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ABSTRACT   

Laser speckle has received extensive studies of its basic properties and associated applications. In the majority of 
research on speckle phenomena, the random optical field has been treated as a scalar optical field, and the main interest 
has been concentrated on their statistical properties and applications of its intensity distribution. Recently, statistical 
properties of random electric vector fields referred to as Polarization Speckle have come to attract new interest because 
of their importance in a variety of areas with practical applications such as biomedical optics and optical metrology. 
Statistical phenomena of random electric vector fields have close relevance to the theories of speckles, polarization and 
coherence theory. 

In this paper, we investigate the correlation tensor for stochastic electromagnetic fields modulated by a depolarizer 
consisting of a rough-surfaced retardation plate. Under the assumption that the microstructure of the scattering surface on 
the depolarizer is as fine as to be unresolvable in our observation region, we have derived a relationship between the 
polarization matrix/coherency matrix for the modulated electric fields behind the rough-surfaced retardation plate and the 
coherence matrix under the free space geometry. This relation is regarded as entirely analogous to the van Cittert-Zernike 
theorem of classical coherence theory. Within the paraxial approximation as represented by the ABCD-matrix formalism, 
the three-dimensional structure of the generated polarization speckle is investigated based on the correlation tensor, 
indicating a typical carrot structure with a much longer axial dimension than the extent in its transverse dimension.  

Keywords: coherence, polarization, polarization speckle, coherence tensor 
 

1. INTRODUCTION  
Polarization and coherence are usually considered as the most important statistical properties of an optical field and have 
been studied intensively in the past decades, especially after the invention of the laser light source 1-5. In recent years, 
optical beams with non-uniform distributed polarization states have attracted more and more attention. Therefore, a 
concept named polarization speckle has been introduced 6,7 to distinguish it from the conventional scalar laser speckle 
field with a uniform polarization. At the same time, the vectorial electromagnetic field description in terms of a 2 2×  
beam coherence-polarization matrix 8,9 has shown to be a valuable tool in order to investigate the evolution of 
polarization and coherence states during propagation together with their spatial distribution10-15, especially after the setup 
of the unified theory of coherence and polarization16,17.  

Relevant researches like recent hot spot of the vectorial extension of conventional Van Cittert-Zernike theorem18,19 also 
raise demands of describing this incoherent field with spatially non-uniformly distributed polarization state. The matrix 
form, tensor version extension of the conventional Van Cittert-Zernike theorem is first described by Gori8,20 in the 
temporal domain, and then similar work in the spectral domain by Ostrovsky 19. Further research work about the 
variation of the degree of coherence and degree of polarization within this field was developed both theoretically18,21,22 
and experimentally23 soon after.  

                                                 
∗ w.wang@hw.ac.uk Tel: +44 (0) 131 451 3141; Fax: +44 (0) 131 451 3129 

Holography, Diffractive Optics, and Applications VII, edited by Yunlong Sheng, Chongxiu Yu, 
Changhe Zhou, Proc. of SPIE Vol. 10022, 100222F · © 2016 SPIE

CCC code: 0277-786X/16/$18 · doi: 10.1117/12.2247856

Proc. of SPIE Vol. 10022  100222F-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/11/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

 

In this paper
extremely rou
randomly spa
incoherent an
van Cittert-Z
modulated fie
theorem for a

2. GENE
SP

Similar to the
by a rough-su
modulation an

Figure 1. 
extremely

As a kind of 
light with dif
between two 
the stochastic
The field vec
coherence ma

 

where the ast
the degree of 

 

and 

r, we will an
ugh-surfaced 
atial depolari
nd partially po
Zernike theore
eld’s propagat
an arbitrary op

ERATION 
PATIALLY
e system once
urfaced retard
nd propagatio

Schematic of th
y rough-surface

polarization-d
fferent polariz
pointwise ort

c thickness. Th
ctor ( , )t =E r
atrix2,17  

terisk * mean
f coherence η

nalyse the thr
retardation p

ization was a
olarized, and 
em. Within th
tion will be d

ptical system u

OF A SPA
Y INDEPE
e applied to ex
dation plate 26

on. 

he setup for obt
d retardation pl

dependent pha
zations and p
thogonally po
herefore, the 
{ ( ), ( )}x yE Er r

( 1 2,W r r

ns complex co
  and the degr

η

ree-dimension
late, by which
achieved. Par
behaves like 

he framework
erived in orde
under the para

ATIALLY I
ENDENT R

xamine the co
, the optical p

taining the degr
late and ABCD

ase-modulatin
propagation di
olarized compo
spatially rand
}    denotes e

)
( )
( )

*
1

2 *
1

x

y

E E

E E

⎛
⎜=
⎜
⎝

r

r

onjugate, and 
ree of polariza

1 2( , )
tr

η =r r
W

nal (3-D) stati
h random de-

rticularly, the 
an ideal seco

k of complex
er to illustrate
axial approxim

INCOHER
ROUGH-SU
oherence and 
propagation sy

 

ree of polarizati
 optical system

ng optical dev
irections, the 
onents of the 

dom depolariza
electric field, 

( )
( )

*
2

*
2

xx

x y

EE

E E

r

r

angular brack
ation P  are ex

1 2

1 1

( , )
( , ) (
tr

tr
W r r

W r r W

istics of the 
-correlation to

modulated f
ondary source

ABCD theo
e the generaliz
mation. 

RENT POLA
URFACED

polarization p
ystem shown 

ion and coheren
ms. 

vice possessing
rough-surfac
incident field
ation is introd
and its statis

( ) ( )
( ) ( )

21

21

y

y

E

E

⎞
⎟
⎟
⎠

rr

rr

kets L  deno
xtracted from

2 2, )r r

polarization s
o all the field
field next to 
 for evaluatin
ry24,25, the an

zed tensor ver

ARIZATIO
D RETARD

properties of t
in Fig 1 is ut

nce of field prop

g different ref
ced retardation
d, and this pha
duced, as well
stical properti

ote ensemble 
these matrix 

speckle gener
d components 

the plate be
ng the tensor 
nalytical desc
rsion of Van C

ON SPECK
DATION PL

the electric fie
tilized to asse

pagating throug

fractive indice
n plate causes
ase offset is p
l as the decorr
ies is specifie

average. At t
elements17: 

rated from an
together with
comes spatia
version of the

cription of the
Cittert-Zernike

KLE BY A 
LATE 
eld modulated

ess the speckle

 
gh 

es for inciden
s phase offse

proportional to
relation effect
ed via a 2 2×

(1) 

the same time

(2) 

n 
h 
al 
e 
e 
e 

d 
e 

nt 
et 
o 
t. 
2  

e, 

Proc. of SPIE Vol. 10022  100222F-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/11/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

 

 
[ ]

1 2

2

)4det ( ,( ) 1 .
( , )

P
tr

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

W
W

r rr
r r

 (3) 

In the above equations, tr  and det  indicate the trace and determinant of the matrix, respectively.  

Here, we define a vector ( ) { ( ), ( )}i i i
x yE E=E r r r for the incident field before, and ( ) { ( ), ( )}t

x y
t tE E=E r r r  for the 

transmission field after the depolarizer presented by the superscripts i  or t  respectively. The depolarizer plate is 
perpendicular to the propagation axis z , and is assumed to hold a constant amplitude transmittance equal to unity. 
Different effective phase delays ( ) ( ) ( 1)m md k nϕ = −r r , ( , )m x y=  will be introduced to the x̂  and ŷ  components of the 
incident fields, due to the refractive indices mn ( , )m x y=  assumed different for the orthogonally polarized wave 
components. While the local thickness ( )d r  is varying across the plate, the relative phase shift between two orthogonal 
components  ) ( )( y xn nk dΔ = − r  will also fluctuate randomly. Although the discussion presented here is for a transparent 
structure, it will also be applicable for reflective models. 

To express the incident and transmission fields’ relationship = itE E T , the transmission matrix T  is cited: 
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and thus, the statistical connection between the coherence matrices of the incident field ( , )i
1 2W r r and modulated field 

( , )t
1 2W r r  is demonstrated by15,27: 

 †( )( , ) ( ) ,( , )t i=1 2 1 1 2 2r r T r r r T rW W   (5) 

where †  denotes the Hermitian conjugate.  

By utilizing the mutual independence of the incident field’s coherence property and the depolarizer’s correlation 
property, the mutual coherence matrix ( )1 2,tW r r  in Eq.(5) could be rewritten as shown below to illustrate the statistical 

relation between the modulated field tE at points  1r  and 2r 2,27: 
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It is easily noticed that the ensemble average terms in all matrix elements of Eq. (6) is determined by the corresponding 
characteristic function of the random variables 1 2 1 2( , ) ( ) ( )m l mlϕ ϕ ϕ= −Δ r r r r , ( , = , )l m x y  which are assumed to obey 
zero-mean Gaussian statistics and could thus be expressed by  

 { }1 2

2 2

1

2 2
2

2

( 1) ( 1) ( )
exp ( 1)( 1) ( )( , ) = exp +

2
( )l m

l mlm

k n n d
j k n n d dϕ
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⎡ ⎤− + −⎣

⎨
⎦ − − ⎬
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r
r rr r ，  (7) 

as indicated in our previous analysis of polarization speckle generated by the rough-surfaced retardation plate depolarizer 
26. In addition, the zero mean surface thickness ( )d〈 〉r will be tacitly neglected in deriving Eq. (7), because it has no 
effect on the polarization state scrambling of the incident beam. We also take advantage of the isotropic Gaussian 
assumption of the surface thickness correlation function with surface thickness variance 2

dσ  and correlation length dr : 
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 { }22 2
1 2( ) ( ) exp ,d dd d rσ= − Δr r r   (8) 

where 1 2Δ = −r r r . In the case of large surface roughness and small lateral correlation length to obtain a phase difference 

greater than 2π , i.e., 2 22 (2 )(n 1)( 1)l m dn k σ π>>− − ,( , = ,l m x y ), further progress can be made in a similar way used to 
describe the Gaussian rough-surfaced retardation plate 3,5,26. Therefore, we have 
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describing the correlation properties of the polarization speckle introduced by the surface features of the birefringent 
plate 26. As a result, the corresponding degree of coherence tη  and degree of polarization ( , )tP r r  17 of primary interest 
to evaluate the polarization and coherence modulation of the field can thus be obtained. 

So far, we have derived the mathematical foundation for further discussion on incoherent polarization speckle’s 
propagation through a complex ABCD optical system under the paraxial approximation. Particularly, for an extremely 
rough-surfaced retardation plate depolarizer discussed here, rapid varying thickness, small lateral correlation length dr  
together with large fluctuation covariance dσ  generating fully developed speckle, a Dirac impulse delta approximation 
shown below will be introduced to the incoherent polarization speckle’s mutual coherence matrix elements in Eq (9) to 
facilitate the evaluation of the Fresnel-integral for complex ABCD systems: 
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In derivation of the above equation, we took advantage of the fact that it is acceptable to regard a narrow Gaussian 
function as a Dirac delta function: 

0

2 22| |limexp{ } ( )/
ϑ

ϑ πϑ δ
→

− Δ ≈ Δr r , and thanks to this, further mathematical 

derivation for an analytical solution for the propagation of the coherence matrix through complex ABCD matrix 
becomes valid. 

3. CHANGES IN THE DEGREE OF POLARIZATION AND THE DEGREE OF 
COHERENCE ON PROPAGATION 

We now have the necessary tools to evaluate the propagation of the coherence matrix through an optical system. By the 
same time, the evolution of the coherence matrix for a spatially incoherent field with polarization variation becomes a 
general demonstration to provide physical insight into the vectorial Van Cittert-Zernike theorem. Under the paraxial 
approximation, the mutual coherence matrix ( , , )o zΔ1 2ρ ρW  for the field at 1p in first observation plane after passing 
through a complex ABCD optical system and the field at 2p  in another plane displaced by a distance zΔ  is connected to 
the mutual coherence matrix of the integral formulation 15,26: 

 ( ) ( )*
1 2 1 2 22( , , ) ( , ) , ,,o t dG dz G

±∞

=Δ ∫∫1 2 1 1 2 1W ρ ρ ρ r r rW r r ρ r   (11) 

where the Green’s function is given by 

 ( ) ( ){ }2 2, exp .22 2
jk jkG A DB Bπ

= − − − ⋅ +ρ ρr ρr r  (12) 

In the equation above, A, B, and D are the elements of the ABCD matrix M  for the whole optical system under 
consideration, which is determined by the multiplication of the matrices for all the individual optical components, i.e., 
the lenses, free space propagations and aperture 24,25, and the mutual propagation distance is also characterized in this 
ABCD matrix elements. It is tacitly assumed in using Eq. (12) that the refractive indices in the input and output plane are 
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identical. In addition, for the discussed system in this paper, we have the relationship between the ABCD matrices 1M
for propagation to plane of  1ρ  and 2M for propagation to plane of 2ρ  as: 

 2 1

1
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M M   (13) 

Hence, we could rewrite the coherence matrix after travelling through the ABCD system by substitution of Eq.(10) into 
Eq. (11) and using the sifting property of the Dirac delta function28,29: 

 ( ) ( ) ( )*
1 2 2, , ( ) , ,o tz G G d

±∞

Δ = ∫1 2 1 rρ ρ ρ rρ rW J r  , (14) 

where the modified polarization matrix ( )tJ r  for general incoherent source is defined as 
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and the relationship between the revised polarization matrix tJ and the coherence matrix tW  becomes
( ), ( ) ( )t tδ= ΔW r r r J r . Equation (14) is considered the generalized version of the tensor counterpart of the scalar Van Cittert-Zernike theorem for 

complex ABCD system under the paraxial approximation. It is evident that the mutual coherence of the resulting field is 
determined by the auto-coherence of the incoherent source field. This is consistent with some cases discussed before, 
like the free space systems 29,18 and the Fourier system 23, when we substitute the relevant ABCD parameters and 
polarization matrix tJ  for given systems into Eq.(14). 

Further deterministic analysis is impossible without knowing tJ . For demonstration purpose only, and without loss of 
generality, we will confine the following discussion for a specific incident field that is a Gaussian beam just in front of 
the depolarizer, and linearly polarized by an angle θ  with respect to the x̂  axis. The mutual coherence matrix is given 
by 
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where oI  is the on-axis intensity of the incident field. On substituting from Eq.(16) into Eq.(10), we obtain the 
expressions for the coherence matrix for the initially linearly polarized beam just behind the depolarizer: 
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As a consequence of the analytical integral in Eq. (14) for tW  shown in Eq.(17), the propagated coherence matrix for 
fields in two observation planes with a displacement zΔ  is given by: 
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where ( ), ,W zΔ1 2ρ ρ is: 
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The influence of a given intensity radius and radius of curvature of the incident beam can easily be incorporated by 
including a limiting aperture and a lens, respectively, as the first element(s) in the optical train establishing the ABCD 
matrix. The incident power should be compensated as well, while it, as a constant, is important in the evaluation of most 
parameters 25. 

The analytic expressions in Eqs. (18) and (19) thus facilitate the calculation of the spatial coherence and degree of 
polarization for a given depolarizer illuminated with linearly polarized light. 

A representative example for a simple field propagation system, here a free space propagation system with a preceding 
aperture of size sr  modelling the illuminating spot size as shown in Fig. 1 will be employed. The point 1ρ  is in the first 
observation plane fixed with a propagation distance z  to the rough-surfaced retardation plate, and the corresponding 
ABCD matrix 1M  is given by: 

 1

1 /
/ 1
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R

jz z z
j z

−⎛ ⎞
⎜ ⎟−⎝

=
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M ，  (20) 

where Rz  is the Rayleigh range 2 /2R sz kr=  for an aperture of size sr . At the same time, the point 2ρ  is in another plane 
moving along the propagation axis, and its distance to the first observation plane is denoted as zΔ . 

By substituting the ABCD matrix elements into Eq. (18) and (19), the propagated coherence matrix for such system 
could be calculated to assess the evolution of the degree of polarization and the degree of coherence during free space 
propagation. Based on this, we obtain the expression for the degree of coherence and degree of polarization for the 
resultant field: 
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For convenience of illustration, the variables in the above equations are normalized as: / Rz z z′ = , /z z z′Δ = Δ  and 
/ sr′ =ρ ρ . As a result, a partially coherent and polarized field is generated from an incoherent source after propagation 

as implied in Eq. (21) and (22). The degree of polarization of this propagated field is independent of the location ′ρ  and 
invariable during propagation, and this property of consistent polarization state is in accordance with earlier discussions 
for free space propagation 18,19.  Especially, in the case of z → ∞ , denoting a far propagation distance, 

( ), 1o zη Δ →1 2ρ,ρ  results in a coherent field, which is consistent with the prediction of the vectorial van Cittert-Zernike 
theorem.  

 

 
 

Figure 2. Three-dimensional degree of coherence distribution for polarization speckle as a function of the lateral position 
separation normalized by the spot size and the longitudinal displacement measured in units of propagation distance. 

 

In metrology, the 3D speckle shape is usually the parameter in which we are interested. For the special case of a typical 
on axis speckle, its longitude and lateral sizes are respectively determined by the amplitude of degree of coherence for 
points 2 0= =1ρ ρ with displacement zΔ : 
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and the amplitude of degree of coherence for points 2 / 2= − = Δ1ρ ρ ρ  symmetrically located about the z-axis in the same 
plane: 

 

2

2

, ,0 = exp
42 2

o zη

⎧ ⎫Δ
⎪ ⎪′Δ Δ ⎪ ⎪⎛ ⎞− −⎨ ⎬⎜ ⎟

⎝ ⎠ ⎪
⎩ ⎭

′

⎪ ⎪

′

⎪

′
ρ

ρ ρ  . (24) 

To provide the phenomena described above, we plotted the amplitude of ( , , )o zη Δ −Δ Δρ ρ   as shown in figure 2, 
indicating a typical bullet-shaped structure from its contours. The lateral speckle size, i.e. the lateral coherence length of 
the resultant field can be extracted from the width of the Gaussian term in Eq. (24)  as 2 /s Rzr z , which will increase 
with the propagation distance. The fact of an increasing longitudinal coherence length for further propagation is 
indicated in Eq. (23), as well. This significant dependence of the increasing speckle volume on the propagation distance 
is in accordance with the van Cittert-Zernike theorem. Finally, with the help of complex ABCD theory, we verified that 
the field’s steady polarization property is also valid for more general propagation systems. 

 

4. CONCLUSIONS 
In this paper, we investigated the 3-D statistical properties of polarization speckle, especially the polarization and 
coherence of the electromagnetic fields modulated by a depolarizer consisting of a rough-surfaced retardation plate. The 
coherence matrix for the modulated electric fields has been derived sharing a formal analogy to the van Cittert-Zernike 
theorem for scalar optical fields. Within the framework of complex ABCD formalism, the propagation property of the 
mutual coherence matrix has been investigated to reveal the evolution of the polarization and coherence properties 
associated with the polarization speckle. Meanwhile, the three-dimensional structures of the generated polarization 
speckle have been studied from the mutual coherence matrix, indicating a typical carrot structure with a much longer 
axial dimension than the extent in its transverse dimension. Hence, this paper can provide a practical insight into a wide 
class of partially coherent electric fields with random polarization. For possible experimental study, a novel optical 
system combining the polarization imaging and speckle imaging can be used to verify the predicted phenomena on 3D 
polarization speckle. 
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