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Abstract Since its original introduction in structural design, density based topol-
ogy optimization has been applied to a number of other fields like microelectrome-
chanical systems, photonics, acoustics and fluid mechanics. The methodology has
been well accepted in industrial design processes where it can provide competitive
designs in terms of cost, materials and functionality under a wide set of constraints.
However, the optimized topologies are often considered as conceptual due to loosely
defined topologies and the need of post processing. Subsequent amendments can
affect the optimized design performance and in many cases can completely destroy
the optimality of the solution. Therefore, the goal of this paper is to review recent
advancements in obtaining manufacturable topology optimized designs. The focus
is on methods for imposing minimum and maximum length scale, and ensuring
manufacturable, well defined designs with robust performances. The overview dis-
cusses the limitations, the advantages and the associated computational costs. The
review is completed with optimized designs for minimum compliance, mechanism
design and heat transfer.

Keywords Topology optimization · Length scale · Manufacturability · Regular-
ization

1 Introduction to topology optimization

The topology optimization process aims at distributing a specified amount of ma-
terial in a given design domain by minimizing an objective function and fulfilling a
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set of constraints. Here the focus is on density based formulations which in general
can be written as

min
ρ

:J (ρ, u) (1)

s.t. :r (ρ, u) = 0, u ∈ Uad (2)

gi (ρ, u) ≤ 0, i = 1 . . . Ng (3)

ρ ∈ Dad (4)

where J (ρ, u) is an objective function (weight, material volume, mechanical com-
pliance, displacements or velocities at a subdomain of the design domain), r (ρ, u) =
0 represents the residual of the equations modelling the physical system with so-
lution u ∈ Uad, and {gi (·) ≤ 0, i = 1 . . . Ng} is a set of constraints. The design
domain is an open bounded domain in R

d with Lipschitz boundary Γ = ∂Ω. The
material density field in represented by a bounded function ρ ∈ L∞ (Ω) and ρmin ≤
ρ (x) ≤ ρmax,x ∈ Ω, i.e., Dad = {ρ ∈ L∞ (Ω) : ρmin ≤ ρ (x) ≤ ρmax, x ∈ Ω}. Usu-
ally the upper bound is set to one and the lower bound to zero.

If the material density field is equal to one at a point in the design domain,
the point is occupied with material. The material density field is equal to zero at
the void regions. The discrete 0/1 problem is relaxed in order to utilize gradient
based optimization techniques and the material density is allowed to take interme-
diate values. Such a relaxation requires some interpretation of the gray transition
regions. Removing them in a post processing step might affect the optimality of
the solution and might violate the design constraints. Hence, reviewing the tech-
niques for avoiding the post processing step while obtaining well performing and
manufacturable designs close to 0/1 is the main goal of this article. The focus is on
the so-called three field density representation where the density field representing
the design is obtained by a series of transformations in order to restrict the design
space and ensure manufacturability of the design.

1.1 Interpolation schemes in topology optimization

The most popular problem in topology optimization is minimum compliance design
originally formulated by Bendsøe and Kikuchi in [18]. The idea is to distribute
material in a design domain in order to minimize the compliance of a mechanical
system and the material properties are obtained using a homogenization approach.
Later, the so-called SIMP (Simplified Isotropic Material with Penalization) [17]
approach has been introduced in order to reduce the complexity of the original
homogenization formulation. The SIMP formulation has been utilized in many
following papers to improve convergence to 0/1 solution, e.g., [167] and [107], and
physical justification is presented later in [19]. For linear elasticity, SIMP relates
the modulus of elasticity E (x) ,x ∈ Ω and the material density field by the power
law given as

E (x) = Emin + ρ (x)p (E0 − Emin) (5)

where, Emin is taken to be a small value larger than zero in order to ensure exis-
tence of the solution of the linear elastic problem, E0 is the modulus of elasticity
for the solid material, and p is a penalization parameter. For p = 1 the minimum
compliance problem is convex and possesses a unique solution with large gray
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regions. Increasing the penalty parameter improves the contrast, and a value of
p = 3 usually ensures good convergence to 0/1 designs. It should be pointed out
that the penalization works only for problems with constraints which directly or
indirectly limit the material volume.

The SIMP interpolation scheme results in zero gradients for all regions with
zero density ρ = 0. An alternative scheme, the so-called RAMP (Rational Approx-
imation of Material Properties) interpolation is proposed in the literature [130],
and can be utilized for problems where SIMP is undesirable. For general discus-
sion and comparison the readers are referred to [131] and the recent review papers
on topology optimization [126] and [37]. Designs close to 0/1 can be obtained by
tuning the parameters for the selected material optimization scheme. Recently,
an interpolation scheme for nonlinear materials was proposed in [148] where the
interpolation is performed between two material potentials rather than between
two material properties. Such an interpolation avoids the numerical instabilities
observed for optimization problems with large deformations.

Another alternative to the implicit penalization provided by SIMP or RAMP
is to utilize explicit penalization of the intermediate values by adding the following
term to the objective function, e.g., [5] and [9].

α

Z

Ω

ρ (1 − ρ) dΩ (6)

Explicit penalization is often utilized for wave propagation optimization problems
[144] where the traditional interpolation schemes cannot penalize the intermedi-
ate values, e.g., [86]. The main difficulty consists in determining the penalization
parameter α. The explicit penalization can be introduced to the optimization prob-
lem as a constraint. However, in this case the difficulty for selecting α is transferred
to the selection of the constraint value. A variation of the explicit penalization is
proposed in [22] where the density ρ in Equation 6 is replaced with a density aver-
age which imposes a length scale on the design, however, with the same challenges
in selecting α as for the expression given by Equation 6.

1.2 Discretization schemes

The optimization is performed iteratively using the so called nested formulation,
where at each optimization step the state problem is solved, the objective and the
constraints are computed from the obtained state solution, the gradients of the
objective and the constraints with respect to the parametrization of the design
field are computed using adjoint analysis, and the design field is updated based
on the gradients. The areas of applicability include problems in linear elasticity,
heat transfer, fluid mechanics, vibrations, acoustics, electromagnetics, nanome-
chanics. The state problem can be discretized and solved using almost any of the
available numerical methods for solving partial differential equations like Finite El-
ement Method (FEM), Finite Volume (FV), Finite Difference (FD), Discontinuous
Galerkin (DG-FEM), etc.

The material density field usually follows the discretization of the state solvers.
For a FEM discretization the density field is mostly represented using constant
values within each finite element. For a FD discretization a constant value is
associated with the cell surrounding each node. For FV and DG-FEM a constant
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value is often utilized for each control volume. The density field discretization can
be decoupled from the discretization of the state problem [66] which might result
in reduction of the optimization time.

1.3 Regularization in topology optimization

Minimizing the compliance of a structure using material density associated with
each finite element results in two major issues: 1) mesh dependency and 2) checker-
board patterns. Mesh dependency can be observed by refining the design domain
for a design obtained with a coarse mesh and running the optimization on the
refined mesh. The optimization might converge to a completely different and more
complex topology than the one obtained using the coarse mesh. Such problems
are referred to as ill-posed in the mathematical literature since they do not posses
a solution. Checkerboard patterns appear due to bad numerical properties of the
discretization and they do not represent optimal solutions [38], [77].

Existence of the solution is provided by regularizing the optimization prob-
lem, i.e., by restricting the solution space. A number of regularization schemes
have been proposed in the literature: perimeter control [70], sensitivity filtering
[123], and mesh independent density filtering [23],[27]. Here the focus is on density
filtering combined with subsequent transformations. For discussion of the other
regularization techniques the reader is referred to [126].

1.4 Alternative density based approaches

A number of alternative density based approaches have been proposed in the re-
search literature. The most popular of them is the level set method which utilize
a level set function to represent the shape of the design [7], [8] and [151]. Recent
overview of different level-set methods can be found in [39] and comparison to
density based approaches in [126]. As outlined several times in [126], the projec-
tion based three field formulation which is in focus in this article becomes more
and more similar to the level set methods. Hence, many techniques developed for
one of the approaches can often be easily transferred to the other one. Other al-
ternatives include the topological derivative method [127], the phase field method
[24], evolutionary approaches [156], etc.

2 Density filters

Density filtering in topology optimization can be written in the form of a convo-
lution integral [23] given as

eρ (x) =

Z

B

w (x − y) ρ (y) dy (7)

where eρ is the filtered density field, ρ is the original design field and w (·) is a
weighting function. The different density filters differ mainly in their weighting
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functions. The weighting function for the classical density filter [23] is the Hat
function given by

w (x) =

(

1
ww

“

1 − |x|
Rf

”

, |x| ≤ Rf

0, |x| > Rf

(8)

where the normalization factor ww is obtained from the condition
R

w (x) dx = 1.
The support domain of the filter function B = supp (w) is circular in 2D and
spherical in 3D with radius Rf . The integral condition for determining the nor-
malization factor ensures that the filter preserves as the total volume.

In general the support domain can take any shape which will determine the
properties of the projections discussed in the following section. For density fil-
ters with finite support domain the design domain is extended by dilating it with
the filter support, i.e., Ω∗ = {x : y ∈ Ω ∧ w (x − y) 6= 0}, where Ω∗ is the ex-
tended design domain. The values of the design field outside the design domain
ρ (x) ,x ∈ Ω∗ \Ω can be either prescribed in order to ensure a particular behavior
of the filtered field around the boundaries of Ω, or they can be included in the
optimization problem. Often the design domain is not extended and in this case
the filter behavior around ∂Ω differs from the filter behavior in the interior of the
design domain.

In [27] an exponential filter function is proposed which does not posses finite
support. In this case the function support can be truncated. Alternatively some
assumptions about the input design field outside the design domain have to be
provided in advance. The convolution integral Equation 8 is extended over R

d,
where d = 2, 3 is the dimensionality of the problem.

An alternative to the convolution integral formulation, based on the solution
of a partial differential equation (PDE), has been proposed first for sensitivity
filtering in [87] and later extended to density filtering in [93] and [79]. The idea is
to obtain the filtered field as the solution of a PDE given as

−∇Trf (x)2 ∇eρ (x) + eρ (x) = ρ (x) , x ∈ Ω (9)

The parameter rf (x) controls the effective width of the filter. It can be fixed or
allowed to vary along the design domain. Larger rf results in larger gray transi-
tion regions and smaller rf results in sharper transition between void and solid.
The filter is volume preserving for Neumann boundary conditions, ∂eρ/∂n = 0 on
∂Ω, where n is the outward normal to the design domain boundary. The main
advantages compared to classical filters are the lower computational cost [2], the
re-utilization of solvers developed for the state problems [93], relatively easy par-
allelization for large scale problems [1], utilization of different filter parameters in
different parts of the design domain, and the possibility of controlling the behavior
of the filtered field without extending the design domain. The Neumann boundary
conditions can be replaced with Dirichlet boundary conditions which prescribe
exact boundary values for the filtered field [90]. The solution of the PDE can be
expressed as the convolution of the input design field ρ (x) and the Green’s func-
tions [159] of the boundary value problem given by Equation 9. The filter support
domain coincides with the design domain. The computational cost of the PDE
filter using multigrid solvers is O (n) [142].

A relation between the length parameter rf in Equation 9 and the filter ra-
dius Rf in Equation 8 can be obtained by matching the second central moments
of the Hat function and the Green’s function for the PDE filter on unbounded
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domain [93]. The condition leads to similar filter fields and gray levels. The length
parameter rf can be related to Rf as follows

rf =
Rf

2
√

3
(10)

Following the idea of state solver re-utilization in the filtering process, the
implementation of topology optimization problems with transient behavior, e.g.,
[110] would benefit from transient PDE filtering schemes. Based on regularization
strategies utilized in image processing [16] a time dependent non-linear diffusion
regularization scheme in topology optimization is proposed in [150] where the
focus is mainly on reducing the gray transition regions by tuning the diffusion
coefficient along the design edges. In [78] a time dependent diffusion is utilized
for regularizing a level-set like topology optimization formulation. State solver re-
utilization and the parallelization benefits for density based topology optimization
of time dependent problems in photonics are demonstrated in [45]. The filtered
field is obtained as the solution eρ (x, t) of the following diffusion equation

∂eρ

∂t
= △eρ (11)

with prescribed boundary conditions and initial condition eρ (t = 0,x) = ρ (x) ,x ∈
Ω. The solution can be represented in the form of Equation 7, where the filter
function is a Gaussian kernel [16]

wσ (x) =
1

2πσ2
exp

 

−|x|2
2σ2

!

(12)

with filter parameter σ which scales with time as σ =
√

2t.
The time dependent heat equation as well as the PDE filter discussed above

diffuse the design field in an isotropic manner. Anisotropic filters which favor a
particular direction and stops information propagation in others can be obtained
by replacing the scalar coefficients with tensor quantities. Anisotropic filtering
can be achieved in the classical filter given by Equation 7 by selecting weighting
function with support different than circular.

In all cases the filter acts as a low pass filter to the original design field ρ.
For regular rectangular domains low pass filtering can effectively be constructed
by Fourier transform, e.g., [128]. The idea is applied in density based topology
optimization in [88]. The design field ρ (x) is transformed in the frequency domain
using 1D, 2D or 3D discrete Fourier transform, and then convoluted with a filter
function. The filter function in this case is defined entirely in the frequency domain.
The filter is given by the following three steps

ρ (ω) = F [ρ (x)] (13)

eρ (ω) = w (ω) ρ (ω) (14)

eρ (x) = Fi [eρ (ω)] (15)

where F denotes the Fourier transform and Fi its inverse. Practical realizations of
the above filter benefit significantly from the tuned fast numerical implementations
based on the Fast Fourier Transform (FFT). The appearance of artifacts around
the boundaries of the design domain can be decreased by padding (extending)
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the domain with zeros. Extending the domain with patterns different than zero
can control design field values around the borders of the design domain. Any post
processing of the filtered design, e.g., finding derivatives of any order, can be easily
performed in the frequency domain [140]. The larger freedom in constructing the
filter weighting function in the frequency domain can be utilized for controlling
the maximum length scale as well as the spacing between the solid and the void
regions [88]. These aspects are discussed in subsection 8.2.

The main limitation in utilizing FFT filters in topology optimization is the
requirement for rectangular shape of the design domain. Irregular domains can be
padded with zeros or prescribed patterns. Alternatively an effective algorithm for
calculating the convolution integral given by Equation 7 can be based on the fast
multipole method (FMM) [57]. Such a possibility remains to be investigated.

3 Projections

Gray regions always exist in the solution due to the relaxation of the original
0/1 problem. Penalization schemes can decrease their appearance to some extend,
however, some post processing of the design might be necessary if the final goal
of the optimization process it pure black and white design. Aiming at reducing
the intermediate transition regions between solid and void, various alternative
filtering schemes based on projections [61], on morphological operators [124] and
more recently on Pythagorean means [135] have been proposed in the literature.

The projection scheme proposed in [61] can impose length scale either on the
solid phase or on the void phase [124]. The idea is to filter the design field using
filter with finite support and project all values of eρ above zero to one. Such a
projection step ensures that the smallest solid feature in the design will be equal
or larger than the filter support, i.e., the solid design can be painted with a circle
in 2D or a sphere in 3D with radius Rf . The projection step is given as

b

eρ = H(eρ) (16)

where H (·) is the Heaviside function. The Heaviside function is not differentiable,
therefore, for gradient based optimization it is replaced with a parameter depen-
dent expression

H (eρ) ≈ 1 − exp (−βeρ) + eρ exp (−β) (17)

The above expression approaches the Heaviside function for β → ∞. Length scale
on the void phase can be obtained by applying the Heaviside projection to 1 − eρ,
i.e., the projected field is obtained as

b

eρ = 1 − H(1 − eρ) (18)

In [124] so-called morphological operators [109] are applied as filters in topology
optimization. The two basic morphological operators, erode and dilate, are defined
originally for black and white images. The erode operator sets a point to zero
if any point in the neighborhood covered by the filter support has zero value
and one otherwise. The dilate operator sets a point to one if any point in the
neighborhood covered by the filter support has value one and zero otherwise, i.e.,
the dilate operator deposits material along the perimeter of the design. For gray-
scale images the erode operator sets the value of a point to the maximal value in
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the neighborhood covered by the filter support and the dilate operator sets it to
the minimum. The dilate operator is given as

b

eρ =
1

β
log

„

Z

B

w (x − y) eβρ(y)dy

«

(19)

and the erode operator is defined as

b

eρ = 1 − 1

β
log

„

Z

B

w (x − y) eβ(1−ρ(y))dy

«

(20)

Both operators utilize Kreisselmeier-Steinhauser [84] approximation to the min / max
operator.

Recently an alternative definition to erode/dilate filters based on Pythagorean
means have been proposed in [135]. The erode/dilate filters based on harmonic
mean can be written in integral form as

1
b

eρ + β
=

Z

B

w (x − y)

ρ (y) + β
dy (21)

1

1 − beρ + β
=

Z

B

w (x − y)

1 − ρ (y) + β
dy (22)

where the parameter β controls the sharpness of the projection.
The above projections rely on the finite filter support to impose length scale on

the optimized designs. The original Heaviside projection [61] projects the transition

region to zero and one, however, due to the continuity of the projected field beρ the
transition from void to solid passes always through intermediate values. In [135]
the Hat filter is replaced with uniform weights (constant value) inside the filter
support. This provides sharper transition due to the allowance of discontinuities
in the final design beρ. For well penalized optimization problems a constant filter
results in sharp black and white designs, however, for problems where the objective
benefits from the appearance of intermediate design values the above projection
techniques will result in gray in the final design. The projections do not penalize
the designs. They only allow for sharper transition. These effects can be clearly
observed on designs shown in Table 3 and Table 4. Another important observation
for the morphological filters is that they project to the min/max value within
the filter support which is different than zero or one in the relaxed optimization
problem.

Any of the above projection techniques for PDE/FFT/FMM filters, with sup-
port coinciding with the design domain, will result in design domain occupied
entirely by one of the phases. Such behavior can be alleviated by thresholding the
design or the filtered field with threshold between zero and one [158]. It should
be pointed out that in this case the length scale (mesh independence) imposed on
the design is lost. These effects are discussed in details in [147] where the expres-
sion for the intermediate threshold Heaviside projection, which is utilized here, is
proposed in the form

Hη (eρ) =
tanh (βη) + tanh (β (eρ − η))

tanh (βη) + tanh (β (1 − η))
(23)

with parameter β playing the same role as in Equation 16 and η denoting the
threshold level.
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4 Three field density representation

As discussed in the previous sections the final density field beρ is obtained by series of
transformations applied on the original design field ρ. The basic transformations
are filtering and projection and the chain of transformations can be written as
ρ eρ b

eρ which will be referred to as the three field density representation. The
concept provides a powerful tool for controlling the final topology and acts as a
basic building block for more complex control strategies summarized in Table 1.

In [62] length scales on both phases are obtained by the utilization of two design
fields. The first one ρ1 represents the void and the second one ρ2 represents the
solid. They are obtained by using the three field representation from two design
fields ρ1 and ρ2, respectively. The final design field is obtained as average of the two
fields which produces gray transition regions. Various extensions are presented in
[64], [69], and [63] where combinations of multiple phases and Heaviside projection
with fixed support shape are utilized to control particle topologies, positions and
distances between them in the design of structures and materials. In [163] the
theoretical development is demonstrated in the design of 3D woven lattices.

In [121] the void phase is represented as a union of discrete shape projections.
The idea is extended in [146] for the design of photonic crystal wave guides and
recently it is applied in [111] to density based topology optimized designs consist-
ing of a union of elements with prescribed pattern. In general several strategies
are applicable to density based formulations:1) the design can be obtained by a
union of prescribed number of discrete shapes; 2) the original design field can be
represented as a union of discrete shapes and the final one is obtained using the
three field representation; 3) the original design field is filtered or projected using
filters with compact support defined by the desired shape. The first case might
result in a non-differentiable formulation, e.g., [160]. The second provides limits
on the optimization space as each shape is defined by a few parameters and the
total number of shapes is fixed. This can result in faster convergence, however, the
design might be poorly performing compared to designs obtained with larger num-
ber of parameters. The third approach keeps the complete freedom of the topology
optimization and the only limit is imposed by the discretization process.

Another recent extension [34] of the three field representation utilizes the gra-
dient of the projected density field ρ for optimizing structures with a coating layer.
The boundary of the solid phase can be identified by using the gradients of the
density. As the transition from solid to void can become very sharp and is mesh
dependent, the density field is filtered first and then differentiated. Inside solid or

void regions the norm of the gradient vector field
˛

˛

˛

∇eρ
˛

˛

˛

is zero or close to zero.

Close to the transition regions the norm is different than zero, which is utilized for

defining a coating layer around the solid region. Then Heaviside projection of
˛

˛

˛

∇eρ
˛

˛

˛

combined with control on the magnitude of the gradient norm provides density
interpolation for the coating material. A similar extension is utilized in the design
of piezo modal transducers with prescribed electrode gaps in [41].

As discussed in detail in [147] and demonstrated in Table 4, a density field
based on Heaviside projection combined with filtering with finite support provides
length scale either on the void or the solid phase, i.e., designs with length scale
imposed on the solid can posses extremely small features in the void regions, and
vice verse. These small features might be mesh dependent and observable by refin-
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Table 1 Overview of the different filter-projection schemes for density based topology optimization

Name Variable Operations Regularization and length
scale

References

SIMP ρ ρ sensitivity filter [123]
SIMP eρ ρ eρ density filter [23], [27]

Projection beρ ρ eρ beρ length scale on one phase [61]

Multiple phase
projection

ρ

„
ρ1

ρ2

«
 

„
eρ1

eρ2

«
 

 
beρ1
beρ2

!
 ρ length scale on both phases

with gray transition
[62]

min / max multi-
ple projections

beρi, i = e, i, d ρ eρ 
n
beρe,beρi,

beρd

o
length scale on the blueprint
only if the topology be-
tween the realizations does
not change

[147]

Robust objective
with random uni-
form projections

beρi, i = 1, . . . ,∞ ρ eρ 
“
beρi, i = 1, . . . ,∞

”
same as min / max [90]

Robust objective
with random
spatially varying
projections

beρi, i = 1, . . . ,∞ ρ eρ 
“
beρi, i = 1, . . . ,∞

”
same as min / max [122]

Double projection ρi, i = 1, . . . ,∞
ρ eρ beρ 
 
eρ {ρi, i = 1, . . . ,∞}

same as min / max [32]

Discrete Object
Projection

ρ ρ 

„
eρL

eρE

«
 

 
beρL
beρE

!
 ρ length scale between the in-

clusions and on the inclusion
[69], [63]

Minimum length
scale

ρ ρ {eρ,∇eρ} beρ black and white design with
length scale on both phases

[166]

Coating projection ρ,∇eρ ρ eρ beρ eρ ∇eρ length scale on the coating [34]
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ing the mesh. This often results in lack of manufacturability, extremely sensitive
performance due to manufacturing and exploitation uncertainties, stress concen-
tration, etc. The projection does not provide penalization to the optimization
problem and it cannot avoid the appearance of intermediate densities. This effect
is pronounced especially well in the design of heat sink Table 3. Hence, in gen-
eral topology optimized designs based solely on Heaviside projection requires post
processing which might destroy completely the effect of the optimization. More
complex extensions, which avoid the post processing are discussed in section 7 and
section 8. They are built on the three field formulation or additional constraints
and provide length scale on both phases [166] and robust designs performance
[147], [90], and [122].

5 Numerical examples

In order to demonstrate the effect of the different projection and filtering strate-
gies a set of selected topology optimization problems are shown in Figure 1 and
described below. The set consists of: 1) L-bracket optimization [94], 2) compliant
mechanism design [123], and 3) heat sink optimization problem [20]. The same or
similar examples have been considered in [147] and subsequent papers. The design
domains are discretized using first order finite elements [171]. The design field ρ,
the filtered field eρ and the projected field ρ are discretized using constant values
within each finite element. The collected values are stored in vectors denoted as
ρ, eρ and ρ, respectively.

The L-bracket optimization problem can be written in discrete form as

min
ρ

:J = f
T
u (24)

s.t. :K (ρ)u = f

ρ
T
v ≤ V ∗

0 ≤ ρ ≤ 1

where K is the stiffness matrix obtained using finite element discretization, f is
a vector consisting of the input supplied to the system, V ∗ denotes the material
volume, and the vector v consists of the volumes of all elements. The gradients
with respect to the projected densities are obtained using adjoint analysis and are
given as

∂J

∂ρj

= −u
T ∂K

∂ρj

u (25)

The gradients with respect to the original design field are obtained using the chain
rule

∂J

∂ρ
=

∂J

∂ρ

∂ρ

∂eρ

∂eρ

∂ρ
(26)

The compliant mechanism optimization problem is defined as

min
ρ

:J = l
T
u (27)

s.t. :K (ρ)u = f

ρ
T
v ≤ V ∗

0 ≤ ρ ≤ 1



12 Boyan S. Lazarov et al.

where l is a vector with zeros and value one and minus one at the positions
corresponding to the vertical displacement at the jaw corners. In order to save
computational time only half of the design domain with symmetry boundary con-
ditions is utilized in the computations. The gradients with respect to the projected
densities are obtained using adjoint analysis and are given as

∂J

∂ρj

= −λ
T ∂K

∂ρj

u (28)

where λ is obtained as a solution to the following adjoint problem

K
T (ρ) λ = l (29)

The gradients with respect to the design field are obtained by using the chain rule.
The heat sink problem is defined in the same way as the minimum compliance
problem with unit heat input uniformly distributed over the design domain.

The results for L-bracket optimization for the standard density based filter
without Heaviside projection, and with Heaviside projections given by equations
Equation 17, Equation 23 and Equation 21 are shown in Table 2. The modulus of
elasticity for the solid material is taken to be one and the applied force is set to
one as well. The density filter radius is Rf = 5.6L/200. The volume fraction is
50%. The discreteness of the obtained designs is represented with the following
gray indicator [124]

Mnd =

PN
1 4ρi (1 − ρi)

N
· 100% (30)

As expected the design obtained with density filter without any projection pos-
sesses large gray regions and actual realization would require post processing, i.e.,
removing the gray transition regions. The designs with Heaviside projections are
with similar levels of intermediate design elements. Length scale on the solid re-
gions for the designs obtained with Equation 17 and Equation 21 can be clearly
identified. All solid features are larger than a dot with radius equal to the radius
of the filter. On the other hand the void regions do not possess length scale, which
is evident either from the sharp internal bracket corner or the sharp corners in the
elements connections. Such sharp corners lead to stress concentration and are un-
desirable mechanical designs. The design obtained with the tanh projection does
not have sharp internal bracket corner due to the extension of the design domain
and the intermediate threshold η = 0.5.

Heat sink designs are shown in Table 3. The volume fraction is 50% and filter
parameters are the same as for the L-bracket optimization problem. It can be
observed that all designs posses large gray regions with gray index in the same
order as the gray index for the unprojected design. The projections cannot suppress
the appearance of intermediate densities. Hence, the heat sink example is probably
the simplest problem where new techniques for imposing length scale on black and
white designs can be tested.
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Fig. 1 Design domains and boundary conditions of: a) L-bracket, b) compliant mechanism,
c) heat sink.

Results for compliant mechanism design are shown in Table 4. Only the upper
half of the design domain shown in the table is utilized in the computations. The
volume fraction is 30%. The ratio of the output springs stiffness to the input
spring stiffness is 0.005. The output springs are vertical and are positioned at the
output points shown with bold black dots in Figure 1. The thickness of the jaws
is 0.05L. Similar to the L-bracket the projections decrease the gray level in the
obtained designs. Length scale is clearly imposed on the solid regions for the design
obtained with the Dilate and the Harmonic filters, however, some of the elements
are with intermediate densities which again indicates that the projection alone
cannot ensure zero/one designs. The void regions do not posses length scale which
leads to the appearance of hinges in the connecting regions.
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Table 2 Single case designs for L-bracket with different filters and projections.

Filter Density filter Dilate filter Tanh filter Harmonic filter
Equation 8 Equation 17 Equation 23 Equation 21

Obj. 201.50 130.54 149.51 127.80

Gray Mn 20.06% 2.63% 0.93% 1.10%

Table 3 Single case designs for Heat sink with different filters and projections.

Filter Density filter Dilate filter Tanh filter Harmonic filter
Equation 8 Equation 17 Equation 23 Equation 21

Obj. 133.43 126.77 116.52 125.97

Gray Mn 42.21% 33.49% 15.32% 31.11%

In general the three field formulation can in some cases improve the discrete-
ness of the obtained designs, however, for problems where the optimization can
benefit from the appearance of gray regions, zero/one designs cannot be guaran-
teed. Heaviside projection with threshold projection η = 0 or η = 1 and filtered
field obtained using filter function with finite support can ensure length scale ei-
ther on the solid or the void regions in the design. However, the projections alone
cannot provide length scale on both phases, therefore, they cannot prevent the
appearance of sharp inter-element connections which lead to stress concentration.
Furthermore, the appearance of sharp features either in solid or the void regions
might lead to lack of manufacturability in some production processes due to lack of
resolution. This is especially evident in compliant mechanism designs where small
imperfections around the mechanism hinges can lead to completely disintegrated
mechanisms. Manufacturability can be ensured either by taking into account the
production uncertainties in the optimization process, or, in some cases by imposing
length scale on both phases.
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Table 4 Single case designs for gripper with different filters and projections.

Filter Density filter Dilate filter Tanh filter Harmonic filter
Equation 8 Equation 17 Equation 23 Equation 21

Obj. 0.72 0.90 1.02 0.88

Gray Mn 31.49% 12.25% 2.10% 5.53%

6 On the similarities between three field representation and micro-

and nano- scale production processes

The three field representation provides the basic building block for controlling
geometrical details of optimized designs. Two of the the three fields (ρ and eρ)
are seemingly pure mathematical entities. They are utilized in restricting the de-
sign space and removing the necessity of imposing additional constraints on the
optimization problem. The original intent for introducing them in topology opti-
mization was to ensure mesh independent solutions. However, due to the complex
chain of transformations, often the link to the real physics of the problem is lost.
Once the final design is obtained from the topology optimization process it is send
for manufacturing. The designer usually post processes the optimized topology and
sends it to the manufacturer who is responsible for transforming the design to a
set of parameters for controlling the production machines. This transformation is
based on purely geometric properties, i.e., the manufacturer minimizes the differ-
ence between the optimized topology and the one obtained by the manufacturing
process by tuning the production parameters, e.g., [113]. The design information
which is lost during this transformation process may reduce the performance of the
manufactured designs. Hence, avoiding or reducing the number of transformations
will bring the performance of the realizations and the optimized design closer.

A striking similarity between micro- and nano-lithography production pro-
cesses and the three field representation is demonstrated in [73]. The article presents
in details the link between electron beam lithography (EBL) and projection schemes
in topology optimization and provides a direct map between the production pa-
rameters and the optimized topology. Later, a similar link is demonstrated to
optical projection lithography in [165]. The two processes and possible extensions
to other micro- and nano- scale production technologies are presented in details
in the following.

6.1 Electron beam lithography

Electron beam lithography [36] is a nano-fabrication process usually applied in
small volume production. It allows direct writing of 2D design patterns down to
sub 10nm dimensions. The goal is to transfer a pattern to a thin layer of material
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Fig. 2 Illustration of an E-beam lithography process in semiconductor microfabrication

referred to as resist in the literature. A typical setup, shown in Figure 2, consists
of an electron beam which exposes the resist material laid on a substrate. The
resist consists of a polymer which is sensitive to electron beam exposure [108].

The EBL process consists of two main phases. First, the resist is bombarded
with electrons originating from the electron gun. The exposure causes local changes
of the properties of the polymeric material. As a second step a solvent is added
to the process in order to develop the exposed pattern on the resist. Two kinds
of resists, negative and positive, are utilized in practice. Negative resist forms
new bounds during the exposure, while for positive resist bounds are broken. The
solvent removes molecules with smaller molecular weight which results in removing
the exposed areas for positive resist and the unexposed for negative resits. The
setup on Figure 2 demonstrates positive resist exposure and development. The
process can be combined with other nano-production technologies for printing
multimaterial or 3D layered designs [85], e.g., material deposition and subsequent
etching. The focus here is only on demonstrating the link between the first two
steps and the three field representation in topology optimization, hence, for more
details the interested readers are referred to the existing literature on the subject,
e.g., [85], [36].

In the exposure step the electron gun emits electrons which are directed by a
magnetic and electrostatic field to a prescribed location on the resist [132]. The
charge density directed to the resist is given as

D (x) = T (x) I (31)

where T (x) denotes the time period for pointing the electron beam at position
x and I is the beam current. The exposure time can be specified for every point
and is modeled as continuous variable. When an electron beam hits the resist, the
electrons interact with the material which results in scattering of the electrons.
Part of electrons reaching the substrate layer is reflected back causing a secondary
backscattering to the resist. The forward and the backward scattering increases
the width of the electron beam which is characterized by the so-called point spread
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function F (x), which expresses the energy distribution of an incident point source
due to scattering effects. The point spread function D (x) is approximated by a
sum of two Gaussians [29]. The final energy exposure E (x) of the resists at point
x is determined by a convolution integral

E (x) =

Z

R2

F (x − y) D (y) dy (32)

which resembles closely the density filtering process in topology optimization
Equation 7.

The development phase consists of several steps and can be modeled with
different levels of complexity [40]. The simplest model assumes constant threshold
[26], i.e., for positive resist the material exposed to a level above a certain level Ecl

is etched away. The level is controllable and depends on the process temperature,
the solvent concentration, resist material, etc. The final resulting pattern written
on the resist can be expressed as a Heaviside projection of the energy exposure

P (x) = H (E (x) − Ecl) (33)

which coincides with the projection step in the three field density formulation.
Hence, for EBL the three fields can be associated directly with real physical fields
and the chain of transformation represents the different steps in the production
process. The design field ρ matches the exposure time, the filtered field eρ matches
the energy exposure, and the density field beρ matches the final developed pattern.
Such a map allows for direct transfer of the physical parameters to the man-
ufactures which ensures manufacturability of the design and removes the post
processing step. Furthermore, in addition to the optimization of the design per-
formance, the map allows for optimization of the production parameters such as
total exposure time and exposure patterns [74].

6.2 Optical lithography

Optical lithography similar to the EBL process aims at transferring a 2D pattern
onto a thin layer of material. A typical production process consists of multiple
steps [99] and here it is exemplified in Figure 3. A pattern is transferred onto
a thin film layer deposited on a substrate. In a preparatory phase a thin layer
of material is deposited on a wafer and then coated with light sensitive polymer
called a photoresist. As a following step a mask (a pattern) is projected onto the
photoresist with the help of an optical system. The projected image is developed
and the exposed areas of the photoresist are removed. In the following steps the
developed image is transferred to the film by an etching process and the photoresist
is removed from the design.

The mask pattern can be represented using a binary image IM (x) defined on a
finite domain in R

2. The intensity of the projected aerial image onto the photoresist
is given as

IA (x) = |(IM ∗ Hβ) (x)|2 (34)

where ∗ denotes the convolution operator and Hβ is the point spread function of
the optical projection system. The etching phase is modeled with the help of the
Heaviside projection and is given as

IP = H (IA − η) (35)
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Fig. 3 Illustration of photo lithography process in semiconductor microfabrication: a) photore-
sist coated wafer, b) UV light exposure, c) photoresist development, d) etching, e) photoresist
removal

where IP is the final developed pattern and η represents an intensity threshold
above which the material is etched away for positive photoresist. For a so-called
negative photoresist the areas with intensity smaller than the threshold are etched
away.

Similar to the EBL process presented in subsection 6.1 the three fields repre-
sentation in topology optimization can be directly matched to the physical fields
in photolitography [165]. The original design field ρ can be utilized for represent-
ing the image mask IM , the intermediate filtered field can represent the projected
image and the developed design IP is represented by the projected field beρ. The
differences compared to the standard transformation chain ρ  eρ  b

eρ are: 1) the
filtered field is point wise squared, and 2) the mask IM is required to be a zero/one
image. Detailed discussions and demonstration of the similarities can be found in
[165].

6.3 Other micro- and nano-production processes

One of the main limitation of the EBL and photolitography production processes
is the lack of capability for arbitrary three dimensional geometries. Three di-
mensional designs can be manufactured layer by layer by stacking several 2D
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projection-etching-deposition cycles on top of each other, however, the resulting
process is still incapable of producing arbitrary 3D shapes. This limitation has
stimulated research in mask less direct writing techniques [36] using focused op-
tical beams. The light diffraction provides a limit on the resolution for direct
writing, and an alternative based on non-linear interaction processes, the so-called
two photon polymerization, has been proposed in [101]. The technology has been
developed further to produce features down to a few nanometers [51]. The pro-
cess utilizes ultra short laser pulses focused into the volume of a photoresistive
material. A polymerization of the photoresist is initiated in the vicinity of the
focal point, and after illumination of the 3D structure and subsequent etching, the
polymerized regions will remain in the printed form, which allows fabrication of
almost any complicated 3D pattern [80], [28]. Due to the threshold behavior and
the nonlinear nature of the process, a resolution beyond the diffraction limit can
be realized [152]. The three field representation model can be mapped directly to
physical parameters by representing the focal point and the laser intensity with
the design field, the exposed pattern with the filtered field and the final developed
pattern with the projected field.

The research in nano-fabrication constantly provides new production processes
capable of manufacturing devices with finer and finer resolution. The smallest fea-
tures which can be produced are always limited by the available fabrication tools.
On the other hand there are a large number of examples of extremely complex
structures assembled on molecular level with sub-nanometer scale features. Such
patterns in nature are realized by self assembly which provides one of the most
promising mechanism for producing devices in the sub-nanometer range [85]. The
process can be modeled numerically and optimized template patterns have been
demonstrated in [71]. Similarities with the three field representation can be eas-
ily identified, however, topology optimization of a full device still remains to be
demonstrated.

The above examples demonstrate the flexibility of the three field model to rep-
resent real physical fields in standard macro- and nano- manufacturing processes.
Topology optimization based on this model controls directly the input production
parameters and results in designs which incorporate the physical limitations in the
design process. Optimization driven directly with the physical parameters avoid
the post processing steps known as proximity effect correction in electron beam
lithography and optical proximity correction in photolithography, and result in
manufacturable topologies.

7 Topology optimization under geometrical uncertainties

Uncertainties in the production parameters are inevitable parts of every manufac-
turing process. Therefore, their inclusion in the optimization is necessary in order
to ensure manufacturable designs with robust performance. The three field repre-
sentation provides a excellent base for integrating the uncertainties in the topology
optimization process and this application has been demonstrated in a number of
problems.

Replacing the threshold parameter η in the projection step with a random
variable η ∈ P , where P is a selected random distribution, can be utilized for
modeling uniform erosion and dilation along the design perimeter [90]. The pro-
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jection step represents the etching process in lithography, therefore, the above
modification can represent uncertainties in the temperature or the chemical con-
centration which leads to different threshold values. The deterministic objective
function in Equation 1 can be replaced with a combination of the mean determin-
istic objective function and its standard deviation E (J) + κSTD (J) [100], where,
κ is free parameter selected by the designer. The above modification tries to im-
prove the average performance and at the same time to reduce its variability. The
main difficulties with such a reformulation is the selection of the parameter κ and
the fact that such an objective is not a coherent risk measure [120], i.e., if a design
ρ1 is outperforming design ρ2 for almost all possible realizations the above objec-
tive might not reflect this property. Nevertheless the above reformulation has been
demonstrated to produce robust designs for a number of problems in mechanics
[115] and electromagnetics [44].

The constant threshold model can model only uniform erosion and dilation
along the design perimeter. An extension has been proposed in [122], where the
random variable has been replaced with a random field defined over the design
domain. In this way spatially varying geometric imperfections can be easily repre-
sented. Similar models for level set approaches have been proposed in [30] and [31].
An additional study including spatially varying uncertainties in the material pa-
rameters is presented in [91]. One of the main conclusions is that spatially varying
geometric uncertainties have very little effect on the topology of the optimized de-
signs and often neglecting the spatial variability and considering constant threshold
along the design domain produced results with similar performance, especially for
mechanical design problems such as minimum compliance and compliant mecha-
nisms. Recently it has been demonstrated in [32] that spatial variations can affect
severely the topology for wave propagation problems. An alternative model has
been proposed in [74] where the manufacturing uncertainties have been modeled
as misplacement of material. Such a model can be utilized in the 3D printing
processes where material is deposited by the printer head layer by layer.

The computational cost in the case of stochastic variations increases signifi-
cantly and depends on the dimensionality of the stochastic space. In [122] Monte
Carlo (MC) sampling has been utilized for obtaining the mean and the standard
deviation of the system response. Even though MC possesses dimension indepen-
dent convergence, its convergence speed is relatively slow [157]. An alternative
stochastic collocation sampling approach has been investigated in [90],[91] and
[44]. The main advantage is that the already developed deterministic solvers are
utilized without any modifications in the optimization process. However, for fast
oscillatory uncertainties and small number of sampling points without any error
control the optimization process often tunes the design for the sampling points
and any intermediate realizations may possess responses which are not robust
with respect to the true non-discrete realizations [44]. A topology optimization
formulation with error control on the mean and the standard deviation remains
to be demonstrated.

In attempt to decrease the computational cost perturbation based stochastic
solvers have been utilized in [92]. It has been clearly demonstrated that in general
the Taylor expansion of the response around a single point in the stochastic space
cannot capture the overall behavior and might lead to the same effects observed
in [44], i.e., tuning the design performance for the expansion point. However, for
relatively smooth problems it has been demonstrated in [75] that the perturbation
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approach can represent the response of the system due to stochastic imperfections
and can lead to significant reduction of the computation time for geometrically
non-linear optimization problems.

Another way to account for the manufacturing and exploitation uncertainties
is to utilize the so-called reliability based design optimization (RBDO) [102]. For
general discussion, overview and comparison between the different approaches the
reader is referred to [50], [21], [46] and [102]. In RBDO the objective is either
to minimize the probability of failure subjected to a set of additional constraints
or the probability of failure is set as a constraint to the optimization problem.
The probability of failure is often estimated approximately using the so-called first
order reliability method (FORM) or second order reliability method (SORM). Such
approaches rely on the stochastic behavior around a single point in the stochastic
space (most probable failure point MPP) and suffer from the same disadvantages
in optimization as the the perturbation approaches, i.e., the design is optimized for
a particular point (set of parameters) in the stochastic space and some of the more
important regions might be omitted by the optimizer. Reliability based topology
optimization has been demonstrated for compliant mechanisms in [103] and for
minimum compliance in [81].

The above approaches are non-intrusive, i.e., one can utilize standard deter-
ministic solvers for evaluating the moments of the response. For stochastic pertur-
bation approaches only slight modifications are necessary. Another alternative for
estimating the stochastic response is the stochastic Galerkin approach [55]. The
method requires development of new solvers and for large dimensionality in the
stochastic space might result in extremely large systems of equations. In topology
optimization the method has been utilized in minimum compliance optimization
under material uncertainties [138].

A large number of research papers are devoted to the exploitation of uncertain-
ties like random inputs or imperfections in boundary conditions, e.g., [83], [98],
[43] and [162]. It should be emphasized that the the focus here is on manufactura-
bility and length scale of the the optimized designs, therefore, a detailed review
on topology optimization under other types of uncertainties is omitted here.

Often the exact distribution of the random variables is unknown and it is
desirable to account only for the worst case scenario from all possible design real-
izations. Such an approach leads to the so-called min/ max formulation which in
the case of minimum compliance optimization and compliant mechanism designs
is given as

min
ρ

:max
η

J (ρ,u, η) (36)

s.t. :K
`

ρ, η∗´
u = f

max
η

V (ρ, η) ≤ V ∗

0 ≤ ρ ≤ 1

where η is a vector with all random parameters and η∗ = arg maxη J (ρ,u, η). The
volume constraint maxη V (ρ, η) ≤ V ∗ can also be replaced with a fixed point in
the random space. Such a formulation is demonstrated in [147] where the volume
constraint is applied on the most dilated design which actually coincides with the
argmaxη V (ρ, η). Alternatively the volume constraint can be applied on the mean
volume [122].
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For compliant mechanism design and threshold projection η ∈ [ηd, ηe], which
is constant in the design domain, it has been observed that the worst performing
design is either the most eroded or the most dilated design [125]. This has been
utilized in [147], [115] for simplifying the formulation given by Equation 45 to

min
ρ

:max{Je, Jd} (37)

s.t. :K (ρ, ηd)ud = f

K (ρ, ηe)ue = f

V (ρ, ηd) ≤ V ∗

0 ≤ ρ ≤ 1

where {Je, Jd} are standard deterministic objectives for thresholds ηe and ηd , re-
spectively. As the worst performing case is either for threshold ηe, or threshold ηd,
the case for ηi corresponding to the blueprint design supplied to the manufacturer,
can be omitted in the optimization formulation which can save around a third of
the computational time compared to the formulation in [147]. In contrast to the
deterministic case the robust formulation requires one or more systems solutions
corresponding to each realization which significantly increases the computational
load.

In the general case the worst case is not known in advance and a large number
of samples in the stochastic space is utilized in order to approximate the random
response and to find the worst case scenario. The optimization formulation for
such a case becomes

min
ρ

:max{Ji, i = 1 . . . Ns} (38)

s.t. :r (ρ, u,ηi) = 0, u ∈ Uad, i = 1 . . . Ns

gi (ρ, u, ηi) ≤ 0, i = 1 . . . Ng, i = 1 . . . Ns

ρ ∈ Dad

where Ns is the number of samples and ηi is a point in the random space. The
above formulation has been utilized for photonic crystal design [145] and [146],
for topology optimization in acoustics [32], and for material design in [149]. With-
out any constraints min / max formulations have been demonstrated for topology
optimization in photonics in [116] and [117] where a cheap surrogate model has
been utilized for reduction of the computational cost. Another demonstration in
photonic crystal design considering manufacturing uncertainties based on robust
regularization of a function is shown in [105]. In compliant mechanism design and
minimum compliance problems a multiple load case scenario with localized damage
has been demonstrated to limit the maximum member size in [76].

The max function is not differentiable and the optimization problem given by
Equation 38 is usually reformulated using the so-called bound formulation as

min
ρ

:z (39)

s.t. :Ji ≤ z, i = 1 . . . Ns

r (ρ, u,ηi) = 0, u ∈ Uad, i = 1 . . . Ns

gi (ρ, u, ηi) ≤ 0, i = 1 . . . Ng, i = 1 . . . Ns

ρ ∈ Dad
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The above formulation can be naturally implemented using any MMA implemen-
tation [133].

Replacing the deterministic optimization formulation with a formulation which
accounts for uncertainties in the production process removes the human factor in
the optimization process. First the three field model ensures that the design is
manufacturable and second requiring robustness of the response ensures that the
obtained designs will posses robust behavior for a wide range of variations in
production parameters. It has been observed in [147], [122], [93] that requiring
robustness of the performance with respect to uniform erosion and dilation for
compliant mechanism design removes the single node hinge problem, demonstrated
in Table 7, and results in black and white design with minimum length scale on the
obtained topology. It should be stressed that the length scale is guaranteed only if
the designed topology does not change for all possible realizations. Such changes in
topology have been demonstrated for photonic crystals in [145], for optimization
in acoustics in [32] and for compliant mechanisms in [88]. Nevertheless the designs
obtained by requiring robustness of the performance can be send to manufacturing
without any post processing and human interventions. The full cycle has been
demonstrated in the design of auxetic materials in [14].

Examples of designs with robust performance with respect to uniform ero-
sion/dilation η ∈ [0.35,0.65] for the L-bracket, the Heat sink and the compli-
ant gripper optimization problems are shown in Table 5, Table 6. and Table 7,
respectively. In the first row of each table the most eroded and the most di-
lated designs are obtained using the Harmonic mean filter given by Equation 21
and Equation 22, respectively. The filter radius for the Harmonic filter is set to
2.17L/200. As it can be observed, such a model does not impose length scale,
cannot ensure black and white design, and cannot prevent hinges in compliant
mechanism designs. This is due to the fact that the Harmonic erode and dilate
operations can produce projected fields with equal values, and hence, they can-
not model erosion/dilation imperfections. In contrast the tanh projection given by
Equation 23 always produces different projected field values for different thresh-
olds. This property results in length scale on both the solid and void regions and
in designs close to black and white.

7.1 Minimum compliance design with random projection threshold

The main reason that the robust formulation has not yet been adopted by the
industry is the additional computational cost associated with solving the multiple
design realizations and the large number of optimization iterations due to the con-
tinuation strategy. The most popular topology optimization problem is minimum
compliance design. By careful analysis the computational cost for the robust for-
mulation presented above can be reduced to be equal to the cost associated with
solving a single case deterministic problem.
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Table 5 L-bracket robust design (dilated, intermediate and eroded design realizations).

Harmonic mean filter Equation 21

Obj. 160.52 173.99 206.00
Gray 8.01% 7.22% 4.83%

Tanh projection Equation 23

Obj. 134.636 151.00 182.81
Gray. 1.79% 1.11% 1.84%

The threshold projection is assumed to be uniform and the threshold is modeled
as a random variable η ∈ P (ηd, ηe), where P is an unspecified random distribution
with support [ηd, ηe]. The compliance is given as

J (ρ, η) =

Z

Ω

f (x)u (x) dx (40)

where u depends on the physical density and on the threshold η though the state
equation. The compliance is positive and for Ej (x) ≥ Ei (x) , ∀x ∈ Ω the com-
pliance Jj is always smaller or equal to the compliance Ji, i.e. Jj ≤ Ji. Using
the SIMP model given by Equation 5 with a physical density field obtained by
projecting filtered density field eρ with thresholds ηi and ηj , the following relation
can be identified

Ej

“

x, ρj

”

≥ Ei (x, ρi) , ∀ηj ≤ ηi (41)

where ρk = Hηk
(eρ) , k = i, j. Therefore, the maximum compliance for any filtered

density distribution eρ is obtained for the most eroded realization ηe, i.e.

ηe = arg max
η∈P(ηd,ηe)

{J (ρ, η)} (42)

Using similar argumentation the maximum material volume maxη∈P(ηd,ηe) {V (ρ, η)}
can be obtained for the most dilated design, i.e.

ηd = arg max
η∈P(ηd,ηe)

{V (ρ, η)} (43)
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Table 6 Robust design for Heat Sink (dilated, intermediate and eroded design realizations).

Harmonic mean filter Equation 21

Obj 125.67 127.82 133.42
Gray 38.60% 37.77% 36.44%

Tanh projection Equation 23

Obj. 127.84 144.84 168.78
Gray 3.60% 3.19% 4.33%

Table 7 Robust design for Gripper (dilated, intermediate and eroded design realizations).

Harmonic mean filter Equation 21

Obj. 0.88 0.91 0.88
Gray 12.73% 11.88% 9.54%

Tanh projection Equation 23

Obj. 0.85 0.91 0.85
Gray 2.57% 2.32% 2.94%

where the material volume is computed as

V (ρ, η) =

Z

Ω

Hη (eρ) dx (44)
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Therefore, the optimization formulation given by Equation 45 can be replaced with
an equivalent one given as

min
ρ

:J (ρ,u, ηe) = f
T
u (45)

s.t. :K (ρ, ηe)u = f

V (ρ, ηd) ≤ V ∗

0 ≤ ρ ≤ 1

In contrast to the general case the reduced formulation requires only a single state
solution. Furthermore, as the volume constraint is always active and ρd > ρe, the
problem is self penalizing and the penalty parameter in the SIMP interpolation
can be set to 1, i.e, the interpolation between void and solid is linear. The above
formulation leads to black and white designs with response robust with respect
to uniform erosion and dilation along the design perimeter. Due to the lack of
local minima and maxima between the most eroded and the most dilated case it
results in clearly defined minimum length scale on both the solid and the void
regions for a blueprint design obtained for an intermediate η. The same reduction
can be applied to any spatially varying projection threshold which is bounded
between two constant values, ηd ≤ η (x) ≤ ηe. Hence the worst case formulation in
minimum compliance topology optimization leads to a problem with computation
cost similar to the computational cost for the deterministic minimum compliance
optimization problem.

The methodology is demonstrated in Table 8 and Table 9 for L-bracket and
heat sink designs. The boundary conditions, the filter radius and the input to the
system is the same as for the robust optimization case. The formulation results in
black and white designs with minimum length scale imposed on both the solid and
the void regions. The objective for penalization parameter p = 1 is slightly better
for both of the considered cases. Using linear interpolation decreases the number
of local minima and maxima for the optimization problem. Based on the authors
experience linear interpolation improves the convergence speed. Different length
scales can be imposed on the void and the solid regions by selecting thresholds
which are not symmetric with respect to the intermediate threshold η = 0.5 [147].
Using such an approach the designers can control the rounding radius and hence
the stress concentration in the final designs without explicitly accounting for stress
concentration in the optimization problem.

8 Length scale in macro scale production processes

Manufacturing is the technological process which utilizes different physical pro-
cesses to modify the geometry and properties of a given amount of material in
order to create parts of products as well as to assemble these parts in a final
product [58]. The process consists of a sequence of operations which brings an
initial block of material closer to the desired final detail. The set of possible opera-
tions can include wide ranges of sub-processes like, casting and molding, material
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Table 8 L-bracket robust design using single realization

p p=1 p=3

Obj. 148.28 151.00
Gray Mn 1.28% 1.11%

Table 9 Heat sink robust design using single realization

p p=1 p=3

Obj. 135.69 144.8662

Gray Mn 3.08% 3.20%

forming, material removal processes (turning, drilling, milling, grinding), material
deposition processes, etc. Each one of these technological operations imposes some
restrictions on the parts under production. Therefore, in order to ensure manufac-
turability of designs obtained using topology optimization these restrictions need
to be imposed during the optimization process.

Several articles have presented such methodologies in topology optimization.
In casting one of the important requirements is that the casting molds should
be removable without damaging the cast part and the mold tools [154], i.e., the
mold parts should not have concave geometry and any interior voids. The first
mathematical formulation of casting constraints was proposed in [164]. Topology
optimization using the constraints has been demonstrated in [72]. Transforma-
tion of the constraints making them applicable to level set-based approaches are
demonstrated in [154] and [155]. For the density based formulation, [54] has pro-
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posed an explicit parametrization for casting constraints based on a Heaviside
projection which recently has been extended in [97]. An alternative is proposed in
[67] where projection based algorithms have been utilized for imposing casting as
well as milling constraints on topology optimized designs. A general overview for
applications in the aerospace industry can be found in [170] where the main focus
is on the design of thin walled structures with stiffeners [169]. For laminated com-
posites, an optimization formulation can be found in [129]. A machining feature
based level set optimization approach is presented in [96]. Most of the casting and
machining manufacturing constraints do not affect explicitly the length scale im-
posed on the solid regions of the design. They are related mainly to the convexity
of the design envelope and the length scale imposed on the void regions. Therefore,
the minimum length scale on the solid is governed by the manufacturing uncer-
tainties, i.e., the same considerations applied to micro- and nano- scale production
processes are applicable to the manufacturing processes mentioned above.

Often a number of features with explicit shape are required to be embedded
in the optimized design due to aesthetic considerations in architecture, manu-
facturing restrictions, or holes and components passing through the design [33].
Most of the publications presenting such optimization formulations utilize level
set approaches, e.g., [104], [168]. A general review can be found in [160] where a
large number of density based examples are presented. Requiring embedded de-
sign features does not affect the length scale on the actual free design domain and
additional constraints based either on the requirement for robustness or explicit
length scale are discussed later in this section.

Additive manufacturing (AM), also known as 3D printing, is a relatively new
production technology. In contrast to traditional machining where the manufactur-
ing relies on material removal, AM is based on adding material layer by layer, thus,
avoiding large part of the manufacturing constraints imposed by other production
techniques. Often a design obtained by a CAD system can be directly fabricated
without the need of process planning [56]. Different 3D printing processes have
been developed for different materials. Modern devices can utilize polymers, met-
als, ceramic, and even bio-materials for printing human tissues, e.g., [141],[139],
[42]. Due to the fast development of the technology, cheap desktop 3D printers
are widely available for both prototyping, as well as mass production. However,
even though AM has received big impulse both from industrial manufacturers and
hobby enthusiasts many challenges still exist and are subject to active research.
Several of them outlined in [112] and related to the current review paper are the
lack of computationally efficient 3D topology optimization software, the lack of
robust modelling and optimization tools utilizing material microstructures, and
the need for post processing of optimized designs.

Topology optimization as a design process is the perfect supplement to the
additive manufacturing as it can completely utilize the manufacturing freedom.
Topology optimization for additive manufacturing has been demonstrated in a
large number of articles [25], [137] and recently for multi material designs in
[52],[136]. One of the issues is the post processing step for designs obtained using
pure SIMP approach, i.e., the physical density is modeled using the filtered design
field and posses gray regions. Such a post processing step can be removed ether by
requiring robustness of the design performance with respect to variations in the
geometry or by obtaining black and white design with clearly defined minimum
length scale. The first approach relies on the theory presented in section 7 and is
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demonstrated for auxetic material microstructure design in [14]. The second will
be discussed in details later in this section.

Even though additive manufacturing avoids most of the design constraints,
the process requires that the manufactured structures are self supported. This
requirement can be fulfilled by constraining the size of the overhanging part. The
approach presented in [95] is essentially a post processing step and as discussed
earlier might destroy the optimality of the solution. A solution based on projections
without additional constraints is presented in [53].

In order to save material and increase the production speed in 3D printing the
production details are printed using thin walls for the surface and internal porous
filling material. Such a process imposes several challenges for topology optimiza-
tion. The first one is resolving the thin wall and the internal porous structure and
the second is parametrization of the different parts of detail during the optimiza-
tion process. A parametrization based on the standard three field representation
combined with an additional field utilizing the gradient of the physical density is
presented in [34]. In such a parametrization the filling material can be realized
using uniform material microstructure, thus avoiding the requirement for detailed
modeling inside the design. This microstructure can be designed using topology
optimization applied for material design where additional local constraints can be
easily imposed [65]. Uniform material microstructure does not utilize the addi-
tional freedom provided by the technology, i.e., the material properties can vary
spatially within the manufacturing domain. A non-uniform microstructure can be
designed using hierarchical homogenization [118], [35]. The varying microstructural
cells lack connectivity which requires modification of the design for connecting the
different microstructures. Furthermore, the homogenization theory does not ac-
count for the boundary conditions and local effects (concentrated loading, loss of
local stability). An alternative which provides spatially varying manufacturable
microstructures without any post processing is presented in [4] and [3]. The pre-
sented methodology resolves all microstructural details and accounts for boundary
conditions and localized effects.

8.1 Minimum length scale

With the exception of compliance like optimization problems the robust topol-
ogy optimization formulation requires the solution of several state problems. The
number of state problems depends on the ratio of the characteristic length of the
design domain and the correlation length of the stochastic uncertainties. It can
vary from several [147], [90] to several hundred and thousand solves [44] and [76].
The increased computational cost is often unacceptable especially for problems
where the solution of a single state problem is expensive. Therefore, an alterna-
tive solution is to impose a minimum length scale with the assumption that such
an additional constraint will provide at least to some extend robustness of the
performance with respect to uncertainties in the production process.

The first article [61] to propose an approach for imposing length scale on the
solid regions in the design domain utilizes the three field design representation
with density field obtained using filtering with finite support. The filter support
provides the smallest building block for the phase which can be viewed as a union
of an infinite number of filter support shapes. The projection threshold is set to
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η = 0 for imposing length scale on the solid phase and η = 1 for imposing length
scale on the void phase.

Imposing length scale only on one of the phases does not always guaran-
tees manufacturability [147], e.g., hinges cannot be avoided in mechanism design
Table 4 and the appearance of gray transition regions cannot be avoided Table 3.
Therefore, an explicit length scale control on both phases is necessary. Such a
mathematically rigorous approach has been proposed recently for density based
topology optimization in [166].

For density based topology optimization the minimum length scale on both
phases is imposed with the help of an additional constraints [166]. The idea is
based on the observation in [147], i.e., a length scale can be guaranteed on both
phases for the intermediate design if the topology does not change for all possible
design realizations. It should be pointed out that in case of standard robust topol-
ogy optimization formulation this feature is a result from the optimization and is
not guaranteed for all optimized designs. In the methodology proposed in [166]
it is explicitly required, hence, it is guaranteed that the final design will posses
minimum length scale.

A topology described by a continuous density field does not change if the
following two conditions are satisfied

eρ (x) ≥ ηe, ∀x ∈ Ω1 = {y ∈ Ω| ρ (y) = 1, and∇eρ = 0} (46)

eρ (x) ≤ ηd, ∀x ∈ Ω2 = {y ∈ Ω| ρ (y) = 0, and∇eρ = 0} (47)

The above conditions utilize the three field formulation. The first condition ensures
minimum length scale on the solid phase and the second condition ensures mini-
mum length scale on the void phase. The numerical implementation is discussed in
details in [166] and an example for heat sink design with imposed minimum length
scale on both phases is shown in Table 10. An approach which also is based on an
additional constraint is proposed in [114]. This alternative requires more complex
implementation however.

For level set approaches, mathematically rigorous formulations for imposing
minimum length scale have been proposed in [106] and [6]. Attempting to provide
simpler formulations several other papers [68], [161], and [153] propose a skele-
ton based idea to control the minimum length scale. The idea is to extract the
medial zone of a structure and to constrain the corresponding density values. A
shortcoming of the presented formulations is that the gradients of the medial zone
are neglected. The same is valid for the extension to density based topology op-
timization proposed in [161]. The possible shortcomings for these approaches are
discussed in [6].

As stated in [6], so far the perfect formulation for imposing minimum length
scale remains to be discovered. Several critical cases for the level set formula-
tion are discussed in [6]. For the density based formulation presented in [166],
the requirement is that the constraints are applied on some initial topology. As
demonstrated in [166] the topology can be changed by the optimization process.
A comparison [166] to compliant mechanisms optimized using the robust formula-
tion shows that for the intermediate blueprint design the performance is slightly
better than the robust design, however, for different realizations the variations
in the performance are significantly larger for the mechanism optimized only for
minimum length scale. The same effect is observed for photonic crystals in [166].
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Table 10 Heat sink design with imposed minimum length scale based on additional con-
straints given by Equation 46 and Equation 47.

Obj. 137.428

Gray Mn 3.59%

Des.

8.2 Maximum length scale

Imposing restrictions on the maximum length scale of the void phase, the solid
phase, or of both phases result in the appearance of redundant members which
provide diversification of the load path [59]. This effect can be clearly observed in
[76] where maximum length scale on the design members appears as a result of
the required robustness with respect to localized damage. Maximum length scale
on optimized designs can be required due to technological limitations, e.g., for
high rise buildings, the size of the bottom columns is limited due to difficulties
with transportation and lifting, or due to limitations in the maximal size of the
available steel sheets. Other maximum length scale requirements may be imposed
due to desired properties which cannot be included in the optimization process. An
example is requiring a specific porosity in scaffold designs which can be indirectly
imposed by setting constraints on the maximum length scale.

In [59] maximum length scale is enforced on topology optimized designs by
restricting the amount of material in the neighborhood of each point in the design
domain. This approach leads to a large number of constraints (one constraint
for each design variable). Two alternatives are proposed in [88]. The first one is
based on the design of band pass filters and is an extension of the idea presented
in [82]. Band pass filters can be designed directly in the frequency domain and
the filtering can be realized using FFT/iFFT transformations. An alternative is
to present the filtered field as the difference of two filtered fields obtained from
the same density field ρ, i.e., one obtained with larger filter radius and the other
obtained with smaller filter radius [88]. The Fourier transform of the resulting field
does not posses any values around the zero frequency which results in suppression
of the appearance of large void or solid areas in the filtered design. The proposed
technique restricts the design space and therefore does not require any additional
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Fig. 4 Illustration of erosion and dilation morphological operations (left: original image, right:
eroded image, middle: dilated image).

constraints. The main limitation is that the maximum length scale is defined only
loosely in the frequency domain.

The second alternative proposed in [88] is based on morphological operators
[109]. A figure of a house together with two images obtained by dilation and ero-
sion operations are shown in Figure 4. The erosion and the dilation operations are
applied with a rectangular box with dimensions 5 × 5 pixels. As demonstrated all
solid(black) elements with dimensions smaller than the structural element (5 × 5
box) are erased in the erosion operation and all void elements with dimensions
smaller than the structural element are erased in the dilation operation. Hence,
this behavior can be utilized in defining maximum length scale in topology opti-
mization. The maximum length scale is defined with the help of a structural ele-
ment which can take any shape, i.e., maximum length scale on a phase is defined
by the parameter/parameters necessary to define the smallest structural element
with specified shape for which the eroded/dilated design coincides with the design
domain filled entirely with the other phase. If an erosion operation with a specified
structural element is applied on a design and the result is a design domain filled
with void phase, the maximal feature in the solid phase is smaller than the speci-
fied structural element. If a dilation operation is applied on a design and the result
is that a solid phase is distributed everywhere in the design domain, the maximal
feature in the void regions is smaller than the specified structural element.

The erosion and the dilation can be modeled using Heaviside projections with
thresholds η = 0 and η = 1 and filter with finite support coinciding with the desired

structural element. The eroded design will be denoted with ρe = H
“

eρ, η = 1
”

and

the dilated with ρd = H
“

eρ, η = 0
”

. It should be noted that the erosion and the

dilation operations are applied on the filtered field eρ obtained by filtering the
physical design ρ. The conditions for ensuring maximum length scale on the solid
can be written as

Z

Ω

ρedx = 0 (48)

and the condition for ensuring maximum length scale on the void is given as

Z

Ω

(1 − ρd)dx = 0 (49)
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Taking into account the two additional constraints leads to the following modified
minimum compliance optimization problem

min
ρ

:J = f
T
u (50)

s.t. :K (ρ)u = f

ρ
T

ev ≤ εs |v|
(1 − ρd)T

v ≤ εv |v|
ρ

T · v ≤ V ∗

0 ≤ ρ ≤ 1

where εs and εv are small positive parameters used for relaxing slightly the prob-
lem. The two constraints can be combined with any of the approaches for imposing
minimum length scale or with the robust formulation. An example for topology
optimized design with maximum length scale on the solid region and minimum
length scale on both phases is shown in Figure 5

Fig. 5 MBB beam designs with maximum length scale imposed on the solid regions and
minimum length scale imposed on both phases.

For level set approaches maximum length scale control is proposed in [106]
and [6]. Another attempt based on skeleton extraction is shown in [68]. The idea
is further developed in the following two papers [161] and [153]. The main weakness
in the latter formulations is that all of them disregard the gradients of the skeleton
in the sensitivity analysis.

9 Computational cost

One of the main issues in density based topology optimization is the large number
of optimization iterations. Each of them require a system solve, which for large
scale problems can be time consuming. This is unacceptable and a large number of
solutions have been proposed in the literature. As the state solvers can take more
than 99% of the total computational time [2], the main focus has been in speeding
up their solution time. The computational time can be decreased by improving the
state solver’s complexity, by parallelization of the algorithms, by reformulation of
the optimization problems or decreasing the number of optimization steps, or by
combination of any of the previous approaches.

Traditionally the solution of the system of equations obtained by discretization
of the state problem is obtained by direct solvers due to their robustness. Their
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main limitations are the large amount of memory required during the factoriza-
tion phase, the large computational complexity, and the lack of parallel scalability.
Iterative solvers provide a solution to the above limitations, however they lack the
robustness of the direct solvers. They rely on preconditioners in order to ensure
convergence. Therefore, the weight in iterative solver development is on the con-
struction of effective preconditioners. For elliptic problems the most effective pre-
conditioners, as well as solvers, are based on multigrid techniques [142]. Multigrid
solvers are very effective for problems with smooth solutions and material prop-
erties and one of the main arguments against their use in topology optimization
has been the high contrast in the material properties of the optimized designs.
It should be pointed out that standard geometric multigrid methods are conver-
gent [142] even though the convergence rate is affected by the high contrast in
the material parameters. Their effectiveness is demonstrated in [11] and [1]. Other
alternatives which have been demonstrated to be very effective not only for elliptic
but also for wave propagation problems are domain decomposition techniques [49].
Recently contrast independent preconditioners utilizing ideas both from domain
decomposition and multigrid have been presented in [89]. The preconditioners have
been applied in the design of robust manufacturable design with full resolution of
the microstructural details [4],[3]. The solvers have provided an optimized solution
overnight on a single CPU for several million degrees of freedom. This is achieved
by reusing the preconditioners between the different realizations in the robust
formulation [13] and during the optimization between the different optimization
steps. Another example for effective recycling of preconditioners is shown recently
in [10].

The possibility of re-utilizing preconditioners between the different optimiza-
tion steps [12] is based on the fact that the design changes slowly between up-
dates. Furthermore, the solution tolerance can often be reduced for intermediate
optimization steps [11], which is a still widely unexplored area. From a SAND
(Simultaneous Analysis and Design [15]) formulation point of view the reduced
tolerance for the intermediate solves can be seen as an inexact solves to the sad-
dle point system arising from the formulation. It has been demonstrated in [119]
that the SAND formulation leads to a very robust optimization process, how-
ever, an effective preconditioners for the saddle point system is necessary to be
developed. Other computationally effective optimization formulations have been
demonstrated in [47] and [48]. They are applicable only for specific problems and
are difficult to generalize. However, the examples demonstrate clearly the potential
gains from reformulating the optimization problems.

An optimization based on the three field representation requires specification of
the Heaviside projection relaxation parameter β. The optimization usually starts
with small β close to zero, and after convergence for the selected value, the re-
laxation parameter β is increased. Such a continuation strategy may result in a
divergence of the optimization process for large increments. For small increments
the number of optimization iterations might be unnecessarily increased. Selecting
close to optimal continuation strategy is an open question. A formulation which
avoids the continuation and utilizes fixed β is proposed in [60].

The widely utilized MMA optimizer [133] is a first order optimization method
which in general leads to large number of optimization steps resulting in larger
number of system solves. A number of alternatives have been compared in [119]
and the conclusion is that general non-linear optimization solvers, like IPOPT
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[143], often outperform MMA and its globally convergent counterpart GCMMA
[134]. Hence, the best optimization solver for density based topology optimization
problems is still to be developed and is subject to active research.

10 Summary

The article aggregates the available techniques for obtaining manufacturable de-
signs from density based topology optimization processes. The recent developments
remove the post processing steps, thus, shortening the link between the design
phase and the manufacturing phase. Incorporating the manufacturing process in
the optimization formulation in some cases provides physical meaning for the orig-
inally pure mathematical entities utilized in the parametrization of the designs.
Such an extension ensures manufacturability of the obtained designs and defines
the design in terms of control parameters supplied to the manufacturer rather than
a pure geometrical description. Furthermore, it removes not only the post process-
ing step applied on the designer side but also the pre-processing manufacturing
step, e.g., optical proximity correction in photolithography and proximity effect
correction in EBL. In addition to the manufacturability, incorporating the control
parameters in the optimization provides better management of the production cost
and time. The similarities between the parametrization in density based topology
optimization and nano- and micro-scale fabrication processes have been discussed
for several of them. Further extensions and modifications remain to be seen for
others.

Ensuring manufacturability does not guarantee well performing designs due to
inevitable uncertainties in manufacturing. Hence, the optimization process needs
to account for these uncertainties in order to reduce the waste products. The the-
oretical progress in this direction has been significant with a verification example
in material design which demonstrates the removal of the post processing phases
between topology optimization and manufacturing. Other verification examples
will further strengthen the theoretical bases and will provide new development
directions. Wider acceptance in industrial settings will be ensured by solving the
high computational cost issues. A step in this direction is demonstrated here for
minimum compliance optimal designs.

Often, due to lack of information, knowledge and experience, production and
exploitation uncertainties cannot be supplied to the designer. In such cases rough
manufacturing constraints, like minimum or maximum length scale, entirely based
on engineering intuition, can be applied in the optimization process. Most of the
constraints can be formulated as a single additional constraint to the topology opti-
mization problem, thus, providing relatively cheap solutions from a computational
point of view. For compliance design the minimum length scale constraint provides
some robustness for the design performance, however, for wave propagation and
compliant mechanism optimization problems such behavior is not guaranteed. On
the other hand restricting the design space, by enforcing minimum length scale on
the design, speeds up the optimization process significantly and can be utilized to
ensure existence of solutions. The broad range of other manufacturing constraints
makes the development, implementation and coordination with already developed
techniques difficult. Their unification and the expansion of the already relatively
wide set of constraints will be a subject of future research.
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135. Svanberg, K., Svärd, H.: Density filters for topology optimization based on the
pythagorean means. Structural and Multidisciplinary Optimization 48(5), 859–875
(2013). DOI 10.1007/s00158-013-0938-1

136. Takezawa, A., Kobashi, M., Kitamura, M.: Porous composite with negative ther-
mal expansion obtained by photopolymer additive manufacturing (2015). URL
http://arxiv.org/abs/1504.07724v1

137. Tomlin, M., Meyer, J.: Topology optimization of an additive layer manufactured (alm)
aerospace part. In: The 7th Altair CAE technology conference (2011)

138. Tootkaboni, M., Asadpoure, A., Guest, J.K.: Topology optimization of continuum struc-
tures under uncertainty a polynomial chaos approach. Computer Methods in Applied Me-
chanics and Engineering 201-204(0), 263 – 275 (2012). DOI 10.1016/j.cma.2011.09.009

139. Travitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert-Demut, I., Schlier, L., Schlordt,
T., Greil, P.: Additive manufacturing of ceramic-based materials. Advanced Engineering
Materials 16(6), 729–754 (2014). DOI 10.1002/adem.201400097

140. Trefethen, L.N.: Spectral Methods in Matlab. SIAM (2000)
141. Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R.,

Kelly, D., Chen, K., Pinschmidt, R., Rolland, J.P., Ermoshkin, A., Samulski, E.T., DeS-
imone, J.M.: Continuous liquid interface production of 3d objects. Science 347(6228),
1349–1352 (2015). DOI 10.1126/science.aaa2397

142. Vassilevski, P.S.: Multilevel Block Factorization Preconditioners: Matrix-based Analysis
and Algorithms for Solving Finite Element Equations. Springer, New York (2008)
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