eclipse Fluorescence spectrofluorimeter (Varian, Palo Alto, 

CA). The vesicles were diluted to a concentration of ∼0.017 g/l (20 μM). GA was applied to 

experiment either as the raw drug formulation or following dialysis in Slide-A-Lyzer 10K Mini 

(Thermo Scientific) against isotonic buffer (150 mM NaCl, 5 mM KCl, 1 mM MgCl2, 1.8 mM 

CaCl2, pH 7.4). Initially, samples were dialyzed in a volume of 0.5 l per 100 µl of GA (20 mg/ml) 

for 1h, followed by the change of buffer and a second dialysis step for 2 h. The dialysis buffer was 

changed again and the samples left o/n. All steps were performed at 20°C. GA passing through the 

dialysis membrane in the first dialysis step was also applied to the experiments. GA concentrations 

were calculated using an Abs 0.1 % (= 1g/l⋅cm) of 1.519 at 280 nm. Following injection of GA, the 
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dye signal at the emission wavelength was followed until it reached a plateau, typically after 35 

minutes.  

The structural consequences of the contact between the GA polymers and the 

liposomes were investigated by circular dichroism spectroscopy (CD) essentially as described 

earlier (25). The spectra were collected in 1-mm path length quartz cuvettes on a Jasco J-810 

spectropolarimeter with a model No. PTC-348W1 temperature control unit (Jasco, Spectroscopic 

Co., Hachioji, Japan). Spectral scans were performed from 250 to 195 nm, with a step resolution of 

0.1 nm and bandwidth of 1.0 nm at 50 nm/min averaged over five repeats at 20°C under a nitrogen 

atmosphere. The GA concentration was set at 0.2 mg/ml. Lipids were titrated into the cuvette and 

allowed to equilibrate for 2 min before measurement. 

 

Small-angle X-ray scattering measurements and data analysis 

Small-angle X-ray scattering (SAXS) measurements data on GA was collected on the in-house 

NanoStar camera in the Dept. of Chemistry, Aarhus University, optimized for solution scattering 

(26). Following dialysis in Slide-A-Lyzer 10K Mini (Thermo Fisher Scientific) units for 24 h with 

two changes of buffer, either with isotonic HEPES buffer as above or 10 mM HEPES, pH 7.4 

buffer, the GA concentration was adjusted to 1.3, 2.6, or 5.3 mg/ml, respectively, with dialysis 

buffer. Concentrations were calculated from the light absorption at 280 nm as described above. The 

samples were kept at 25°C in home-built re-usable quarts capillaries during the measurements. 

From measurements on the corresponding buffers in the same capillary, the data on GA were 

background subtracted and converted to absolute scale using water as a primary standard with the 

SUPERSAXS program package (J.S.P, unpublished). Finally the intensity, I(q), is displayed as a 

function of the scattering vector, q, defined as q = 4π⋅sin(θ)⁄λ, where λ is the X-ray wavelength at 

1.54 Å and 2θ is the scattering angle between the incident and scattered beam. 
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The molecular mass and overall size of the particles was determined using an indirect 

Fourier transformation analysis (IFT) (27,28). The IFT data from analysis provides information on 

the radius of gyration Rg and weight-average molecular mass as well as in the form of the 

molecules. The results and the q dependence of the measured data suggested that the polypeptides 

are present as linear structures with some flexibility. Therefore, a model of semi-flexible, self-

avoiding polymer chains with a finite cross section was applied to the data (29). The model contains 

three parameters, the contour length of the chains Lh, the Kuhn length, equal to twice the persistence 

length, which described the flexibility of the chains and the cross-section radius R of the chains. 

 The conformations of the polypeptides were further investigated by applying the 

ensemble optimization method (EOM) (30)  In this method, a large pool of structures is generated, 

followed by a generic algorithm selection of the subset of structures best fitting the experimental 

data to represent the solution conformation of GA.  

 

Electric cell-substrate impedance sensing assay  

The electric cell-substrate impedance sensing (ECIS) assay was modified from the manufacturer’s 

instruction. T lymphocytes were isolated as described above. Freshly isolated T-cells were 

suspended to a concentration of 3×106 cells/ml in 150 mM NaCl, 5 mM KCl, 1 mM MgCl2, 1.8 mM 

CaCl2, 10 mM HEPES, pH 7.4, supplemented with 0.1 mg/ml HSA and 5 mM D-glucose. Stock 

solutions of either LL-37 or GA were made in PBS, pH 7.4, at concentrations in 200-fold excess. A 

volume of 2.5 µl of stock solution, or pure PBS as a control, was added to 0.5 ml of cell 

suspensions followed by careful mixing. The mixtures were transferred to E-plate L8 (ACEA) and 

installed in iCELLigence equipment (ACEA) for recording the changes in impedance over 8 h with 

incubation at 37°C and 5 % (v/v) CO2. Experiments were repeated three times with cells from 

different donors. 



Glatiramer acetate rapidly kills primary human leukocytes 

- 13 - 
 

Results 
GA and LL-37-mediated leukotoxicity  

We compared the influences of LL-37 with GA on purified primary T lymphocytes and monocytes. 

As noted above, the glatiramer co-polymers and LL-37 share their cationic and amphipathic 

properties. Accordingly, it seemed appropriate to test both compounds for one of the known 

influences of LL-37 on cells, namely its cell toxicity (31-34). As a starting point, we chose 

concentrations of GA and LL-37 of 2-50 µg/ml, similar to the range used by Koenig et al. for GA 

stimulation of cytokine production by RAW264.7 and murine bone-marrow-derived dendritic cells 

(12). To distinguish leukocytes population, fluorophore-conjugated antibodies to CD3 (a marker for 

T lymphocytes), CD14 (a marker for monocytes), and CD45 (broadly expressed on all leukocytes) 

were used. 
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To ensure direct comparability between samples, counting beads were included to fix the number of 

events analyzed. In T lymphocytes, after 30 min of incubation both LL-37 and GA generated at 

least two populations of events positive for 7AAD with low forward scatter and separated by their 

side scatter (Fig. 1A). For both compounds, an easily identifiable population of CD45dim events 

emerged after LL-37 treatment, while GA treatment caused a similar, but less, reduction in the 

CD45 staining (Fig. 1B). The reduction in forward scatter did not accompany a loss in CD3 

expression for any of the treatments (Fig. 1C). Both LL-37 and GA treatment led to a large increase 

 
T lymphocyte and monocyte viability following incubation with GA or LL-37. A-E, Purified T lymphocytes in the 
presence of fluorescent beads counting were either left as untreated or treated with 50 μg/ml LL-37 or GA. Following 
30 min of incubation, cells were stained with antibodies to CD3 and CD45 as well as 7AAD. For comparison of size-
alterations in the treated and untreated cells, the cellular distribution was compared in Forward/Side scatter plots 
(A) as well as the distribution in CD45/Forward scatter (B) and CD3/Forward scatter plots (C). The staining with 
7AAD was presented as histograms with an indication of the percentage of stain-positive cells among the un-gated 
cells. E-F, Purified monocyte viability following incubation with 50 µg/ml GA or LL-37 or without treatment. For 
comparison of size-alterations, the cellular distribution was compared in Forward/Side scatter plots (E). The 7AAD 
stain-positive cells among the un-gated cells were analyzed in a histogram (F). 
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in the 7AAD staining (Fig. 1D). In purified monocytes, the response was qualitatively and 

 
Quantification of cell death induced by GA and LL-37 in purified T lymphocyte and monocyte 
populations. A, Gating of T lymphocytes. Compared with untreated cells, a population of 7AAD+ cells was 
discernible based on a lower forward scatter following treatment with GA or LL-37. The percentage of 
7AAD+ and live (7AAD-) T lymphocytes is indicated in the Forward/Side scatter plots. A gate was placed 
covering both populations (“Gate”) and excluding counting beads. B, Gating of monocytes. Since 
monocytes were only moderately affected by GA and LL37, a broad gate (“Gate”) covering all CD14+ cells, 
but excluding counting beads, was placed to capture change in the 7AAD staining. C-D, Based on the gates 
shown in Panels A & B, enumeration of the percentage of 7AAD positive T lymphocytes (C) or monocytes 
(D) following no treatment or treatment with 2, 10, 25, or 50 µg/ml of LL-37 or GA. The plots indicate the 
mean value ± SEM from separate experiments made with cells from five BD. The solid pink line and the 
dashed black line indicates the activity of, respectively, LL-37 and GA at equimolar concentrations (5 µM).  
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quantitatively different, with a moderate, but detectable, change in the forward or side scatter 

following LL-37 and GA treatment (1F). The 7AAD staining increased when treating the 

monocytes with GA, while LL-37 had only a minor effect (Fig. 1G).  

To capture all dead T lymphocytes (Fig. 2A) and monocytes (Fig. 2B), we devised a 

gating strategy, which ensured inclusion of all dead cells or debris generated by the treatments. The 

induced effects were quantitatively consistent for the five donors analyzed (Fig. 2 C, D). In the 

analysis of T lymphocytes mixed with 50 µg/ml GA, ∼40% of the events were positive for 7AAD. 

The response was titratable down to ∼2-10 µg/ml (Fig. 2C). In the case of LL-37, the results were 

similar although slightly increased compared with GA (Fig. 2C). When incubating monocytes with 

LL-37 or GA, GA produced stronger 7AAD staining at 12% than LL-37, which only reached 7%, 

with both compounds used at 50 µg/ml. At equimolar concentrations (5 µM) LL-37 and GA were 

equally effective at killing T lymphocytes, while GA achieved higher killing efficiency in 

monocytes than LL-37.  

 

GA retains its lytic capabilities in media with high divalent cation and protein concentration 

Several studies addressed the activity of AMPs, including LL-37, in high salt concentrations and 

under serum-like conditions, and reported their activity to be reduced(35). Hence, we tested the 

killing activity of GA and LL-37 on MNCs resuspended in media with a physiological salt 

concentration and composition, further supplemented with 40 mg/ml HSA (Fig 3). We found that 

both GA and LL-37 maintained their activity in a HBS buffer with Mg2+ and Ca2 (Fig. 3B). The 

response was titratable down to ∼2-10 µg/ml. Neither GA or LL-37 exhibited noticeably reduced 

the killing. In conclusion, both GA and LL-37 achieved similar killing capacities as observed in 

PBS. Conversely, the killing activity of LL-37 and GA were reduced to a similar level in the 

presence of serum concentrations of HSA at ∼40 mg/ml (23). Surprisingly, the activity of LL-37 
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was, however, quenched at concentrations below 50 µg/mL, while the killing activity of GA was 

titratable down to ∼10-25 µg/mL.  

 

GA and LL-37 lysis of T lymphocytes involves sialic acid 

Based on the observations by Koenig et al. (12) on the role of heparan sulfate (HS)-carrying 

proteins in the binding of GA, we initially checked the expression of HS in primary PBMCs, 

including the T lymphocytes, according to previously established procedures (36). However, as also 

noted by others (36), resting leukocytes do not express HS quantitatively (data not shown). An 

alternative source of electrostatic interactions between the cationic polypeptides and cell 

membranes is sialic acid. The role of sialic acid in the cell killing by GA and LL-37 was analyzed 

 
Quantification of cell death induced by GA and LL-37 in PBMCs resuspended in HEPES-buffered saline or 
HEPES-buffered saline supplemented with 40 mg/ml HSA to mimic human plasma. A, 7AAD stain-positive cells 
were analyzed in histograms following treatment with 25 µg/ml of LL-37 or GA. The number of 7AAD+ cells is 
indicated in percentage. B, Normalized 7AAD staining from experiments with four donors. The 7AAD staining 
was evaluated as described in Panel A. For each donor the normalized 7AAD staining was calculated from the 
staining treatment with 2, 10, 25, or 50 µg/ml of LL-37 or GA divided with the staining obtained for untreated 
cells. The plots indicate the mean value ± SEM. 
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by treating PBMCs with neuraminidase (Fig. 4). The neuraminidase did not affect the light 

scattering properties (Fig. 4A), CD14 or CD45 expression (Fig. 4B), or viability of the MNC (Fig. 

4C). As also shown in Fig. 2C-D, 10 µg/ml GA and LL-37 killed approximately 20% of the 

PBMCs.  

 

In this experiment (Fig. 4), pre-treatment with neuraminidase lowered the killing by GA and LL-37 

to 3% and 5%, respectively (Fig. 4C). These finding proved quite robust (Fig. 5). In PBMCs 

isolated from four donors, cells treated with neuraminidase in all cases proved less susceptible to 

killing by LL-37 (Fig. 5A) or GA (Fig. 5B), while the neuraminidase treatment itself did not alter 

the percentage of 7AAD-positive cells (Fig. 5C). The effect of neuraminidase treatment seemed 

most pronounced for LL-37, where the general trend was a two-fold reduction in killing as a 

 
The influence of neuraminidase pre-treatment on GA or LL-37 killing of PBMCs. The cells were either pre-treated 
with neuraminidase (+) or left untreated (none), followed by exposure to GA, LL-37 or no treatment (untreated). 
The cells were analyzed according to their forward and side scatter distributions (A), the CD14 and CD45 expression 
(B) and 7AAD staining (C). 
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consequence of neuraminidase treatment (Fig. 5A). In the case of GA, at least for a single donor, 

the neuraminidase treatment reduced killing almost 9-fold by neuraminidase treatment while others 

showed a 1.5-2 fold reduction (Fig. 5B). 

 

The binding of fluorophore-conjugated GA 

to T lymphocytes visualized by Imaging 

Flow Cytometry 

PBMCs were characterized by Imaging 

Flow Cytometry with regard to the 

distribution of lymphocytes and 

monocytes (Fig 6A). From the observation 

made above on the high killing of T 

lymphocytes, these cells were further 

characterized based on their propensity to 

bind fluorophore-conjugated GA (GA*) 

(Fig. 6A).  In total, 30% of the CD3+ T 

lymphocytes stained positive for GA*, 

whereas 37.1% CD3+ T lymphocytes 

remained GA*-negative. Among the GA*-

positive T lymphocytes, a total of 78.9% 

stained positive for 7AAD, while only 0.89% of the GA*-negative T lymphocytes were 7AAD 

positive as expected from the analyses mentioned above (Fig. 6B).   

Next, we utilized the IDEAS software package to quantify the circularity (ζ) of T 

lymphocytes. Based on CD45 fluorescent staining of viable T lymphocytes, this feature describes 

 
Quantification of the killing by GA (A) or LL-37 (B) of 
PBMCs from four donors with (•) or without (×) NA 
pretreatment. As a control, cells not receiving treatment 
with cationic molecules were analyzed (C). In all panels, 
experiments with cells from the same donor are indicated 
with connecting lines. 
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the roundness of a T lymphocyte as quantified by Equation 1: the closer an object is to a perfect 

circle, the smaller the variation and, hence, the higher the circularity (24).  

 

T lymphocytes staining positive for GA* had a relatively lower circularity as 

compared to T lymphocytes staining negative for GA*. Intriguingly, in T lymphocytes with lower 

circularity GA* was overlapping with the 7AAD staining, thereby indicating that GA* ultimately 

 Visualization of fluorescently-tagged GA (GA*) binding to T lymphocytes using imaging flow cytometry. A, 
Following treatment with 20 µg/ml GA*, PBMCs were characterized based on their expression of CD14 and CD45 
permitting gating of the T lymphocyte population based on the high expression of CD45 and low expression of 
CD14.  Further gating was made by staining for CD3 and separating the T lymphocytes into one gate containing 
cell with high (30% of events) and low (37.1% of events) GA*staining. B,C, In the GA*high and low stain 
populations, the cells were analyzed for their 7AAD+ staining (B) and for cell membrane circularity (C) according 
to Equation 1. D, Morphology of circular and non circular cells depending on GA*staining.  Four randomly chosen 
examples of non-circular cells (ζ<6) with GA*staining and circular cells (ζ>6) with low GA* staining. The cell 
membrane area was visualized using the CD45 staining. From the total stain CD45 (“CD45 stain”), the cytoplasmic 
region (“Cytoplasm”) was identified by selecting the membrane perimeter as the five outermost stain-positive 
pixels (with a size of 300 nm × 300 nm). By subtracting the cytoplasmic part from the total stain, the membrane 
region was highlighted (“Membrane mask”).     
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penetrated T lymphocytes, even into the nuclear compartment (data not shown). A total of 87% of 

the monocytes stained positive for GA*, while 34% of those stained positive for 7AAD as expected 

from the experiments with unlabeled GA. Also in line with these experiments, monocytes were less 

affected by the treatment with GA*, and, in contrast to T lymphocytes, they retained a high 

circularity value despite the treatment with GA* (data not shown). 
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Fragmentation of PBMCs after treatment with LL-37 or GA followed by NTA. Following incubation of the PBMCs 
with LL-37 (A) or GA (B) at concentration ranging from 0.2-10 µg/ml, major debris was cleared by centrifugation 
as described in the Materials and Methods section and the supernatants subjected to NTA to characterize the size 
distribution (diameter) of the particles. To facilitate comparisons of the shifts in size distributions, the analysis of 
untreated cells are indicated below each set of treatment with either LL-37 or GA. The concentration of particles is 
presented as normalized to the total concentration of particles. All experiments were made with PBMCs from three 
donors with the mean concentration indicated with a solid, black line and the standard error of the mean for the 
measurements indicated in grey color. The raw data extracted from the NTA analysis is shown in inserts as the 
particle concentration plotted as a function of particle size and intensity of the scattered light. Hatched lines in B 
indicate the particle size interval from 180 to 500 nm. 
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Treatment of PBMCs with GA or LL-37 generates particles with different sizes  

The analyses in Fig. 1, 2 and 4 clearly pointed to the formation of 7AAD+ particulate material as a 

consequence of leukocyte treatment with either GA or LL-37. We initially compared the change in 

forward scatter in the flow cytometer for treated cellular samples. Only at the relatively high 

concentration of 50 µg/ml GA or LL-37 (Fig. 1A), it was possible to follow such a size change in 

forward scatter. Inspection of diagrams clearly suggested that LL-37 was capable of forming 

particles with slightly lower forward scatter than GA. Lower concentrations than 50 µg/ml of LL-37 

or GA did not generate any major detectable change in the forward scatter profile. However, low-

forward scatter particles are only poorly resolved by standard flow cytometers. For this reason, we 

chose to analyze the low forward scatter particles with a recently developed methodology, in which 

nanoparticles are tracked through their scatter of a laser beam (Fig. 7). Separate experiments were 

carried out with PBMCs from three donors. The distribution of the particle sizes from the three 

donors is shown as the mean of the data indicated with a solid, black line. For each treatment in Fig. 

7, a representative three-dimensional plot indicates the change in particle size, concentration and 

intensity of the scattered light upon treatment with either LL-37 (Fig. 7A) or GA (Fig. 7B). For 

treatments with GA, the size distribution altered in the direction of larger particles correlating with 

increasing GA concentrations. LL-37 also showed some change in size distribution. To better 

quantitate these changes, cumulative plots were made (Fig. 8). The size changes for LL-37 

treatments were small and not correlated with the applied concentration. By contrast, in the case of 

GA, the median particle size, i.e., the size separating the lower half from the higher half of the 

particles, changed from ∼125 nm to ∼175 nm in strict order with the applied concentration (Fig. 

8B). 
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Time-resolved measurements on the 

interaction between T lymphocytes and 

LL-37 and GA  

Although the concentration of glatiramer 

acetate in blood cannot be determined 

directly, the bioavailability in some tissues 

or even in blood could be lower than the 

concentrations previously applied in this 

study. Hence, to study the effects of GA 

on T lymphocytes in low concentrations, 

we employed a time-resolved 

measurement of the interaction by the 

ECIS assay (Fig. 9). In this setting, the 

contact between the cells and the conducting substrate increases electrical resistance, here measured 

as the cell index. Apart from the addition of cationic polypeptides mentioned above, the cellular 

substrate contact is influence by a rapid, simple settling of the cells on the surface as well as a 

subsequent cellular reorganization to accommodate the surface contact. 

 T lymphocytes from a total three donors were analyzedfollowing the application of 

LL-37 in concentrations of 0.04-5 µg/ml (Fig. 9A) or GA in a concentration range of 0.2-5 µg/ml 

(Fig. 9B). Cells settled within ~20 min, followed by a slower rise in cell index, which plateaued in 

~1 h. In all experiments, the cell index was lowered in a strictly concentration-dependent manner 

when applying either GA or LL-37. For both compounds, an influence down to a concentration of 1 

µg/ml in all experiments could be observed. Lower concentrations did not change the cell index 

Cumulative particle size distributions calculated from the 
data presented in Fig. 7. The cumulative particle size 
distribution for PBMCs was calculated for treatments 
with 0.2-10 µg/ml LL-37 (A) or GA (B). For comparison, 
the cumulative plot for untreated cells is indicated in both 
panels. In Panel B, the insert magnifies the region of the 
median sizes in the interval ∼125-150 nm.  
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reproducibly among the donors. The effect of the cationic polypeptides had a remarkably fast onset 

and persisted throughout the experiment 

for 2 hours. 

 

 

Lytic properties of GA 

The similar effects of GA and LL-37 on 

leukocytes, notably the quickly induced 

cell death, raised the question if the lytic 

properties known for LL-37 (37,38) are 

shared with GA, notably the ability to lyse 

simple liposomes. 

The GA was applied in two 

different forms, as dialyzed against 

isotonic buffer (retentate), or as found in 

the dialysate , i.e., GA co-polymers 

sufficiently small for passing through a 

membrane with a cut-off at 10 kDa. 

Liposomes were made from 100% 1,2-

dioleoyl-sn-glycero-3-phosphocholine 

(DOPC) to mimic the content of the 

zwitterionic mammalian cell membranes. 

Other liposomes, made from 80% DOPC 

and (the anionic) 20% 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DOPG), mimicked the 

ECIS analysis of the surface contact made by primary T 
lymphocytes in the presence of 0.04-5 µg/ml of either LL-
37 (A) or GA (B) or absence of these compounds (“no 
treatment”). Analyses were made with cells from three 
donors as indicated. Depending on T lymphocytes 
purification yields experiments were made with a 
concentration range of cationic compounds from 0.2-5 
µg/ml. All experiments included concentrations of 1 and 5 
µg/ml and untreated controls (“No treatment”). 



Glatiramer acetate rapidly kills primary human leukocytes 

- 26 - 
 

composition of gram-negative bacteria (25,39). Both types of liposomes were loaded with the dye 

calcein. The release of dye reached a stable level after 35 min following mixing with GA (data not 

shown). This level was plotted as a function of GA concentration (Fig. 10A, B).  
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Liposome lysis by GA. A-B, Calcein-loaded liposomes made from DOPC (A) or 80% or DOPC + 20% DOPG (molar 
ratio) (B) were mixed with the GA in concentrations indicated in the legend. The normalized leakage of calcein (L) 

was determined by fluorimetry and expressed in percent using the formula  , where F is 

fluorescence in the presence of GA, F0 is the reference fluorescence in the absence of GA, and FMax is the maximal 
fluorescence induced by complete liposomal lysis in the presence of 1% (v/v) Triton X-100. Data were pooled from 
two independent experiments and fitted to a model for simple cooperative binding, indicated with solid and hatched 
curves for dialysate and rentate, respectively.  C-D, Circular dichroism spectroscopy on GA in contact with 
liposomes made from DOPC (C) or DOPC and DOPG (D). The molar ellipticity (θ, in deg·cm2·dmol-1) is plotted as a 
function of the wavelength (λ). E-F, Chemical character of intermolecular interactions by GA co-polymers assessed 
by SAXS. The molecular envelopes and size distribution of the GA co-polymers were determined at isotonic salt 
concentration (E) and hypotonic salt concentration (F). For each analysis, an ensemble of envelopes is shown with 
the averaged structure indicated in red. Spectra were recorded at either three (E) or two concentrations of GA at 
1.3, 2.6, or 5.3 mg/ml. Finally, the distributions in DMax for each of these recordings are shown. 
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Antimicrobial peptides such as ovispirin, a cationic peptide of the ovine cathelicidin 

sheep myeloid antimicrobial peptide 29, and the engineered ovispirin-like peptide novicidin (40,41) 

show a preference for lysing liposome with a gram-negative bacteria-like membrane composition 

(25). GA showed no such selectivity towards any of the two types of liposomes. To obtain reliable 

estimates of the plateau for fractional leakage, data were fitted to a simple cooperative fit as shown 

with curves in the plot. For the GA retentate and the GA dialysate, respectively, these fits (42) 

yielded plateau levels at 61.4±2.8% and 54.0±3.7% for PC lipids. For PC:PG lipids, these values 

were 57.5±2.5% and 62.6±4.7%. These values are not significantly different from each other and 

confirm that GA is not highly sensitive to the lipid charge on the vesicles it disrupts. A roughly 

similar specific activity per-µg of the raw and dialyzed GA (both retentate and dialysate) suggested 

that GA’s ability to lyse vesicles did not depend on GA size. As expected from these measurements, 

the raw GA formulation did not behave differently from the dialyzed GA (data not shown). The 

efficacy of GA, expressed as the number of lipid molecules per GA co-polymer at 50% lysis, 

corresponds to ~18 lipids per co-polymer.  

Co-incubation of GA and liposomes did not significantly alter the secondary structure 

of the co-polymers according to circular dichroism spectroscopy (Fig. 10C, D). Indeed, the recorded 

spectra closely resembled those made by us earlier on GA using synchrotron radiation circular 

dichroism (8). This contrasts with LL-37 (37) or novicidin where liposomes containing DOPG 

induced major increases in α-helicity (25,40).  

 To better understand the molecular forces regulating the GA co-polymer interactions 

and aggregations state, samples with isotonic and hypotonic conditions were investigated by small-
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angle X-ray scattering (SAXS). These conditions were obtained by dialysis also removing the high 

content of mannitol in the clinical formulation, which would otherwise impede the SAXS analysis.  

Specifically, based on recent findings demonstrating the importance of LL-37 oligomerization 

through shielding of hydrophobic moieties (37), we determined the oligomeric properties of the co-

polymers through three approaches. 

 First, the model-free IFT analysis showed that the co-polymers in isotonic buffer had a 

maximum internal distance (DMax) of ∼16 nm. By contrast, in the hypotonic buffer the size was 

reduced to 7 nm. The radius of gyration (RG) was similar reduced (Table I). The Mr in hypotonic 

buffer was estimated to ∼6,000, not far from the previously reported value at 8,030±170 (6), in 

particular considering that the two determinations employ different experimental techniques.  

Second, a semiflexible polymer model was fitted to the data. The flexibility is 

described by the Kuhn length (43,44), which was found not to be influenced by the ionic strength of 

the medium (Table I) and to have a rather high value. The SAXS data could be fitted with a fixed 

Kuhn length of 30 nm, which suggests a rigid structure of the rods formed by GA.  The contour 

length of the polymer chains was also a fit parameter and the fits showed that the co-polymers were 

2-fold longer in isotonic buffer at ∼20 nm compared with ∼9 nm in the hypotonic buffer in 

agreement with the results from the IFT analysis. It was particular noteworthy that the chains had a 

physical length shorter than the Kuhn length (Table I), indicating a large stiffness.  

The structural heterogeneity of the random co-polymers was further modelled using 

the EOM methods (30). The results with regard to their structures from this approach are a set of 

differently shaped molecules, in isotonic (Fig. 10E) and in hypotonic buffer (Fig. 10F).  The results 

agreed well with the observation made above that the co-polymers, either in their monomeric or 

dimeric state, formed nearly rigid rods differing mainly in lengths due to an end-end association. 
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Table I: GA determined structural characterization by IFT analysis or a Gaussian chain polymer modela 

  IFT Analysisa Semiflexibles Polymer Modelg 

Ionicb 

strength 

GA conc.c 

[mg/ml] 

Mw
d± SD 

[kDa] 

Rg
e± SD 

[Å] 

DMax
f± SD 

[Å] 

Lh ± SD 

[Å] 

R ± SD¨ 

[Å] 

Kuhn lengthj 

[Å] 

Hypotonic 

Buffer 

5.3 mg/ml 5.4±1 21.0±1 70±10 76 ±12 10 ±0.6 300 

2.6 mg/ml 5.6±1 22.7±1 70±10 79 ±5 9.3 ±0.5 300 

1.3 mg/ml 6.2±1 24.4±1 70±10 108 ±8 8.1 ±0.8 300 

Isotonic 

Buffer 

5.3 mg/ml 11.1±1 51.0±1 160±10 - - - 

2.6 mg/ml 10.0±1 49.7±1 160±10 171 ±11 6.4 ±1.5 300 

1.3 mg/ml 11.1±2 49.5±1 150±10 178 ±16 6.3 ±2.5 300 

 

aValues for the GA solution structure estimated by the IFT analysis or a Gaussian chain polymer model. b,cSamples with 
different ionic strengths (hypo or isotonic buffer) or concentration of GA co-polymers were applied in the experiments. 
dMolecular weight, eradius of gyration and fmaximum internal distance (DMax) in the GA copolymers. gParameters from 
an analytical model describing with Gaussian statistics GA as flexible co-polymers. hLength and iradius of co-polymers. 
jThe Kuhn length, equivalent of two times the persistence length, was calculated as described earlier. Measured values 
were stated as the mean value±SD. Values for 5.3 mg/ml GA in isotonic buffer were not estimable with polymer model. 
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Discussion 

Although positively-charged AMPs can rapidly disrupt microbial membranes, most positively-

charged peptides have generally been considered to be relatively less toxic to eukaryotic cells. Our 

work now shows that the AMP LL-37 rapidly eliminates certain subsets of leukocytes, probably 

depending on their presentation of negatively charged carbohydrates in the cell membrane. 

Surprisingly, these findings also add a novel perspective on the pharmacological mode-of-action of 

the polymeric formulation GA, a first generation nanomedicine. 

In the classic view of cationic peptides, their membrane destabilizing or pore-forming 

ability is tuned to not damage host tissue while killing membrane-clad microbial organisms. The 

zwitterionic character of mammalian cell membranes, as well as the cholesterol content, would 

presumably protect against lysis by cationic peptides while the anionic character of bacterial 

membranes renders these organisms susceptible (19). However, this dichotomy is not universal 

among the AMPs. LL-37 has long been known to lyse leukocyte cell lines or erythrocytes (21,45). 

As addressed below, the random GA co-polymers share cationicity and amphipathicity with LL-37, 

which enable both compounds to kill primary human leukocytes, even in media with physiologic 

concentrations of protein and salts. Such killing was achievable within only 30 min of incubation, 

the shortest time interval permitting reproducible handling in our assays. In principle, the duration 

of these incubations could be increased. However, with the relatively short half-life of free GA in 

vivo, it seems reasonable to focus on the consequence of the shorter incubation time as done below.  

 From several experiments with flow cytometry, it was evident that leukocyte killing of 

either GA or LL-37 was associated with a considerable formation of vesicles or debris containing 

remnant proteins from leukocyte cell membranes, e.g., CD45. This phenomenon also permitted 

imaging of the process of damage. Among the 7AAD-positive, dead cells exposed to GA, those 

cells carrying a GA-load presented a more irregular cell membrane shape than those without such a 
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load. Inspection of the images clearly suggested a process involving vesicle formation, with such 

CD45-positive formations budding from the cell membrane. By contrast, we were not able to detect 

any induction of Annexin V staining following treatment with GA or LL-37 (data not shown). 

Taken together with the fast cellular killing by GA, it seems unlikely that the killing involves 

elaborate cellular processes such as apoptosis. Indeed, induction of apoptosis in model systems was 

reported to require 12-18 h of incubation with strong agents such as ionomycin or staurosporine 

(46). A more likely explanation, also consistent with the marked formation of debris, involves a 

direct damage to the cell membrane. The cell membrane fragmentation enabled the use of more 

sensitive methodologies to follow the impact of GA and LL-37 treatment. Simple forward scatter 

measurements clearly indicated that LL-37 was capable of producing debris of subcellular sizes, 

while this did not happen when GA was used, even in high concentration. Using the more advanced 

NTA particle tracking technology, we demonstrated that GA produced debris with sizes between 

180-500 nm, while these smaller particles were not robustly generated by LL-37. This enabled 

furthermore detection of the cell fragmentation down to a concentration of 1 µg/ml GA, tightly 

reproduced among the donors tested. Particularly in the NTA experiments, it was evident that 

untreated leukocytes produce particulate material in a size-range similar to those particles released 

when the cells were treated with GA. It is known, of course, that T and B lymphocytes are 

producers of exosomes, vesicles with sizes of 60-100 nm (47). While we cannot conclude that 

exosomes are not a part of the material generated by GA and LL-37 treatment, we believe the full 

picture of the events must also include the experiments made with flow cytometry. In the latter type 

of experiment, the increase in low-forward scatter material came with an increase in 7AAD 

staining, i.e., cell death. With this observation, it seems more likely that the fragments formed by 

GA and LL-37 treatment are debris rather than necessarily similar to exosomes formed by living 

cells.   
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In determining what concentrations are therapeutically relevant, it is noteworthy that 

the pharmacokinetics of GA is not well established (7,48). Beyond the conditions at the site of 

injection, reports also suggest that partially hydrolyzed co-polymers may reach regional lymph 

nodes while there is a scarcity of evidence for the presence in other secondary lymphoid tissue such 

as the spleen (7,48). Considering the vast body of evidence supporting long-term influences on the 

immune system and GA antigenic properties (3), there seems to be little doubt that the presence in 

lymphoid tissues (48) may play a role in modulating the adaptive immune response and produce 

some of the therapeutic effects of GA. However, with the recent observation that GA also 

modulates the immune system in short time intervals (49), mechanisms with such an ability are 

obviously of interest. The skin, i.e., the site of injection, is a fully immunocompetent region of the 

body, including a large presence of several types of T lymphocytes (50). Following therapeutic 

administration of 36 mg GA into this environment, the relevant local concentration may easily 

exceed the concentrations used in our study. The activity of most peptidic antimicrobials is sensitive 

to the chemical environment, in particular with regard to salt concentration and protein content. The 

subcutaneous environment could, at least in principle, expose GA to interstitial fluids, lymph, or 

plasma. Although progress has been made in the proteomic characterization of lymph, it is clear that 

this fluid contain variable constituents, depending on, for instance, site of collection (51). We tested 

GA in buffer with 40 mg/ml HSA, i.e., close to the concentration in human plasma, and with the 

divalent metal ions Ca2+ and Mg2+. Albeit these additions may not precisely mimic the more 

complex body fluids, the high protein content and metal ions are pertinent parts of these fluids 

(23,51). In such buffer, GA maintained detectable cytolytic activity at 25 µg/ml, suggesting that GA 

may kill leukocytes in the subcutaneous environment. 

 Measurements on the contact between T lymphocytes using electrical impedance also 

recorded effects at modest concentrations. Impedance sensing for probing morphological changes in 
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cell-substrate contact was initially developed to monitor changes on the nm-scale non-invasively 

(52). Considering the sizes of the debris determined by NTA, it seems reasonable to propose that 

the ECIS recordings reflect the same process of debris formation as observed in our other 

experiments. Similar to the observations made with NTA, a concentration of ∼1 µg/ml LL-37 or GA 

was sufficient to alter the response. This agrees with other studies showing that ECIS can detect cell 

death through the concomitant change in contact with the substrate (53). In our study, a plateau in 

the cell index value was quickly reached. When the cell index was compared between untreated and 

treated samples, it was clear that treatment reduced the plateau response, which remained stable for 

hours. This is consistent with a rapid killing by LL-37 and GA of a select group of the T 

lymphocytes applied in the experiment as observed in the flow cytometry experiments.  

By use of engineered LUVs, we found that GA is able to lyse both negatively charged 

and zwitterionic liposomes with similar specific activity, a property not shared with naturally 

occurring cathelidicins (39,54). However, compared with the activity of other engineered anti-

microbial peptides such as novicidin (25), GA is only moderately effective and on a per-mg basis 

approximately 10-fold less active than α-synuclein, which is a confirmed cytolytic protein (55). 

However, in our experiments the tested LUVs did not carry HS or sialic acid characteristic of the 

mammalian cell membrane. Our study and the report by Koenig et al. (12) suggest that such 

charged carbohydrates are critical for efficient GA binding and cell killing. The studies using 

circular dichroism spectroscopy also pointed to differences between GA and other membrane 

disrupting peptides, notably LL-37 and novicidin. Unlike these peptides, GA does not alter 

secondary structure content. As one explanation, this would originate through a looser contact 

between GA and the target membrane compared with LL-37 and ovispirin.  

Several studies have now clearly demonstrated the ability of LL-37 to form oligomers 

with a loose hydrophobic core under physiological conditions (37,56,57). Apparently, this 
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oligomerization, or the character of peptides able to form such structures, is critical to the function 

of peptides of the LL-37 group, more so than specific size, sequence, or charge distribution (56). 

Indeed, the ability of both GA and LL-37 to lyse human cells with almost equal specific activity is a 

strong support of Zelezetsky et al.’s observation that no single primary structure is a determinant in 

the cytolytic functions of LL-37-like peptides (56). Recently, from dynamic light scattering studies 

of GA, the formation of larger oligomers were reported, although the chemical principles making 

such oligomerization were not investigated (9). It should be noted that in this study the intensity-

weighted GA size distributions from dynamic light scattering were reported with the observation of 

a large component around 100 nm (9). This was interpreted as the presence of colloidal 

nanoparticles. Importantly, conversion done by us into a volume distribution showed that only ∼1% 

of the sample is in this form of nanoparticles, while the rest are molecularly disperse polypeptides 

with an average hydrodynamic size of about 5-7 nm.  We now show by SAXS analysis that GA 

copolymers, like LL-37, also form small oligomers (dimers), in isotonic buffer, but clearly with a 

possibility that larger oligomers can be formed as well under other conditions. These oligomers are 

kept together by shielding of the hydrophobic side chains as judged from their dissolution in 

hypotonic buffer. As noted from the comparison with LL-37, this propensity to oligomerize is likely 

to be critical for the cell lysis activity and, at the same time, explains why GA may form small 

nanoparticles. In this way, the oligomerization supports GA as part of first-generation nanomedicine 

(9,10). 

 

Conclusions 

Our report now points to previously unappreciated effects of GA on human leukocytes, notably its 

ability to rapidly kill mainly subsets of T lymphocytes. From a mechanistic view point, the GA cell 

killing involves sialic acid. From the above experiment, we propose a model, which permit a weak 
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interaction with the anionic cell membrane. Full disruption of the cellular membrane requires 

further support from interaction with the sialylated proteins in the membrane (Fig. 11). This 

mechanism is shared with LL-37. LL-37 and other cathelicidins are evolutionary conserved AMPs, 

but they also carry profound influences directly on the host immune system. For this reason, it 

encourages the suggestion that the pharmacology of GA, at least in part, involves the use of an 

ancient regulatory mechanism of the innate immune system, which depend on cationic co-polymers 

forming oligomers with a loose hydrophobic core. This notion is already supported in the literature 

where the fast onset of the immunomodulatory effects of GA in treated patients (49) agrees well 

with the short time scale for action also observed in our study. Furthermore, it is well established in 

the treatment of MS patients that T lymphocytes are an important target as highlighted by the recent 

application of alemtuzumab. This antibody binds the T lymphocyte antigen CD52 and precipitates a 

rapid depletion of circulating lymphocytes, probably through antibody-dependent cell-mediated 

cytotoxicity (58). While this treatment may appear as a more powerful tool to dampen 

inflammation, it also contains the risk of adverse side effects such as infections. The remarkable 

safety of GA treatment and its well-documented effects in MS treatment heightens the interest in 

this formulation and other similar polymers devised for immunotherapy (2). The link between GA 

as a nanomedicine and its lysis of leukocytes is likely to aid the improved design of a class of 

polymers with such immunomodulatory effects. 
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The graphical abstract depicts two scenarios; (1) an untreated cell membrane and a cell membrane treated with 
neuraminidase to remove cell-surface sialic acids from glycoproteins embedded in the plasma membrane (cutting 
indicated with arrowheads). Both the neuraminidase-treated and untreated cell membrane are rich in negatively 
charged phospholipids. Sialic acid provide a large component of negative charge to the cell membrane in the 
untreated cells. Hence, (2) the removal of cell surface sialic acids alters the interaction between the positively-
charged GA copolymer and the cell membrane. In both scenarios, GA binds the cell membrane loosely with no 
major insertion, as judged from the circular dichroism experiments described in our paper. (3) The expression of 
sialic acid on the membrane enhances the electrostatic interaction between the GA copolymers and the cell 
membrane. This increased electrostatic interaction enable the GA copolymers to effectively attach and insert 
themselves into membrane bilayers, which ultimately results in a 7AAD+ nonviable cell and formation of 
nanovesicles. The figure is drawn to approximate scale using the SAXS-modeled GA dimer. 
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