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Abstract

Knowledge of the thermodynamic properties and phase equilibria of mixtures contain-
ing carbon dioxide (CO

2
) is important in several industrial processes such as enhanced

oil recovery, carbon capture and storage, and supercritical extractions, where CO
2
is

used as a solvent. Despite this importance, accurate predictions of the thermodynamic
properties and phase equilibria of mixtures containing CO

2
are challenging with clas-

sical models such as the Soave-Redlich-Kwong (SRK) equation of state (EoS). This is
believed to be due to the fact, that CO

2
has a large quadrupole moment which the

classical models do not explicitly account for.

In this thesis, in an attempt to obtain a physically more consistent model, the cubic
plus association (CPA) EoS is extended to include quadrupolar interactions. The new
quadrupolar CPA (qCPA) can be used with the experimental value of the quadrupole
moment and with or without introducing an additional pure compound parameter. In
the absence of quadrupolar compounds qCPA reduces to CPA, which itself reduces to
SRK in the absence of association.

As the number of adjustable parameters in thermodynamic models increase, the pa-
rameter estimation problem becomes increasingly complicated due to parameter iden-
ti�ability issues. In an attempt to quantify and illustrate these issues, the uncertainties
in the pure compound parameters of CO

2
were investigated using qCPA as well as

di�erent CPA approaches. The approaches employ between three and �ve param-
eters. The uncertainties in the parameters were propagated to physical properties,
vapor liquid equilibria (VLE), and liquid-liquid equilibria (LLE) using Monte Carlo
simulations.

The uncertainties in the pure compound parameters were found to be negligible for
modeling approaches which employed three adjustable parameters. For modeling ap-
proaches with more than three adjustable parameters, however, the uncertainties in
the pure compound parameters were signi�cant. As a result the propagated errors were
substantial for certain output properties. The uncertainties in VLE were for instance
much larger when qCPA was employed with four parameters rather than three. The
uncertainty analysis indicated that the parametrization of multi-parameter models is
at least as important as the speci�c model term.

The new qCPA and several CPA approaches were extensively evaluated for their abil-
ity to predict the thermodynamic properties of pure CO

2
. The predictions of these

pure compound properties were satisfactory with qCPA, although similar predictions
were achieved with the other CPA approaches. The model was subsequently evaluated
for its ability to predict and correlate the binary VLE and LLE of mixtures contain-
ing CO

2
and n-alkanes, water, alcohols, or quadrupolar compounds. For these binary

mixtures qCPA appeared to o�er systematically improved predictions and correlations
as compared to the cases where quadrupolar interactions were ignored. The improve-
ments were particularly pronounced for mixtures of CO

2
and hydrocarbons where the

model is almost fully predictive.
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Finally qCPA was evaluated for its ability to predict the phase equilibria of multi-
component mixtures containing CO

2
and n-alkanes, water, and/or alcohols. A single

binary interaction parameter was employed in qCPA for most binary combinations.
Both qCPA and the best CPA approaches typically performed satisfactorily and pre-
dicted the general behavior of the systems, but qCPA used fewer adjustable parameters
to achieve similar predictions.

It has been demonstrated that qCPA is a promising model which, compared to CPA,
systematically improves the predictions of the experimentally determined phase equi-
libria between binary and ternary mixtures containing CO

2
and other non-quadrupolar

compounds. However, for mixtures containing two quadrupolar compounds, or a
quadrupolar and polar compound, considerable uncertainty remains as to whether
these mixtures are handled in the best possible way. When binary interaction param-
eters were employed to correlate experimental phase equilibria data, both qCPA and
CPA yielded similar correlations - and predictions in the multicomponent case.



Resumé

Kendskab til de termodynamiske egenskaber og faseligevægte, for blandinger som in-
deholder carbondioxid (CO

2
), er vigtigt indenfor �ere industrielle processer så som

forbedrede olieindvindingsmetoder, indfangning og lagring af CO
2
eller superkritisk

ekstraktion, hvor CO
2
benyttes som et opløsningsmiddel. På trods af dette er klassiske

modeller, så som Soave-Redlich-Kwong (SRK) tilstandsligningen, stærkt begrænsede
når det kommer til at forudsige faseopførselen for sådanne blandinger. Grunden til det-
te formodes at være, at CO

2
har et stort kvadrupolmoment, som de klassiske modeller

ikke tager eksplicit højde for.

I denne afhandling, i et forsøg på at opnå en mere fysisk korrekt model, er kubisk plus
association (CPA) tilstandsligningen blevet udvidet til at inkludere kvadrupole inter-
aktioner. Den nye kvadrupolære CPA (qCPA) kan benyttes med den eksperimentelle
værdi af det kvadrupolære moment og med eller uden endnu en renkomponentspara-
meter. I blandinger, som ikke indeholder kvadrupolære komponenter, reducerer qCPA
til CPA, ligesom CPA selv reducerer til SRK, i blandinger uden komponenter der
danner hydrogenbindinger.

Når antallet af justerbare parametre i termodynamiske modeller stiger, bliver det me-
re og mere kompliceret at estimere og identi�cere modelparametrene, da parametrene
ikke længere kan betragtes som unikke. I et forsøg på at kvanti�cere og illustrere disse
problemer undersøges usikkerhederne i carbondioxids renkomponentsparametre både
med qCPA og med forskellige modelleringsstrategier for CPA. Modelleringsmetoderne
benytter mellem tre og fem renkomponentsparametre. Ved brug af Monte Carlo simu-
leringer videreføres usikkerhederne i renkomponentsparametre til fysiske egenskaber,
gas-væske ligevægte og væske-væske ligevægte.

For modelleringsmetoder med tre renkomponentsparametre viste usikkerhederne sig
at være ubetydelige. For modelleringsmetoder med mere end tre parametre viste usik-
kerhederne sig derimod at være signi�kante. Som et resultat heraf var de videreførte
usikkerheder betydelige for visse egenskaber. Usikkerhederne i gas-væske ligevægte var
for eksempel meget større når qCPA blev benyttet med �re renkomponentsparametre
end med tre renkomponentsparametre. Usikkerhedsanalysen indikerede, at parame-
triseringen af modeller med mere end tre renkomponentsparametre er mindst lige så
vigtig som selve modellen.

Den nye qCPA tilstandsligning, og indtil �ere CPA modelleringsmetoder, blev først
brugt til at forudsige de termodynamiske egenskaber for ren CO

2
. Forudsigelserne af

disse renkomponentsegenskaber var tilfredsstillende med qCPA, skønt lignende forud-
sigelser blev opnået med de andre CPA modelleringsmetoder. Modellen blev efterføl-
gende evalueret for dens evne til at forudsige og korrelere binære gas-væske ligevægte
samt væske-væske ligevægte for CO

2
-blandinger indeholdende n-alkaner, vand, alkoho-

ler eller forskellige kvadrupolære komponenter. Sammenlignet med når kvadrupolære
interaktioner blev ignoreret opnåede qCPA systematisk forbedrede forudsigelser og
korrelationer. Disse forbedringer var særdeles udtalte for blandinger, som indeholdt
CO

2
og kulbrinter, hvor modellen næsten var fuldstændig forudsigende.
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Til sidst blev qCPA evalueret for dens evne til at forudsige faseligevægte for multi-
komponentsblandinger, som indeholdt CO

2
samt n-alkaner, vand eller alkoholer. En

binær interaktionsparameter blev benyttet i qCPA for de �este binære undersystemer.
Både qCPA og de bedste CPA modelleringsmetoder forudsagde den generelle opførsel
af multikomponentsblandingerne og gav typisk tilfredsstillende forudsigelser for lige-
vægten mellem komponenterne, men qCPA skulle bruge færre binære parametre for
at opnå de samme forudsigelser.

Det er blevet vist, at qCPA er en lovende model, som i forhold til CPA, systema-
tisk forbedrer forudsigelserne af de eksperimentelt observerede faseligevægte mellem
forskellige binære eller ternære blandinger, som indeholder CO

2
og andre komponen-

ter, der ikke selv er kvadrupolære. Der er dog betydelige usikkerheder for hvorvidt
blandinger som indeholder to kvadrupolære komponenter, eller en kvadrupol og en
polær komponent, bliver behandlet optimalt. Når den binære interaktionsparameter
blev korreleret til eksperimentelt ligevægtsdata, gav qCPA og CPA dog næsten ens
korrelationer - og næsten ens forudsigelser for multikomponentblandinger.
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CHAPTER1
Introduction

Carbon dioxide (CO
2
), as a solvent or refrigerant is considered an environmen-

tally harmless chemical. Nevertheless, CO
2
has received a signi�cant amount

of negative attention in recent years due to its status as a greenhouse gas, and
the fact that the amount of CO

2
in the atmosphere continues to rise. Between

1850 and 2015 the concentration of CO
2
in the atmosphere has increased from

approximately 280 ppm to an annual mean of about 400 ppm [1�3]. The atmo-
spheric concentration of CO

2
has been rising with increased rapidity since the

1950's [1]. Its increase is believed to be largely due to anthropogenic emissions,
resulting primarily from a world-wide increased energy consumption since the
industrial revolution.

The International Energy Agency (IEA) have estimated the total worldwide
emission of CO

2
from the combustion of fossil fuels to be about 32.2 Gigatonnes

in 2013 [2]. According to the IEA, the largest share comes from electricity
and heat generation, which accounts for about 42% of the total CO

2
emission.

Transport accounts for about 23% and industrial processes account for about
19% of the total CO

2
emission [2]. Alone in Denmark, more than 40 million

tonnes of CO
2
is emitted per year, about 45% of the emitted CO

2
originates

from the energy industry [4]. Renewable energy sources, such as solar and
wind, may be more sustainable than fossil fuels in the long term, however, these
technologies are not yet widespread nor developed enough to fully replace fossil
fuels. As a result of this, there will be a long transition period during which
both renewable and hydrocarbon-based energy sources must coexist. Moreover,
a considerable amount of the emitted CO

2
comes as a by-product from industrial

processes, particularly cement production, and cannot readily be avoided.

Transition technologies are thus needed, which can limit the emission of CO
2
to

the atmosphere, at least until such a time when renewable energy sources can
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replace fossil fuels. One such potential technology is carbon capture and storage
(CCS). The reduction of the CO

2
emission by e�ective CCS is considered one

of the '14 Grand Challenges for Engineering in the 21st century' [5]. In the
CCS process a CO

2
rich mixture is captured from an emission source, such as a

power or cement plant, transported to a storage point and ultimately stored in
an underground geological formation. These steps should prevent the emission
of CO

2
to the atmosphere. Proper CCS requires accurate knowledge of various

thermodynamic properties as well as the phase behavior of mixtures containing
CO

2
and hydrocarbons, water and/or other �uids such as alcohols and glycols

[6].

Various techniques exist for capturing CO
2
from �ue gas. Chemical absorption

of CO
2
, using alkanolamines such as monoethanolamine as a solvent, are prob-

ably the most mature technique for CO
2
capture from �ue gas. The technique,

however, is still very expensive, primarily due to a high energy consumption.

Gas hydrates (or clathrate hydrates) are ice-like crystalline compounds formed
by hydrogen bonded water and stabilized by the encapsulation of small guest
molecules, such as CO

2
and small hydrocarbons, within the water lattice [7].

Hydrates are known to be a nuisance in the petroleum industry, as they can
cause blockage in natural gas and oil pipelines. Hydrate formation is prevented
industrially by the addition of inhibitors such as methanol or mono-ethylene
glycol (MEG) [8]. On the other hand CO

2
hydrates also constitute a possible

new method for CO
2
capture; For instance a new technique for CO

2
capture

from �ue gases, which exploits the formation of gas hydrates, has recently been
patented [9�11]. The operating pressure of the technique, however, is currently
too high to be economically pro�table. The technique could be improved by
using speci�c thermodynamic hydrate promoters, such as tetrahydrofuran and
cyclopentane [12], to reduce the operating pressure. Screening for the optimal
promoters, however, is expensive and time consuming. Rigorous models for
CO

2
and CO

2
mixtures, which are accurate over a wide range of conditions

and chemicals (i.e. hydrate formers or inhibitors) would greatly facilitate this
process.

Modeling the thermodynamic properties and phase equilibria of CO
2
, both as

a pure �uid and in mixtures containing CO
2
is also of high importance in sev-

eral other industrial applications; In the chemical industry, for instance, CO
2
is

considered an excellent solvent for supercritical extraction. Mixtures of CO
2

+ hydrocarbons and CO
2
+ alcohols have received particular attention, as

they behave as co-solvent pairs, e.g. for the extraction of organic compounds
from aqueous solutions [13, 14]. The phase equilibria of mixtures containing
CO

2
, hydrocarbons, water, and glycols are also of particular importance in the

petroleum and chemical industry [13, 14], where CO
2
is injected into reservoirs

to enhance oil recovery.
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3

1.1 Thermodynamic Modeling of Mixtures Con-

taining CO2

Pseudo-empirical equations of state for pure �uids, such as the Span andWagner
Equation of State (EoS) for CO

2
[15], are typically accurate down to experi-

mental error, at least in the temperature and pressure range for which they have
been developed. Unfortunately such equations of state are di�cult to extend to
multicomponent systems.

Despite the importance of mixtures containing CO
2
, accurate thermodynamic

modeling of such mixtures is a challenge for most classical equations of state.
The reason for this is believed to be that CO

2
has a large quadrupole moment,

i.e. a concentration of charges at four separate points in the molecule, which
result in some directional interactions (see chapter 4). The large quadrupole
moment of CO

2
is for instance believed to be the reason for the the low tem-

perature azeotrope observed for the vapor liquid equilibrium (VLE) between
mixtures of CO

2
and ethane and the reason, along with size asymmetry, for the

liquid liquid equilibrium (LLE) between CO
2
and heavy hydrocarbons.

Cubic equations of state such as the Soave-Redlich-Kwong (SRK) EoS [16] does,
however, not take quadrupolar interactions explicitly into account and e�ec-
tively treat CO

2
as an inert compound. Even in a modern equation of state

such as the Statistical Association Fluid Theory (SAFT) [17�19] only disper-
sive forces are usually considered for CO

2
. The continued use of these models

may be attributed to the fact that several binary mixtures, such as CO
2
+

hydrocarbons, are described quite well when a single, relatively large (and of-
ten temperature dependent), binary interaction parameter is correlated to the
experimental data. However, the predictive nature of the models (for binary
mixtures) is lost. Moreover, it is uncertain whether these large binary interac-
tion parameters can be used to accurately predict e.g. excess properties or the
equilibria of multicomponent mixtures.

Modeling the phase behavior of mixtures containing CO
2
and associating mix-

tures can be a challenge with traditional equations of state. For instance, the
SRK EoS cannot correlate the minimum in the water concentration of the CO

2
-

rich vapor phase for the binary CO
2
+ water mixture, even when a large binary

interaction parameter is employed. The minimum can be modeled by advanced
association models such as the cubic plus association (CPA) EoS (developed
by Kontogeorgis et al. [20]) or SAFT [17�19], but only if CO

2
is assumed to

be self-associating or solvating (i.e. a molecule with either electron donor or
electron acceptor sites, see chapter 3).

To model mixtures containing CO
2
more accurately with models that can ac-

count for association, a pragmatic approach is thus to treat CO
2
either as a

self-associating or solvating molecule. Especially the latter approach is not en-
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tirely without justi�cation as there is some evidence for strong Lewis acid-Lewis
base interactions between mixtures of CO

2
and water or alcohols, and it may be

reasonable to model these interactions by assuming CO
2
to be solvating. Unfor-

tunately the solvation approach does not improve the predictions for mixtures
of CO

2
and hydrocarbons. The theoretically less justi�ed assumption, where

CO
2
is assumed to be self-associating, does improve these predictions. These

pragmatic procedures often work well resulting in good correlations with small
interaction parameters [14, 21�23]. The improvement, however, is often ob-
tained at the cost of additional pure component parameters and, in some cases,
an extra adjustable parameter is employed to correlate the binary mixtures.

Alternatively, to explicitly account for the quadrupolar interactions several
quadrupolar terms have been proposed within the SAFT framework. These
terms are typically based on a perturbation theory developed from statistical
mechanics by Stell and co-workers [24�27]. Gross [28], for instance, developed
a quadrupolar expression, which was included in the Perturbed-Chain SAFT
(PC-SAFT) framework. The quadrupolar term employed the experimental
quadrupolar moment and did not introduce additional adjustable parameters.
Economou and co-workers [29�31] also extended PC-SAFT with two quadrupo-
lar expressions; a simpli�ed and a non-simpli�ed term. The simpli�ed term,
which seems to be the one used most often, employs an additional adjustable
parameter (as compared to PC-SAFT). Finally NguyenHuynh et al. [32] intro-
duced a quadrupolar term to a group contribution SAFT version. More detail
about the quadrupolar approaches may be found in Chapter 4.

Although the quadrupolar models are not without their limitations (see chapter
4), compared to the base SAFT variant the addition of a quadrupolar term
appears to result in improved predictions and correlations (smaller interaction
parameters) for phase equilibrium calculations of binary VLE. Inspired by the
recent advances within the SAFT-family, and in an e�ort to obtain a physically
more correct and predictive model, a quadrupolar term is proposed in this thesis
and combined with the well-known CPA EoS. The performance of the new
equation of state (herein known as quadrupolar CPA (qCPA)) is thoroughly
evaluated in this work, especially for equilibrium calculations of both pure CO

2

and mixtures containing CO
2
.



CHAPTER2
Aim and Scope of this Work

This thesis is part of a grant funded by the Danish Council for Independent
Research | Technology and Production Sciences (FTP) under the project CO

2

Hydrates - Challenges and Possibilities. The objectives of the overall FTP
project is to acquire a solid experimental and theoretical basis for understanding
and addressing the problems of CO

2
, CO

2
mixtures and CO

2
hydrates, for the

possible utilization of hydrate formation as a CO
2
capture technology.

2.1 Speci�c Objectives

To understand and address the challenges and potential opportunities of CO
2

containing mixtures, accurate models, valid over a wide range of conditions and
chemicals, are necessary. The present PhD project thus focuses on the thermo-
dynamic modeling of CO

2
and CO

2
mixtures. The base model to be employed

for this task is chosen to be the CPA EoS. In an extensive study Kontogeorgis
and co-workers have previously systematically investigated the applicability of
CPA for modeling mixtures containing CO

2
[14, 33�36] (see Chapter 3). Based

on this study a number of pragmatic approaches for CO
2
mixtures was sug-

gested. Some of the approaches lead to excellent phase equilibrium results, at
the same time, however, the approaches typically lead to an increase in the
number of adjustable parameters, possibly due to the fact, that quadrupolar
forces was not explicitly taken into account.

CPA in its current form does not account for quadrupolar (or polar) forces.
To obtain and evaluate such a physically more consistent and, hopefully, more
predictive model, the CPA needs to be modi�ed so that it can account for
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quadrupolar interactions. This let to a set of speci�c objectives for this PhD
project, which we will attempt to provide solutions for throughout the thesis.

The following objectives should be addressed:

• Within the framework of the CPA, develop a thermodynamic model which
extends the CPA to also include quadrupolar interactions (qCPA).

• While the model should, in principle, be applicable to any mixture con-
taining quadrupolar molecules, particular emphasis should be on mixtures
containing CO

2
.

• Compared to the base CPA the model should improve the prediction of
mixtures containing CO

2
and/or other quadrupolar compounds.

• In the absence of quadrupolar compounds the model should reduce to
CPA.

• The model should focus on simplicity and should employ as few adjustable
parameters as possible.

• If possible the pure compound parameters should be estimated based on
pure compound properties.

• The model should be thoroughly evaluated for its ability to:

� Predict pure �uid properties of CO
2
.

� Predict and correlate the VLE and LLE of binary mixtures related
to CO

2
hydrates, such as mixtures containing CO

2
and n-alkanes,

water or alcohols.

� Predict the VLE and vapor liquid liquid equilibrium (VLLE) of mul-
ticomponent mixtures containing CO

2
, water, n-alkanes or alcohols.

• The model should furthermore be evaluated for its ability to describe the
equilibrium between mixtures of several quadrupolar molecules.

• The results of the new model should preferably be compared to the un-
modi�ed CPA. So that the best CPA approaches can be compared with
the new model, both in terms of performance, but also the number of
adjustable parameters.

The work has been carried out at the Center for Energy Resources Engineer-
ing (CERE), Department of Chemical and Biochemical Engineering, Technical
University of Denmark (DTU) under the supervision of Professor Georgios M.
Kontogeorgis. Throughout the project the results have continuously been pre-
sented and discussed both internally at the center, with external industrial col-
laborators, and with researchers at international conferences. The main results
have been published in two peer-reviewed journals. Furthermore an additional
manuscript have been submitted for publication in Molecular Physics and is
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currently under review. The manuscripts are referenced in this thesis as Refs.
[37�39]. An overview of attended conferences and publications, along with other
PhD activities, are presented in appendix A.

2.2 Thesis Structure

The bulk of the thesis is based on the three aforementioned manuscripts. Note
that two typos have been found in Eqs. (15) and (16) in Bjørner and Konto-
georgis [37]. A corrigendum have been submitted to address these typos [40].
A few of the binary interaction parameters for CO

2
+ n-alkane mixtures in

Ref. [37] have furthermore been re�ned since publication. The correct equa-
tions and the most recent results for the binary mixtures are presented in this
thesis. The corrected equations correspond to Eqs. (5.5) and (5.6) in this work.
Several chapters and appendices include additional material, which have not
been presented as journal papers.

Chapters 1 and 2 are introductory chapters which introduce the problems and
possibilities associated with CO

2
. The approaches taken to model CO

2
thus far

are outlined, and the motivation and structure for the present work is presented.

Chapter 4 contains a brief introduction to quadrupoles and a small literature
overview of the quadrupolar models employed within the SAFT framework,
including their results for CO

2
mixtures. Chapters 3 and 5 presents the CPA

and the new quadrupolar model extension (qCPA) respectively. Chapter 3 also
include a literature survey over how CO

2
containing mixtures have been handled

previously with CPA. Appendix B-C complements certain parts of chapter 5.

The �rst part of chapter 6 deals with the estimation of pure compound param-
eters for the developed qCPA as well as for certain CPA modeling approaches.
In the second part of the chapter the uncertainties are utilized to quantify the
e�ect of the parameter uncertainty, by propagating the uncertainties to both
pure compound properties and binary VLEs. Most results contained in chapter
6 have been published in Fluid Phase Equilib. (2016), 414, 29-47 [38].

Based on the results and conclusions from chapter 6 pure compound parameters
for CO

2
are selected and presented in chapter 7.

Chapters 7-9 evaluate the selected CPA and qCPA parameters and approaches
for their ability to predict thermodynamic pure compound properties of CO

2
,

as well as their ability to correlate and predict the phase equilibria of binary
and multicomponent mixtures containing CO

2
. Chapters 7 and 8 are based

on work published in Fluid Phase Equilib. (2016), 408, 151-169 [37]. Chapter
9 is based on results submitted to Molecular Physics (Thermodynamics 2015
Special Issue) [39]. Additional results have been included in all three chapters.



CHAPTER3
The Cubic Plus Association

Equation of State

Classical cubic equations of state derived from the van der Waals EoS, such as
the industrially popular Peng-Robinson (PR) [41] or SRK EoS [16], usually rep-
resent the phase equilibria of hydrocarbon mixtures quite well. Their simplicity
makes these models the �rst choice for many hydrocarbon phase equilibrium
calculations used in the petroleum industry [42]. It is well-known, however,
that cubic equations of state typically fail for mixtures which contain polar or
associating (hydrogen bonding) compounds such as water, alcohols or glycols.
The phase equilibria of associating systems are important in many practical
cases e.g. when calculating the amount of inhibitor need to prevent gas hydrate
formation.

To take the hydrogen bonding between associating species into account, at the
high pressures often needed industrially, the attractive energy parameter in
the cubic equations of state may be combined with an excess Gibbs energy
mixing rule (a modi�ed activity coe�cient model). These EoS/GE models
can, in certain cases, perform satisfactorily, however they are also known to
have problems representing VLLEs [43]. Furthermore, the performance of the
EoS/GE models depend on the success of the underlying activity coe�cient
model.

During the past two or three decades substantial improvements have been
achieved concerning the development of advanced thermodynamic models, which
can describe mixtures containing associating compounds. These improvements
are primarily due to a perturbation theory for hydrogen bonding compounds
originally developed by Wertheim [44�47].
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Based on the work of Chapman and co-workers [17�19, 48] the SAFT EoS was
the �rst equation of state to directly incorporate Wertheim's association term.
Since development of the �rst SAFT EoS the model have become very popular
due to the excellent results obtained for complex mixtures. Several di�erent
modi�cations and extensions of the original model have been suggested, and
there is now a whole family of di�erent SAFT variants in the available literature
[8].

The CPA EoS, �rst presented in the open literature in 1996 by Kontogeorgis
et al. [20], is another popular choice amongst the equations of state, which takes
association into account. The CPA EoS has been developed in collaboration
with the industry,1 and is an engineering equation of state which combines a
classic cubic EoS with Wertheim's association theory. The model has been
employed to calculate the equilibrium of several complex associating mixtures,
particularly those relevant to the petroleum industry, and is largely successful
in the description of these mixtures.

The CPA has been extensively studied in the literature and a large number of
publications concerning di�erent aspects of the CPA EoS has become available
since the �rst appearances of the model in the open literature (see Refs. [20, 50�
52]). An excellent review of important results can be found in chapter 9-12 of
the recent book by Kontogeorgis and Folas [8] as well as in Refs. [49, 53].

This chapter presents equations for the CPA EoS and describe the approaches
employed with CPA to model mixtures containing CO

2
.

3.1 The Cubic Plus Association Equation of State

The CPA EoS combines the SRK EoS with the association term fromWertheim's
theory [44�47], which is also employed in SAFT [17�19, 48]. The SRK term ac-
counts for the physical interactions between molecules, while the association
term takes hydrogen bonding interactions into account. Polar and quadrupolar
interactions are not explicitly taken into account in the original formulation of
CPA (see chapter 5).

The CPA EoS is typically presented as a pressure explicit EoS in the literature.
It is often much more convenient, however, to express an EoS in terms of the
(reduced) residual Helmholtz energy, (Ar(T, V,n)), since all other residual prop-
erties can be obtained as partial derivatives of the Helmholtz energy function
with respect to the state variables T , V and n (where T is the temperature,
V the volume and n is the molar composition vector). The reduced residual
Helmholtz free energy for CPA can be expressed as the addition of the physical

1Shell from 1995-1999 and since 1999 various other companies amongst these BP, TOTAL
and Statoil Norway [49].
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SRK term and Wertheim's association term as shown in Eq. (3.1)

ArCPA(T, V,n)

RT
=
ArSRK(T, V,n)

RT
+
ArAssoc(T, V,n)

RT
(3.1)

where R is the ideal gas constant. In the absence of association, Eq. (3.1)
reduces to the SRK EoS.

3.1.1 The SRK contribution

Consider a mixture of total composition n, with total volume V and temperature
T . The reduced residual Helmholtz energy of the SRK EoS for n moles of a
mixture is expressed as [54]:

ArSRK(T, V,n)

RT
= −n ln

(
1− B

V

)
− D(T )

RTB
ln

(
1 +

B

V

)
(3.2)

If the conventional van der Waals one-�uid (vdW1f) mixing rules are employed
then D(T ) and B are given by quadratic sums of their pure component values:

D(T ) =
∑
i

ni
∑
j

njaij(T ) (3.3a)

nB =
∑
i

ni
∑
j

njbij (3.3b)

where the cross co-volume is calculated as the arithmetic mean

bij = bji =

(
bii + bjj

2

)
(1− lij) (3.4)

It is often assumed that lij = 0 in which case Eq. (3.3b) reduces to

B =
∑
i

nibii (3.5)

where bii is the pure compound co-volume parameter for component i, also
denoted b0. In this work lij is always assumed to be zero and Eq. (3.5) is
e�ectively employed. The cross energetic parameter, aij , is calculated using the
classical geometric mean rule

aij =
√
aii(T )ajj(T )(1− kij) (3.6)

The temperature dependent attractive energetic parameter of component i,
aii(T ), is typically calculated from Eq. (3.7)

aii(T ) = a0,i

(
1 + c1,i

(
1−

√
Tr,i

))2

(3.7)
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where a0,i and c1,i are pure compound parameters of component i and Tr,i
is the reduced temperature (Tr,i = T/Tc,i) of component i, where TC,i is the
critical temperature.

The kij , is a binary interaction parameter, which can be used to adjust the
cross-interactions between two compounds. For the perfect model where all in-
teractions where dealt with correctly it would be equal to zero. Often, however,
it is necessary correlated it to binary VLE or LLE data, in which case part of
the predictive capability of the EoS is lost.

The kij is typically assumed to be a constant, speci�c for each binary pair. How-
ever, to correlate binary mixtures over a wide temperature range it is sometimes
necessary to make the kij temperature dependent. The temperature dependence
is typically assumed to be directly proportional with either the temperature or
the inverse temperature. The temperature dependence is generalized in Eq.
(3.8) [55]

kij = akij + bkijT + ckijT
−1 (3.8)

The inverse relation is preferred from a theoretical point of view [56] (i.e. bkij =
0).

It is straight-forward to calculate the derivatives required for the calculation of
thermodynamic properties, see [54]. In the absence of association CPA has the
three pure compound parameters, b0, c1 and a0. To avoid ambiguity with the
units it is common practice to express the energetic parameter, a0, on reduced
from, i.e. Γ= a0/(Rb0).

3.1.2 Association contribution

The contribution to the reduced residual Helmholtz free energy from the asso-
ciation term is given by [17, 19, 48, 54]:

ArAssoc(T, V,n)

RT
=
∑
i

ni
∑
Ai

(
lnXAi − 1

2XAi + 1
2

)
(3.9)

where Ai indicates bonding sites on molecule i and XAi denotes the fraction of
A-sites on molecule i not bonded to another association site. These fractions
are found by solving the system of non-linear equations given by

XAi =
1

1 + 1
V

∑
j nj

∑
Bj
XBj∆

AiBj
(3.10)

where the association strength, ∆AiBj , between site A on molecule i and site B
on molecule j depends on both T , V and n according to

∆AiBj = g(n, V )

(
exp

(
εAiBj

RT

)
− 1

)
bijβ

AiBj (3.11)
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where εAiBj and βAiBj are the association energy and volume between site A
of molecule i and site B of molecule j respectively. bij is the cross-covolume
calculated from Eq. (3.4) and g is the Radial distribution function (RDF).
Originally the RDF was approximated with the expression for the Carnahan-
Starling (CS) hard-sphere RDF [20], Eq. (3.12).

g(n, V ) =
2− η

2(1− η)3
(3.12)

where the reduced �uid density, η, is given by η= B/4V . Use of Eq. (3.12) in
CPA is an approximation, however, since CPA uses the van der Waals repulsive
term rather than the CS hard-sphere term employed in SAFT. Kontogeorgis et
al. [52] proposed a simpler expression for g give by

g(n, V ) =
1

1− 1.9η
(3.13)

It can be shown that Eq. (3.13) is, under certain assumptions, essentially the
RDF of CPA [8]. In this work the simpli�ed form of the RDF is employed for
all calcuations.

No mixing rules are required in the association term, but combining rules are
required to obtain the cross-association parameters εAiBj and βAiBj if more
than one associating compound is present. Di�erent combining rules have been
investigated in the literature [57, 58], but only the so-called CR-1 combining
rule (Eqs. (3.14) and (3.15)), Elliott's combining rule (Eq. (3.16)) and the
near-Elliot combining rule2 (Eqs. (3.14) and (3.17)) are used today, possibly
due to the fact that they perform well and can be justi�ed theoretically.

εAiBj =
1

2

(
εAiBi + εAjBj

)
(3.14)

βAiBj =
√
βAiBiβAjBj (3.15)

∆AiBj =
√

∆AiBi∆AjBj (3.16)

βAiBj =
√
βAiBiβAjBj

√
bibj

bij
(3.17)

Certain compounds, which do not self-associate, may act as an electron donor
(Lewis base) or electron acceptor (Lewis acid) and form hydrogen bonds with
a self-associating compound. Such interactions are typically called induced as-
sociation or solvation. These interactions are di�cult to treat with current
models since the association parameters, εAiBi and βAiBi , are available only for

2The near-Elliot combining rule can be obtained from Elliott's combining rule by assuming,
that exp(εAB/(RT )− 1) ≈ exp(εAB/RT ) and g ≈ 1.
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the self-associating compound and Eq. (3.15) and Eq. (3.17) cannot be used
to calculate βAiBj . For such mixtures βAiBj is typically �tted to binary data
and εAiBj is determined from equation (3.14), i.e. εAiBj = εAiBi/2 since the
association energy of the solvating compound is zero. This is often referred to as
the modi�ed CR-1 (mCR-1) combining rule [59]. This approach typically works
well, however, the improved correlations may, at least partially, be attributed
to an increased �exibility due to a higher number of adjustable parameters.
The approach is, however, useful in many situations, in which one component is
self-associating but interacts with a solvating compound. In this work we typi-
cally employ the CR-1 combining rule or the modi�ed CR-1 combining rule for
solvating mixtures. Alternatively an approach to induced solvation suggested
by Kleiner and Sadowski [60] is employed, see chapter 8 for more details.

It can be seen from Eq. (3.10) that the association term is dependent on the
association scheme, i.e. the number and type of association sites for the associ-
ating compound. In this work the notation for the di�erent association schemes
is either presented as Xed-Yea,3 or with the simpler notation proposed by Huang
and Radosz [61]. Table 3.1 illustrate the notation of Huang and Radosz [61], as
well as the corresponding number of electron donor and acceptor sites.

Table 3.1: Examples of association schemes using the notation of Huang and Ra-
dosz [61] as well as the corresponding number of negative and positive
association sites.

Species Formula Scheme Association sites

Alcohol 2B 1ed-1ea

Water 4C 2ed-2ea

Glycol 4C 2ed-2ea

The two additional pure compound parameters in the association term, εAiBi
and βAiBi implies that the model has �ve pure compound parameters for self-
associating compounds.

The calculation of derivative properties in the association term can be rather
involved but is signi�cantly simpli�ed if the procedure suggested by Michelsen
and Hendriks is employed [62, 63].

3Where X and Y are the number of sites, and ed and ad are abbreviations for electron
donor and electron acceptor sites respectively.
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3.2 Modeling CO2 Mixtures with the CPA EoS

As described in chapter 1 modeling the phase equilibrium of mixtures containing
CO

2
is of high importance in the petroleum and chemical industry. A number of

modeling attempts with the CPA EoS have been published for CO
2
-containing

mixtures. While recent work have given clear guidelines there is no general
consensus on how mixtures of CO

2
(and other molecules with a high quadrupolar

moment) should be modeled in the framework of CPA.

Rigorously, since CPA does not contain an explicit quadrupolar term, CO
2

should be treated as an 'inert' (i.e. non-associating, non-solvating) or possibly
as a solvating molecule for mixtures containing CO

2
and self-associating com-

pounds. In the non-associating (n.a.) case the model essentially reduces to the
SRK for mixtures of CO

2
and non-associating mixtures. Modeling the phase

equilibrium of mixtures containing CO
2
, however, is not as simple as e.g. mod-

eling the phase equilibrium of mixtures containing only hydrocarbons, where
the kij 's are typically close to zero.

In general the predictive performance of CPA when CO
2
is treated as an inert

(referred to as inert CPA or CPA n.a.) is quite poor for binary CO
2
+ n-alkane

mixtures containing CO
2
. It is possible to accurately correlate the phase equi-

libria of CO
2
+ n-alkane mixtures to experimental data when CO

2
is modeled as

an inert compound, but relatively large binary interaction parameters of around
0.12-0.15 are needed. Figure 3.1 illustrates this with the prediction (kij = 0)
and correlation (kij 6= 0) of the CO

2
+ ethane VLE using CPA with CO

2
mod-

eled as an inert. The azeotropic behaviour of the CO
2
+ ethane VLE cannot

be predicted with CPA if CO
2
is modeled as an inert compound, but it can be

accurately correlated with a binary interaction parameter of about kij = 0.13.

That the azeotrope is not predicted a priori is believed to be due to the large
quadrupolar moment of CO

2
, which inert CPA does not account for; when

quadrupolar interactions are ignored their interactions are e�ectively included
in the attractive energetic CPA parameter, aii, leading to arti�cially large at-
tractive energies in the SRK term for the quadrupolar compound. This leads to
poor predictions for mixtures of quadrupolar and inert �uids, as √aiiajj in Eq.
(3.6) becomes too large. Resultantly the kij must be large to compensate for
the lack of quadrupolar interactions (as explained for polar molecules by Jog
and co-workers [64, 65]). Satisfactory predictions of multicomponent VLEs con-
taining CO

2
and hydrocarbons are typically obtained with the SRK, and most

likely also with inert CPA, when a single kij per binary subsystem is employed
[8].

The oxygen atoms in CO
2
are electron rich and have two lone pairs each whereas

the carbon atom is electron poor. CO
2
may thus act as either a Lewis acid (elec-

tron acceptor) or base (electron donor) depending on the surrounding molecules.
Due to resonance stabilization of the carbon-oxygen double bonds, however, it
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Figure 3.1: Prediction (kij = 0) and correlation (kij = 0.13) of the CO
2
+ ethane

VLE at T=270 K using the CPA EoS with CO
2
modeled as an inert.

Experimental data from [66, 67].

primarily acts as a Lewis acid in solution with an electron donor. In mixtures
containing CO

2
and e.g. alcohols or water the Lewis acid-Lewis base interac-

tion thus occurs between the electron poor carbon atom in CO
2
and the elec-

tron rich oxygen atoms in alcohols or water, although some cooperative e�ect
is expected [68]. Several studies indicate that the Lewis acid-Lewis base type
interactions are the primary interaction (excluding dispersion) for CO

2
with as-

sociating molecules such as water, methanol and ethanol [68�71]. Results from
molecular dynamics for the CO

2
+ ethanol mixture suggests that the strongest

interactions between the molecules are of the Lewis acid-Lewis base type [72].

From an engineering perspective these Lewis acid-Lewis base interactions may
be viewed as an induced cross-association (similarly to what is typically done
with e.g. benzene). For mixtures of CO

2
+ self-associating compounds, such

as alcohols and water, it is thus worth considering whether CO
2
should be

modeled as an inert, or a solvating compound. When CO
2
is modeled as a

solvating compound in CPA, quadrupolar interactions are e�ectively ignored
and the electron donor-acceptor interactions are assumed to be the primary
interaction between CO

2
and a self-associating compound. Unfortunately this

approach does not a�ect the phase equilibrium predictions for mixtures contain-
ing CO

2
and non-associating compounds such as hydrocarbons. In an attempt

to simultaneously improve the predictions for such mixtures a more pragmatic
approach, which have been employed by several researchers, is to assume CO

2

to be a self-associating compound (which it is not). It is hoped, that the con-
tribution from the association term may account, at least partially, for the lack
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of an explicit quadrupolar term in the model, if nothing else then by lowering
the attractive aii parameter, and thus obtain a more realistic cross-interaction.

These procedures often work well resulting in good phase equilibrium correla-
tions with small interaction parameters [14, 21�23]. Unfortunately the improve-
ment is obtained at the cost of additional pure component parameters and, in
some cases, an extra adjustable parameter is employed to correlate the binary
mixtures of CO

2
+ a self-associating compound.

3.2.1 Applications of CPA for mixtures containing CO2

Pfohl et al. [73] studied binary mixtures containing CO
2
and o-cresol, p-cresol,

m-cresol, phenol, toluene, water or ethanol and ternary mixtures of CO
2
+

o-cresol + p-cresol and ethanol using a PR-CPA variant where CO
2
was as-

sumed to be an inert. The authors used a 2-parameter mixing rule for the
energy parameter instead of the vdW1f mixing rule. Moreover they used a
more advanced expressions for the radial distribution function. The results,
however, were not very convincing.

Assuming CO
2
to be inert Folas et al. [59] modeled the solubility of CO

2
in

the water-rich liquid phase and demonstrated that excellent correlations can
be obtained with 'inert' CPA using kij = −0.066. Unfortunately the solubility
of water in the CO

2
-rich phase, particularly the observed minimum, cannot be

represented if CO
2
is assumed to be inert. The minimum in the solubility of

water in the CO
2
-rich phase is related to a phase transition from vapor to liquid

phase. Initially the solubility of water in the CO
2
-rich vapor phase decreases,

but as the pressure increases CO
2
condenses to a liquid. Water is more soluble

in liquid CO
2
and the solubility begins to increase again.

Kontogeorgis et al. [53, 74] showed that the minimum can be modeled, using
a kij = 0, if the Lewis acid-Lewis base interactions are taken into account
by assuming CO

2
to solvate with water, where the 4C association scheme is

employed for water. Kontogeorgis et al. [53] also found that, somewhat surpris-
ingly, it is possible to predict the minimum without accounting for solvation if
the (erroneous) 2B or 3B association scheme is employed for water. This e�ect
is attributed to a cancellation of errors. To model both phases simultaneously,
however, a non-zero binary interaction parameter is needed.

Figure 3.2 show the modeling results for the solubility of water in the CO
2
-rich

phase when CO
2
is modeled as an inert or solvating compound respectively. It

is clear that not accounting for solvation yields poor results, as the minimum
in the water solubility and thus the phase transition is not captured.

Kontogeorgis et al. [74] demonstrated that satisfactory modeling results are ob-
tained with CPA for binary CO

2
containing mixtures with water, methanol or
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Figure 3.2: Calculation of the solubility of water in the CO
2
-rich phase at 298.15 K

assuming CO
2
to be either inert (black dashed line) or solvating (blue full

line). In both cases kij = 0, additionally in the solvating case βcrs = 0.06
after Kontogeorgis et al. [74]. Pure compound parameters from [74].
Experimental data from [75�78].

glycols when solvation is accounted for. In the case of CO
2
+ water and CO

2

+ glycols only one phase is considered.

Voutsas and co-workers [21, 22, 79, 80] employed a PR-CPA on various systems
containing CO

2
. The PR-CPA employed in these works is similar to the CPA

presented in this chapter except that it uses; i) the PR EoS as the physical
term rather than the SRK, ii) the original hard sphere RDF (Eq. (3.12)) and
iii) a geometric combining rule for both the cross-association energy and cross-
association volume. In addition to the geometric combining rule, Perakis et al.
[21] also employs the CR-1 mixing rule. For solvating mixtures, instead of using
the mCR-1 combining rule, Perakis et al. [21] calculate the degree of cross-
association with an adjustable "solvation factor", sij , (i.e. ∆AiBj = ∆Aisij).

Assuming CO
2
to be either an inert, a solvating or a self-associating compound,

Perakis et al. [21] modeled the binary CO
2
+ water and CO

2
+ ethanol mixture

as well as the ternary CO
2
+ ethanol + water system. The authors conclude

that the best results are obtained when CO
2
is treated as an associating molecule

following the 4C scheme and using the geometric mean rule for both the cross-
association energy and volume.

Following this work, Voutsas et al. [22] and Papa et al. [80] employed the 4C
association scheme for CO

2
to evaluated the performance of the PR-CPA for

several VLE and LLE systems containing CO
2
and both non-polar (n-dodecane,

benzene), polar (diethyl ether, acetone) and hydrogen bonding compounds
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(ethanol, water). The obtained results are generally quite satisfactory. When
modeling the CO

2
+ water + acetic acid system Perakis et al. [21] used the

3B association scheme for water, rather than the typical 4C scheme, and as-
sumed CO

2
to be solvating. For mixtures containing CO

2
and a self-associating

compound an additional adjustable parameter is typically introduced in the
cross-association energy.

Oliveira et al. [23] investigated the e�ect of modeling CO
2
as an inert com-

pound, a solvating compound or a self-associating compound (following the 2B
or 4C association scheme) for the prediction and correlation of several binary
VLE systems containing CO

2
. The authors results indicate that binary sys-

tems containing CO
2
and heavy alcohols, esters or carboxylic acids may be

modeled satisfactorily by simply assuming CO
2
to be an inert. On the other

hand the authors found that it was necessary to assume CO
2
to be solvating or

self-associating to obtain better results for mixtures containing CO
2
and light

alcohols. Assuming CO
2
to be self-associating also seemed to result in a better

description for the VLEs between CO
2
+ n-alkanes.

As part of a comprehensive investigation on the performance of CPA for mod-
eling the phase equilibria of mixtures with acid gases (H

2
S and CO

2
), Kontoge-

orgis and co-workers [14, 33�36, 81] recently evaluated the performance of CPA
for modeling both binary and multicomponent mixtures containing CO

2
. The

overall purpose of the study was to arrive at the best approach for modeling
the phase equilibria of multicomponent acid gas mixtures with CPA without
introducing signi�cant changes to the model. To this end several approaches
for modeling CO

2
(and H

2
S) have been evaluated for their ability to model

the phase behaviour of a large number of binary and multicomponent mixtures
containing CO

2
.

The �rst study dealt mainly with the evaluation of di�erent modeling ap-
proaches for H

2
S although CO

2
was considered to be both inert and solvating

[81]. In the second part of the investigation Tsivintzelis et al. [14] modeled the
phase behavior and densities of binary mixtures containing CO

2
and water, n-

alkanes, alcohols or glycols. CO
2
was modeled either as an inert, a solvating

species or a self-associating molecule, using both the 2B, 3B, or 4C association
scheme. When mixtures with cross-association were considered, two approaches
for estimating the cross-association parameters were employed and compared
to each other. In the �rst approach the regular combining rules (Eqs. (3.14)
and (3.15)) were used to calculate the cross-association parameters, and in the
second approach experimental values for the interaction energy, obtained from
spectroscopic or calorimetric data or ab inito calculations, were employed for
the cross-association energy. Two adjustable parameters were used whenCO

2

was assumed to be solvation or when experimental cross-association energies
were used. The best results were obtained when CO

2
was considered to be a

solvating compound or when experimental values were employed for the cross-
association energy. Rather poor results are obtained if CO

2
is modeled as a

self-associating compound using the CR-1 combining rules.
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Figure 3.3: Correlation of the CO
2
solubility in the water rich liquid phase (a) and

the water solubility in the CO
2
vapor/supercritical phase (b) of the CO

2

+ water VLE and LLE at 308.2 K. CO
2
is assumed to be either inert

(black dashed line), solvating (blue full line) (using the modi�ed CR-1
rule), or following the 4C scheme (both with CR-1 and an experimental
association energy (red dash-dotted and black dotted line respectively).
The employed parameter resemble those from [14]. Compared to exper-
imental data from [76, 78, 82]

Figure 3.3 illustrate the correlative performance of four of the approaches evalu-
ated by Tsivintzelis et al. [14] for calculating the phase equilibrium of the binary
CO

2
+ water mixture at 308.2 K. In the �gure CO

2
is modeled as an inert, a

solvating compound (with the modi�ed CR-1 rule), or as a self-associating com-
pound abiding by the 4C scheme. In the latter case both association approaches
from Tsivintzelis et al. [14] are employed. It is clear from �gure 3.3a that all
approaches can correlate the solubility of CO

2
in the water rich phase, although

some approaches employ a very large kij to do so. Figure 3.3b, however, shows
that quite poor results are obtained for the water solubility in the CO

2
rich

phase if CO
2
is assumed to be an inert or self-associating compound using the

CR-1 rule in the latter case. Accurate results are obtained when solvation is ac-
counted for, or when experimental values are employed for the cross-association
energy. Both of these approaches use two binary parameters, whereas the other
approaches use only one.

In a subsequent study Tsivintzelis et al. [33] employed a similar range of ap-
proaches for modeling CO

2
, although the main focus was on the approaches

which had already been found to perform well in the previous work. The work
evaluated the phase equilibria of mixtures such as CO

2
+ N

2
and CO

2
+ O

2

and multicomponent mixtures such as CO
2
+ water + methane, CO

2
+ H

2
S

+ methane, and CO
2
+ water + H

2
S-methane. The best approaches were

again when CO
2
was considered to be solvating or self-associating (following
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the 3B or 4C scheme), using two adjustable parameters and the experimental
cross-association energy.

In two very recent publications Tsivintzelis and Kontogeorgis [35, 36] evaluated
the performance of CPA for modeling multicomponent CO

2
mixtures contain-

ing alcohols, water, glycols, and/or n-alkanes. CO
2
was considered to be inert,

solvating, or self-associating. When CO
2
is assumed to be self-associating only

the approaches which use the experimental cross-association energy are con-
sidered. In all cases binary parameters were adopted from the corresponding
binary systems. No adjustable parameters were �tted to the multicomponent
systems. In most cases the results are similar and satisfactory with the di�erent
approaches for CO

2
.

Based on an overall assessment of their work Kontogeorgis and co-workers
[14, 33�36, 81] concluded that CO

2
should be treated as a solvating or self-

associating compound (with the 4C association scheme). In the latter case
experimental values for the cross-association energy should be used. Chapter 8
and chapter 9 evaluates the new qCPA for several of the same mixtures studied
by Kontogeorgis and co-workers in Refs. [14, 35]

3.2.2 Summary of applications

Despite the substantial work by Kontogeorgis and co-workers it is still di�cult to
clearly point towards a single approach which is overall superior for modeling
CO

2
with CPA. It is important to consider the number of binary adjustable

interaction parameters as well as the correlative and, in the multicomponent
case, predicted phase equilibrium results. It is typically desired to keep the
number of adjustable parameters to a minimum, to ensure physical consistency.

Treating CO
2
as a solvating compound, which may be the most appealing ap-

proach from a physical point of view, certainly works well when CO
2
is in a mix-

ture with a self-associating compound, however it does not improve predictions
for systems such as CO

2
+ n-alkanes where there are no cross-association in-

teractions (but non-included quadrupolar interactions). The approach employs
two adjustable parameters per binary for CO

2
plus a self-associating compound.

On the other hand, it is clear from both the investigations performed by Konto-
georgis and co-workers [14, 33�36, 81] and Voutsas and co-workers [21, 22, 79, 80]
that treating CO

2
as a (pseudo) self-associating (4C) compound may greatly

improve the predictive performance of the model for CO
2
+ n-alkane mix-

tures, as well as the correlative performance of the model for mixtures with
self-associating compounds. It is unclear, however, how cross-association be-
tween CO

2
and the self-associating compound should be treated; Poor results

are obtained if CO
2
is modeled as a self-associating compound with the normal

CR-1 combing rules (one adjustable interaction parameter). If experimental
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values for the cross-association energy are employed instead, the correlations
are similar to those of the solvating approach (but better for CO

2
+ n-alkanes).

Unfortunately this approach also employs two adjustable parameters.

Voutsas et al. [22] employed, with good results, a single interaction parameter
for CO

2
modeled as a 4C molecule, although somewhat unusual geometric com-

bining rules are employed. In the three other works [21, 79, 80] between 2 and
8 adjustable parameters are employed per binary.

It is thus apparent that several modeling approaches gives excellent phase equi-
librium results, however, the conclusions are partially clouded by the number
of adjustable parameters and mixing rules employed: Rather poor results are
obtained for the approaches which employ a single interaction parameter (inert
CO

2
and self-associating with the CR-1 rule). Satisfactory results are typically

obtained when CO
2
is modeled as either a solvating or self-associating com-

pound when two adjustable parameters are employed. In general similar results
are obtained when the same number of binary adjustable parameters are used,
and it is thus di�cult to say whether the improved results are due to the use of
experimental cross-association energies, or if it can be attributed primarily to
an increased �exibility of the model when an additional adjustable parameter
is included.



CHAPTER4
SAFT-based Models with a

Quadrupole Term

The quadrupole moment is caused by the concentration of charges at four sep-
arate points in a molecule. The e�ect of a quadrupole is that certain molec-
ular conformations are favoured more than others (see �gure 4.1). That is,
quadrupole interactions are directional, which is probably why researchers have
assumed that quadrupolar interactions could be approximated, at least qual-
itatively, as pseudo-associating [83] (see chapter 3, section 3.2). This chapter
describes three somewhat more rigorous approaches in the SAFT framework.

In the general case the quadrupole moment is a three by three symmetric tensor
which in a discrete system and in terms of Cartesian tensors can be written as
Eq. (4.1) [84]

Q =
∑
i

qiriri (4.1)

where Q is the quadrupole moment tensor, qi is the (partial) charge i in some
molecule and ri is the position vector of charge i from some arbitrary origin
chosen somewhere inside the charge distribution. The quadrupole moment ten-
sor can be made traceless (i.e. Qxx +Qyy +Qzz = 0, where x, y and z refer to
the coordinate axes) in which case it is de�ned by Eq. (4.2) [84]

Q = 1
2

∑
i

qi
(
3riri − |ri|2I

)
(4.2)

where I is the identity matrix. The quadrupole moment tensor thus have �ve
independent coordinates. In spherical coordinates Q can be diagonalized, and
since Q is traceless it only has two independent components. The remaining
three components becomes the angles which specify the orientation.
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For linear (axially symmetric) molecules the quadrupole moment reduce to a
scalar value [84], which is the most convenient for engineering applications. By
convention the z-axis is chosen as the molecular symmetry axis (the principle
axis), and the quadrupole moment becomes the z-component of the quadrupole
moment tensor, and the two other directions cancel out due to symmetry i.e.
Q= Qzz. All the SAFT based quadrupolar terms are used with a scalar value for
the quadrupole moment, which is also the case for almost any other quadrupolar
model. For general shape molecules Gubbins et al. [85] have devised a reason-
able approximation for an 'e�ective' scalar quadrupole moment, at least so long
as the Qyy and Qxx components are reasonably small. In this work we will
almost exclusively consider simple molecules, for which the quadrupole moment
reduce to a scalar, such as CO

2
and benzene.

Figure 4.1 illustrates three types of preferred orientations for a linear point
charge quadrupole. Figure 4.1a shows the ideal minimum energy "T" con�gu-
ration for two quadrupoles of the same sign and �gure 4.1b shows the minimum
energy con�guration for two quadrupoles of opposite sign. There may be ad-
ditional interactions, such as shape and dispersion interactions, which can lead
to di�erent orientations being the most favored [84]. For instance, a parallel-
staggered orientation as the one shown in �gure 4.1c has been suggested as the
most stable con�guration for CO

2
[84].

The SI unit of the quadurpole moment is coulomb meters squared (C m2),
however, the quadrupole moments are often reported in Buckinghams (B) or,
equivalently, Debye Ångstrøm (DÅ) (1 DÅ = 1 B = 10−26 esu cm2 = 3.3356 ·
10−40 C m2).

CO
2
has two electron rich oxygen atoms and an electron poor carbon atom (due

to the higher electronegativity of the oxygen atoms relative to the carbon atom).
These partial charges are the cause of the quardupole moment of CO

2
. As CO

2

furthermore is a linear symmetric molecule its quadrupole moment reduces to a
scalar. The experimental value of the quadrupolar moment of CO

2
is relatively

well-de�ned, ranging from −4.1 DÅ to −4.6 DÅ [84, 86�91], with a typical value
for the direct methods of about −4.3 DÅ, which is employed in this work.

The direct experimental methods for obtaining the quadrupole moment, are
expected to be accurate to within 5-10% [84]. These methods give both the
sign and the magnitude of the quadrupole moment. There are also several
indirect methods which are associated with considerable uncertainty [84].

4.1 Applied Quadrupolar Theory

Despite their similar theoretical background considerably less work has been
done on understanding the e�ect of quadrupolar interactions compared to dipo-
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(a) Minimum energy
orientation

(b) Quadrupoles of
opposite sign

(c) Parallel-staggered
quadrupoles

Figure 4.1: Simpli�ed point-charge interaction schematics of (a) the minimum en-
ergy orientation for two quadrupoles (b) minimum energy orientation for
two quadrupoles of opposite sign (c) two parallel-staggered quadrupoles,
a stables con�guration for (CO

2
)
2
dimers). Illustrations modi�ed from

[84]

lar interactions, and the number of models which attempt to deal with polar
molecules far exceeds the number of models which attempt to account for the
quadrupolar forces between molecules [92]. This is most likely due to their
short ranged nature. Quadrupolar forces, however, may become important
for molecules with a signi�cant quadrupole. It is generally recognized that
a molecules quadrupole moment may signi�cantly in�uence its thermodynamic
properties and phase behavior, especially at low temperatures. The quadrupole
moment of CO

2
, for instance, is believed to be the reason for the unusual phase

behavior of mixtures containing CO
2
.

To deal with polar and quadrupolar interactions a number of multipolar terms
have been proposed in the literature. These terms are mainly based on modi�-
cations of a third order perturbation theory developed from statistical mechan-
ics (the so-called u-expansion) by Stell and co-workers [24�27] and Flytzani-
Stephanopoulos and Gubbins [93]. The perturbation series is expanded to in-
clude both two- and three-body interactions. Due the slow convergence of the
perturbation expansion the e�ect of higher order terms are approximated by a
Padè approximation. The perturbation theory was originally developed for pure
�uids using the Stockmayer potential (a Lennard-Jones reference potential with
a point electric dipole moment) and for the hard sphere model with a central
point dipole or quadrupole. Using the former potential, Gubbins and Twu [94]
and Twu and Gubbins [95] (henceforth referenced simply as Gubbins and Twu
[94, 95]) developed directly applicable expressions for polar and quadrupolar
�uid mixtures.
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4.2 Quadrupolar Contributions to the SAFT

During the last couple of decades the SAFT family have received an increasing
amount of attention. To improve the predictions of the model several modi�-
cations and additions to the original EoS have been suggested, including the
incorporation of several polar and quadrupolar terms. Three of the most well-
known model terms, and relevant results, will be discussed in this section. The
models are:

• The quadrupolar term proposed by Gross [28].

• The quadrupolar term(s) proposed by Economou and co-workers [30, 31].

• The quadrupolar term propsed by de Hemptinne and co-workers [32].

The reader is referred to the original publications for the model terms them-
selves.

4.2.1 The PCP-SAFT EoS

Inspired by the perturbation theory of Stell and co-workers [24�27] and Gub-
bins and Twu [94, 95] Gross [28] developed a new contribution for quadrupole-
quadrupole interactions using a two center Lennard-Jones (2CLJ) pair potential
as the reference �uid. Model constants were adjusted to molecular simulation
results from Stoll et al. [96]. The proposed expression for the quadrupolar con-
tribution was incorporated into the PC-SAFT. The resulting model is referred
to as the Perturbed-Chain Polar SAFT (PCP-SAFT). The PCP-SAFT can be
employed with the experimental quadrupole moment and contrary to most other
equation of state contributions for polar or quadrupolar mixtures, the new EoS
can be used without any additional adjustable parameters. Following this work
Gross and co-workers developed expressions for dipole-dipole, quadrupole-dipole
and induced dipole interactions see Refs. [97�99].

Applications of the PCP-SAFT for mixtures containing CO
2

As the experimental quadrupole moment is employed, the PCP-SAFT use
the same �ve adjustable pure compound parameters as PC-SAFT, for non-
associating compounds only three parameters are needed. The deviations in the
properties which the parameters are correlated to with the PCP-SAFT are con-
sistently similar to or smaller than when quadrupolar interactions are ignored
[28]. The best correlations are obtained for the most quadrupolar molecules.
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The VLE and LLE of several binary CO
2
+ n-alkane mixtures have been in-

vestigated with the PCP-SAFT [28, 100]. In all cases clear improvements in
the form of smaller interaction parameters, are obtained relative to the regular
PC-SAFT.

Issues may arise for mixtures containing more than one quadrupolar compound.
For the CO

2
+ benzene system, for instance, correlations with the PCP-SAFT

were poorer than with regular PC-SAFT. On the other hand, when the cross-
quadrupolar interaction was set to zero improved predictions were obtained.
This indicates that the cross-quadrupolar interactions are not adequately mod-
eled and may indicate a fundamental problem with the proposed mixture terms.
Tang and Gross [100], however, studied the same mixture, with the same ex-
perimental data and model, and obtained very good results with a very small
binary interaction parameter (kij = 0.007).

Tang and Gross [100] furthermore employed the PCP-SAFT and PC-SAFT to
model several binary mixtures containing either H

2
S or CO

2
with various hy-

drocarbons or water. Compared to PC-SAFT the PCP-SAFT is generally in
better agreement (i.e. smaller kij) with experimental phase equilibrium data for
binary mixtures containing CO

2
and n-alkanes, other hydrocarbons or aromatic

compounds, in particular for the solubility of CO
2
in the liquid phase. Tang and

Gross [100] furthermore showed that it is necessary to use a strongly tempera-
ture dependent interaction parameter to model the CO

2
+ H

2
O mixture over

a temperature range of 323-421 K and pressures up to 70 MPa. Ramírez et al.
[101] modeled the VLE of binary CO

2
+ alcohol systems using the PC-SAFT

and di�erent versions of the PCP-SAFT (depending on whether quadrupole,
dipole and/or dipole-quadrupole interaction are considered). The authors con-
cluded that the best model was obtained when the quadrupole moment of CO

2

was explicitly considered. Their conclusions, however, are partially clouded by
the use of temperature dependent binary interaction parameters.

4.2.2 The PC-PSAFT and the tPC-PSAFT

Almost simultaneously with the development of the PCP-SAFT, Karakatsani
et al. [29, 30] and Karakatsani and Economou [31] extended the SAFT and PC-
SAFT framework with the quadrupolar, dipolar and induction terms derived
by Larsen et al. [27]. Originally the proposed model only accounted for the
dipole-dipole interactions of polar mixtures [29]. The model was later extended
to explicitly account for quadrupole-quadruple, quadrupole-dipole and dipole-
induced dipole interactions [30, 31]. The perturbation terms use the hard sphere
potential as the reference �uid. This leads to relatively simple correlation in-
tegrals, which are a function of the reduced density only, whereas they are a
function of both density and temperature when the Lennard-Jones potential is
used as the reference potential.
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Two modeling approaches are suggested; In the �rst approach the two- and
three body correlation integrals are approximated by the density polynomials
of �th- and third order employed by Larsen et al. [27]. Like the PCP-SAFT
this approach does not use any additional adjustable parameters. The second
approach is a simpli�ed expression where the correlation integrals are truncated
at the zeroth order term. Corresponding to the low density limit. To account
for the higher order terms which are omitted in the truncation, an additional
volumetric pure compound parameter is introduced.

The truncated version, which seems to be the one most used, is thus simpler
at the cost of an additional adjustable parameter. The models are referred to
as Perturbed-Chain Polar-SAFT (PC-PSAFT) and truncated Perturbed-Chain
Polar SAFT (tPC-PSAFT) respectively.

Applications of the tPC-PSAFT for mixtures containing CO
2

The PC-PSAFT has �ve pure compound parameters, while tPC-PSAFT has six
adjustable parameters. For non-associating compounds three or four parameters
are needed. Multiple sets of parameters may provide accurate correlations to
the data which the models are �tted to [29], something which is, unfortunately,
not uncommon for modern equations of state (see chapter 6).

Karakatsani et al. [29] investigated (only with the dipolar contribution) several
binary mixtures including CO

2
+ alcohols. The alcohols were modeled with

a dipole moment and as self-associating following the 2B scheme. The tPC-
PSAFT has also been successfully used to correlate mixtures such as CO

2
+

N
2
, CO

2
+ n-alkanes, CO

2
+ cyclohexane and quadrupolar and polar mixtures

such as CO
2
+ acetone [102].

Focusing on the minimum in the water solubility in the CO
2
-rich phase Karakat-

sani et al. [103] investigated the accuracy of the tPC-PSAFT for modeling the
phase equilibrium of the CO

2
+ water mixture. The authors considered CO

2

to be both solvating (with two association sites) and quadrupolar. Excellent
correlations are obtained for the minimum in the water solubility over a wide
temperature range using a temperature dependent binary interaction parame-
ter. Recently Diamantonis and Economou [104] also evaluated the accuracy of
the tPC-PSAFT and PC-SAFT for modeling the CO

2
+ water mixture. Sev-

eral PC-SAFT and tPC-PSAFT approaches where considered for CO
2
. The

best correlations were obtained with PC-SAFT, when the solvation between
CO

2
and water was explicitly accounted for, although if the same number of

binary adjustable parameters were employed, similar correlations could be ob-
tained when CO

2
was considered to be self-associating. These conclusions are

in agreement with conclusions for CPA (see chapter 3). Contrary to the result
by Karakatsani et al. [103] correlations with the tPC-PSAFT resulted in sig-
ni�cantly deteriorated correlations compared to PC-SAFT. The reason for this
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discrepancy is probably that CO
2
was not assumed to be solvating when the

tPC-PSAFT was employed by Diamantonis and Economou [104].

Kroon et al. [105] utilized the tPC-PSAFT for mixtures with CO
2
and ionic liq-

uids. In subsequent works Karakatsani and co-workers [103, 106] re-estimated
the parameters for the ionic liquids using new experimental data for the liq-
uid density of the ionic liquids. With the new experimental data signi�cantly
lower interaction parameters are needed for to correlate the tPC-PSAFT to
experimental data.

4.2.3 The polar GC-SAFT

Tamouza et al. [107] developed group contribution methods for the original
SAFT, PC-SAFT and SAFT-VR respectively. NguyenHuynh et al. [32] ex-
tended these group contribution methods to quadrupolar (and polar) �uid mix-
tures. The quadrupolar and polar term used by the authors is based on the work
by Gubbins and Twu [94, 95]. The term was extended to chain molecules using
a procedure suggested by Jog et al. [65] and Jog and Chapman [64], which in-
troduces the parameter, xp,i, to the second and third order perturbation terms.
xp,i is, in principle, the fraction of dipolar or quadrupolar segments in the chain
molecule, but is used simply as an adjustable parameter.

Applications of the polar GC-PC-SAFT for mixtures containing CO
2

The model has primarily been evaluated for binary mixtures of numerous di�er-
ent polar and quadrupolar compounds, including several CO

2
containing mix-

tures. NguyenHuynh et al. [108] evaluated the polar Group Contribution PC-
SAFT (pGC-PC-SAFT) for an extensive number of CO

2
+ n-alkane mixtures.

To obtain unique pure compound parameters, the authors correlated the CO
2

parameters to the CO
2
+ propane VLE at four temperatures, in addition to the

saturated liquid density and saturated vapor pressure. A method for correlating
the binary interaction parameter based on segment 'pseudo-ionization energies'
was also proposed [108]. NguyenHuynh et al. [109] subsequently employed the
pGC-PC-SAFT to model binary mixtures containing CO

2
and either aromatic

compounds, branched alkanes or H
2
S. For aromatic compounds such as benzene

and toluene the quadrupolar moment was considered an adjustable parameter
in addition to the fraction of quadrupolar segments.

In two recent works NguyenHuynh and co-workers [110, 111] modeled the phase
equilibria of mixtures containing CO

2
+ alcohols and CO

2
+ water using the po-

lar GC-PC-SAFT. CO
2
was treated as a solvating compound with two solvation

sites.
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4.2.4 Summary of applications

Table 4.1 provides a partial list of binary mixtures containing CO
2
, for which

three of the SAFT based quadrupolar equations of state have been employed for
phase equilibrium calculations. Both VLE and LLE data have been considered
for alcohols and water. For alkanes both VLE and LLE data were considered
with PCP-SAFT and pGC-PC-SAFT. The PC-PSAFT, which is not included
in the table, have only been used to calculate the phase equilibria of mixtures
containing CO

2
and ethanol or methanol. All the models have also been em-

ployed for a considerable number of non-CO
2
containing mixtures, see Refs.

[8, 83] for a partial overview.

Table 4.1: Binary mixtures containing CO
2
+ a compound group or compound, to

which the SAFT-based quadrupolar equations of state have been em-
ployed for phase equilibrium calculations in Refs. [28, 100�106, 108�112].
Similar compounds or compound groups are horizontally aligned.

tPC-PSAFT [30, 31] PCP-SAFT [28] polar GC-PC-SAFT [32]

n-alkanes [102] n-alkanes [28, 100] n-alkanes [108]
branched alkanes [109]

cycohexane [102] cyclic alkanes [100]
aromatic hydrocarbons [28, 100] aromatic hydrocarbons [109]

watera [103, 104] watera [100] water [110]
nitrogen [102]

alcohols [28] [101]a alcohols [111]
acetone [102]

H
2
S [100] H

2
S [109]

benzofuran [112]
ethylphenol [112]

ionic liquids [103, 105, 106]
refrigerants [99]

a A temperature dependent binary interaction parameter was employed.

With the exception of tPC-PSAFT the quadrupolar SAFT models have only
been employed to calculate the phase equilibrium of a limited number of mul-
ticomponent mixtures, something which is clearly re�ected in table 4.2 which
contains a list of CO

2
containing ternary mixtures for which the quadurpolar

equations of state have been employed.

4.3 Similarities and Di�erences

All model terms are based on similar third order perturbation theories (the u-
expansion), typically based on work by Stell and co-workers [24�27] and Gubbins
and Twu [94, 95]. All quadrupolar (and polar) terms are approximated by a
Padé approximation (see Eq. (5.2)). Finally all quadrupolar expressions ignore
the �rst order term, A1, which is zero for spheres and non-zero but small for
hard dumbbells [113].
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Table 4.2: Ternary mixtures containing CO
2
+ two other components, to which the

SAFT-based quadrupolar equations of state have been applied in Refs.
[29, 100, 102, 103, 111].

tPC-PSAFT [30, 31] PCP-SAFT [28] polar GC-PC-SAFT [32]

methanol+ethanol [111]
N
2
+n-propane [102]

methane+H
2
S [100] methanol+propane [111]

N
2
+n-butane [102]

N
2
+cyclohexane [102]

water+[bmim+][NO�
3
] [103]

water+[HOPmim+][NO�
3
] [103]

acetone+[bmin+][PF�
6
] [102]

Both the PCP-SAFT developed by Gross [28] and the PC-PSAFT developed
by Economou and co-workers [30, 31] employ the experimental value of the
quadrupole or dipole moment. No additional pure compound parameters are
introduced in either model. The tPC-PSAFT and the pGC-PC-SAFT on the
other hand both employ an additional adjustable parameter in the quadrupolar
term.

The two model terms developed by Economou and co-workers are, of course,
very similar as they are both based on the quadrupolar term developed by
Larsen et al. [27]. The di�erence between the two terms is solely that in the
full version the two- and three-body correlation integrals are approximated by
density polynomials of �fth and third order respectively, whereas these polyno-
mials are truncated at the zeroth order term in the tPC-PSAFT, at the cost of
an additional pure compound parameter.

The main di�erence between the di�erent quadrupolar terms is probably whether
or not they employ an additional adjustable parameter and how the two- and
three-body correlation integrals are approximated in the various models. The
pGC-PC-SAFT employ the expressions presented by Gubbins and Twu [94, 95],
which are functions of both the temperature and the reduced density. In PCP-
SAFT the three-body term is approximated by a fourth other polynomial in
the reduced density, the second-order two-body term is a function of both the
density and the temperature and �nally the third order two-body term is set to
zero. The latter approximation is clearly the most severe. As mentioned above
the correlation functions for the PC-PSAFT are approximated by density poly-
nomials. Due to the zeroth order approximation the correlation integrals are
approximated simply by a constant value in the tPC-PSAFT.

Table 4.3 attempts to summarize the di�erences and similarities in the di�erent
SAFT-based equations of state.

Compared to the base SAFT variant it seems that improved predictions and cor-
relations (smaller kij) are typically obtained for binary VLE when a quadrupolar
term is coupled to PC-SAFT. The quadrupolar models, however, have several
limitations; The models are (in principle) only applicable to linear axially sym-
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Table 4.3: Summary of di�erences and similarities for SAFT-based equations of state
for quadrupolar mixtures. Ji,k denotes the two- and three body correla-
tion integrals present in the theories.

Model PC-PSAFT tPC-PSAFT PCP-SAFT pGC-PC-SAFT

Reference [30, 31] [30, 31] [28] [32]
Quadrupole term [27] [27] [28]a [94, 95]

Base EoS PC-SAFT PC-SAFT PC-SAFT GC-PC-SAFT
Expansion u-exp u-exp u-exp u-exp

Series approx. Padé Padé Padé Padé
Ref. �uid HS HS 2CLJ LJ

Corr. integrals Ji,k(ρ∗) Ji,k(ρ∗ → 0) J3,2 = 0b Ji,k(ρ∗, T )
Mixing rules geometric geometric none none

Extra Adjustable 0 1 (vp) 0 1 (xp)c

a Adjusted to molecular simulation data from Stoll et al. [96].
b Additionally for the remaining correlations integrals J2(ρ∗, T ) and J3,3(ρ∗).
c Two adjustable parameters for benzene and esters.

metric molecules, where the quadrupole moment tensor reduces to a scalar
value. It has furthermore been shown for the polar SAFT variants that false
liquid-liquid splits may be predicted by the models [114]. While no such study
has been made for the quadrupolar versions of SAFT, similar problems may
be expected, as the models have been derived in a similar manner. Mixtures
of several quadrupolar (or dipolar) molecules are challenging, and the results
are sometimes better if only one component is assumed to have a quadrupole
or dipole moment [28], which suggests that the way the cross-quadrupolar in-
teraction are calculated could be improved [28]. Finally, the quadrupolar (and
dipolar) terms are in principle not directly applicable with associating mixtures,
due to the local structuring caused by both terms.



CHAPTER5
The Quadrupolar CPA Equation

of State

From the discussion in chapter 3 is it clear, that there are several cases where
CPA works quite well for mixtures containing CO

2
, even when CO

2
is treated

as an inert. Treating CO
2
as a solvating compound may result in improved

correlations for mixtures containing CO
2
and one or more self-associating com-

pounds. Unfortunately, relatively high interaction parameters are still needed
for simple CO

2
+n-alkane mixtures. On the other hand, if CO

2
is treated as

a self-associating compound improved predictions may be obtained. Explicit
inclusion of self-association for CO

2
seem to increase the intermolecular CO

2
-

CO
2
interactions, while simultaneously reducing the cross-interactions in the

SRK term, just like a quadrupole term would do [14]. The procedure is, how-
ever, physically inconsistent as CO

2
is not self-associating.

To address this issue it is believed that a physically more consistent and predic-
tive model may be obtained if the e�ect of the quadrupole moment is taken into
account by introducing an explicit quadrupolar term in CPA. From the pre-
ceding discussion in chapter 4 is seems that the structure of all terms is quite
similar, which may suggest, that the choice of which term should be modi�ed to
CPA is somewhat arbitrary. As CPA does not contain segments, but e�ectively
treat molecules as spheres, it is much more convenient to build directly upon
the originally developed quadrupolar terms. The simpli�ed quadrupolar term
presented here is thus based on a the explicit expressions developed by Larsen
et al. [27] for hard spheres with a point quadrupole. qCPA may be employed
with the experimental quadrupolar moment, and may be used with or without
introducing an additional pure compound parameter.
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5.1 The Quadrupole CPA Term

Chapter 3 showed how CPA could be expressed in terms of the residual Helmholtz
energy, where the total Helmholtz energy is a sum of the SRK and association
contributions. To include a quadrupolar term in the model an additional per-
turbation term due to the quadrupole is added to CPA:

ArCPA(T, V,n)

RT
=
ArSRK(T, V,n)

RT
+
ArAssoc(T, V,n)

RT
+
ArQuad(T, V,n)

RT
(5.1)

The expression for the �nal quadrupolar term is an adaptation of the third order
perturbation theory developed by Stell and co-workers [24�27]. The quadrupo-
lar term is, as almost any other quadrupolar or dipolar model, set in a Padé
approximation as suggested by Rushbrook [25]. The reduced residual Helmholtz
free energy for the quadrupolar expression is thus calculated from a Padé ap-
proximation as Eq. (5.2)

ArQuad(T, V,n)

RT
=

Ar2,Quad(T, V,n)/RT

1−Ar3,Quad(T, V,n)/Ar2,Quad(T, V,n)
(5.2)

Where Ar2 and Ar3 indicate the second- and third-order perturbation terms re-
spectively. The �rst-order term is e�ectively zero [27]. The third-order term is
the sum of both a two-body and a three-body contribution, since it has been
shown that for multi-polar interactions three-body contributions cannot be ig-
nored [26]. That is;

Ar3,Quad(T, V,n)

RT
=
Ar3,2,Quad(T, V,n)

RT
+
Ar3,3,Quad(T, V,n)

RT
(5.3)

To develop expressions, applicable in CPA, for the quadrupole contribution the
explicit expressions developed by Larsen et al. [27] for pure symmetric hard
spheres with a point quadrupole at their centre are employed. The expressions
are extended to mixtures, following the work of Twu and Gubbins [95] and
Karakatsani et al. [30, 31] and related to the model parameters of CPA. In
terms of the state variables, V, T, and n the expressions become:

Ar2,Quad
RT

= − 7

10

NA

V (kbT )
2

nc∑
i

ni

nc∑
j

nj
Q4
ij

σ7
ij

IHS10 (5.4)

Ar3,2,Quad
RT

=
36

245

NA

V (kbT )
3

nc∑
i

ni

nc∑
j

nj
Q6
ij

σ12
ij

IHS15 (5.5)

Ar3,3,Quad
RT

=
1

6400

N2
A

V 2 (kbT )
3
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i

ni

nc∑
j

nj

nc∑
k

nk
Q6
ijk

σ3
ijσ

3
ikσ

3
jk

IHSTQ (5.6)

where NA is the Avogadro constant, kb is Boltzmann's constant, Q is the scalar
quadrupolar moment, σ is the hard sphere diameter and In and ITQ are corre-
lation integrals with the hard sphere model as the reference �uid. The terms
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may look familiar as Economou and co-workers [30, 31] employed the same base
model in the development of the tPC-PSAFT equations of state.

In the work of Larsen et al. [27] the correlation integrals in equations (5.4)-
(5.6) were approximated by analytical (reduced) density polynomials of �fth
and third order respectively, that is

IHSn =

5∑
i=0

Ji,n(V, n)i (5.7a)

IHSTQ =

3∑
i=0

Ji,TQ(V, n)i (5.7b)

where the coe�cients Ji,n and Ji,TQ can be found in the original reference [27].

To simplify the model, and in particular the volume derivatives, we assume that
these correlation functions can be truncated already at the zeroth order term.
The zeroth order coe�cients are given analytically as [27]:

IHSn ≈ J0,n =
4π

n− 3
(5.8a)

IHSTQ ≈ J0,TQ = 54π2 (5.8b)

Thus, the correlation functions are no longer a function of the (molar) volume,
but are simply three constants. Although this is clearly a major simpli�cation
the approach has been employed with success in tPC-PSAFT [29�31] as dis-
cussed in chapter 4, although an additional adjustable parameter was needed to
retain a performance comparable to the non-truncated version. The assumption
may be particuarly suited for CPA as the van der Waals EoS (or SRK in the
case of CPA) is essentially derived as a hard spheres model in the low density
limit.

No mixing rules are required in the quadrupolar term (Eq. (5.4)-(5.6)). Com-
bining rules may however be employed. If geometric-mean combining rules are
employed like in the work by Economou and co-workers the the cross quadrupo-
lar moment for two- and three-body contributions are calculated as

Qij =
√
QiiQjj (5.9)

Qijk = 3
√
QiiQjjQkk (5.10)

Note, however, that more general mixing terms, which avoid the square and cu-
bic roots may be preferred, as the combining rules presented here does not
consider quadrupoles of opposite sign, which are e�ectively treated as two
quadrupole of the same sign (to avoid complex values). This is discussed further
in chapter 8 section 8.4.4.

Finally, it is advantageous to relate the molecular diameter of the hard-sphere, to
a co-volume parameter similar to that used in CPA. When de Villiers et al. [115]
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extended CPA with the dipolar theories of Gross [97] and Jog and Chapman [64]
they assumed that the original de�nition of the co-volume in terms of the molec-
ular hard-sphere diameter could be employed (b = 4V mol = (2/3)NAπσ

3). The
quadrupolar term, however, is based on a hard sphere reference �uid, whereas
CPA is based on the van der Waals repulsive term. Wong and Prausnitz [116]
showed that the di�erence between the CS EoS and the van der Waals repulsive
term can be reduced if beff = bQ0 ≈ b/2.1 This is illustrated in �gure 5.1 which
shows, that the CS EoS and the repulsive part of the van der Waals EoS are in
much better agreement if an 'e�ective' van der Waals volume of b/2 is employed.

Figure 5.1: Compressibility factor for a hard-sphere �uid. Comparison of the CS
EoS and the repulsive part of the van der Waals EoS as a function of
reduced density. Adapted from [116].

Using the e�ective co-volume we get

bQ0 = (1/3)NAπσ
3 (5.11)

where bQ0 is the co-volume parameter in the quadrupolar term. When Eq. (5.11)
is employed the value of bQ0 should, ideally, be similar to that of b0.

5.1.1 Model variants

In this thesis we will mainly investigate and evaluate two variations of the qCPA;
In the �rst version it is assumed that the co-volume from CPA can be set equal

1It is of historical interest to note that in his Nobel lecture Van der Waals remarked that
the de�nition of 4Vmol for the co-volume parameter only applies for in�nitely diluted systems,
and that empirical values of the co-volume parameter decrease to about half the theoretical

value as the volume decreases (J. D. van der Waals, Nobel Lecture, 1910) [117]. This in good
agreement with the �ndings by Wong and Prausnitz [116].
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to the e�ective quadrupolar hard sphere co-volume i.e. b0 = bQ0 . Equation (5.11)
is then used to directly calculate σ, which is used in eq. (5.4)-(5.6). In this way
no additional adjustable parameters are introduced by the quadrupolar term. In
the second variant bQ0 is employed as an additional adjustable parameter. The
experimental quadrupolar moment is employed in both cases. Note, however,
that, if desire, the quadrupolar moment may also be used as an adjustable
parameter, in which case the model would employ an 'e�ective' quadrupolar
moment (this is investigated brie�y in chapter 8). As it is typically desired to
use as few adjustable parameters as possible it cannot be recommended to use
both adjustable parameters simultaneously.

It is clear that qCPA uses three or four adjustable pure compound parameters
for non-associating compounds with a quadrupole moment (such as CO

2
). For

self-associating compounds which also has a quadrupole moment (such as water)
the quadrupole is, in this work, assumed to be negligible, and thus ignored.

To justify the addition of the adjustable parameter in the second model variant,
we note that due to the powers which both the co-volume and the quadrupolar
moment are in (see equations (5.4)-(5.6)), the value of these variables may
strongly a�ect the magnitude of the quadrupolar term. Economou and co-
workers also used an adjustable quadrupolar volume related parameter in an
attempt to compensate for the truncation of the correlation integrals (Eq. (5.8a)
and Eq. (5.8b)). As the zeroth order approximation is employed in this work as
well, it would make sense that an additional adjustable parameter was needed in
qCPA, and as the use of equation (5.11) in this work is a further approximation
it makes even more sense to use the co-volume parameter as an adjustable
parameter in qCPA than it did in tPC-PSAFT. However, as described above
the model will be evaluated both with and without an additional adjustable
parameter.

5.2 Model Implementation

As all other residual properties can be calculated as �rst or second order partial
derivatives of the residual Helmholtz energy function with respect to the state
variables T , V and n, implementation of the quadrupolar term in CPA is a rela-
tively simple matter of adding the partial derivatives of the quadrupolar term to
the corresponding derivatives of CPA. The derivatives of the quadrupolar term
are comparatively simple to calculate, due to the fact that the correlation inte-
grals are treated as constants rather than functions of V and n and sometimes
even T . All necessary derivatives can be found in Appendix B.

The quadrupolar term have been implemented both in MATLAB and in Fortran.
The Fortran implementation has been included in the CPA module created by
Dr. Bjørn Maribo-Mogensen and subsequently linked to MATLAB though the
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MEX interface. This interface allows the use of routines such as fugacity and
�ash calculation in MATLAB, but (almost) with the computational e�ciency
of FORTRAN. Essentially all cacluations and visualizations are performed in
MATLAB.

5.2.1 Evaluation of derivatives

Unfortunately, even the most systematic approach does not exclude the possibil-
ity of programming errors. To counteract this risk, all partial derivatives in the
quadrupolar term are evaluated for errors by comparing the analytical deriva-
tives with their numerical approximation. Both the central di�erence formula
as well as the complex step approximation are used to estimate the numerical
derivatives, see Appendix C for details.

As an example, using pure CO
2
as a sample compound, table 5.1 shows the

relative di�erence between the analytical and the numerical derivatives with
central di�erences at the conditions T = 250 K, n = 10 mol and V = 1 L.2 The
low relative errors in table 5.1 clearly indicate that the analytical derivatives of
the quadrupolar term seem to be calculated correctly.

Table 5.1: Relative error in the numerical derivatives of the Helmholtz energy func-
tion for the quadrupole term at T = 250 K, n = 10 mol and V = 1L, using
CO

2
as the sample compound. The numerical derivatives are calculated

with the central di�erence formula.

Derivative
|f ′centraldiff − f

′
analytic|

|f ′analytic|

∂F/∂V 2.0 · 10−11

∂F/∂T 3.7 · 10−9

∂F/∂ni 7.0 · 10−12

∂2F/∂V 2 5.0 · 10−11

∂2F/∂T 2 1.3 · 10−9

∂2F/∂ni∂nj 1.6 · 10−10

∂2F/∂V ∂T 1.3 · 10−10

∂2F/∂ni∂T 2.8 · 10−11

∂2F/∂ni∂V 4.4 · 10−11

2The step size is h = xε1/3 for the central di�erences, where x ∈ {T, V,n} and ε is machine
accuracy (≈ 2.2 · 10−16).



CHAPTER6
Parameter Estimation &

Propagation of Uncertainty

The pure compound parameters of advanced thermodynamic models such as
CPA and SAFT are typically correlated to experimental saturated vapor pres-
sures, P sat, and saturated liquid densities, ρliqsat (over a speci�ed temperature
range) by minimizing a weighted Least Squares (LSQ) objective function. The
objective function is typically similar to that shown in Eq. (6.1)

OF =

NP∑
i

(
P sati,exp − P sati,calc

P sati,exp

)2

+

Nρ∑
i

(
ρliqi,exp,sat − ρ

liq
i,calc,sat

ρliqi,exp,sat

)2

(6.1)

where NP and Nρ are the number of data points for the saturated pressure
and liquid density respectively, and each data point i is at a di�erent tem-
perature. The parameters obtained from such a minimization procedure are
generally assumed to be unique, and can be employed directly for phase equi-
librium calculations. No parameter uncertainties are typically presented. While
such an assumption may be reasonable for three parameter cubic equations of
state, it is highly questionable for models such as CPA or SAFT, which contain
considerable more adjustable parameters.

As the number of adjustable parameters in thermodynamic models increase,
the parameter estimation problem becomes more complicated due to parameter
identi�ability issues. For example, often, and for the same model, di�erent
parameter sets are proposed in the literature for the same compound, even
if the same objective function is employed [20, 74, 118]. This multiplicity of
the parameters suggests that the parameters are not unique and that multiple
parameter sets can reproduce the experimental data to within experimental
uncertainty [8, 119]. This is particularly true for self-associating compounds
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due to the high correlation between the two parameters in the association term
(see sections 6.2.2 and 6.3.2).

To illustrate this di�culty �gure 6.1 shows a contour plot of equation (6.1) for
(a) inert CO

2
and (b) CO

2
treated as a self-associating compound following

the 4C association scheme. Figure 6.1a shows that the minimum seems to be
relatively well-de�ned when CO

2
is treated as an inert. On the other hand

when CO
2
is treated as a self-associating compound (�gure 6.1b) the minimum

is ill-de�ned and elongated. Although the contour plots does not show the full
complexity of the parameter estimation, as only two parameters can be varied
at a time, they aptly serve to illustrate the problem.
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Figure 6.1: Contour plot of the objective function in Eq. (6.1) calculated for CO
2

treated as an inert compound with CPA at varying Γ and b0 and with
c1 = 0.73 (a) and as a self-associating compound at varying β and ε with
c1 = 0.73, b0 = 28.4 L/mol and Γ = 1250 K using CPA. Blue contours
indicate the lowest values and red contours the highest values. The red
dot in (a) represents the minimum with the chosen value of c1. There is
no clear minimum in (b)

Sauer and Chapman [120] found that a wide range of parameters could rep-
resent the experimental pure compound data due to a very �at minimum in
the objective function of a four parameter polar SAFT variant proposed by Jog
and Chapman [64]. Dominik et al. [121] arrived at a similar conclusion using
the same polar SAFT variant as well as one where SAFT was combined with
the (mainly empirical) polar term of Saager and Fischer [122]. The authors
suggested that a binary VLE should be included in the parameter estimation.
Using a polar GC-SAFT NguyenHuynh et al. [32] similarly found that numerous
parameter sets could be obtained, particularly due to the strong correlation be-
tween the energetic parameter ε in SAFT and the quadrupole or dipole moment.
Recently Korden et al. [123] stated that it is di�cult to determine meaningful
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parameters for polar models, when a parameter is adjusted in the polar term in
addition to the parameters in the dispersion term.

Based on a signi�cant amount of trial and error, it appears that several param-
eter sets can also correlate the experimental data within experimental error for
CO

2
when qCPA is employed with four adjustable parameters. Figure 6.2 for

example shows the CO
2
+ ethane VLE, predicted with four di�erent parameter

sets obtained with the four parameter version of qCPA using equation (6.1)
as the objective function and four di�erent initial guesses for the pure com-
pound parameters. All parameter sets correlate the saturated liquid density
and pressure satisfactorily.
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Figure 6.2: Predictions of the CO
2
+ ethane VLE at 250K using four di�erent pa-

rameter sets for qCPA with four adjustable parameters. All parameter
sets correlate the saturated liquid density and pressure within experi-
mental error and have been obtained by using di�erent initial guesses
for the parameters.

One approach for identifying the optimum parameters is to incorporate mixture
data in the parameter selection [8, 32, 74, 118, 121]. LLE data of the compound
in question with an inert compound (e.g. an n-alkane) is particularly useful and
a stringent test, as LLE is typically sensitive to the parameters. The approach,
however, seem to have some drawbacks; if LLE data is incorporated directly in
the objective function there is a risk of putting too much weight on the LLE
thus loosing pure compound accuracy, on the other hand, if LLE data is only
employed to select the optimal parameters after several parameter sets have
been generated there is an obvious risk that the 'right' parameter set has not
yet been found. Moreover the approach implicitly assumes the model to be
accurate, and not an approximation to the real system.
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An often overlooked issue in this regard is the estimation of uncertainties in the
pure compound parameters. Even the most accurate experiments are subject
to measurement errors. Moreover the parameters may be correlated, so that a
change in one parameter can be compensated by a change in another. Conse-
quently the pure compound parameters will be associated with some degree of
uncertainty, which is typically ignored or assumed insigni�cant in the majority
of studies thus far. Even small errors in the parameters, however, may signif-
icantly a�ect the result of a simulation [124]. While several researchers have
drawn attention to this problem [124�130] surprisingly little work has been done
on analyzing and quantifying the uncertainty of parameters in thermodynamic
models and their e�ect on physical property and equilibrium calculations.

6.1 Uncertainty Analysis and Uncertainty Prop-

agation

The work of Whiting and co-workers [131�137] is perhaps one of the most no-
table contributions to uncertainty estimates of thermodynamic models. Using
a Monte Carlo approach the authors analyzed the e�ect of uncertainties in
thermodynamic data and their propagated e�ect on process design. More re-
cently Mathias and co-workers [138�140] also investigated the importance of
uncertainty and uncertainty propagation for processes such as CO

2
capture.

Hajipour and co-workers [141�143] estimated the critical properties for a large
number of hydrocarbons. The authors took both the experimental uncertainty
in the data as well as the correlation between thermodynamic model param-
eters into account. Subsequently the uncertainties of the binary interaction
parameters for 87 binary mixtures were estimated by use of the pure compound
uncertainties.

Most research has focused on the propagated error from a thermodynamic model
to various unit operations such as distillation columns (e.g. [125, 126, 138, 144]).
Uncertainty analysis, however, can also be used for model development and com-
parison; by comparing the propagated uncertainties of selected physical prop-
erties and equilibria for di�erent models, or model variants, the models can be
compared more objectively. For instance when models such as CPA and SAFT
are compared, they often perform almost identically and what di�erences are
present may, in many cases, be due to statistical uncertainties in the pure com-
pound parameters of the models, rather than due to one model being superior
to the other.

In an e�ort to improve the performance and physical consistency of advanced
thermodynamic models, additional terms are often added to the base EoS, such
as qCPA in this work. Unfortunately the addition of an extra term often leads
to an increase in the number of adjustable parameters. This may make it
di�cult to estimate unique pure compound parameters due to high correlations
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between parameters as well as the possible presence of multiple local minima.
One reason for this is that the data used for parameter estimation is too limited
in relation to the model complexity, which must be able to predict a wide range
of properties besides those its parameters are �tted to. This may be particularly
relevant for a molecule such as CO

2
, for which the saturation curve is very short.

Both SAFT and CPA can for instance correlate the saturated vapor pressure
and liquid density of CO

2
almost within experimental error, using only the three

pure compound parameters commonly employed for non-associating molecules
[14].

During the past decade several quadrupolar terms have been added to the
SAFT framework (see chapter 4). Unfortunately the new terms are often
parametrized by using an additional pure compound parameter (such as an
'e�ective' quadrupolar moment). Other more pragmatic approaches tend to
treat CO

2
as a self-associating or solvating molecule. Tsivintzelis et al. [14],

for instance, demonstrated that such an approach often works quite well, at the
cost of two additional pure compound parameters (see chapter 3, section 3.2).
If the uncertainties in parameters are signi�cant, however, it may be di�cult to
compare the performance of various modeling approaches, as their di�erences
may be due to the parametrization, rather than the superiority of one model
over the other.

In this chapter the uncertainties in the pure compound parameters of CO
2
are

systematically evaluated, when di�erent modeling approaches are employed with
CPA as the base model. The uncertainty estimates are obtained from either
a linear approximation of the covariance matrix of parameters estimated from
nonlinear regression (LSQ) or using the Bootstrap method [145] (section 6.2).
A Monte Carlo procedure (with Latin Hypercube Sampling (LHS) and Iman-
Conover correlation control) is subsequently employed to quantify the e�ect of
the parameter uncertainty by propagating the uncertainties to various physical
properties (see section 6.4). This work was published in Fluid Phase Equilib.
(2016), 414, 29-47 [38].

6.2 Parameter Estimation - Uncertainty and Cor-

relation

The pure compound parameters in CPA are typically �tted to saturated pres-
sures and saturated liquid densities using a weighted LSQ objective function
such as Eq. (6.1). Ideally experimental data should be used for such corre-
lations, however, more often than not, pure compound correlations, such as
the Span and Wagner EoS for CO

2
[15], as implemented in the Reference Fluid

Thermodynamic and Transport Properties (REFPROP) program [146] and dis-
seminated through the National Institute of Standards and Technology (NIST)
Chemistry Webbook [147] are employed as pseudo-experimental data, since their
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correlations are accurate to within experimental error for many compounds.
While such pseudo-experimental data are a convenient way of quickly obtaining
quite accurate data for many compounds, the measurement errors present in
the experimental data is lost. Moreover as the number of model parameters is
increased and the closeness of �t improves, there is a clear risk of over-�tting.

This section investigates and compares the uncertainty when CO
2
is treated

as either an inert (non-associating, non-quadrupolar) molecule, an associating
molecule, and as a quadrupolar molecule. In the �rst two cases regular CPA
is employed with and without association (with focus primarily on association
scheme 4C). In the latter case qCPA is employed. Two cases are evaluated
when CO

2
is considered to be a quadrupolar molecule, one where no additional

adjustable parameter is employed and one where an additional volumetric pa-
rameter is employed. Table 6.1 summarizes the various approaches and the
adjustable parameters involved in each approach.

Table 6.1: Modeling approaches with CPA, including the number of adjustable pure
compound parameters, investigated for CO

2
.

Designation Modeling approach Association sites no. Adj Adj. parameters.

A inert no sites 3 Γa, b0, c1
B 2Bb 1ed-1ea 5 Γ, b0, c1, ε, β
C 3B 2ed-1ea 5 Γ, b0, c1, ε, β
D 4C 2ed-2ed 5 Γ, b0, c1, ε, β
E Quadrupolar no sitesc 3 Γ, b0, c1
F Quadrupolar no sites 4 Γ, b0, c1, b

Q
0

a Γ = a0/Rb0.
b Terminology from Huang and Radosz [61].
c Whether CO

2
should be solvating or not is immaterial for the purposes of this chapter.

6.2.1 On the least squares method

The LSQ method is a frequentist approach, in which the underlying model
parameters are assumed to have true �xed (unique) values. However, since
experimental data are subject to measurement errors these values can only be
estimated by probability distributions of the measurement errors with the aid of
statistical estimators [148, 149]. That is, the model parameters are not random
but the estimators are, since they depend on the measurements. If is is assumed
that the experimental error can be described by a normal distribution with mean
equal to the experimental measurement, then the LSQ method is equivalent to
minimizing the weighted sum of squares of the di�erence between measurements
(exp) and mathematical model (m):

min χ2(θ) =

N∑
i=1

(
yexpi − ymi (θ;Ti)

sexp,i

)2

(6.2)

where N is the number of experiments, yexpi is the ith experimental value of an
output property, such as the saturated density or saturated pressure, ymi (θ;Ti)
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represent the results from the model at temperature, Ti, where θ is a vector of
adjustable parameters which depends on the modeling approach. The weight
of the ith term is given as the inverse variance of the ith measurement, (s2

exp,i).
In principle s is the total standard deviation including both the uncertainty
in dependent and independent variables. In this work it is assumed that the
uncertainty in the independent variables is insigni�cant, which greatly simpli�es
the data �tting problem.

Notice that the function in equation (6.2) is similar to the weighted least squares
objective function used by most researchers for parameter estimation. However
rather than use the inverse of the variance as the weight factor it is typically
assumed that the measurements have the same relative error. In which case it
can be shown that the weight function can be approximated by the inverse of
the experimental measurement, w= 1/yexpi .

Under a linear approximation the covariance matrix of parameter estimators
can be calculated from Eq. (6.3) [150, 151]

Cov(θ̂) ≈ χ2

N − p

((
∂y

∂θ

)T
V−1

(
∂y

∂θ

))−1

(6.3)

where p is the number of estimators, y is a vector of outputs, and V is the
diagonal variance matrix of measurement errors. The correlation matrix, a
normalized symmetric matrix which approximates the correlation between pa-
rameters, is calculated from the covariance matrix (Eq. (6.3)) as

cor(θi, θk) =
Cov(θ̂)√

diag(Cov(θ̂))diag(Cov(θ̂))
(6.4)

For large N the 100(1 − α)% con�dence interval of the parameters can be ap-
proximated by

θ̂ ± tα/2N−p

√
diag(Cov(θ̂)) (6.5)

where tα/2N−p is the student's t-distribution corresponding to the α/2 percentile
and with N−p degrees of freedom. In Eq. (6.5) it is implicitly assumed that
the various parameters are independent of each other, in reality the parameters
are correlated resulting in con�dence ellipsoids, or hyper-ellipsoids.

6.2.2 Results with the least squares method

The pure compound parameters of approaches A-F were correlated to the exper-
imental saturated liquid density and saturated vapor pressures using Eq. (6.2)
as the objective function. The very accurate data from Duschek et al. [152] are
used for the saturated liquid density (below 295 K the experimental uncertainty
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is estimated to less than ±0.015%). For the saturated vapor pressure data from
[152�154] is employed (experimental uncertainty estimated to ±0.016−0.012%,
±100 Pa and ±0.1% respectively). It is assumed that the standard deviation,
sexp,i, of each experimental point can be approximated by the experimental
uncertainties given in the references.

Table 6.2 summarizes the estimated parameters for each modeling approach.
As expected from the work of Tsivintzelis et al. [14], excellent agreement with
saturated vapor pressures and saturated liquid densities are obtained for ap-
proaches A-D. As may also be expected the quadrupolar approaches E and F
results in equally good correlations. With the exception of association scheme
2B the parameters obtained with approach A-D are similar to those presented
by Tsivintzelis et al. [14]. The small di�erence in parameters might be explained
by the slightly di�erent objective function and the use of experimental data for
the correlation, rather than pseudo-experimental data. The deviations generally
decrease when CO

2
is treated as either an associating or a quadrupolar com-

pound. For approaches with four or �ve parameters the excellent correlations,
however, may simply be due to the added �exibility of additional model terms
and parameters. The good correlations which are already obtained for the ap-
proaches using only three adjustable parameters (A and E) suggest that models
with more parameters may be over-parameterized, which in turn reduces the
reliability of the obtained parameters (see tables 6.4 and 6.5).

Table 6.2: Correlated pure compound parameters and %AADs in saturated liquid
density and saturated pressure for CO

2
with the CPA EoS (Approaches

A-D) and the qCPA (Approaches E-F). The parameters are correlated in
the temperature range Tr = 0.7− 0.9.

Case Approach
b0 Γ c1 β · 103 ε/R bQ0 %AADa

[mL/mol] [K] - - [K] [mL/mol] P sat ρliqsat

A n.a.b 27.3 1550 0.77 - - - 0.18 0.95
B 2B 26.9 1145 0.43 42.3 1089 - 0.07 0.11
C 3B 28.1 1310 0.64 34.7 671 - 0.06 0.10
D 4C 28.4 1329 0.66 25.7 513 - 0.07 0.10
E Quad 27.9 1284 0.68 - - - 0.13 0.46
F Quad 28.5 1027 0.60 - - 20.2 0.12 0.07

a%AAD =
100

Nexp

∑Nexp

i

∣∣∣∣∣xcalci − xexpi

xexpi

∣∣∣∣∣ where x in this case stands for P sat or ρliqsat and

Nexp is the number of experimental data.
b Not associating.

Tables 6.3-6.6 show the estimated parameter uncertainty, the correlation matrix
between the parameters and the mean estimate for modeling approaches B, D,
E and F. The con�dence intervals are presented as a percentage of its mean
estimator. Only the lower triangular part of the symmetric correlation matrix
is shown.

It can be seen from table 6.3 that small con�dence intervals are obtained as well
as low correlations between b0 and both Γ and c1 for approach E. A higher corre-
lation is observed between Γ and c1. This is probably the reason for the slightly
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Table 6.3: Estimated CO
2
parameters, uncertainty as a 95% con�dence interval (CI)

in percent of the parameter estimate, and parameter correlation matrix
when modeling approach E is employed.

θ Estimator 95% CI (%)
Correlation matrix
b0 Γ c1

b0 27.9 0.08 1
Γ 1284 0.13 0.29 1
c1 0.68 0.77 -0.01 -0.95 1

larger con�dence interval of the c1 parameter. The correlation is unsurprising
considering that these two parameters are closely related in the attractive SRK
term (see Eq. (3.7)). Similar results are obtained when CO

2
is modeled as an

inert (approach A).

Table 6.4: Estimated CO
2
parameters, uncertainty as a 95% con�dence interval (CI)

in percent of the parameter estimate, and parameter correlation matrix
when modeling approach F is employed.

θ Mean estimator 95% CI (%)
Correlation matrix

b0 Γ c1 bQ0

b0 28.5 0.09 1
Γ 1027 1.19 -0.98 1
c1 0.60 0.63 -0.91 0.91 1
bQ0 20.2 1.15 -0.98 0.99 0.92 1

The results for approach F, shown in table 6.4, indicate that when one ad-
ditional adjustable parameter is added to the model, all model parameters
become highly correlated. That is, a small change in one parameter can be
compensated by a change in another parameter. This suggests that the model
is over-parametrized making it di�cult, if not impossible, to uniquely identify
its parameters. The large correlations, however, have not increased the esti-
mated con�dence intervals signi�cantly, which may suggest that the parameters
are also highly sensitive. This may indicate that such model extensions are
undesirable, at least when it comes to parameter estimation from classical LSQ
estimation, even if they have the potential to improve model predictions.

Table 6.5: Estimated CO
2
parameters, uncertainty as a 95% con�dence interval (CI)

in percent of the parameter estimate, and parameter correlation matrix
when modeling approach D is employed.

θ Mean estimator 95% CI (%)
Correlation matrix

b0 Γ c1 β ε

b0 28.4 0.06 1
Γ 1329 0.79 -0.47 1
c1 0.66 4.96 -0.24 -0.69 1
β 25.7 22.65 -0.10 -0.80 0.97 1
ε 512.7 9.63 0.26 0.68 -0.99 0.98 1
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When CO
2
is modeled as an associating species (approaches B-D) there are even

more adjustable parameters. Due to the added �exibility from the parameters,
one would also expect the approaches with association to be highly correlated.
It turns out, however, that the degree of correlation depends very much on the
chosen association scheme. Tables 6.5 and 6.6 show the con�dence intervals and
correlation matrices for the 4C and 2B association scheme respectively. When
the 2B scheme is employed high correlations are obtained between all parame-
ters, on the other hand, when the 4C scheme is employed only the association
parameters (β and ε) and the c1 parameter are highly correlated with each
other. It is suspected that the correlation between these three parameters is
due to the fact, that they all incorporate part of the models temperature de-
pendence (see Eq. (3.7) and (3.11)). As a consequence of the high correlations,
relatively high con�dence intervals are obtained for the correlated parameter in
both approaches.

The highly correlated parameters indicate that it is not possible to uniquely
determine all the adjustable parameters with approaches B-D and F. That is,
the parameters are not unique but depend on each other, which means that
one should be careful about attaching too much physical meaning to the actual
parameter values. Essentially the obtained mean estimators merely constitute
a set of values, amongst many possible sets, which provide a good �t to the
saturation data. This may be due to the model structure or because the data is
too limited in relation to the model complexity [148, 151]. Since excellent cor-
relations are obtained with only three adjustable parameters, one may suspect
that the latter possibility is predominant. However, the model structure clearly
matters a great deal, as the identi�ability problems are much more signi�cant
when the 2B association scheme is employed rather than the 4C or 3B associ-
ation schemes. This may indicate that the 2B scheme is less suited to model
CO

2
than the 4C and 3B scheme. It is interesting to note that Kontogeorgis and

co-workers [14, 33�36] arrived at the same conclusion by evaluating the phase
equilibria of a large number of binary and multicomponent mixtures containing
CO

2
.

Table 6.6: Estimated CO
2
parameters, uncertainty as a 95% con�dence interval (CI)

in percent of the parameter estimate, and parameter correlation matrix
when modeling approach B is employed.

θ Mean estimator 95% CI (%)
Correlation matrix

b0 Γ c1 β ε

b0 26.9 3.33 1
Γ 1145 10.53 0.99 1
c1 0.43 38.27 0.99 0.99 1
β 42.3 16.82 0.97 0.97 0.99 1
ε 1089 19.53 -0.99 -0.99 0.99 0.99 1
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6.3 Bootstrapping

The LSQ method is by far the most well-known approach for parameter esti-
mation. There are, however, several alternative parameter estimation methods.
One of these is the bootstrap technique [145].

6.3.1 Bootstrap technique for uncertainty of parameter
estimators

The basic idea of the bootstrap method is that it relies on random sampling
with replacement of the residuals, to generate a number of synthetic pseudo-
experimental data sets. Since the development of the method by Efron [145]
several bootstrapping schemes have been suggested. In this work one of the vari-
ants used for regression problems, namely re-sampling of residuals, is employed.
This scheme consists of four main steps;

Step 1 Input parameters are correlated to the experimental data using Eq.
(6.2) as the objective function.

Step 2 Residuals from the correlation are randomly sampled (with replace-
ment) and added to the previously correlated output values.

Step 3 The parameters are re�tted to the new synthetic data. Steps 2 and 3
are repeated a large number of times to simulate repeated experimental
runs.

Step 4 The distribution of regressed mean estimators are evaluated to obtain
con�dence regions and parameter correlations.

If the underlying distribution of errors is close to the normal distribution, boot-
strapping usually gives results similar to the LSQ approach. An advantage of
bootstrapping, however, is that it does not make any assumption with respect
to the underlying distribution of errors [155].

As measurement errors are associated with the measured property only, the
residuals obtained from the correlation to saturated liquid density and the resid-
uals obtained from correlation to saturated vapor pressures are only resampled
onto the property to which they were correlated.

6.3.2 Parameters from the Bootstrap technique

The bootstrap method for parameter estimation gives a distribution of parame-
ter sets generated by the, slightly di�erent, synthetic data sets. Figure 6.3 shows
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the obtained distribution of input parameters for approach E as a histogram,
with the number of occurrences on the left y-axis, and with the estimated prob-
ability density function on the right y-axis. It can be seen from �gure 6.3 that
the distributions of all input parameters follow a normal distribution quite ac-
curately, and one would expect the mean value of the input parameters to be
similar to those obtained from LSQ. Indeed by comparing �gure 6.3 with table
6.3 it can be seen that the mean input parameters are almost identical to those
obtained from the LSQ estimation. The main di�erence is, that distributions
from bootstrapping are somewhat wider than the con�dence intervals obtained
from LSQ estimation.
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Figure 6.3: Histograms approximating the distribution of each parameter (left y-
axis), obtained from 500 re-sampled bootstraps, using modeling ap-
proach E for CO

2
. The full red lines show the estimated probability

density function (right y-axis).

Figure 6.4 visualizes the correlation between the parameters by plotting each
input parameter as a function of another input parameter. The ellipsoids in
�gure 6.4 represent 95% con�dence intervals. The closer an ellipsoid is to a circle
the more random is the parameter pair, and thus the weaker the correlation
between the two. It is clear from the �gure that there is almost no correlation
between Γ and b0 and c1 and b0, while the value of Γ and c1 depend on each



50 Uncertainty Analysis

other. This is consistent with the results for LSQ estimation shown in table 6.3.
Almost exactly the same conclusion can be made when approach A is employed.
Both modeling approaches employ only three adjustable parameters.
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Figure 6.4: 95% con�dence ellipsoids for the bootstrapped parameters of CO
2
when

modeling approach E is employed. Each dot represents a realized pa-
rameter combination and each sub�gures represents the dependency (if
any) of one parameter on another.

Figures 6.5 and 6.6 show the parameter distributions and correlations with ap-
proach F. It is clear from �gure 6.5 that the input parameter distributions are
no longer found to be normal, rather it looks like the distribution of all input
parameters are bimodal. That is, there are two distinct peaks, or modes, in the
distributions. This may suggest that there are two di�erent major minima in
the objective function depending on the generated synthetic data. Given the
highly non-linear nature of equations of state, and the fact that problems of
multiple minima are not uncommon [120, 123], it does not seem unlikely that
multiple modes exist. If the results are compared with table 6.4 it is obvious
that the parameter set obtained with the LSQ method does not correspond with
any of the modes in �gure 6.5. Moreover, the con�dence regions for the param-
eters are clearly much wider for the bootstrap than for the LSQ method. That
is, a situation has arisen where both the parameters and con�dence regions are
di�erent between the two estimation methods. As bootstrapping uses informa-
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tion in the data, rather than an assumption about normality of the errors, it
might be expected that this estimate is the most correct of the two.
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Figure 6.5: Histograms approximating the distribution of each parameter (left y-
axis), obtained from 500 re-sampled bootstraps, using modeling ap-
proach F for CO

2
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density function (right y-axis).

Figure 6.6 shows, unsurprisingly, that bQ0 and b0 are highly correlated. It is
more surprising that the energetic parameter, Γ, is highly correlated with b0 as
well as bQ0 . In accordance with Korden et al. [123] it is suspected that this is
due to the fact that the quadrupolar term is an attractive energetic term, and
since bQ0 is the only adjustable parameter in the quadrupolar term, Γ scales with
this parameter as well, to balance the two attractive terms. This in turn means
that b0 and Γ becomes intercorrelated.

Figure 6.7 shows the bootstrapping results with approach D. It is obvious from
the �gure that the distribution of b0 and Γ appears to follow a normal distribu-
tion, with relatively narrow parameter ranges. Both parameters and con�dence
intervals are similar to the con�dence intervals calculated with LSQ estimation.
The remaining parameter distributions, however, appear to follow complex bi-
modal distributions. The distributions are close to a uniform distribution, and
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Figure 6.6: 95% con�dence ellipsoids for the bootstrapped parameters of CO
2
when

modeling approach F is employed. Each dot represents a realized pa-
rameter combination and each sub�gures represents the dependency (if
any) of one parameter on another.

are quite wide (the parameter βAiBi may for instance vary by almost 100% from
its mean value), both of which suggest poor identi�ability.

By comparing �gure 6.8 with the correlation matrix in table 6.5 it can be seen,
that although the LSQ and the bootstrap method do not agree on the size of the
parameter con�dence intervals, both methods tend to agree about the degree of
correlation between parameters. The only strongly intercorrelated parameters
are c1, β and ε.
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axis), obtained from 500 re-sampled bootstraps, using modeling ap-
proach D for CO

2
. The full red lines show the estimated probability
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6.4 Propagation of Parameter Uncertainty to Model

Predictions

Uncertainty associated with the predictions from thermodynamic models can
generally be classi�ed as; (a) input uncertainty and (b) structural uncertainty
(or model error). The structural uncertainty deals with the mathematical form
of the EoS, since all models, no matter their complexity, are only an approxima-
tion of the real physical system. The input uncertainty, on the other hand, rep-
resents the uncertainty in adjustable parameters for example due to uncertainty
in the experimental data, and the method employed to �nd these parameters
[134, 156]. The uncertainty in adjustable parameters will propagate through
the model and will a�ect the accuracy of model outputs.

One popular method used for error propagation is Monte Carlo analysis. The
Monte Carlo analysis is based on multiple model evaluations using inputs sam-
pled from their corresponding uncertainty which is usually described by a certain
distribution function (uniform, normal, etc.). The main advantage of the Monte
Carlo procedure is that uncertainty results can be obtained directly from the
model in question without the need for calculation of the Jacobian matrix which
is required by linear error propagation. It is thus conceptually easy to imple-
ment and, perhaps most importantly for this work, it can be used to propagate
uncertainties through a sequence of models without the need for modi�cations
to the original model.

6.4.1 A Monte Carlo uncertainty analysis

For notational convenience assume that the desired output property from any
of the equations of state under investigation can be represented by a function
of the form

y = f(θ,n, P, T ) (6.6)

where y is a vector of output model predictions, θ is a vector of model inputs and
n, P and T are the composition vector, pressure and temperature respectively.
The expression in Eq. (6.6) may represent not only the equation of state but a
sequence of linked models or expressions needed to calculate a desired output
property. For instance f may represent a dew or bubble point calculation.

Monte Carlo uncertainty analysis is based on performing multiple model eval-
uations of a function of the form in Eq. (6.6) with inputs sampled from a
probabilistic distribution. The Monte Carlo uncertainty analysis involves four
steps [156]:



56 Uncertainty Analysis

Step 1 Speci�cation of the range and underlying probability distribution of the
input variables.

Step 2 Sampling from the input range and distribution speci�ed in the �rst
step, to simulate parameters obtained from repeated experimental runs.

Step 3 Evaluation of Eq. (6.6) for each input sample.

Step 4 Representation and interpretation of results.

In this work the (kernel) probability density functions of the input variables, as
estimated from the bootstrapped subsamples, are employed, although a normal
distribution with mean and standard deviation from the bootstrapped results
would have been su�cient for approach A and E. Commonly used methods to
take samples from the input space in step 2 are; random sampling, shifted Ham-
mersley sampling [157], equal probability sampling [134] and Latin Hypercube
sampling (LHS) [158]. In this work the samples are chosen using LHS sampling.
Input parameter correlation is induced by applying the Iman-Conover correla-
tion control method [159]. Additional introductions to Monte Carlo analysis
are available elsewhere e.g. [160�163] and references herein.

6.4.2 Propagation of parameter estimation errors

To estimate the e�ect of the input parameter uncertainty on output properties
for the various modeling approaches, 500 Monte Carlo input parameter samples
are generated using the LHS and Iman-Conover correlation control method
[156]. Each subsample is subsequently used to calculate output properties of
interest. The calculated properties are compared with pseudo-experimental data
from the Span and Wagner EoS [15] as implemented in REFPROP [146].

Figure 6.9 shows the propagated uncertainty of the saturated liquid density (one
of the �tted properties) for approaches A, D, E and F. Very low propagated
uncertainties are predicted especially by approaches D, E and F. In fact, the
largest uncertainty is observed when CO

2
is treated as an inert (Figure 6.9a). It

may initially seem counter intuitive that the model with the largest uncertainty
in the saturated density, is in fact the simplest of the approaches. The reason
for this is, that when CO

2
is considered an inert in CPA the property �t is not

quite as good, resulting in a range of realizations which favour either the high or
low density region. This e�ect is re�ected in the propagated uncertainty. That
almost no propagated uncertainty is observed with approaches D, E and F for
the output properties which the model parameters are correlated to, however,
does not mean that the range of input parameter sets does not incur uncertainty
in other outputs, which may depend on the inputs in a di�erent way.

It is well-known that the isochoric heat capacity is a challenging property to
predict even with modern equations of state [37, 115]. It is believed that this
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(c) Approach E.
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Figure 6.9: Propagated uncertainty in the model predictions for the liquid density
at saturation. Approach A (a), D (b), E (c) and F (d) is employed.
Grey lines represent the simulations, red dashed lines are the 5th and
95th percentile of the simulations and black full lines are the mean of
the simulations. As the simulations, and their mean are almost identical
the lines are di�cult to see. Blue circles are pseudo-experimental data
from Span and Wagner [15].
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is primarily due to structural issues with the temperature dependence of the
equations of state. It is possible, however, that at least part of the problem can
be explained by uncertainties in the parameters. Figures 6.10 and 6.11 map
the input uncertainty onto the residual isochoric and isobaric heat capacity at
saturation respectively. It can be seen from both plots that the uncertainty is
signi�cant for approach D, smaller, but still present, for approaches E and F
and almost non-existent for approach A. This illustrates how larger uncertainty
in input parameters, e.g. for the approaches using more adjustable parameters,
result in higher uncertainties in the non-�tted derivative properties. The large
uncertainties for the isochoric heat capacity in �gure 6.10b suggest that the un-
certainty in pure compound parameters lead to signi�cant uncertainties in the
temperature derivatives of the equation of state. This should be non-surprising
as the three most uncertain parameters in approach D are parameters responsi-
ble for the temperature dependence (c1, ε, β) (Eq. (3.7) and (3.11)). This may,
in part, explain why CresV is such a di�cult property to calculate for many equa-
tions of state [37, 115]. However, the deviation from the pseudo-experimental
data is so large, that at least part of the deviation is expected to be due to
structural uncertainty rather than input uncertainty. It is somewhat surprising
that CPA with CO

2
treated as an inert molecule, models CresV so well, while

none of the more sophisticated equations of state yield particularly good results.

Due to the relation between CresV and CresP (see Eqs. (7.10) and (7.11) in chap-
ter 7) uncertainties in CresV should lead to, at least, similar sized uncertainties
in CresP . The uncertainty in �gure 6.11 is of the same magnitude as that in
�gure 6.10, which suggests that the input uncertainty does not lead to signif-
icant additional uncertainties in the ratio between the (∂P/∂T )2 and ∂P/∂V
derivatives. As opposed to the results for CresV it can be seen that the more
advanced approaches all estimate CresP rather well within the input uncertainty,
while the calculations when CO

2
is treated as an inert compound fail to follow

the trend of the pseudo-experimental data. This suggests that approach A fails
in representing the right trend in either the ∂P/∂T or the ∂P/∂V derivative,
possibly in both. We may note, however, that while approaches D, E and F
capture the right trend of CresP as a function of temperature, the only reason
that the predictions represent the pseudo-experimental data so well, is the o�-
set caused by the poor representation of CresV , thus some cancellation of error
must occur between CresV and the ratio (∂P/∂T )2/(∂P/∂V ).

One of the primary objectives of most equations of state is the accurate de-
scription of phase equilibria [115, 164]. It is therefore of particular interest to
investigate how the input uncertainty a�ects the prediction of VLE. In this work
we only take the input uncertainty in the CO

2
parameters into account, and

ignore the input uncertainty of the other component. The mixtures investigated
are two CO

2
+ hydrocarbon mixtures.

Hydrocarbons are modeled with only three parameters (approach A) and the
predictions of binary hydrocarbon + hydrocarbon mixtures, are generally quite
accurate. It is thus expected, that the error in their parameters are negligible,
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(a) Approach A.
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(b) Approach D.
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(c) Approach E.
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(d) Approach F.

Figure 6.10: Propagated uncertainty in the model predictions for the residual iso-
choric heat capacity of CO

2
at saturation, employing approach A (a),

D (b), E (c) and F (d). Grey lines represent the simulations, red dashed
lines are the 5th and 95th percentile of the simulations and black full
lines are the mean of the simulations. Pseudo-experimental data from
Span and Wagner [15].
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(a) Approach A.
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(b) Approach D.
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(c) Approach E.
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(d) Approach F.

Figure 6.11: Propagated uncertainty in the model predictions for the residual iso-
baric heat capacity of CO

2
at saturation, employing approach A (a), D

(b), E (c) and F (d). Grey lines represent the simulations, red dashed
lines are the 5th and 95th percentile of the simulations and black full
lines are the mean of the simulations. Pseudo-experimental data from
Span and Wagner [15].
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and that almost all sources of error in mixtures of CO
2
and hydrocarbons are

due to the quadrupolar CO
2
molecule.

Figures 6.12-6.13 show the propagated input uncertainty of the CO
2
+ ethane

and CO
2
+ propane VLEs at 250 K and 230 K respectively. The small quadrupole

moment of ethane is ignored. All VLE plots are predictions (kij = 0). The un-
certainty with approaches A and E, both of which have three input parameters,
is negligible. The model error with approach A, however, is signi�cant, illus-
trating the need for improved modeling approaches. All other model approaches
qualitatively predict the azeotrope in �gure 6.12 and improve the representation
of the CO

2
+ propane VLE.

The output uncertainty with approach D for the VLEs are quite small, which
is in contrast to the uncertainties in the pure compound heat capacities. On
the other hand, while uncertainties in the pure compound derivative properties
were small to moderate for approach F, they are clearly signi�cant for especially
the liquid phase of the VLE systems. The uncertainty seem to depend on the
mole fraction of CO

2
, with the largest uncertainty in model output being around

xCO2 = 0.5. It is noteworthy that while the uncertainties in the VLE systems are
signi�cant for approach F, it is the only model which could accurately predict
the VLE data within its 95% percentile, which may suggest, that the errors
could be due to subjective errors rather than structural errors.

In any case, the results show that for models such as qCPA and CPA with asso-
ciation a simple LSQ estimation may not give the optimal parameters in terms
of phase equilibrium predictions, as the input uncertainty results in signi�cant
output uncertainties. It is worth noting that it is the same parameter set which
generate the best (closest to the the experimental data) predictions in �gures
6.12-6.13. It is thus possible to �nd a parameter set, which generates excellent
predictions for the VLE of CO

2
+ alkanes, based only on uncertainties in the

input parameters.

As already discussed the observed LLE between CO
2
and heavy hydrocarbons

is believed to be caused primarily by the quadrupole moment of CO
2
. Figure

6.14 shows the propagated input uncertainty on the CO
2
+ n-dodecane LLE

for qCPA with four parameters. The remaining modeling approaches does not
predict the LLE a priori.1 As discussed at the beginning of this chapter an
often use approach for identi�cation of good parameters is to incorporate LLE
data in the parameter estimation. However, the fact that none of the modeling
approaches except approach F predict the presence of the LLE suggest that
including the LLE in the parameter estimation could result in a loss of accuracy
in the pure compound properties beyond what can be explained by experimental
errors. It is also obvious from �gure 6.14 that while the LLE is predicted none
of the parameter sets can accurately represent the LLE.

1At least not with enough realizations to be statistically signi�cant.
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(a) Approach A.
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(b) Approach D.
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(c) Approach E.
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(d) Approach F.

Figure 6.12: Propagated uncertainty in the model predictions for the CO
2
+ ethane

VLE at T=250 K. Employing approach A (a), D (b), E (c) and F (d).
Grey lines represent the simulations, red dashed lines are the 5th and
95th percentile of the simulations and black full lines are the mean of
the simulations. Experimental data from [67].
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(a) Approach A.
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(b) Approach D.
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(c) Approach E.
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(d) Approach F.

Figure 6.13: Propagated uncertainty in the model predictions for the CO
2
+ propane

VLE at T=230 K. Employing approach A (a), D (b), E (c) and F (d).
Grey lines represent the Monte Carlo simulations, red dashed lines are
the 5th and 95th percentile of the simulations and black full lines are
the mean of the simulations. Experimental data from [165].
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Figure 6.14: Propagated uncertainty in model predictions for the CO
2
+ n-dodecane

LLE using qCPA with 4 adjustable parameters (Approach F). Grey
lines represent the Monte Carlo simulations, red dashed lines are the
5th and 95th percentile of the simulations and black full lines are the
mean of the simulations. Experimental data from [166].

6.4.3 The e�ect of adding additional output properties

The high degree of correlation, and the complex distributions obtained from
bootstrapping may suggest that the data used for parameter estimation is too
limited in relation to the model complexity.

One way to address this problem is to add more pure compound or binary
data to the LSQ regression. Several authors have proposed extended �tting
procedures [115, 167�169], where for instance properties such as the heat of
vaporization or the speed of sound has been included in the objective function.

In order to investigate how the addition of another property in the objective
function a�ects the parameter distribution, we re-estimate the input parameters
of CO

2
to the heat of vaporization, ∆Hvap, in addition to the saturated vapor

pressures and saturated liquid densities. Only approaches D and F are investi-
gated, as the parameters with approaches A and E were well-de�ned, and any
change in these parameters will probably be at the cost of the density and/or
vapor pressure description.

It is clear from �gure 6.15 that the distribution of the new input parameters is
nearly normal, which is in clear contrast to the parameter distribution in �gure
6.5 which showed evidence of bimodiality. Clearly the addition of the heat of
vaporization has moved the parameters towards what was the minor mode in
�gure 6.5, although the center of the old mode is not quite the same as the new.
From �gure 6.16 it can be seen that the distribution of parameter estimates also
looks much smoother for approach D, especially considering the very complex
distributions previously observed for especially c1, β, and ε. Unfortunately
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axis), obtained from 500 re-sampled bootstraps, using modeling ap-
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2
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the parameter distribution is quite wide (i.e. large standard deviation), and,
although not shown here, the parameters are still equally correlated.

Figure 6.17b shows the uncertainty in the new input parameters propagated to
the CO

2
+ ethane VLE, it can be seen from the �gure that although the param-

eter distributions are close to the expected normal distribution, the uncertainty
in the VLE estimation is still high for approach F. It is furthermore noteworthy
that approach F is, again, the only model which can predict the data within its
95th percentile. The uncertainty range has, however, changed so that the var-
ious realizations generally under-predict the experimental VLE data, whereas
they previously over-predicted the experimental data. This suggests a quite
large total area of uncertainty, and a very �exible model. For approach D it
is observed from �gure 6.17b that the uncertainty in the VLE is larger now,
than it was with the bimodal distribution, however, the VLE predictions are
almost identical to those in �gure 6.12b. The reason for the wide parameter
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(a) Approach F.
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Figure 6.17: Propagated uncertainty in the model predictions for the CO
2
+ ethane

VLE at T=250 K. Approach F (a) and D (b) �tted to ∆Hvap in addi-
tion to ρliqsat and P

sat. Grey lines represent the simulations, red dashed
lines are the 5th and 95th percentile of the simulations and black full
lines are the mean of the simulations. Blue circles are experimental
data from [67].

distributions may be because the obtained parameter sets constitute a compro-
mise between correlating either of the �tted properties better than the other.
Figure 6.17b, for instance, suggests that the pure compound vapor pressure is
not captured very well for some parameter sets.

6.5 Summary and Discussion

This chapter investigated the uncertainty in the pure compound parameters of
CO

2
with qCPA and various CPA approaches. The models and modeling ap-

proaches employ between three and �ve adjustable pure compound parameters.
The uncertainties are estimated using either LSQ estimation or the bootstrap
method. In an attempt to quantify the e�ect of uncertainties in the input
properties (the pure compound parameters), the uncertainties in the pure com-
pound parameters obtained from the bootstrap method is propagated to selected
derivative properties and CO

2
+ hydrocarbon VLE systems using a Monte Carlo

approach.

The results indicate that modeling approaches which use only three adjustable
parameters have relatively low parameter uncertainties, and it may be reason-
able to ignore this uncertainty and assume the parameters to be unique, at least
insofar as the same type of correlation data is employed (here saturated pres-
sure and saturated liquid density). Any predicted deviations from experimental
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data, may be attributed either to errors or simpli�cation in the model, rather
than uncertainties in the model parameters.

When the models contained four or �ve parameters, however, the uncertainties
and parameter correlations were signi�cant. The association volume, β, for in-
stance is highly correlated with the association strength, ε, and its value may
vary about 100% from its mean value, without signi�cant loss of accuracy in
the properties the parameters are correlated to. The main reason for the large
parameter uncertainties appears to be the high correlation between parameters,
rather than the uncertainty in the experimental data, which is very small. This
conclusion is in very good agreement with the observation, that several param-
eter sets may be found with advanced thermodynamic models such as CPA and
SAFT and suggests that the primary explanation for these parameter sets may
be the uncertainties and parameter correlations.

The propagated uncertainty appears to be signi�cant for highly temperature
dependent properties, such as the heat capacities, when CO

2
is treated as an

associating species with �ve parameters. On the other hand, the propagated
uncertainty is relatively small for the VLE systems. When qCPA was employed
with four adjustable parameters, however, the uncertainties were relatively small
in the temperature dependent properties, whereas the uncertainty in VLE was
signi�cant. Of the evaluated models qCPA (with approach F) is the only model
which can predict the VLEs within the propagated uncertainty, and give rea-
sonable results for LLE predictions. This is partly due to the larger uncertainty
range of the modeling approach compared to qCPA with three parameters (ap-
proach E), but also better model predictions. This suggests that one or more
parameter set(s) can be found, within the uncertainty of the adjustable parame-
ters, which quantitatively predicts the VLE, and at least qualitatively the LLE.
Alternatively qCPA with three parameters gives excellent qualitative results
with low uncertainties.

Although similar parameter correlations are typically obtained, the parame-
ter uncertainties from LSQ estimation are generally signi�cantly smaller than
those obtained from the bootstrap method. This may be because the bootstrap
method accounts for the high degree of correlation between parameters, by using
the experimental data itself rather than indirectly using the linear approxima-
tion of the covariance matrix for estimators. It is thus clear that one might not
obtain the 'best' parameter set, e.g for modeling VLE systems, by a standard
LSQ estimation procedure when dealing with advanced thermodynamic models
having multiple adjustable parameters. In any case, one should be aware that
an obtained parameter set may be quite uncertain, which may incur signi�cant
uncertainties in physical property predictions.

The e�ect of adding the heat of vaporization to the parameter estimation was
also investigated. This resulted in parameter distributions, which were signi�-
cantly closer to a normal distribution. Unfortunately the standard deviations for
the parameters were still high and the propagated error was signi�cant. qCPA
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with four parameters is still the only model which can, within the propagated
uncertainty, predict the VLEs. The propagated uncertainty, however, di�ers
from the previously estimated one, so that the model tend to under-predict,
rather than over-predict, the VLE data. The fact that the propagated uncer-
tainty of these two correlation cases di�er so much from each other, despite the
fact that both cases match the correlated properties to a satisfactory degree
may suggest, that the (already large) parameter uncertainty range is in fact
somewhat under-predicted in both cases.

The uncertainty results for qCPA are strictly valid only for CO
2
(which has a

short saturation curve) and the quadrupolar term which we have employed in
this work. However, most other quadrupolar and polar terms are structurally
similar, and we suspect that they may have similar uncertainty properties. In-
dicating that published parameters should be treated with caution. On the
other hand, it is clear from the VLE examples that the quadrupolar models
may o�er signi�cantly improved predictions, even if the cost of this may be a
higher uncertainty in the parameters. In either case the results indicate that
it is important that researchers report the parameter uncertainties when a new
model is developed or parameters are estimated for a new compound. In this
way better informed decisions and comparisons can be made.

Another important conclusion from this chapter is that it is inadvisable to use
a simple LSQ �t (based on pure properties) for the estimation of pure com-
pound parameters of CO

2
when advanced models with multiple parameters are

employed. This conclusion should not come as a surprise to researchers deal-
ing with uncertainties and/or thermodynamic models, however, this knowledge
is often primarily experience based and rarely, if ever, systematically quanti-
�ed as we have attempted in this chapter. Hopefully this may also help new
researchers appreciate that a simple LSQ estimation isn't always enough. The
chapter also indicate that many researches chose to add binary equilibrium data
to the parameter estimation to get the right balance between the very corre-
lated parameters. One may speculate whether the high parameter uncertainties
observed, when CO

2
was treated as an associating species, are also true for a

molecule such as water, for which more than 20 di�erent parameter sets have
been published with PC-SAFT [170]. If so, many of these parameter sets may
simply be covered by the uncertainty range of the parameters due to the sparsity
of the experimental data.

Finally we note that while we have assumed good data coverage in our analysis,
it would be very informative to also analyze the e�ect of especially sparse or
limited data on the CPA type models.



CHAPTER7
Pure Compound Properties of

CO
2

Traditionally the primary focus for the development of most equations of state
has been to accurately describe the phase equilibria of mixtures. Indeed, this
too is one of the main purposes of the present work (primarily for mixtures
containing CO

2
). An unfortunate consequence of this practise, however, is that

the typical equation of state, is only evaluated to a very limited degree for other
properties of interest.

An important industrial desire, however, is the simultaneous description of
phase equilibria, primary physical properties and derivative properties over a
wide range of temperatures and pressures [115, 171]. Moreover, thermodynamic
models, once published, will often be employed for conditions or properties other
than those for which they have been developed [164], for instance when used
in a simulator by an engineer, who may not be familiar with the speci�cs of a
model and its (possible) limitations. It is thus important that the predictive
behaviour of an equation of state is evaluated over a wide range of conditions
and properties other than those for which it has been developed.

In this regard Deiters and de Reuck [164] developed a number of criteria for how
the performance of new equations of state should be evaluated for pure �uids.
These criteria include, among others, the demonstration of the behaviour and
physical property prediction of the model at the critical point, in the saturation
region, as well as the prediction of single-phase properties.

This chapter will attempt to evaluate the performance of qCPA and CPA for
the prediction of pure �uid properties of CO

2
both at the critical point, in the
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saturation region, the critical region and the compressed liquid region. The pre-
dicted properties include; the density, the isobaric and isochoric heat capacity,
the speed of sound, the Joule-Thomson coe�cient, the critical point and �nally
the second virial coe�cient. Most of the chapter has been published in Fluid
Phase Equilib. (2016), 408, 151-169 [37].

7.1 Calculation of Derivative Properties

The enthalpy and heat capacities can be expressed as the sum of two contribu-
tions; an ideal gas contribution (ig) and a residual contribution (res):

CV (T, V,n) = CigV (T,n) + CresV (T, V,n) (7.1)

CP (T, V,n) = CigP (T,n) + CresP (T, V,n) (7.2)

H(T, P,n) = Hig(T,n) +Hres(T, V,n) (7.3)

The (molar) ideal gas term can be calculated from Eqs. (7.4)-(7.6)

CigV =

nc∑
i

xiC
ig
V,i(T ) (7.4)

CigP =

nc∑
i

xiC
ig
P,i(T ) (7.5)

Hig =

nc∑
i

xiH
ig
i (T ) (7.6)

where the ideal gas enthalpy for the i pure compound is calculated from

Hig
i = Hig

i,ref +

∫ T

Tref

CigP,idT (7.7)

and the molar ideal isobaric heat capacity for the ith compound is calculated
from the Design Institute for Physical Properties (DIPPR) correlation [172] (Eq.
(7.8)), although simple power laws are also commonly used.

CigP,i = ADi +BDi

(
CDi /T

sinh(CDi /T )

)2

+DD
i

(
EDi /T

cosh(EDi /T )

)2

(7.8)

The coe�cients (ADi , B
D
i , C

D
i , D

D
i , and E

D
i ) are adjustable parameters corre-

lated to experimental data for each component i. The DIPPR coe�cients for
CO

2
are shown in table 7.1. Tref in Eq. (7.7) is a reference temperature, which

in this work is Tref = 298.15 K.

The ideal isochoric heat capacity for the ith component is given simply as

CigV,i = CigP,i −R (7.9)
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Table 7.1: DIPPR coe�cients for calculation of the isobaric ideal gas heat capacity
of CO

2
using Eq. (7.8).

A B C D E
[J/(mol K)] [J/(mol K)] [K] [J/(mol K)] [K]

CO
2

29.370 34.540 1428 26.400 588

where R is the ideal gas constant.

The residual contributions in Eqs. (7.1)-(7.3) can be obtained from the reduced
residual Helmholz energy (F= Ares/RT ) of an equation of state. The residual
isochoric heat capacity can be calculated from Eq. (7.10)

CresV (T, V,n) = −RT 2

(
∂2F

∂T 2

)
V,n

− 2RT

(
∂F

∂T

)
V,n

(7.10)

The residual isobaric heat capacity is calculated from Eq. (7.11)

CresP (T, V,n) = CresV − T

(
∂P

∂T

)2

V,n(
∂P

∂V

)
T,n

− nR (7.11)

where (
∂P

∂V

)
T,n

= −RT
(
∂2F

∂V 2

)
T,n

− nRT

V 2
(7.12)(

∂P

∂T

)
V,n

= −RT
(
∂2F

∂V ∂T

)
n

− P

T
(7.13)

The residual enthalpy can be calculated from Eq. (7.14)

Hres(T, P,n)

nRT
= Z − T

n

(
∂F

∂T

)
V,n

− 1 (7.14)

The Joule-Thomson coe�cient is de�ned as the derivative of temperature with
respect to pressures at constant enthalpy and can be related to CP and the
residual properties as

µJT =

(
∂T

∂P

)
H,n

= − 1

CP

[
V + T

(
∂P

∂T

)
V,n

/

(
∂P

∂V

)
T,n

]
(7.15)

Finally the speed of sound can be expressed as:

u =

√√√√√
−V 2

CP
CV

(
∂P

∂V

)
T,n

MW
(7.16)
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were MW is the molecular weight. Note that it is the isobaric and isochoric
heat capacities which are in Eqs. (7.15) and (7.16) and not only the residual
part.

From the above equations it can be seen that in addition to �rst order properties
the second order derivatives

(
∂2F/∂V 2

)
n,T

,
(
∂2F/∂V ∂T

)
n
and

(
∂2F/∂T 2

)
n,V

are crucial in order to obtain accurate derivative property predictions. For
this reason, the derivative properties are sometimes referred to as second-order
properties.

As only the pure compound properties of CO
2
are evaluated in this chapter the

mole fractions in Eqs. (7.4)-(7.6) are equal to one and the equations essentially
reduce to the ideal properties of the pure compound. For the isochoric and
isobaric heat capacities deviations and illustrations are only presented for their
residual part throughout the chapter. To obtain pseudo-experimental data for
the residual part of these properties the ideal contribution is subtracted the
pseudo-experimental data. In this way it is implicitly assumed that the ideal
contribution is accurately estimated with the DIPPR correlation.

7.2 Pure Compound Parameters and Modeling

Approaches

The previous chapter illustrated that there are substantial uncertainties in the
pure compound parameters of CO

2
when CO

2
is modeled as either a self-

associating or quadrupolar species (with four adjustable parameters). The un-
certainties in the parameters were propagated to physical properties and binary
VLE and LLE using a Monte Carlo technique.

While such an analysis is a rigorous way to compare the models more objec-
tively, it is unfortunately also impractical and time consuming to employ for an
extensive investigation of the modeling approaches. It is thus desirable to obtain
explicit pure compound parameters which can be compared to other modeling
approaches.

Based on results from the previous chapter it was decided to select two pa-
rameter sets for qCPA, which are within the estimated uncertainty of the pure
compound parameters (obtained with the bootstrap technique); one which re-
produces well the VLEs of CO

2
+ propane at a single temperature and one

which represents well the LLE of CO
2
+ n-dodecane. While this procedure is

strongly related to that where the VLE or LLE data is included in the corre-
lation. It must be emphasized, however, that no VLE or LLE data have been
used directly in the parameter estimation.
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Contrary to qCPA with four parameters the parameter uncertainties for qCPA
with three adjustable parameters were insigni�cant and had no real impact on
the propagated errors. For this reason the parameters estimated from classical
LSQ estimation is employed for qCPA with three parameters (see table 6.3).
The performance of qCPA is compared with two other CPA approaches namely
non-associating (n.a.) CPA, where CO

2
is assumed to be an inert compound,

and the case when CO
2
is assumed to be (pseudo) self-associating. Based on the

results in the previous chapter and following the conclusions by both Kontoge-
orgis and co-workers [14, 33�36, 81] and Voutsas and co-workers [21, 22, 79, 80]
we choose to employ the 4C association scheme for the comparison.

The CO
2
parameters from the LSQ estimation is employed for both inert CPA

and for CPA were CO
2
is assumed to be self-associating. In the latter case this

may seem inconsistent, as this modeling approach also showed high parameter
uncertainties. The uncertainties, however, seemed to have little e�ect on binary
phase equilibria. Moreover no parameter set was found which would improve
one property without deteriorating another.

Table 7.2 shows the CO
2
parameters and associated %AADs for the approaches

which are employed in this chapter (and the next). Very good agreement with
the experimental data is achieved for all approaches. It is noteworthy that the
deviations from experimental data for CO

2
with qCPA are lower than CPA

without association (CPA n.a.), even when the same number of adjustable pa-
rameters are employed. For qCPA with four parameters, due to the method
used to obtain the parameters, it may be possible to �nd parameters which
deviate less from the experimental data than those chosen here. Exceptionally
good correlations (in terms of the closeness of �t) are found when CO

2
is as-

sumed to be self-associating. However, as discussed in previous chapters this
should probably be attributed mainly to an increased model �exibility due to
the number of adjustable parameters.

Table 7.2: CPA and qCPA pure compound parameters for CO
2
together with

%AADs between experimental [152�154] and calculated saturated liquid
densities and saturated pressures. The quadrupolar moment of CO

2
is

�xed at the (average) experimental value of -4.3 DÅa when qCPA is em-
ployed. Details on the parameter estimation can be found in chapter
6.

Modeling b0 Γ c1 β · 1000 ε/R bQ0 %AADb

approaches mL/mol K - - K mL/mol P sat ρliq

CPA, n.a. 27.3 1550 0.77 - - - 0.18 0.95
CPA, 4C 28.4 1329 0.66 25.7 513 - 0.07 0.10

qCPA, 3par 27.9 1284 0.68 - - = b0 0.13 0.46
qCPA, 4par set 1b 28.2 1172 0.64 - - 23.6 0.49 0.24
qCPA, 4par set 2b 28.1 1230 0.64 - - 25.4 0.42 0.29
a 1DÅ = 1Buckingham = 10−26esu cm2 = 3.3356 · 10−40Cm2.
b Parameters based on uncertainties and (indirectly) VLE or LLE data.
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7.3 Derivative Properties and Density

To the best of our knowledge relatively few systematic evaluations of the perfor-
mance of CPA (or SAFT) for derivative properties have been published. La�tte
et al. [167, 173] evaluated the performance of various SAFT variants, with em-
phasis on SAFT-VR Mie, for predicting derivative properties of alkanes and
alcohols. Similarly Lundstrøm et al. [174] evaluated the performance of SRK
and CPA for predicting derivative properties of water, methanol and a binary
mixture of the two components. CPA is overall found to perform best of the
two models. Recently, de Villiers et al. [115] compared the performance of CPA,
PC-SAFT and SAFT for predicting derivative properties of various alkanes and
alcohols. The authors also attempted, with some success, to improve the pure
compound parameters of the models, by using heats of vaporization in the cor-
relation in addition to the saturated liquid density and vapor pressure.

The perhaps most relevant investigation for the purposes of this work is the
study performed by Diamantonis and Economou [6]. Employing SAFT and
PC-SAFT the authors calculated the density and several derivative properties
of various pure compounds, including CO

2
, over an extensive temperature and

pressure range (T = 220 − 500 K and P = 0 − 200 bar for CO
2
). In general

the predictions with both SAFT and PC-SAFT are in good agreement with
experimental data for most properties, except in the vicinity of the critical
point.

7.3.1 Saturation region

As the pure compound parameters of CO
2
for the modeling approaches inves-

tigated in this work have been correlated to the saturated liquid liquid density
and saturated vapor pressure it seems prudent to evaluate the models for their
ability to predict other derivative properties at saturation. We thus compare
the prediction of several derivative properties for CO

2
, both in the liquid and

vapor phase against pseudo-experimental data from the Span and Wagner EoS
for pure CO

2
[15].

The temperature range of this investigation is T = 216− 300K, the immediate
vicinity around the critical point (T = 304.13K and P = 73.8bar) is ignored
as the uncertainty with the Span and Wagner EoS, as well as the investigated
equations of state, becomes signi�cant at these conditions. See section 7.4 for
direct calculations of the critical point with CPA and qCPA.

Tables 7.3 and 7.4 compare, in terms of %AAD, the equations of state for
their ability to predict the vapor density of CO

2
as well as several derivative

properties (the speed of sound, the isobaric and isochoric heat capacity, the
Joule-Thomson coe�cient and the enthalpy of vaporization) at saturation in the
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liquid and vapor phase respectively. Ideally the addition of a quadrupolar term
would improve the prediction of the derivative properties due to the physically
more correct model and the improved density description in the liquid phase.
However, with the exception of the isobaric heat capacity in the liquid phase,
Cres,satP,liq , it is observed that CPA without association often performs somewhat
better for CO

2
than the more sophisticated models, especially in the vapor

phase, where the EoS is superior for CO
2
both in the vapor density, isochoric

heat capacity and Joule-Thomson coe�cient. This is also the case for the heat
of vaporization, where CPA without association again performs better, possibly
due to a more accurate vapor phase enthalpy. Nevertheless the performance of
the models is comparable for all properties in terms of %AAD. The prediction of
most properties is satisfactory, considering that no parameters have been �tted
to these properties.

Noticeable exceptions to the otherwise satisfactory performance are the predic-
tions of the residual isochoric and isobaric heat capacities in the vapor phase as
well as the isochoric heat capacity in the liquid phase (except with CPA without
association).

Table 7.3: %AAD values for usat
liq , C

res,sat
P,liq , Cres,sat

V,liq , µsat
JT,liq, and ∆Hvap of CO

2

at saturation using CPA n.a., CPA 4C and qCPA with three di�erent
parameter sets. The temperature range is T = 216 − 300 K. Pseudo-
experimental data from the Span and Wagner EoS [15]. u represents the
speed of sound, µ the Joule-Thomson coe�cient and ∆Hvap the heat of
vaporization.

Modeling % AAD
approaches usatliq Cres,sat

P,liq Cres,sat
V,liq µsatJT,liq ∆Hvap

CPA, n.a. 13.2 7.6 10.7 6.6 7.7
CPA, 4C 13.2 4.8 35.1 8.7 9.9

qCPA, 3par 13.0 5.2 23.8 6.2 9.6
qCPA, 4par, set 1 13.0 5.1 27.5 7.6 10.6
qCPA, 4par, set 2 13.1 5.4 24.2 7.5 10

Table 7.4: % AAD values for ρsatvap, u
sat
vap, C

res,sat
P,vap , Cres,sat

V,vap and µsat
JT,vap of CO2

at sat-
uration using CPA n.a., CPA 4C and qCPA with three di�erent parameter
sets. The temperature range is T = 216 − 300 K. Pseudo-experimental
data from from the Span and Wagner EoS [15].

Modeling % AAD
approaches ρsatvap usatvap Cres,sat

P,vap Cres,sat
V,vap µsatJT,vap

CPA, n.a. 6.9 6.2 56.7 86.4 9.1
CPA, 4C 8.1 5.7 57.1 79.1 10.5

qCPA, 3par 8.5 6.0 59.3 84.8 10.4
qCPA, 4par, set 1 9.5 6.0 60.6 84.5 11.0
qCPA, 4par, set 2 9.7 5.9 60.7 85.0 11.0

Figure 7.1 shows predictions of the liquid and vapor phase isobaric and isochoric
heat capacity respectively. It is clear from �gure 7.1a that using CPA with the
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Figure 7.1: Normalized liquid and vapor residual isochoric (a) and isobaric (b) heat
capacity predictions of CO

2
at saturation with CPA and qCPA. Pseudo-

experimental data from the Span and Wagner EoS [15].

4C scheme and qCPA predicts the liquid isobaric heat capacity of CO
2
very well

through most of the saturation region, although the predictions of all model
approaches begin to deviate as the critical point is approached. On the other
hand �gure 7.1b shows that the trend of the liquid isochoric heat capacity is
not captured by any model. The predictions in the vapor phase are quite poor
for both the residual isochoric and isobaric heat capacity.

Figure 7.2 illustrates that while the speed of sound in the vapor phase and
the Joule-Thomson coe�cient in the liquid phase are predicted quite well, the
performance begins to deteriorate close to the critical point. The liquid phase
speed of sound and vapor phase Joule-Thomson coe�cient predictions are quan-
titatively wrong and moreover the trend of the data is not fully captured.

Finally �gure 7.3 shows the predicted heat of vaporization. All models predict
the qualitative trend, but loose accuracy as the critical pressure is approached.
Again, CPA without association actually performs slightly better than the other
modeling approaches close the the critical point.

7.3.2 Compressed liquid region

Table 7.5 shows deviations for the density and the di�erent derivative properties
for CO

2
at two reduced temperatures, namely Tr = 0.8 and Tr = 0.9 and over an

extensive pressure range (100 − 1000 bar, corresponding to a reduced pressure
range of about 1.4-13.7) in the compressed liquid region. In most cases the
predictions are similar or better when CO

2
is modeled as a self-associating or
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Figure 7.2: Liquid and vapor Joule-Thomson coe�cient (a) and speed of sound
(b) predictions of CO

2
at saturation with CPA and qCPA. Pseudo-

experimental data from the Span and Wagner EoS [15].
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Figure 7.3: Heat of vaporization predictions of CO
2
at saturation with CPA and

qCPA. Pseudo-experimental data from the Span and Wagner EoS [15].
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quadrupolar compound rather than an inert species. A pronounced exception is
again the prediction of the residual isochoric heat capacity of CO

2
, where both

CPA with the 4C scheme and qCPA perform very poorly and CPA without
association performs better, at least in terms of %AAD. A similar observation
was made by de Villiers et al. [115] for n-alkanes, where the original SAFT
performed better than CPA and PC-SAFT for the prediction of CV but worse
for other properties.

Diamantonis and Economou [6] calculated, using SAFT and PC-SAFT, deriva-
tive properties for several small molecules including CO

2
(modeled as an inert)

over an extensive temperature range. Both models performed well far from the
critical region with PC-SAFT being somewhat more accurate. With the excep-
tion of the speed of sound their results are surprisingly similar to the results
for non-associating CPA, especially considering the di�erent models and di�er-
ent temperature and pressure intervals considered in their work. The speed of
sound predictions are signi�cantly better with the SAFT-type models compared
to the CPA-based models. This is expected as several researchers have demon-
strated that SAFT can predict the trend in the speed of sound much better
than CPA-based models [6, 175].

Table 7.5: %AAD values of ρliq, u, Cres
P , Cres

V , and µJT for CO
2
at two reduced

temperatures in the compressed liquid region using CPA n.a., CPA 4C
and qCPA with three di�erent parameter sets. Pseudo-experimental data
from the Span and Wagner EoS [15].

Modeling
Tr

P range % AAD
approaches [bar] ρliq u Cres

P Cres
V µJT

CPA, n.a.

0.8 100-1000

2.6 12.2 15.2 6.5 17.0
CPA, 4C 1.1 9.8 6.2 42.5 20.1

qCPA, 3par 1.6 10.2 6.3 30.0 12.0
qCPA, 4par, set 1 1.2 9.2 4.6 35.7 13.3
qCPA, 4par, set 2 1.3 9.7 7.1 30.6 14.5

CPA, n.a.

0.9 100-1000

2.7 13.0 8.1 15.9 15.2
CPA, 4C 1.8 10.4 4.7 41.8 12.9

qCPA, 3par 2.0 11.2 3.8 33.9 4.7
qCPA, 4par, set 1 1.7 10.3 2.9 38.7 1.8
qCPA, 4par, set 2 1.7 10.7 4.6 33.8 1.7

Figure 7.4 shows (reduced) CresV and CresP predictions for CO
2
at Tr = 0.8 and

Tr = 0.9. The predictions when CO
2
is modeled either with the 4C scheme or

the di�erent qCPA parameter sets are very similar, with qCPA being slightly
better. More importantly both modeling approaches predict the intersecting
isobaric heat capacities at approximately 300 bar quite accurately (see �gure
7.4b), whereas CPA without association predicts this point around 800 bar. The
CresV predictions in �gure 7.4a illustrate clearly that most of the models have
di�culties with the CresV predictions.

Notice that while CPA without association yields the best CresV prediction it
is the poorest in terms of CresP . However, CresP depends on CresV as can be
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Figure 7.4: Normalized isochoric (a) and isobaric (b) heat capacity predictions for
CO

2
with CPA and qCPA in the compressed liquid region and at Tr =

0.8 and Tr = 0.9. Pseudo-experimental data from the Span and Wagner
EoS [15].

seen from equation (7.11) in section 7.1. This suggests that a large part of
the improved CresP predictions with qCPA and CPA with association is due to
the over-prediction of CresV . In this way at least part of the improvement is
in fact due to a cancellation of errors between the CresV and the ratio between
(∂P/∂T )

2
V,n and (∂P/∂V )T,n.

Figure 7.5 shows that the speed of sound and Joule-Thomson coe�cient predic-
tions for CO

2
are slightly improved with qCPA, both of which suggest a slightly

more accurate ratio between (∂P/∂T )V,n and (∂P/∂V )T,n.

As the model parameters are correlated to the saturated liquid density it is
expected that the density is predicted fairly well, even outside the saturation
region. Figure 7.6a compares the predictions f of the liquid density of CO

2
at

Tr=0.8 and Tr=0.9 against data from the Span and Wagner EoS [15]. Figure
7.6b shows the predictions against the experimental data from Brewer et al.
[176] in the more restricted pressure range of 200-400 bar and at Tr = 0.9 and
Tr = 0.93. Both �gures con�rm that the predictions are quite satisfactory for
all modeling approaches, in particular at moderate pressures.

At elevated pressures it can be seen from especially �gure 7.6a that the density
predictions for CPA without association are worse than when CO

2
is modeled

as an associating or quadrupolar compound. The predictions with qCPA are
satisfactory in the whole pressure range. Table 7.6 show the %AAD between
model predictions and the density values from [176]. Although slightly smaller
for the quadrupolar approaches the deviations are around 1% in all cases.
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Figure 7.5: Speed of sound (a) and Joule-Thomson coe�cient (b) predictions for
CO

2
with CPA and qCPA in the compressed liquid region and at Tr =

0.8 and Tr = 0.9. Pseudo-experimental data from the Span and Wagner
EoS [15].
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Figure 7.6: Density predictions for CO
2
with CPA and qCPA in the compressed

liquid region. At Tr = 0.8 and Tr = 0.9 (a) compared to pseudo-
experimental data from the Span and Wagner EoS [15] and at Tr = 0.9
and Tr = 0.93 (b) compared to experimental data from Brewer et al.
[176].



82 Pure Compound Properties of CO
2

Table 7.6: %AAD values between the experimental liquid density data from Brewer
et al. [176] and the predicted values for CO

2
using CPA n.a., CPA 4C

and qCPA with three di�erent parameter sets. The pressure range of the
data is 200-400 bar.

Model CPA n.a. CPA 4C qCPA, 3par qCPA, set1 qCPA, set 2

Tr = 0.9 1.4 1.2 1.1 1 1
Tr = 0.93 0.9 1.1 0.8 0.8 0.8

7.3.3 Critical region

The critical region is important due to the observed extrema and in�ection
points present in the derivative properties, which serves as a valuable test for
the partial derivatives of an EoS. Table 7.7 shows the %AAD values for the
derivative properties of CO

2
utilizing the di�erent modeling approaches at Tr =

1.1 and in a pressure range of 0-250 bar (corresponding to a reduced pressure
range of 0-3.4). With the exception of CresV the prediction of all modeling
approaches are quite good as the low %AAD suggests.

Figure 7.7a clearly shows that the maximum in CresV is not predicted by any of
the models. A similar result was obtained by de Villiers et al. [115] for n-alkanes
using CPA, SAFT and PC-SAFT. Diamantonis and Economou [6] also found
increasing inaccuracies in the predicted residual isochoric heat capacity of CO

2

with SAFT and PC-SAFT. In the vicinity of the critical point the authors found
that SAFT and PC-SAFT predicts (as a function of temperature) the opposite
trend for CresV as that seen in the experimental data.

These failures to represent the qualitative form of the residual isochoric heat
capacity suggests a fundamental problem with the temperature dependence of
both the physical SRK term and the dispersion term in SAFT. On the other
hand, using SAFT-VR Mie, La�tte et al. [173] found that the maximum in CV
could be predicted for 1-hexanol and 1-decanol. The maximum was found to be
mainly governed by the association term. It is interesting, however, that no such
behaviour was observed when CO

2
was considered an associating compound.

As the maximum in CV for 1-hexanol is also predicted with CPA (see �gure 7.8)
we suspect, that the reason for the absence of the maximum for CO

2
is primarily

due to the relatively small contribution from the association term for CO
2
. As

seen in �gure 7.7b all the model variants evaluated in this work capture the
maximum for CresP with good accuracy.

As the low %AAD in table 7.7 suggests all model approaches predict the in�ec-
tion point in the density and Joule-Thomson coe�cient as well as the minimum
in the speed of sound. Especially the density predictions are extremely accurate,
as shown in �gure 7.9.
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Figure 7.7: Normalized isochoric (a) and isobaric (b) heat capacity predictions of
CO

2
with CPA and qCPA in the critical region (Tr = 1.1). Pseudo-

experimental data from the Span and Wagner EoS [15].
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Figure 7.8: Cres
V predictions of 1-hexanol using 3 di�erent CPA parameter sets with

the 2B [51, 115] and 3B [115] schemes respectively. The parameters
from de Villiers et al. [115] have been correlated to Cliq

P and ∆Hvap in
addition to the saturated density and vapor pressure.
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Table 7.7: %AAD values for ρliq, u, Cres
P , Cres

V , and µJT in the near critical region
at reduced temperature Tr = 1.1 using CPA n.a., CPA 4C and qCPA
with three di�erent parameter sets. Pseudo-experimental data from the
Span and Wagner EoS [15].

Modeling
Tr

P range % AAD
approaches [bar] ρliq u Cres

P Cres
V µJT

CPA, n.a.

1.1 0-250

3.2 4.9 3.9 32.5 7.3
CPA, 4C 1.6 3.8 6.3 31.4 4.8

qCPA, 3par 2.0 4.2 5.4 32.2 5.1
qCPA, 4par, set 1 1.4 4.0 5.9 32.2 4.3
qCPA, 4par, set 2 1.1 4.1 4.7 32.2 4.2

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

Pressure [bar]

ρ 
[1

/d
m

3 ]

 

 

NIST data, T
r
=1.1

CPA, n.a.
CPA, 4C
qCPA, 3par
qCPA, 4par, set 1
qCPA, 4par, set 2

Figure 7.9: Density predictions of CO
2
with CPA and qCPA in the critical region

(Tr = 1.1). Pseudo-experimental data from the Span and Wagner EoS
[15].

7.3.4 Summary of derivative property results

Overall it has been shown that for most predicted properties, in both the
saturation-, the compressed liquid- and the critical region, the qualitative per-
formance is not signi�cantly di�erent for the various models (CPA n.a., CPA
4C and qCPA), and all modeling approaches predict the same trends. With the
clear exception of CresV all models generally perform satisfactory considering
that the model parameters have not been correlated to any of these properties,
rendering the models purely predictive.

In regards to the density and the derivative properties qCPA and CPA with the
4C scheme typically perform slightly better quantitatively than CPA without
association (again with CresV as the exception). This is illustrated in �gure 7.10
which shows the overall deviations in the density and the derivative properties,
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Figure 7.10: Model comparison of the overall %AADs for the density, speed of sound,
isobaric heat capacity and the Joule-Thomson coe�cient in the liquid
or supercritical phase using the �ve modeling approaches.

with the exception of CresV , which cannot be represented well by any of the
modeling approaches. Figure 7.10 also shows that the predictions are only
marginally improved when the four parameter version of qCPA is employed,
rather than the three parameter version. In most cases qCPA and CPA gives
similar predictions, however, the Joule-Thomson coe�cient is, at least in terms
of %AAD, predicted signi�cantly better with the various qCPA approaches.

Considering that qCPA should result in a physically more correct model, the
improvement, at least for the quadrupolar term, is clearly smaller one might
expect. Of course part of the explanation is that most of the pure compound
predictions with inert CPA are quite good to begin with, another reason may be
that the arti�cially large attractive energies for e.g. inert CPA may compensate
quite well for the added energetic quadrupole term so long as there are not cross
interactions.

7.4 Critical Points

The traditional parameters of the SRK EoS are obtained from the critical prop-
erties, which ensures that the model reproduces the correct critical point, at
the cost of the saturated liquid density. On the other hand, models such as
CPA and SAFT, whose parameters are �tted to the saturated liquid density
and saturated pressure typically overestimate the critical point. As there are
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Figure 7.11: PV-diagram with predicted temperature isotherms at 300 K, 320 K
and the critical temperature isotherm using CPA n.a. (a), and qCPA
with 3 parameters (b) to model CO

2
.

several applications of CO
2
near the critical region, it is of interest to calculate

its critical temperature and pressure with the di�erent models.

At the critical point only one phase exists, and there is an in�ection point in
the critical temperature isotherm. That is(

∂P

∂V

)
T

=

(
∂2P

∂V 2

)
T

= 0 (7.17)

To illustrate the calculated critical point for CO
2
with qCPA and inert CPA

�gure 7.11 shows, in a PV diagram, di�erent temperature isotherms below,
above and at the critical point. The critical point, determined as the in�ection
point in the critical temperature isotherm, is marked with a circle.

The experimental critical temperature, pressure and volume are compared with
the calculated critical points with the di�erent CPA modeling approaches in
table 7.8. Figure 7.12 also compare, for three of the modeling approaches, the
saturated density predictions with pseudo-experimental data from the Span and
Wagner EoS [15].

Figure 7.12a shows the complete saturation curve from the triple point to the
critical point, while �gure 7.12b is a close-up of the part of the curve which
the saturated liquid density have not been correlated to. Unfortunately the
addition of a quadrupolar term does not improve the prediction of the critical
points. Both CPA with the 4C scheme and the three versions of qCPA overesti-
mate the critical pressure by approximately 12 bar and the critical temperature
by roughly 9 K. The overall best model is CPA without association, which is
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Figure 7.12: Predictions of the saturated density from the triple point to the critical
point (a) and in the narrower temperature interval from 280 K to the
critical point (b).

essentially equivalent to the SRK with �tted parameters. Comparable critical
points were obtained for CO

2
by Diamantonis and Economou [6] using SAFT

(309.5 K and 79.2 bar) and PC-SAFT (315.5 K and 90.9 bar) respectively. CO
2

was treated as a non-associating species in both cases.

Table 7.8: Experimental [15] and predicted critical pressure, temperature and vol-
ume of CO

2
modeled with inert CPA, CPA with the 4C association scheme

and qCPA with three di�erent parameter sets.

Modeling Exp CPA n.a. CPA 4C qCPA qCPA qCPA
approaches n.a. 4C 3par 4par, set 1 4par, set 2

TC [K] 304.13 309.7 312.9 312.2 313.5 313.4
PC [bar] 73.8 81.7 86.4 84.9 86.3 85.7
VC [dm3] 0.094 0.105 0.101 0.103 0.102 0.103

7.5 The Second Virial Coe�cient

A limiting low-density test for a thermodynamic model is to evaluate its capa-
bilities in predicting the second virial coe�cient, B. It may be calculated from
the expression

lim
ρ→0

(
∂Z

∂ρ

)
T

= B (7.18)
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The contribution to the second virial coe�cient from the SRK term is

BSRK = b− a(T )

RT
(7.19)

The contribution from the association term can be expressed as

Bassoc = −S
[
exp

(
εAB

RT

)
− 1

]
bβAB (7.20)

where the constant S depend on the association scheme. Its value for several
di�erent schemes is shown in table 7.9.

Table 7.9: Value of S in equation (7.20) for eight di�erent association schemes. De-
tails for scheme 1A, 2B, and 4C can be found in [177, 178]. Nomenclature
follows Huang and Radosz [61].

Scheme 1A 2A 2B 3A 3B 4A 4B 4C

S 0.5 2 1 4.5 2 8 3 4

The quadrupolar term is given solely as a Helmholtz energy model. The com-
pressibility factor is expressed through the Helmholtz energy pressure equation
as

Z = ρ
∂F ′

∂ρ
+ 1 (7.21)

where F ′ is the Helmholtz energy pr. mole. From this expression it is straight-
forward to show, that the contribution to the second virial coe�cient from the
quadrupole term may be expressed as

Bquad =
F ′2 − F ′3,2

ρ(1− F ′3,2/F ′2)2
(7.22)

where subscripts have the same meaning as in chapter 5. The expression is sim-
ilar to that presented by Karakatsani and Economou [31] for the tPC-PSAFT.

The second virial coe�cient of CO
2
was predicted with CPA and qCPA using

the di�erent modeling approaches from table 7.2. The predictions are visualized
at relatively low temperatures in �gure 7.13 and the %AADs are shown in
table 7.10. All models are in reasonable agreement with the experimental data,
although deviations increase for all models at low temperatures where the sharp
decrease in the virial coe�cient is not fully captured. Figure 7.13 and table 7.10
both show, that the least convincing result is obtained when CO

2
is assumed to

be self-associating. This may be due to the fact, that CO
2
is not self-associating

and this theoretically unfounded approach may become poor in the low density
limit. On the other hand, when qCPA is employed the predictions, are also
slightly worse than when regular non associating CPA is employed for CO

2
.

The di�erences, however, are rather small.
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Figure 7.13: Model predictions against experimental data for the second virial coef-
�cient of CO

2
using CPA, n.a., CPA 4C, and the qCPA. Experimental

data from [179�185].

Table 7.10: %AADs between experimental and calculated second virial coe�cients
with the di�erent models. Experimental data from [179�185].

Model CPA, n.a. CPA, 4C qCPA, 3par qCPA, 4par, set 1 qCPA, 4par, set 2

%AAD 5.5 13.3 7.3 7.9 7.1

7.6 Summary

In this chapter qCPA and CPA were employed to predict pure compound prop-
erties of CO

2
. Both the three and four parameter versions of qCPA were evalu-

ated. When CO
2
was modeled with CPA, CO

2
was assumed to be either inert

or pseudo self-associating following the 4C association scheme.

It was observed that a systematic improvement in the correlation of the satu-
rated liquid density and vapor pressure was obtained when the same number of
adjustable parameters were used for inert CPA and qCPA.

The models were employed to predict various pure compound properties for CO
2

including the second virial coe�cient, the critical point and various derivative
properties. It is di�cult, however, to reach any de�nite conclusions as to which
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model is superior in regards to the predicted pure compound properties as the
models generally predict the same trends for all properties.

qCPA and CPA with the 4C association scheme seem to perform slightly better
than CPA without association in regards to the derivative properties. On the
other hand inert CPA is slightly more accurate in representing the second virial
coe�cient and the critical point. The main reason for the deviations in the
derivative properties seem to be caused by a de�ciency in the second order
derivatives, particularly the temperature derivatives. This is for example the
reason why none of the models can predict the maximum in CresV in the critical
region. Unfortunately the derivatives does not seem to be improved by the
addition of an explicit quadrupolar term.



CHAPTER8
Phase Equilibria of Binary

Mixtures Containing CO
2

The primary objective of an equation of state is typically the correlation and
prediction of the phase equilibria between mixtures of di�erent compounds.
For this reason the CPA and qCPA approaches which where employed for pure
compound properties in the previous chapter, are evaluated for their ability to
predict and correlate the phase equilibria of several di�erent binary mixtures
containing CO

2
. Both non-associating, self-associating and quadrupolar com-

pounds are considered in this chapter, although the primary focus is on mixtures
containing CO

2
and n-alkanes, water, or alcohols. Part of the chapter has been

published in Fluid Phase Equilib. (2016), 408, 151-169 [37].

8.1 Pure Compound Parameters

The pure compound parameters for the di�erent modeling approaches for CO
2

were shown in the previous chapter in table 7.2. The pure compound CPA
parameters for the compounds which, together with CO

2
, form the binary mix-

tures under investigation, have been estimated using the objective function in
Eq. (6.1). It is worth noting that the most pronounced change in the pure
compound parameters, compared to the case where CO

2
is considered an inert

compound, is that the energetic parameter in the attractive part of the SRK
term is reduced, which should lead to more realistic cross-interactions and thus
a smaller kij . The parameters obtained from the literature are shown in table
8.1.
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Table 8.1: Pure compound CPA parameters from literature employed in this work.

Compound
Association b0 Γ c1 β · 103 ε/R Ref
scheme [mL/mol] [K] - - [K]

Methane n.a. 29.10 959.03 0.45 - - [81]
Ethane n.a. 42.90 1544.55 0.58 - - [81]
Propane n.a. 57.83 1896.45 0.63 - - [51]
n-Butane n.a. 72.08 2193.08 0.71 - - [51]
n-Pentane n.a. 91.01 2405.11 0.80 - - [51]
n-Hexane n.a. 107.89 2640.03 0.83 - - [51]
n-Decane n.a. 178.65 3190.54 1.13 - - [51]
n-dodecane n.a. 216.24 3471.04 1.20 - - [186]

n-tetradecane n.a. 250.53 3678.42 1.29 - - [186]
n-pentadecane n.a. 274.53 3751.99 1.34 - - [186]
n-eicosane n.a. 374.38 4161.40 1.54 - - [34]

n-tetracosane n.a. 454.45 4658.90 1.68 - - [34]
n-hexatriacontane n.a. 717.66 5068.10 1.99 - - [34]

Nitrogen n.a. 26.05 634.07 0.50 - - [186]
Benzene n.a. 74.99 2867.19 0.76 - - [51]
Toluene n.a. 92.14 3051.36 0.80 - - [51]
Water 4C 14.52 1017.34 0.67 69.20 2003.25 [52]

Methanol 2B 30.98 1573.71 0.43 16.10 2957.78 [52]
Ethanol 2B 49.11 2123.83 0.74 8.00 2589.85 [187]

1-Propanol 2B 64.11 2234.52 0.92 8.10 2525.86 [187]
1-Octanol 2B 148.80 3367.99 1.15 0.14 3218.55 [187]

Besides CO
2
we employ a few other quadrupolar compounds, namely water,

ethane, benzene, toluene, nitrogen and acetylene. We assume, however, that the
quadrupolar moment of water is negligible compared to the directional forces
of the association term, moreover water is not axially symmetric, which means
that its quadrupole moment is a tensor and it is thus di�cult to treat with
current models. It is also assumed that the small quadrupole moment of ethane
can be ignored. For benzene, toluene, acetylene and possibly nitrogen, however,
the quadrupole moment cannot be ignored, and the pure compound parameters
must be re-estimated. Table 8.2 shows these parameters, for the three parameter
version of qCPA. Table 8.2 also presents CPA parameters for 1-nonanol and
acetylene, which were not found in the literature.

As previously discussed, the value for the quadrupolar moment of CO
2
is as-

sumed to be −4.3 DÅ [84, 86�91]. Experimental values of the quadrupolar
moment of benzene and acetylene, however, may vary considerably depending
on the reference. The experimental quadrupole moment of benzene range from
−9.98 DÅ [84] to −3.6 DÅ [89], although most of the experimental data is
between −9.98 DÅ and −8.5 DÅ [84]. The situation is similar for acetylene
which has a large positive quadrupole moment between 3.0 DÅ and 8.4 DÅ
[84]. In this work we assume a �xed quadrupolar moment of −9 DÅ for ben-
zene and 4 DÅ for acetylene. For toluene Reynolds et al. [188] calculated an
e�ective quadrupole moment of 7.92 DÅ. The quadrupole moment of nitrogen
is between -1.4 and -1.5 DÅ[84], in this work a value of -1.5 DÅ is employed.
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Table 8.2: Correlated CPA and qCPA pure compound parameters and %AAD in the saturated liquid densities and saturated pressures.
Experimental data from raw DIPPR data [172]. The experimental quadrupole moments of benzene (≈ −9 DÅ), acetylene (≈ 4
DÅ) and nitrogen (≈ −1.5 DÅ) are employed in the three parameter version of qCPA. Following Reynolds et al. [188] it is assumed
that the e�ective quadrupole moment of toluene is -7.92DÅ.

Compound Model
Association Tr b0 Γ c1 Q (�xed) β · 103 ε/R %AAD
scheme (= T/Tc) [mL/mol] [K] - DÅ - [K] P sat ρliq

Benzene qCPA n.a. 0.5-0.9 75.57 2763.73 0.73 -9 - - 0.46 (0.68)a 0.71 (0.84)
Toluene qCPA n.a. 0.4-0.9 92.2 3017.2 0.80 -7.92 - - 0.52 (0.72) 0.73 (0.74)
Nitrogen qCPA n.a. 0.5-0.9 26.41 624.90 0.45 -1.5 - 0.76 (0.86) 1.65 (1.73)
Acetylene qCPA n.a. 0.6-0.9 33.54 1469.45 0.65 4 - - 0.41 (0.43) 0.52 (0.68)
Acetylene CPA n.a. 0.6-0.9 33.28 1576.91 0.70 - - - 0.43 0.68
1-Nonanol CPA 2B 0.45-0.9 163.79 3508 0.956 - 0.25 3570 0.40 0.79
a Numbers in parenthesis are the %AAD with CPA.
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To keep the number of adjustable parameters as low as possible the potential
cross-association between CO

2
and self-associating compounds is taken into

account either through the CR-1 combining rule (Eqs. (3.14) and (3.15)) or by
using the approach suggested by Kleiner and Sadowski [60], see section 8.3 for
more details on this. Unless otherwise noted a single temperature independent
binary interaction parameter is employed for all correlations.

8.2 CO2 + n-alkanes

As discussed in chapters 1 and 3, binary mixtures of CO
2
and n-alkanes behave

non-ideally, which is believed to be due to the large quadrupole moment of
CO

2
. The quadrupole moment of CO

2
is, for instance, believed to be part

of the reason for the LLE between CO
2
and heavy hydrocarbons, as well as

the low temperature azeotrope formed between mixtures of CO
2
and lighter

hydrocarbons. When CO
2
is treated as an inert compound a single binary

interaction parameter of around 0.12-0.15 is typically needed to correlate the
phase equilibria of mixtures containing CO

2
and an n-alkanes [8, 14].

In this regard it is crucial to evaluate mixtures of CO
2
+ n-alkanes. A successful

quadrupolar term should result in improved predictions (kij = 0) for CO
2
+

n-alkane mixtures since essentially only physical (dispersion) and quadrupolar
interactions should be present for these systems. As good predictions are typ-
ically obtained for mixtures consisting of two hydrocarbons (where dispersion
forces dominate) any inaccuracy can be attributed primarily to model errors in
the quadrupolar term or parametrization problems. The binary mixtures of CO

2

+ n-alkanes are thus valuable systems for isolating the complexity of dealing
with multiple interactions, such as polar and hydrogen bonding interactions.

8.2.1 VLE of CO2 + n-alkanes

The VLE of several di�erent CO
2
+ n-alkane mixtures have been predicted over

a range of temperatures using the di�erent CPA-based models. The deviations
from experimental data, in terms of %AAD, are presented in table 8.3 both for
the predictions (kij = 0) as well as when an interaction parameter has been
correlated to the VLE data. Characteristic results for some of these predictions
are visualized in �gures 8.1-8.4.
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Table 8.3: Deviations for CPA and qCPA predictions (kij = 0) and correlations (kij 6= 0) of CO
2
+ n-alkane VLEs (C1-C6 and C10).

Including the correlated kij . Compared to experimental data from Refs. [66, 67, 165, 189�195].

System T range [K] Modeling approach %AAD Pa % AAD y1 %AAD x1 kij % AAD Pa % AAD y1 %AAD x1

kij = 0
CO

2
(1) + methane(2) 230-293 CPA, n.a. 16.4 11.5 10.2 0.089 1.0 4.6 0.4

CPA, 4C 4.9 9.0 2.0 0.016 2.3 5.2 0.7
qCPA, 3par 1.3 8.1 0.9 -0.007 1.2 4.7 0.4

qCPA, 4par, set 1 12.2 7.4 5.6 -0.057 1.3 4.9 0.5
qCPA, 4par, set 2 6.0 7.6 3.8 -0.032 1.3 4.8 0.4

CO
2
(1) + ethane(2) 213-270 CPA, n.a. 17.5 >100 >100 0.130 3.0 2.7 4.9

CPA, 4C 9.3 29.7 71.0 0.067 0.3 2.1 1.9
qCPA, 3par 6.2 18.4 45.0 0.042b 0.6 2.5 4.4

qCPA, 4par, set 1 0.7 2.8 4.4 0.000 0.7 2.8 4.4
qCPA, 4par, set 2 3.1 9.3 22.3 0.017 0.9 3.5 6.2

CO
2
(1) + propane(2) 230-270 CPA, n.a. 29.1 6.4 104.1 0.129 5.0 1.6 11.6

CPA, 4C 17.7 2.9 50.4 0.074 3.0 2.2 6.6
qCPA, 3par 12.9 2.1 34.3 0.035 4.3 1.8 10.0

qCPA, 4par, set 1 3.7 1.9 8.5 0.000 3.7 1.9 8.5
qCPA, 4par, set 2 8.2 1.8 20.0 0.021 4.0 1.9 9.1

CO
2
(1) + butane(2) 250-418 CPA, n.a. 22.6 8.5 59.4 0.124 4.2 11.1 11.5

CPA, 4C 14.1 6.9 32.7 0.071 2.8 5.3 9.3
qCPA, 3par 10.3 6.4 24.0 0.040b 3.0 5.4 9.8

qCPA, 4par, set 1 3.3 5.4 10.3 0.000 3.3 5.4 10.3
qCPA, 4par, set 2 7.2 5.9 17.5 0.028 3.3 5.3 9.6

CO
2
(1) + pentane(2) 294-423 CPA, n.a. 19.5 1.9 29.7 0.110 2.1 1.3 2.6

CPA, 4C 11.8 1.5 16.0 0.065 2.2 1.3 2.7
qCPA, 3par 7.3 1.4 9.6 0.038 2.1 1.3 2.6

qCPA, 4par, set 1 2.3 1.3 2.8 0.000 2.3 1.3 2.8
qCPA, 4par, set 2 4.6 1.3 5.9 0.024 2.3 1.3 2.8

CO
2
(1) + hexane(2) 273-303 CPA, n.a. 23.68 - 27.55 0.115 1.83 - 2.44

CPA, 4C 14.32 - 18.68 0.067 1.02 - 1.4
qCPA, 3par 8.71 - 11.58 0.037 1.45 - 1.98

qCPA, 4par, set 1 1.38 - 2.04 0.000 1.38 - 2.04
qCPA, 4par, set 2 5.27 - 7.1 0.021 1.6 - 2.27

CO
2
(1) + decane(2) 277-584 CPA, n.a. 25.82 0.28 34.65 0.103 5.73 0.26 5.87

CPA, 4C 15.55 0.28 18.79 0.060 2.46 0.26 2.48
qCPA, 3par 9.1 0.26 10.25 0.028 3.19 0.26 3.34

qCPA, 4par, set 1 1.93 0.26 1.87 0.000 1.93 0.26 1.87
qCPA, 4par, set 2 5.34 0.27 5.69 0.011 2.96 0.26 3.06

a Liquid phase deviation only.
b Improved value compared to [37].
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As described in chapter 7, some of the CO
2
+ n-alkane mixtures have been

utilized indirectly to obtain the two parameter sets for qCPA when bQ0 is used
as an additional adjustable. Parameter set 1 for qCPA was selected partly based
on the VLE of CO

2
+ propane, while parameter set 2 has been selected partly

based on the CO
2
+ n-dodecane LLE (see section 8.2.2).
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Figure 8.1: Predictions (kij = 0) compared to experimental data for the CO
2
+

ethane VLE at four temperatures using CPA where CO
2
is treated either

as an inert (n.a.) or self-associating compound (scheme 4C) and qCPA
with either three or four parameters. Experimental data from Refs.
[66, 67].

Predictions (kij = 0) compared to experimental data for the CO
2
+ ethane

VLE at four temperatures using CPA where CO
2
is treated either as an inert

(n.a.) or self-associating compound (scheme 4C) and qCPA with either three
or four parameters. Experimental data from Refs. [66, 67].

The predictions of the CO
2
+ ethane VLE using the various modeling ap-

proaches is compared to experimental data at four temperatures in �gure 8.1.
The low temperature azeotrope, observed for this VLE, is predicted very well
with qCPA at all temperatures. Particularly when parameter set 1 is employed.
Inert CPA fails to predict the phase behavior, clearly indicating the need for an
improved model for the phase behavior of CO

2
.

These excellent results for qCPA are quite encouraging. Tang and Gross [100]
achieved equally good correlations of the CO

2
+ ethane VLE using the PCP-

SAFT with a similar sized binary interaction parameter (kij = 0.038), as
that employed to correlate the mixture with qCPA using three parameters
(kij = 0.042). Using a group contribution method with a quadrupole term
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for CO
2
NguyenHuynh et al. [108] also presented excellent results for the CO

2

+ ethane and CO
2
+ propane systems. These results, however, are not directly

comparable to the results in this work, as the authors correlated the CO
2
pa-

rameters to the CO
2
+ propane VLE in addition to the saturated liquid density

and vapor pressure. Moreover a non-zero kij is employed; its value being ob-
tained from another correlation. The predictions and correlations presented by
Tsivintzelis et al. [14] for CO

2
+ n-alkane mixtures with CPA, where CO

2
is

treated as either an inert or a self-associating compound, are obviously similar
to the CPA results presented in this work for the same approaches, as the pure
compound parameters are almost the same.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Mole fraction CO
2

P
re

ss
u

re
 [

b
ar

]

230K

270Kk
ij
 = 0

 

 

Webster and Kidnay (2001)
CPA, n.a.
CPA, 4C
qCPA, 3par
qCPA, 4par, set 1
qCPA, 4par, set 2

Figure 8.2: Predictions (kij = 0) compared to experimental data for the CO
2
+

propane VLE at at 270 K and 230 K using CPA, where CO
2
is treated

either as an inert (n.a.) or self-associating compound (scheme 4C), and
qCPA with either three or four parameters. Experimental data from
Ref. [165].

The CO
2
+ propane VLE is shown in �gure 8.2 at two temperatures. Not

surprisingly qCPA with parameter set 1 results in the best predictions. The
two other qCPA parameter sets also perform better than when CO

2
is treated

either as an associating or inert compound.

Figures 8.1-8.4 illustrate that the series behavior from C
2
-C

10
is captured very

well with qCPA, and that the predictions with qCPA continues to be excellent,
especially for parameter set 1. Unfortunately all models overestimate the critical
point (see �gure 8.3). As already mentioned this is an unfortunate characteristic
of such equations of state. Cross-over approaches exist which may deal with the
problem, at the cost of more complex expressions and additional parameters
[196, 197].
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Figure 8.3: Predictions (kij = 0) compared to experimental data for the CO
2
+

n-butane VLE at three temperatures using CPA, where CO
2
is treated

either as an inert (n.a.) or self-associating compound (scheme 4C), and
qCPA with either three or four parameters. Experimental data from
Refs. [189, 191].

Figure 8.3 shows the CO
2
+ n-butane VLE prediction. Gross [28] also showed

very good results for this system using the PCP-SAFT. Using the same model
Tang and Gross [100] presented excellent results for the CO

2
+ n-pentane VLE.

In these cases a kij of approximately 0.04 was needed to correlate both systems.
Using qCPA with parameter set 1, however, the best kij is approximately zero.
A more fair comparison, considering the number of adjustable parameters, may
be to compare the optimum kij for the three parameter version of the qCPA
(see table 8.3) with those found for PCP-SAFT. It is comforting to see that the
binary interaction parameters are of a similar magnitude despite the di�erent
base models, and the fact that the correlation integrals in qCPA are signi�cantly
simpler, than the one employed by Gross [28]. Close to the critical point,
however, PCP-SAFT seem to perform better.

Generally the qCPA approaches with four parameters appear to yield the best
VLE predictions of CO

2
+ n-alkanes, followed by the three parameter version of

qCPA, then CPA where CO
2
is treated as an associating compound, and �nally

by CPA where CO
2
is treated as an inert An exception to this trend is the

CO
2
+ methane system which is shown in �gure 8.5. Except in the vicinity of

the critical point quite good predictions are obtained when CO
2
is considered

an associating species and when qCPA with three adjustable parameters is
employed. However, when qCPA is employed with an additional adjustable
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Figure 8.4: Predictions (kij = 0) compared to experimental data for the CO
2
+

n-decane VLE at three temperatures using CPA, where CO
2
is treated

either as an inert (n.a.) or self-associating compound (scheme 4C), and
qCPA with either three or four parameters. Experimental data from
Ref. [190].

parameter rather poor predictions are obtained. This is in contrast to the
results for the whole C

2
-C

10
series, where the two versions of qCPA with four

parameters performed best among all approaches. We suspect that the reason
for this may be due to the fact that methane's octopole moment isn't taken into
account. In any case, the VLE predictions for the CO

2
+ methane system seem

to be extremely sensitive to the pure compound CO
2
parameters, which means

that even small inaccuracies in the model or the parameters may have a large
in�uence on the results.

8.2.2 LLE of CO2 + heavy n-alkanes

As the LLE between CO
2
and heavy hydrocarbons is believed to be, partly, due

to the quadrupole moment of CO
2
, a successful quadrupolar term should result

in improved LLE predictions or, at least, improve the models ability to correlate
the LLEs with a smaller binary interaction parameter. For this reason, the LLE
of a number of CO

2
mixtures containing heavy alkanes (C

12
, C

14
, C

15
, C

20
, C

24

and C
36
) have been predicted and correlated to experimental data using the

di�erent modeling approaches. The results in terms of %AADs are presented
in table 8.4 (kij 6= 0) and 8.5 (kij = 0).

A characteristic correlation of the phase behavior of the binary CO
2
+ C

12
,C

14

and C
15

systems are exempli�ed in �gure 8.6a for the CO
2
+ n-pentadecane
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Figure 8.5: Predictions (kij = 0) compared to experimental data for the CO
2
+

methane VLE at two temperatures using CPA, where CO
2
is treated

either as an inert (n.a.) or self-associating compound (scheme 4C), and
qCPA with either three or four parameters. Experimental data from
[67].

(C
15
) LLE. All model approaches can correlate the upper solution temperature

LLE of CO
2
and the heavy alkane. A much larger interaction parameter, how-

ever, is needed when CO
2
is modeled as an inert or self-associating compound,

compared to when CO
2
is modeled as a quadrupolar compound. The correlated

interaction parameter and the results, in terms of %AAD, are shown in table
8.4.

As is typically the case for LLE, the phase equilibrium calculations are very
sensitive to the binary interaction parameter, and many models does not even
predict the presence of a liquid-liquid equilibrium without the use of a binary
interaction parameter. As �gure 8.6b illustrates, however, the four parameter
versions of qCPA can predict (kij = 0) the LLE of this mixture fairly well,
especially when parameter set 2 is employed. Recall, however, that this param-
eter set has been partly based on the CO

2
+ n-dodecane LLE, and it may not

be surprising that the parameter set can predict the LLEs of related mixtures
fairly well. The %AAD of the predictions are shown in table 8.5.

Figure 8.7a shows the correlated LLE for the CO
2
+ n-eicosane (C

20
) system.

The correlations are all fairly similar, except perhaps at the upper critical solu-
tion pressure, however there is clearly also some experimental scatter at these
conditions. Compared to the results for the CO

2
+ C

12
, C

14
or C

15
systems,

smaller, and even negative, binary interaction parameters are needed for the
heavier alkane. Moreover, the shape of the liquid-liquid phase diagram is not



8.2 CO
2
+ n-alkanes 101

0.5 0.6 0.7 0.8 0.9 1
270

275

280

285

290

295

300

305

310

Mole fraction CO
2

T
em

pe
ra

tu
re

 [K
]

 

 

Hottovy et al. (1981)
CPA, n.a., k

ij
=0.105

CPA, 4C, k
ij
=0.059

qCPA, 3par, k
ij
=0.025

qCPA, 4par, set 1, k
ij
=−0.017

qCPA, 4par, set 2, k
ij
=0.004

(a) Correlation

0.5 0.6 0.7 0.8 0.9 1
270

275

280

285

290

295

300

305

310

Mole fraction CO
2

T
em

p
er

at
u

re
 [

K
]

 

 

Hottovy et al. (1981)
qCPA, 4par, set 1, k

ij
=0

qCPA, 4par, set 2, k
ij
=0

(b) Prediction

Figure 8.6: Correlations (a) and predictions (b) of the CO
2
+ n-pentadecane LLE,

using CPA, where CO
2
is treated either as an inert (n.a.) or self-

associating compound (scheme 4C), and qCPA with either three or four
parameters. Experimental data from Ref. [166].

captured quite as well for the CO
2
+ C

20
mixtures as for the CO

2
+ C

12
, C

14

and C
15

mixtures. The reason for this may be that the correlation of the bi-
nary interaction parameters may give a too high weight to the experimental
points near the critical pressure, so that the correct shape of the curve at lower
pressures is lost.

Figure 8.7b shows the predictions for the CO
2
+ n-eicosane system with all �ve

modeling approaches. It can be seen that the four parameter versions of qCPA
are capable of predicting the LLE, although the solubility of CO

2
in the heavy

alkane is signi�cantly under-predicted with parameter set 1, whereas parameter
set 2 results in excellent LLE predictions. The remaining modeling approaches
cannot predict the LLE in the whole pressure range, although qCPA with just
three parameters results in fairly good predictions at low pressures. As shown
in �gure 8.7a, a kij can be employed to better match the phase behavior at
higher pressures.

For mixtures of CO
2
+ n-tetracosane (C

24
) and CO

2
+ n-hexatriacontane (C

36
)

meaningful predictions with the three parameter version of qCPA are possi-
ble. Deviations for these qCPA predictions are also shown in table 8.5. In
fact, increasingly better predictions are obtained with the three parameter ver-
sion of qCPA as the length of the alkane increases. The LLE of the CO

2
+

n-Hexatriacontane is, for instance, predicted most accurately with the three
parameter version of qCPA (see �gure 8.8a).
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Figure 8.7: Correlations (a) and predictions (b) of the CO
2
+ n-eicosane LLE at

348 K, using CPA where CO
2
is treated either as an inert (n.a.) or

self-associating compound (scheme 4C) and qCPA with either three or
four parameters. Experimental data from Ref. [198].

Satisfactory correlations, in terms of %AAD, are generally obtained with all
modeling approaches (see table 8.4). There is a tendency for CPA to model
the phase behavior of the hydrocarbon rich phase somewhat less accurately
when CO

2
is modeled as an inert, rather than a self-associating or quadrupolar

species, resulting in slightly higher deviations. This can for instance be observed
visually in �gure 8.6a. On the other hand, with the exception of the CO

2
+

n-dodecane LLE the CO
2
rich phase is correlated most accurately when CO

2
is

assumed to be inert. Whereas the other approaches tend to over-estimate the
solubility of the hydrocarbon in CO

2
.

It can be seen from table 8.5 that the CO
2
rich phase is often predicted more

accurately with qCPA before a binary interaction parameter is employed to cor-
relate the phase equilibrium data. The hydrocarbon rich phase is not predicted
quite as well. To correlate the hydrocarbon rich phase better the kij is adjusted,
which, unfortunately, also results in an increased solubility of hydrocarbon in
the CO

2
-rich phase. When CO

2
is treated as an inert compound neither phase

is predicted very well without a binary interaction parameter, but the binary
interaction parameter may improve the correlation of both phases.

This is illustrated in �gure 8.8 which shows the predicted and correlated LLE
for the CO

2
+ n-Hexatriacontane system. The �gure shows both the whole LLE

and a close-up on the CO
2
-rich liquid phase. qCPA with four parameters (set

1) predicts the CO
2
rich phase very well, but is somewhat o� in regards to the

hydrocarbon rich phase (�gures 8.8a-8.8b). CPA without association does not
model any of the two phases very well. When a binary interaction parameter
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is used to correlate the LLE, the hydrocarbon rich phase is accurately corre-
lated with qCPA, but the representation of the CO

2
rich phase is compromised.

CPA without association is now the best model for the correlated liquid liquid
equilibrium (although a large kij is needed). Additionally the �gure shows that
qCPA with three parameters predicts the solubility of CO

2
in the hydrocarbon

rich liquid phase very well.
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Figure 8.8: Predictions and correlations of the CO
2
+ n-Hexatriacontane LLE at

349 K. CO
2
is modeled with inert CPA and qCPA with three and four

parameters. Only parameter set 1 is shown in the �gure for qCPA. The
predicted LLE is shown in (a) and (b), (a) shows the whole LLE region
and (b) is a close-up of predictions for the CO

2
rich phase. (c) and (d)

correspond to the correlated versions of (a) and (b).
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Table 8.4: Correlated binary interaction parameters and calculated %AADs for the CO

2
+ heavy n-alkane LLE systems using the CPA and

qCPA. Compared to experimental data from Refs. [166, 198].

System P range [bar] T range [K] Approach kij
%AAD

HC phase CO
2
phase

CO
2
(1) + n-dodecane(2) 20-29 254-267 CPA n.a. 0.102 4.4 3.3

CPA 4C 0.054 2.9 1.6
qCPA, 3par 0.019 3.5 2.6

qCPA, 4par, set 1 -0.025 3.0 2.2
qCPA, 4par, set 2 -0.003 3.2 2.4

CO
2
(1) + n-tetradecane(2) 31-83 269-310 CPA n.a. 0.100 3.2 0.6

CPA 4C 0.058 3.4 1.1
qCPA, 3par 0.023 2.1 0.7

qCPA, 4par, set 1 -0.017 3.4 1.0
qCPA, 4par, set 2 0.003 2.6 1.0

CO
2
(1) + n-pentadecane(2) 32-80 270-305 CPA n.a. 0.105 1.9 0.3

CPA 4C 0.059 1.2 0.9
qCPA, 3par 0.025 0.5 0.6

qCPA, 4par, set 1 -0.017 0.9 0.8
qCPA, 4par, set 2 0.004 0.7 0.7

CO
2
(1) + n-eicosane(2) 100-300 348 CPA n.a. 0.085 3.8 0.8

CPA 4C 0.050 4.2 1.7
qCPA, 3par 0.015 3.8 1.2

qCPA, 4par, set 1 -0.023 3.7 1.5
qCPA, 4par, set 2 -0.003 3.5 1.4

CO
2
(1) + n-tetracosane(2) 172-277 348 CPA n.a. 0.073 1.1 0.7

CPA 4C 0.033 1.3 1.5
qCPA, 3par -0.002 1.1 1.2

qCPA, 4par, set 1 -0.040 1.4 1.3
qCPA, 4par, set 2 -0.020 1.0 1.3

CO
2
(1) + n-hexatriacontane(2) 233-297 349 CPA n.a. 0.070 2.0 0.2

CPA 4C 0.030 0.4 0.6
qCPA, 3par -0.003 0.4 0.4

qCPA, 4par, set 1 -0.043 0.4 0.5
qCPA, 4par, set 2 -0.021 0.2 0.4
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Table 8.5: %AADs for the predicted (kij = 0) LLEs of CO
2
+ heavy n-alkane systems using the four parameter version of qCPA. The three

parameter version of qCPA is used when possible. Compared to experimental data from Refs. [166, 198].

System P [bar] T [K] Approach
%AAD

HC phase CO
2
phase

kij = 0
CO

2
(1) + n-dodecane(2) 20-29 254-267 qCPA, set 1 19.2 3.9

qCPA, set 2 4.5 2.9

CO
2
(1) + n-tetradecane(2) 31-83 269-310 qCPA, set 1 14.9 0.9

qCPA, set 2 1.5 0.6

CO
2
(1) + n-pentadecane(2) 32-80 270-305 qCPA, set 1 11.1 0.5

qCPA, set 2 2.7 1.1

CO
2
(1) + n-eicosane(2) 100-300 348 qCPA, set 1 15.1 6.0

qCPA, set 2 6.9 3.2

CO
2
(1) + n-tetracosane(2) 172-277 348 qCPA, 3 par 1.8 1.0

qCPA, set 1 16.7 0.1
qCPA, set 2 9.2 0.3

CO
2
(1) + n-hexatriacontane(2) 233-297 349 qCPA, 3 par 0.7 0.3

qCPA, set 1 14.8 0.1
qCPA, set 2 8.0 0.1
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8.2.3 Correlations for the binary interaction parameter

Sections 8.2.1-8.2.2 show that while it is possible to greatly improve the pre-
dicted phase behavior of the CO

2
+ n-alkane mixtures by taking the quadrupole

moment of CO
2
into account, all modeling approaches need a non-zero binary

interaction parameter to accurately model both VLE and LLE for CO
2
+ n-

alkane series. A temperature independent interaction parameter is su�cient in
all cases.

It is often convenient to have generalized correlations for the binary interaction
parameter between a speci�c compound such as CO

2
, H

2
S or water and a com-

pound series such as hydrocarbons. For CO
2
+ n-alkane mixtures, for instance,

it is well-known that the kij decreases with the carbon number (or molecular
weight) of the n-alkane when SRK is employed [8]. It can be seen from tables
8.3 and 8.4 that the kij also seems to decrease for most modeling approaches
from ethane towards heavier n-alkanes. In �gure 8.9 the interaction parameters
of the binary CO

2
+ n-alkane pairs are plotted as a function of the molecular

weight of the n-alkane (from C
2
-C

36
). The vertical dashed line indicates the

transition from VLE data (left-hand side) to LLE data (right-hand side). The
�gure shows the trend in kij for qCPA with three parameters and for CPA with-
out association. It is clear that there is a tendency for the interaction parameter
to decreases as a function of the molecular weight (or carbon number) of the
n-alkane.

Figure 8.9: Binary interaction parameters with qCPA (using 3 parameters) and CPA
without association for CO

2
+ n-alkane mixtures, as a function of the

molecular weight of the n-alkane. Points are the correlated values for
each subsystem and lines are correlations to the series behavior. The
vertical dashed line indicates the transition from VLE to LLE.
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Frost [199] recently showed that the binary interaction parameters for the water
+ hydrocarbon series seem to follow a logarithmically decreasing function of
the molecular weight of the hydrocarbon, rather than the linear correlation
previously assumed. In this regard it is interesting that although the interaction
parameters for the CO

2
+ n-alkane systems are somewhat scattered, they do

appear to decrease as a function of the natural logarithm to the molecular
weight. The correlated functions are:

qCPA (3 par): kij = −0.018 ln(MW ) + 0.115 (8.1)

CPA n.a.: kij = −0.025 ln(MW ) + 0.226 (8.2)

It is obvious from the correlation that the interaction parameters for qCPA
decrease somewhat slower than those for CPA. The value of the kij for large
n-alkanes is close to zero with qCPA. The correlations can be employed either as
a good initial guess for correlating the binary interaction parameter of a binary
CO

2
+ n-alkane mixture with qCPA or inert CPA or directly as the kij , if no

binary data is available for the system. When the correlations are employed,
however, it should be considered that the experimental data for the heavier
n-alkanes may be quite uncertain, and even small changes in the interaction
parameters for the heavier n-alkanes, could mean that a linear correlation is
preferable to the proposed logarithmic correlation.

It is no coincidence that �gure 8.9 only plots the binary interaction parame-
ters, for the two approaches which employ three adjustable parameters. For
the remaining approaches the trends are less clear; for one of the two qCPA
approaches with four adjustable parameters, for instance, the binary interac-
tion parameter is essentially zero for all VLE systems, but non-zero for LLE
systems.

To illustrate the use of equations (8.1)-(8.2), �gure 8.10 shows the VLE and
LLE of the mixtures CO

2
+ propane and CO

2
+ hexatriacontane (C

36
) respec-

tively, where the correlations have been employed. The correlations gives quite
satisfactory results for both models. As is typically the case, the LLE (�gure
8.10b) is more sensitive to the kij and the results with both qCPA and CPA,
where CO

2
is treated as an inert, are not quite as good as with an individually

�tted kij , whereas results for the VLE is similar to the individual correlation.

In this work we typically employ the independently correlated kij 's for each
subsystem, rather than the developed correlations.
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Figure 8.10: VLE of (a) CO
2
+ propane and LLE of (b) CO

2
+ C

36
where the

correlations in (8.1)-(8.2) have been employed for qCPA with three
parameters and inert CPA . Experimental data from Refs. [165, 198]

8.3 CO2 + Self-associating Compounds

When mixtures containing CO
2
and a self-associating compound, such as al-

cohols and water, are considered it raises the important question of whether
CO

2
should be modeled only as a quadrupolar molecule or as a quadrupolar

and a solvating molecule (i.e. a molecule with either electron donor or electron
acceptor sites). As discussed in chapter 3 several studies indicate that Lewis
acid-Lewis base type interactions play a role for mixtures of CO

2
and associ-

ating compounds such as water and alcohols [14, 68�71]. As an engineering
approach the Lewis acid-Lewis base interaction can be viewed as an induced
cross-association (solvation). This kind of cross-association, where one compo-
nent self-associates but the other only has electron donor or electron acceptor
sites, is di�cult to treat since the association parameters, εAiBi and βAiBi , are
available only for the self-associating compound. As a pragmatic solution the
cross-association volume, βAiBj (or βcrs), is often �tted to experimental data
together with the binary interaction parameter, while the association energy,
εAiBi , of the solvating compound is set to zero. The success of this approach,
however, may be, at least partially, attributed to a higher model �exibility due
to the extra parameter.

A simple alternative to correlating the cross-association volume, βAiBj , for sol-
vating mixtures was proposed by Kleiner and Sadowski [60]. The method as-
sumes that the cross-association volume can be set equal to the association
volume of the self-associating compound. In this way equations (3.14)-(3.15)
can be directly employed without the need for any adjustable parameters be-
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yond a kij . To reduce the number of binary adjustable parameters this approach
is employed for qCPA, when mixtures of CO

2
and associating compounds are

considered. Clearly improved correlations can be obtained if both the binary
interaction parameter and the cross-association volume are �tted to the ex-
perimental data. The increased model �exibility of such an approach would,
however, result in a multi-plum of possible solutions making it di�cult to crit-
ically compare the models.

Another important question is how many solvation sites CO
2
has. Indeed in a

recent work NguyenHuynh et al. [111], illustrated, using the GC-PPC-SAFT,
that very good results could be obtained for mixtures of CO

2
and alcohols if

CO
2
was assumed to have two cross sites. Similarly Figure 8.11 illustrate the

predictions (kij = 0) with qCPA for the CO
2
+ ethanol mixture and the VLLE

of the CO
2
-rich phase of the CO

2
+ water mixture using zero, one, or two

cross-association sites. The cross-association parameters were determined us-
ing the approach by Kleiner and Sadowski [60]. When cross-association is not
taken into account, or only one cross-association site is considered, the equilib-
rium pressure in �gure 8.11a is signi�cantly overestimated and false liquid-liquid
phase splits are predicted. When two cross-association sites are assumed the
equilibrium pressure is barely overestimated.1. Similarly the minimum in the
water solubility in the CO

2
-rich phase is captured quite accurately when two

cross-association sites are assumed, but not when CO
2
has one or zero sites

(see �gure 8.11b). Therefore, when qCPA is employed CO
2
is assumed to have

two solvation sites, and the cross-association parameters are found using the
approach suggested by Kleiner and Sadowski [60].

In the case where we consider CO
2
to be a self-associating compound the cross-

association between CO
2
and the associating compound is handled by directly

applying the CR-1 mixing rule (see eq. (3.14)-(3.15)).

8.3.1 CO2 + alcohols

In this section we present the calculation of VLE and VLLE for selected CO
2

+ alcohol mixtures using the di�erent CPA-based models. CO
2
is assume to

have two cross-association sites, and the approach of Kleiner and Sadowski [60]
is employed to determine the cross-association volume of CO

2
when qCPA is

employed.

In general qCPA performs quite well for many of the alcohol systems, even with
no binary interaction parameter, but a non-zero temperature independent in-
teraction parameter is used to better represent the phase equilibria. The results
are summarized in terms of %AADs in table 8.6. Characteristic correlations of

1Note that the minimum and maximum observed in �gure 8.11a when CO
2
is treated as

having two cross-association sites suggests phase instability and a false liquid-liquid split, as
small kij solves this problem.
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Figure 8.11: Predicted (kij = 0) VLEs of the CO
2
+ ethanol system (a) and the

CO
2
-rich vapor phase of the CO

2
+ water system (b) using qCPA with

three parameters and assuming zero, one or two solvation sites. It is
assumed for both systems that βcrs = βassoc. Experimental data from
Refs. [75, 200�205].

the VLE between CO
2
+ methanol are shown in �gure 8.12 at three tempera-

tures. Despite a very large binary interaction parameter the highest deviations
are obtained when CO

2
is considered a self-associating molecule following the

4C association scheme. It appears that this approach is not capable of describ-
ing the shape of the liquid phase, at least not when the CR-1 combing rule is
employed. This is particularly pronounced for the CO

2
+ methanol system at

higher temperatures (�gure 8.12). This is in good agreement with Tsivintzelis
et al. [14], who found that poor results are obtained for mixtures of CO

2
and

self-associating compounds, when the CR-1 and a single binary parameter is
employed. The model which captures the trend of the VLEs most accurately
is clearly qCPA. The correlations with the di�erent qCPA parameter sets for
CO

2
are similar, although a smaller interaction parameter (in absolute terms) is

needed when qCPA with three adjustable parameters is employed. In all cases
a small negative interaction parameter is employed, whereas a positive interac-
tion parameter is used when CO

2
is considered either self-associating or inert.

Surprisingly good correlations, with a small interaction parameter, are obtained
when CO

2
is treated as an inert. The model, however, does not capture the

trend of the experimental data quite as well as qCPA, especially at higher tem-
peratures where the pressure is overestimated and a false liquid-liquid split may
occur.

Figure 8.13 illustrates that the phase behavior description of the simultaneous
VLE and LLE of the CO

2
+ nonanol system is satisfactory with all models
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Figure 8.12: Correlation of the CO
2
+ methanol VLE, using CPA where CO

2
is

treated either as an inert (n.a.) or self-associating compound (scheme
4C) and qCPA with either three or four parameters. Correlated to
experimental data from Refs. [206, 207].

using a temperature independent interaction parameter. The same is the case
for the CO

2
+ octanol system. Note that when qCPA with three parameters

is employed for the CO
2
+ octanol system the optimum kij is found to be

zero, i.e. the model is predictive for this system. It is noteworthy, that as the
chain length of the alcohols increases the binary interaction parameter tend to
decrease when CO

2
is treated as a self-associating compound and increase when

CO
2
is treated as an inert compound. When CO

2
is treated as a quadrupolar

compound, however, the small interaction parameter seem to be almost constant
for the various systems.

8.3.2 CO2 + water

The capabilities of association theories for modeling the important CO
2
+ water

mixture has been extensively studied in recent literature using both CPA [14, 21,
79, 208] (see chapter 3) and SAFT-based models [21, 79, 209�211]. As discussed
in chapter 4 the mixture has also been studied, with mixed success, using some
of the multipolar SAFT-based equations of state [100, 103, 104, 110].

Tang and Gross [100] presented correlations at several temperatures for CO
2

+ water using the PCP-SAFT with a temperature dependent kij . No devia-
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Figure 8.13: Correlation of the CO
2
+ nonanol VLE and LLE using CPA where

CO
2
is treated either as an inert or self-associating compound, or qCPA

with three or four adjustable parameters. Experimental data from Refs.
[73, 202].

tions were reported, but it can be seen from their �gures that there are sig-
ni�cant deviations in the CO

2
-rich vapor phase. Diamantonis and Economou

[104] recently investigated the performance of various SAFT and tPC-PSAFT
approaches for modeling the CO

2
+ water system. The best results were ob-

tained with PC-SAFT when solvation was assumed between CO
2
and water.

Solvation between CO
2
and water, however, was not considered in either works

when CO
2
is treated as a quadrupolar compound. On the other hand assum-

ing solvation between CO
2
and water and using the tPC-PSAFT, Karakatsani

et al. [103] obtained excellent results for the CO
2
+ water system. In a recent

investigation NguyenHuynh et al. [110] modeled CO
2
+ water with the pGC-

PC-SAFT. The authors treated CO
2
as a quadrupolar molecule and water as

a dipolar molecule, moreover CO
2
was assumed to cross-associate with water

(two sites). The cross-association volume was assumed equal to that found for
H
2
S, however the cross-association energy was �tted. This approach yielded

qualitatively correct results for the CO
2
+ water system

It is clear from most investigations that the best results for CO
2
+ water are

almost always obtained when CO
2
is considered to be a solvating molecule.

This may be due to the strong Lewis acid-Lewis base interactions between CO
2

and water, which may be modeled as an induced solvation. However, the im-
proved correlations may also, partly, be attributed to the additional adjustable
parameter which is introduced (the cross-association volume).
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Table 8.6: CPA and qCPA deviations and kij for CO
2
+ alcohol VLE and LLE mixtures. Compared to experimental data from Refs.

[200�202, 206, 207, 212, 213].

System T range (K) Modeling approach kij % AAD in P % AAD in y1 %AAD in x1

CO
2
(1) + methanol(2) 230-313.2 CPA, n.a. 0.027 7.9 0.4 10.5

CPA, 4C 0.180 18.7 0.5 48.6
qCPA, 3par -0.010 4.7 0.2 8.9

qCPA, 4par, set 1 -0.050 5.6 0.2 9.7
qCPA, 4par, set2 -0.050 5.6 0.2 10.1

CO
2
(1) + ethanol(2) 291.15-313.2 CPA, n.a. 0.050 9.4 0.4 10.1

CPA, 4C 0.200 6.1 0.2 7.2
qCPA, 3par -0.019 3.9 0.4 8.3

qCPA, 4par, set 1 -0.057 2.7 0.3 6.5
qCPA, 4par, set2 -0.030 2.9 0.3 6.5

CO
2
(1) + propanol(2) 313.4 CPA, n.a. 0.058 10.7 0.2 7.4

CPA, 4C 0.180 6.7 0.1 11.0
qCPA, 3par -0.020 4.1 0.2 5.1

qCPA, 4par, set 1 -0.050 3.4 0.2 3.2
qCPA, 4par, set2 -0.030 3.0 0.2 3.1

CO
2
(1) + octanol(2)a 308.2-328.2 CPA, n.a. 0.070 12.9 0.4 10.8

CPA, 4C 0.160 14.8 0.3 10.3
qCPA, 3par 0.000 11.0 0.3 7.4

qCPA, 4par, set 1 -0.040 10.4 0.3 6.6
qCPA, 4par, set2 -0.020 10.8 0.3 7.7

CO
2
(1) + nonanol(2)a 308.1-328.2 CPA, n.a. 0.070 19.6 0.8 9.1

CPA, 4C 0.140 23.5 0.5 13.7
qCPA, 3par 0.000 18.5 0.8 6.4

qCPA, 4par, set 1 -0.045 17.1 0.7 6.4
qCPA, 4par, set2 -0.025 18.1 0.7 7.6

a Deviations based on both VLE and LLE data.
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As stated previously we assume that CO
2
cross-associates with two solvation

sites and that βAiBj = βcross = βwater. Figure 8.14 illustrates the correlation
of the CO

2
-rich vapor phase and the water-rich liquid phase at 323.15K, using

a single kij . All models correlate the solubility of CO
2
in the water-rich phase

quite well (�gure 8.14a), although a large interaction parameter is needed when
CO

2
is assumed to be a self-associating compound. However, as also demon-

strated by Tsivintzelis et al. [14], CPA cannot describe the minimum in the
solubility of water in the vapor phase, since the transition to a liquid phase is
not captured when CO

2
is modeled as an inert compound, nor is the trend of the

experimental data captured if CO
2
is modeled as a self-associating compound

(see �gure 8.14b). In this case the increased water solubility due to the phase
transition is vastly over-estimated. When CO

2
is treated as a quadrupolar com-

pound which cross-associates with water the minimum in the solubility of the
CO

2
phase is, at least qualitatively, captured.

Better correlations may be obtained for both qCPA and CPA (where CO
2
is

treated as associating) if the cross-association volume is �tted, however, the
purpose of this exercise was to reduce the number of adjustable parameters,
rather than to make a perfect �t.
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Figure 8.14: Correlation of the CO
2
solubility in the water rich liquid phase (a) and

the water solubility in the CO
2
rich vapor phase (b) for the CO

2
+

water system. CPA, where CO
2
is treated either as an inert or an asso-

ciating compound, or qCPA with three or four adjustable parameters
is employed. Experimental data from Refs. [75, 203�205, 214].

Instead of treating CO
2
as a purely inert compound with CPA a more fair model

comparison may be to also assume CO
2
to cross-associate. To keep the number

of adjustables low the same assumptions as we made for qCPA are employed.
Figure 8.15 compares the model correlations in the CO

2
-rich vapor phase using

either CPA or qCPA with three adjustable parameters where CO
2
is assumed
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to solvate with water in both cases. It can be seen from the �gure that if CO
2
is

assumed to be solvating, then the minimum in the water solubility is captured
equally well in CPA and qCPA. This suggests that taking cross-association
between CO

2
and water into account is in fact the dominant factor, when it

comes to modeling the CO
2
+ water system. However, when the quadrupolar

nature of CO
2
is not explicitly taken into account a relatively high kij is needed.

Table 8.7 summarizes the results in terms of %AAD both with and without an
interaction parameter.

Table 8.7: Deviations for CPA and qCPA predictions (kij = 0) and correlations
(kij 6= 0) for the CO

2
(1) + water(2) mixture at 323.15 K (both VLE and

LLE data). Including the correlated kij . Compared to experimental data
from references [75, 203�205, 214].

Modeling approach % AAD in y2 %AAD in x1 kij % AAD in y2 %AAD in x1

kij=0
CPA, n.a. 62.5 4.6 0.005 62.9 3.6

CPA with solvation 10.3 >100 0.128 21.5 4.2
CPA, 4C >100 >100 0.255 >100 4.5

qCPA, 3par 13.7 25.9 0.033 17.1 3.7
qCPA, 4par, set 1 17.0 11.5 -0.015 15.5 3.6
qCPA, 4par, set2 14.7 7.5 0.010 15.8 3.5

0 100 200 300 400
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Pressure [bar]

Y
w

at
er

323.15K

 

 

Briones et al. (1987)
Bamberger et al. (2000)
Coan and King (1971)
Dohrn (1993)
CPA w. solvation, k

ij
=0.128, β

crs
=β

assoc
 (2sites)

qCPA, 3 adj, k
ij
=0.033, β

crs
=β

assoc
 (2sites)

Figure 8.15: Correlation of the water solubility in the CO
2
rich vapor phase for

the CO
2
+ water system. Comparing the performance of CPA with

solvation, and qCPA with solvation. Experimental data from [75, 203�
205].
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8.3.2.1 On the temperature dependence of the kij

It is typically necessary to use a temperature dependent kij to correlate the
experimentally observed phase equilibria for the CO

2
+ water mixture over

an extended temperature range. Tsivintzelis et al. [14] presented temperature
dependent binary interaction parameters for several CPA approaches, . The
authors suggest a linear temperature dependence (i.e. ckij = 0 in Eq. (3.8)). It
was found, however, that an inverse temperature proportionality (i.e. bkij = 0
in Eq. (3.8)) provided more consistent results, and this temperature dependence
is used in the following.

The temperature dependent binary interaction parameter for qCPA was corre-
lated to experimental data in the temperature range 278−473 K. The resulting
temperature dependent binary interaction parameters where found to be:

qCPA 3 par: kCO2−H2O(T ) = 0.41− 124.0/T (8.3)

qCPA 4 par, s1: kCO2−H2O(T ) = 0.39− 132.7/T (8.4)

qCPA 4 par, s2: kCO2−H2O(T ) = 0.41− 129.6/T (8.5)

Figure 8.16 illustrates the performance of qCPA with three parameters for mod-
eling the phase equilibria of the CO

2
+ water mixture at three di�erent tem-

peratures. The temperature dependent binary interaction parameter in Eq.
(8.3) was employed. Excellent agreement between the temperature dependent
correlations and the experimental data is obtained.

It is apparent from Eqs. (8.3)-(8.5) that the kij for the various qCPA ap-
proaches are highly temperature dependent. A similar temperature dependence
is found for CPA when CO

2
is assumed to be self-associating and the CR-1 rule

is employed:

CPA 4C : kCO2−H2O(T ) = 0.71− 149.3/T (8.6)

It is interesting, however, that if the experimental value for the cross-association
energy is employed the kij becomes signi�cantly less temperature dependent.
For CPA with the 4C scheme the temperature dependence becomes kCO2−H2O =
0.11 − 24.8/T . The weaker temperature dependence is probably due to the
balance between βAiBj and εAiBj in Eq. (3.11). When the experimental value
of the association energy is employed, the cross-association volume is almost an
order of magnitude smaller, and the cross-association energy about one third
larger, than when the CR-1 rule is employed.

8.4 CO2 + Quadrupolar Compounds

CO
2
has so far been the only quadrupolar compound explicitly considered with

qCPA in this thesis. Although both water and ethane have quadrupolar mo-
ments, these have have been ignored in this work, as previously described. It is
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Figure 8.16: Correlated phase equilibria of the binary CO
2
+ water mixture at three

di�erent temperatures using the three parameter version of qCPA with
the temperature dependent kij shown in Eq. (8.3). (a) Solubility of
CO

2
in the water rich liquid phase at 308.2 K. (b) Water solubility in

the CO
2
-rich vapor and liquid phase. (c) As (a) but at 288.3 K. (d) As

(b) but at 298.2 K. Experimental data from Refs. [75�78, 82, 215].
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important, however, to evaluate the capabilities of the new model for mixtures
of two or more quadrupolar compounds. More speci�cally such an evaluation
may provide an indication as to the adequacy of the proposed cross-quadrupolar
interactions, as well the proper magnitude of the quadrupolar term itself. To
investigate this qCPA is employed to calculate the phase equilibria of mixtures
containing CO

2
and either benzene, toluene, acetylene, or nitrogen.

8.4.1 CO2 + benzene

When benzene is modeled as a quadrupolar compound, a �xed experimen-
tal quadrupole moment of −9 DÅ is employed and the three adjustable pure
compound parameters are re-estimated. See table 8.2 for the re-estimated
qCPA benzene parameters. In this case no attempt is made to improve the
parametrization by �tting the quadrupolar co-volume or quadrupolar moment,
as was done for CO

2
. The predicted VLE of benzene and CO

2
is compared

to experimental values in �gure 8.17. All model approaches, except when both
CO

2
and benzene are treated as inert compounds, gives similar quite accurate

predictions. Interestingly CPA performs very well when CO
2
is assumed to be

associating. The results in terms of %AAD are presented in table 8.8. Gross [28]
modeled this system using the PCP-SAFT and regular PC-SAFT, however, the
results with the former model were worse than with PC-SAFT. To improve the
results, Gross had to set the cross-quadrupolar interactions to zero. While such
modi�cations were not necessary in this work, the results are quite sensitive to
the value of the quadrupolar moment, and use of a slightly di�erent quadrupolar
moment for benzene might alter the conclusions. The experimental values are
typically between -9.98 DÅ and -8.5 DÅ.

Table 8.8: Deviations from experimental data for CPA and qCPA predictions (kij =
0) and correlations (kij 6= 0) for the CO

2
+ benzene mixture in the

temperature range 298.2-347.3 K. Including the correlated kij . Compared
to experimental data from Refs. [212, 216].

Modeling approach % AAD in P %AAD in x1 kij % AAD in P %AAD in x1

kij=0
CPA, n.a. 26.8 23.9 0.068 14.3 6.2
CPA, 4C 15.8 9.5 0.020 12.0 3.9

qCPA, 3par 17.8 13.3 0.008 10.5 3.4
qCPA, 4par, set 1 11.9 5.7 -0.038 12.0 3.8
qCPA, 4par, set2 15.8 10.9 -0.014 12.0 3.8

8.4.2 CO2 + methylbenzene (toluene)

Due to a lack of symmetry the quadrupole moment tensor for toluene and other
alkyl benzenes does not reduce to a scalar value and the quadrupole moments
cannot readily be used in Eqs. (5.4)-(5.6). As previously discussed, Gubbins
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Figure 8.17: Prediction of the CO
2
+ benzene VLE at two temperatures (upper:

347.25 K and lower: 315.45 K) using CPA, where CO
2
is treated either

as an inert (n.a.) or self-associating compound (scheme 4C), and qCPA
with either three or four parameters. Experimental data from Refs.
[212, 216].

et al. [85] suggested an approximation, which allows for the use of an 'e�ective'
scalar quadrupole moment.

To the best of the authors knowledge there are no direct experimental data for
the quadrupole moment, or e�ective quadrupole moment, of toluene, although
values close to that of benzene might be expected. Reynolds et al. [188] calcu-
lated an e�ective scalar (and absolute) quadrupole moment of toluene of 7.92
DÅ. Such calculations should be treated with care, however, as signi�cant dif-
ferences are often seen when calculated and experimental values are compared.
Reynolds et al. for instance calculated the (absolute) quadrupole moment of
CO

2
to be 5.46 DÅ, whereas the experimental values is around −4.3 DÅ. In

this section the 'e�ective' quadrupole moment is �rst assumed to be -7.92 DÅ
(same sign as the quadrupole moment of benzene). See table 8.2 for the re-
estimated pure compound parameters of toluene.

Figure 8.18 show the predicted VLE of the CO
2
+ toluene mixture at two

temperatures. The predictions for the case where CO
2
is modeled as a self-

associating compound and toluene is assumed to be inert, are essentially iden-
tical to the prediction with qCPA where both CO

2
and toluene are modeled as

quadrupolar �uids. Both approaches, improve the predictions compared to the
case where both CO

2
and toluene are inert compounds. For qCPA a kij = 0.03

accurately correlates the VLE. A similar sized kij was employed by Gross [28]
to correlate the mixture at 308.2 K.
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Figure 8.18: Prediction (kij = 0) of the CO
2
+ toluene VLE at 373.15 K and 308.2

K where CO
2
is treated either as an inert (black dashed line), a self-

associating compound (blue line) or modeled with the three parameter
version of qCPA (green dashed line). Experimental data from N: [217]
and •: [218].

If, instead of using the e�ective quadrupole moment from Reynolds et al. [188],
the uncertain quadrupole moment is simply set to zero the phase equilibrium
calculations become almost predictive as shown in �gure 8.19. A small binary
interaction parameter of about kij = 0.01 correlates the VLE at both tempera-
tures.

8.4.3 CO2 + nitrogen

Nitrogen has a relatively weak quadrupole moment of approximately −1.5 DÅ.
This value is initially employed when nitrogen is modeled as a quadrupolar
compound. See table 8.2 for the re-estimated parameters.

The low temperature CO
2
+ nitrogen VLE predicted with qCPA (three param-

eter) and inert CPA is compared to experimental data at 250 K in �gure 8.20.
The predictions are rather similar in the gas phase. In the liquid phase and
close to the critical point, however, the predictions with qCPA becomes worse
than when both CO

2
and N

2
are treated as inert compounds. Correlation of

a quadrupolar volume in addition to the three other parameters does improve
the predictions with qCPA slightly, so that the VLE predictions of the CO

2
+

N
2
mixture essentially becomes identical to the predictions with inert CPA.
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Figure 8.19: Prediction (kij = 0) of the CO
2
+ toluene VLE at 373.15 K and 308.2

K where CO
2
is modeled as a quadrupolar �uid, but the quadrupole

moment of toluene is ignored. Experimental data from N: [217] and •:
[218].
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Figure 8.20: Prediction of the CO
2
+ N

2
VLE at 250 K using qCPA with three

parameters and inert CPA. Experimental data from Ref. [193]
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Interestingly, if the quadrupolar moment of nitrogen is correlated to the satu-
rated liquid density and saturated pressure rather than the volume parameter,
signi�cantly better predictions are apparently obtained with qCPA for the CO

2

+ N
2
VLE as illustrated in �gure 8.21. The pure compound parameters for this

model approach is shown in table 8.9. The 'e�ective' quadrupolar moment, how-
ever, is doubled compared to the experimental value, which does seem rather
high.

It should be emphasised, however, that the correlations for four parameter
qCPA, where the quadrupolar moment is the additional adjustable parameter,
have been performed as a simple LSQ estimation, without considering uncer-
tainties in the parameters and the propagated errors such as done in chapter 6
for CO

2
. It was observed that especially the value of the e�ective quadrupo-

lar moment and the attractive energetic CPA parameter in the SRK term (Γ)
seemed to be highly correlated and sensitive to the experimental data. This
indicates that the results should be considered with some reservations. At the
very least it should be investigated how the new nitrogen parameter set perform
for mixtures without cross-quadrupolar interactions, such as N

2
+ hydrocarbon

mixtures, as there are considerable uncertainties, as to whether the quadrupolar-
quadrupolar interaction are properly handled with the current combining rules.
It may be, that the failure of the model to improve the predictions for these
systems are due to erroneous combining rules rather than the need for more,
and di�erent, adjustable parameters.
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Figure 8.21: Prediction of the CO
2
+ N

2
VLE at 250 K using qCPA with four

parameters. A �tted quadrupolar moment of 3.0 DÅ is employed. Ex-
perimental data from Ref. [193]

To preliminarily investigate the adequacy of the N
2
parameters of qCPA for

mixtures of N
2
+ hydrocarbons the low temperature vapor liquid equilibria of

N
2
+ propane and N

2
+ n-butane were calculated and compared to experimental
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(a) N
2
+ Propane at 240 K
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(b) N
2
+ n-butane at 250 K

Figure 8.22: Predictions compared to experimental data for the low temperature
VLEs of (a) N

2
+ propane at 240 K and (b) N

2
+ n-butane at 250 K

using in both cases inert CPA and qCPA with three and four parameters
respectively. In the latter case it is the quadrupolar moment which has
been �tted as the fourth parameter. Experimental data from Refs.
[193, 219].

data in �gure 8.22. Both phase diagrams indicate that the solubility of N
2
in

the liquid phase is modeled slightly better with the four parameter version of
qCPA, where the extra parameter is a �tted quadrupole moment rather than a
�tted co-volume (pure compound parameters in table 8.9). Unfortunately the
critical region is not well-de�ned experimentally. All approaches predicts the
N
2
rich vapor phase very well.

8.4.4 CO2 + acetylene

Acetylene has a large positive quadrupole moment. When qCPA is employed
acetylene is initially modeled with a �xed quadrupolar moment of 4 DÅ, the re-
estimated pure compound parameters for the three parameter version of qCPA
can be found in table 8.2.

The VLE between CO
2
and acetylene results in an uncommon negative azeotrope,

which is believed to be caused by the opposite sign of their quadrupole moments
[220]. Ideally a quadrupolar term would, of course, be able to model this e�ect,
however, �gure 8.23 shows, that none of the modeling approaches are able to
predict the trends of this system. In fact, the opposite trend (i.e. a positive
azeotrope) is predicted by both qCPA and CPA 4C. All models are capable
of correlating the azeotrope, which is shown in �gure 8.23b. By far the poor-
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est predictions are obtained when CO
2
is assumed to be associating, which is

probably due to the fact that while the quadrupolar interactions between CO
2

is approximated by self-association no such interactions, or cross-interactions
with CO

2
, are considered for acetylene, which is considered an inert compound

when CPA is employed. When qCPA is employed both molecules are mod-
eled as qudarupolar compounds which seem to, at least partly, cancel out the
tendency for the positive azeotrope.
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Figure 8.23: Prediction (a) and correlation (b) of the CO
2
+ acetylene VLE at 233

K using either CPA without association (n.a.), with the 4C scheme, or
qCPA with either three or four adjustable parameters. Experimental
data from Ref. [221].

8.4.4.1 On the qCPA and the CO
2
+ acetylene predictions

Part of the reason that this quadrupole-quadrupole pair is poorly represented
by the quadrupolar model is essentially due to the quadrupoles of opposite sign
and the too simple combining rules used in the quadrupole term (Eqs. (5.9)
and (5.10)). Due to the employed square roots and cubic roots the combining
rules does not allow the use of quadrupole moments of di�erent signs, as this
would lead to complex values for the cross-quadrupole moment. To perform
the calculations CO

2
and acetylene are in practise modeled as two quadrupolar

molecules of the same sign. This, of course, leads to the serious errors in the
VLE predictions as the preferred molecular orientation for two quadrupoles of
opposite sign is end to end whereas it is perpendicular if they are of the same
sign, see �gure 4.1 in chapter 4.
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If instead the cross-quadrupolar moments in Eqs. (5.4)-(5.6) are replaced by
Eqs. (8.7)-(8.9)

Q4
ij = Q2

iQ
2
j (8.7)

Q6
ij = Q3

iQ
3
j (8.8)

Q6
ijk = Q2

iQ
2
jQ

2
k (8.9)

Quadrupoles of di�erent signs are no longer a (numerical) issue. Eq. (8.8)
can even give a negative contribution to equation (5.5). Except for mixtures
containing quadrupolar compounds of opposite sign Eqs. (8.7)-(8.9) gives the
same results as the original combining rules, Eqs. (5.9) and (5.10), indicating
that all other results presented thus far are unchanged by this modi�cation.
The expressions in Eqs. (8.7)-(8.9) means that the structure of the quadrupolar
second and third-order perturbation terms becomes similar to that of Gubbins
and Twu [94, 95]. Although the correlation integrals employed in this work are
signi�cantly simpler.

Figure 8.24 shows the VLE prediction with the three parameter version of
qCPA for the CO

2
+ acetylene system, where the modi�ed combining rules

are employed. If these modi�ed combining rules are employed the two opposite
quadrupoles seem to 'cancel each other out' as the results are quite close to the
results obtained when both CO

2
and acetylene are modeled as inert compounds.

On the other hand, no positive azeotrope is predicted, as was the case with the
original combining rules.
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Figure 8.24: Prediction of the CO
2
+ acetylene VLE at 233 K using qCPA with three

adjustable parameters and the modi�ed combining rules. Experimental
data from Ref. [221].
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Correlation of the quadrupolar volume of acetylene in addition to the other
parameters resulted in similar predictions as those shown in �gure 8.24. On the
other hand, if the quadrupolar moment of acetylene is correlated to experimental
data, similarly to the procedure described for nitrogen in the previous section,
very good predictions are obtained for the CO

2
+ acetylene VLE as illustrated

in �gure 8.25. The pure compound parameters for this variation are also shown
in table 8.9. The e�ective (correlated) quadrupole moment of 5.4 DÅ may seem
rather high as a value of 4 DÅ was assumed previously. However, values between
3 DÅ and 8.4 DÅ are found in the literature [84], suggesting that the value is
quite reasonable.

Table 8.9: Pure compound parameters and %AAD in the saturated liquid density
and saturated pressure for qCPA, where an 'e�ective' quadrupolar mo-
ment is employed as an adjustable parameter rather than the quadrupolar
volume. Experimental data from raw DIPPR data [172].

Compound
Tr b0 Γ c1 Q %AAD

(= T/Tc) [mL/mol] [K] - [DÅ] P sat ρliq

Nitrogen 0.5-0.9 27.18 481.1 0.22 -3.0 1.28(0.86)a 0.74(1.73)
Acetylene 0.6-0.9 33.97 1247.5 0.57 5.4 0.44(0.41) 0.29(0.68)
a Numbers in parenthesis are the %AAD with CPA.

0 0.2 0.4 0.6 0.8 1
7

7.5

8

8.5

9

9.5

10

10.5

11

Mole fraction CO
2

P
re

ss
u

re
 [

b
ar

]

Figure 8.25: Prediction of the CO
2
+ acetylene VLE at 233 K using qCPA with four

adjustable parameters and the modi�ed combining rules. Contrary
to �gures 8.23 and 8.24 a �tted quadrupolar moment of 5.4 DÅ is
employed. Experimental data from Ref. [221].

As was the case with nitrogen these correlations have, however, been determined
without considering in detail the parameter uncertainties and propagated errors
such as demonstrated for CO

2
in chapter 6. Not unlike the observations for

nitrogen, the value of the e�ective quadrupolar moment and Γ seemed to be
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sensitive to the experimental data and the temperature interval in which the
correlations where performed.

8.5 CO2 + Polar Molecules

Finally qCPA is preliminarily evaluated for its ability to predict the phase equi-
libria of mixtures with both a quadrupolar and a strongly polar compound.

8.5.1 CO2 + acetone

Acetone is, strictly speaking, a polar non self-associating compound. Like CO
2
,

however, it is often assumed to be (pseudo) self-associating in CPA. As no dipole
term has been developed, acetone is assumed to be self-associating in all model
approaches using parameters from Ref. [59]. Figure 8.26 illustrates the predic-
tions of the CO

2
+ acetone VLE. The predictions and correlations in terms of

%AAD are shown in table 8.10. As is clear from the �gure, results with qCPA
and inert CPA are unsatisfactory. On the other hand very good predictions
are obtained when CO

2
is treated as a self-associating molecule. One can only

speculate on whether the predictions would improve if a dedicated dipole term
were added to qCPA in addition to the quadrupolar term. However, consid-
erable uncertainty remains as to how dipole-quadrupole interactions should be
treated.

Table 8.10: Deviations for CPA and qCPA predictions (kij = 0) and correlations
(kij 6= 0) for the CO

2
+ acetone mixture in the temperature range

291.2-313.1 K. Including the correlated kij . Compared to experimental
data from Refs. [202].

Modeling approach % AAD in P %AAD in x1 kij % AAD in P %AAD in x1

kij=0
CPA, n.a. 33.8 26.1 -0.144 6.6 5.3
CPA, 4C 6.5 5.7 0.037 2.7 2.4

qCPA, 3par 23.6 19.5 -0.110 2.5 2.2
qCPA, 4par, set 1 33.8 27.4 -0.160 2.5 2.1
qCPA, 4par, set2 27.5 22.7 -0.140 2.9 2.3

8.6 Excess Properties

While the main purpose of the equation of state is to correlate and predict the
phase equilibria between mixtures, it is also of interest to test how CPA and
qCPA predicts other properties such as the excess enthalpy and volume. The
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Figure 8.26: Prediction of the CO
2
+ acetone VLE at 291.15 K using either CPA

without association (n.a.), with the 4C scheme, or qCPA with either
three or four adjustable parameters. Acetone is assumed to be self-
associating. Experimental data from Ref. [202].

following illustrate how the models predicts the excess enthalpy of the binary
mixtures CO

2
+ ethane and CO

2
+ water.

For a generic property, M , the excess (E) property is de�ned as the di�erence
between the actual value of the property for a mixture and the value of the
property, at the same temperature, pressure and composition, had the mixture
formed an ideal solution

ME(T, P,n) = M(T, P,n)−M is(T, P,n) (8.10)

The excess enthalpy is determined from the value of the enthalpy of the mixtures
substracted by the value of the property for an ideal mixture as shown in Eq.
(8.11)

HE(T, P,n) = H(T, P,n)−
nc∑
i

niHi(T, P )

= −RT 2
nc∑
i

ni

[(
∂ ln ϕ̂i(T, P,n)

∂T

)
P,n

−
(
∂ lnϕi(T, P )

∂T

)
P

]
(8.11)

where ϕ̂i is the fugacity coe�cient for the ith component in the mixture and
ϕi is the fugacity coe�cient for the ith pure component.

Figure 8.27a shows the predicted molar excess enthalpy of the CO
2
+ ethane

mixture at 217 K, saturation pressures and with the binary interaction parame-
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Figure 8.27: Excess enthalpy of the CO
2
+ ethane mixtures at 217 K and saturation

pressure. The employed modeling approaches are inert CPA, CPA with
association, or qCPA with three or four adjustable parameters. (a)
shows the predicted excess enthalpy with kij = 0, and (b) shows the
predicted excess enthalpy with the kij correlated from VLE (see table
8.3 and �gure 8.1). Experimental data from Ref. [222]

ter set to zero. Figure 8.27b illustrates the excess enthalpy of the mixture using
binary interaction parameters correlated to binary VLE data. Both calcula-
tions are predictive in the sense that no binary parameters are correlated to the
excess enthalpy, although the latter calculation use a binary interaction param-
eter correlated to VLE. Figure 8.27a shows that all qCPA variants predicts the
excess enthalpy quite well and signi�cantly better than when CO

2
is modeled

as a self-associating or inert compound. However, when binary interaction pa-
rameters correlated to VLE are employed, both CPA variants perform very well
and better than qCPA, for which all modeling approaches now over-predict the
excess heat.

Figure 8.28 illustrates the excess calculations for the CO
2
+ water mixture at

548.2 K and 4.9 MPa, with and without a binary interaction parameter. It can
be seen from �gure 8.28a that all qCPA variants essentially yields the same pre-
dictions and CPA results in the same predictions irrespectively of whether CO

2

is modeled as an associating or inert compound. Figure 8.27b shows that the
predictions are relatively insensitive towards the binary interaction parameter,
as the same results are essentially obtained except when CO

2
is assumed to be

self-associating where a very large binary interaction parameter is employed.
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Figure 8.28: Excess enthalpy of the CO
2
+ water mixture at 548.2 K and 4.9 MPa.

The employed modeling approaches are inert CPA, CPA with associa-
tion, or qCPA with three or four adjustable parameters. (a) shows the
predicted excess enthalpy with kij = 0, and (b) shows the predicted
excess enthalpy with the kij correlated from VLE (see table 8.7 and
�gure 8.14). Experimental data from Ref. [223].

8.7 Summary

The modeling approaches for CO
2
introduced in chapter 7 where employed to

predict and correlate the phase behavior of several binary mixtures containing
CO

2
and either n-alkanes, alcohols, water or di�erent quadrupolar molecules.

For correlations a single binary interaction parameter is employed for all mod-
eling approaches.

It was found that qCPA signi�cantly improves the prediction of binary VLE
and the correlation of LLE between binary mixtures containing CO

2
and hy-

drocarbons. In fact one of the parameter sets for qCPA with four adjustable
parameters predicts the VLE of these mixtures almost perfectly, while the other
parameter set accurately predicts several CO

2
+ hydrocarbon LLEs. Overall

the four-parameter versions of qCPA perform somewhat better than qCPA with
three parameters. Nevertheless the modest improvement relative to the three
parameter version of qCPA may not justify the increased model �exibility and
uncertainty in the parameter estimation. All CPA models can accurately cor-
relate the experimental data using a non-zero value of the binary interaction
parameter, although a signi�cantly smaller interaction parameter is needed with
qCPA in all cases.
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For binary mixtures containing CO
2
and associating compounds (alcohols and

water) excellent correlations were obtained with qCPA when solvation was
taken into account with the approach suggested by Kleiner and Sadowski [60]
and a single small binary interaction parameter was employed. However, it
is clearly more important to account for the solvation between CO

2
and the

self-associating compound, than to take the e�ect of the quadrupole into ac-
count. Nevertheless, when the modeling approaches are used to correlate the
experimental phase behavior, qCPA seems to consistently result in lower binary
interaction parameters, as compared to CPA.

An encouraging feature of qCPA is that excellent predictions for the CO
2
+

n-alkane mixtures are obtained when quadrupolar interactions are included.
Simultaneously satisfactory correlations for CO

2
+ self-association mixtures are

obtained with the same model when CO
2
is also assumed to be solvating. This

is physically much more appealing than to assume CO
2
to be self-associating.

Mixtures containing CO
2
+ another quadrupolar compound turned out to be

a quite a challenge for qCPA. While the predictions for some mixtures, such
as CO

2
+ benzene, where improved compared to base CPA, other mixtures,

such as CO
2
+ N

2
, initially gave poorer predictions than base CPA. These

results could be improved it the quadrupolar moment was used as a fourth
adjustable parameter. In general the performance of qCPA seem to depend on
a complex balance between the contributions from the quadrupole moments of
each molecule and their cross interaction.

The originally proposed mixing rules for the quadrupolar moment were shown
to be insu�cient for mixtures containing two opposite quadrupoles such as the
CO

2
+ acetylene mixture. Using the expressions suggested in Eqs. (8.7)-(8.9)

rather than the old mixing rules seem to resolve this problem. These expressions
are identical with the expressions employed by Gubbins and Twu, which arise
naturally from the molecular theory developed from their work [224].

Finally the prediction of excess enthalpies were shown for two mixtures, which
indicate that qCPA may improve the prediction of excess properties as well, at
least when kij = 0.

Overall, explicitly accounting for the quadrupolar forces appears to o�er sig-
ni�cantly improved predictions, and better (smaller kij) correlations, for CO2

containing mixtures compared to when CO
2
is treated as either an inert or a

self-associating compound.



CHAPTER9
Multicomponent Mixtures

Containing CO
2

Most studies for mixtures containing CO
2
with advanced equations of state,

such as the quadrupolar versions of SAFT, are limited to binary systems, or
maybe a few ternary systems [29, 111]. Even for regular CPA or SAFT only
few investigations systematically deal with multicomponent mixtures contain-
ing CO

2
. It may be misleading, however, when conclusions are based only on

binary systems, especially when one or more binary parameters are employed
to correlate the binary system. A more rigorous test of qCPA involves compar-
ison of its phase equilibrium predictions with those of CPA for both binary and
multicomponent systems.

One of the most systematic and extensive investigations for modeling multi-
component systems containing CO

2
has been performed by Kontogeorgis and

co-workers [33, 35, 36] during the aforementioned evaluation of di�erent mod-
eling approaches for CO

2
using the CPA (see chapter 3 for more details). The

best results were obtained when CO
2
was considered to be either a solvating or

a self-associating compound (using the 4C scheme).

In this chapter, as a natural extension of the work on binary mixtures containing
CO

2
the quadrupolar CPA is evaluated for multicomponent systems contain-

ing CO
2
, alkanes, water, and/or alcohols, mostly similar to those studied by

Tsivintzelis and Kontogeorgis [35] and Tsivintzelis et al. [33]. Most results in
this chapter have been submitted to Molecular Physics (Thermodynamics 2015,
Special Issue). The quadrupolar CPA is directly compared with the two CPA
approaches that Kontogeorgis and co-workers have found to perform best for
CO

2
containing mixtures, as well as the base case where CO

2
is considered to be



9.1 Modeling approaches 133

an inert compound. In a way this chapter also supplements the work by Kon-
togeorgis and co-workers, by comparing the best purely CPA based approaches
with the quadrupolar CPA.

9.1 Modeling approaches

According to Kontogeorgis and co-workers [14, 33, 35] the best approaches for
modeling mixtures containing CO

2
, alkanes, water, and/or alcohols is to treat

CO
2
as either a self-associating or solvating molecule. In both cases Konto-

georgis and co-workers recommends that the experimental value of the cross-
association energy should be employed and two adjustable parameters are em-
ployed per binary pair containing CO

2
and water, or alcohols. In this chapter

these approaches are compared with two of the qCPA variants evaluated in the
two previous chapters. Namely qCPA with three adjustable parameters and
qCPA with four adjustable parameters. In the latter case parameter set 1 of
the previous two chapters is employed. The approaches are also compared to the
base case where CO

2
is treated as an inert compound. That is, �ve modeling

approaches are evaluated in this chapter for multicomponent CO
2
-containing

mixtures; Three purely CPA based approaches and two approaches where a
quadrupolar term has been introduced in the CPA.

More speci�cally CO
2
will (as in the previous chapters) be considered to be an

inert compound i.e. non-associating and non-quadrupolar (case A), a solvat-
ing compound with two solvation sites (case B), a self-associating compound
following the 4C scheme (case C) and a quadrupolar compound (cases D-E).
Notice that cases B and C di�ers from the previous chapter, as the experimen-
tal value of the cross-association energy is employed in this chapter rather than
the CR-1 combining rule. For both of these approaches the cross-association
volume and the binary interaction parameter was �tted by Tsivintzelis et al.
in Ref. [14]. When mixtures of CO

2
and self-associating compounds are con-

sidered with qCPA, CO
2
is treated as a quadrupolar and solvating compound

as described in chapter 8. As the cross-association parameters are determined
with the procedure suggested by Kleiner and Sadowski [60] only one adjustable
interaction parameter is employed per binary pair for cases D-E, see chapter 8
section 8.3 for more details.

The pure compound parameters for the CO
2
approaches have either been pub-

lished in the open literature [14, 37] or presented in the previous chapters (table
7.2). Pure compound parameters for the other compounds employed can be
found in the Refs. [34, 51, 52, 81, 187] or table 8.1.
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Table 9.1: Approaches considered with CPA and qCPA for modeling ternary and quaternary CO

2
-mixtures containing alkanes, water, and/or

alcohols.

Case EoS
Association
sites in CO

2

No. pure
parameters

kij
Cross-association parametersa for the
CO

2
-associating compound interaction Reference

εcross βcross
A CPA 0 3 adjustable - - [14]
B CPA 2ed-0ea 3 adjustable exp. value adjustable [14]
C CPA 2ed-2ea 5 adjustable exp. value adjustable [14]
D qCPA 2ed-0ea 3 adjustable CR-1 βcross = βassoc [37]
E qCPA 2ed-0ea 4 adjustable CR-1 βcross = βassoc [37]

a For the de�nition of the CR-1 rule see chapter 3 section 3.1.
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As is typically the case, the 2B association scheme is employed for alcohols
and the 4C scheme is used for water. Details of the �ve approaches used for
modeling CO

2
are shown in table 9.1. The approaches use between three and �ve

pure compound parameters and approaches A, D, and E employ one interaction
parameter per binary, whereas approaches B and C employ two. Contrary to
the previous chapter a direct comparison between the modeling approaches is,
thus not entirely fair in terms of the number of binary adjustable parameters.

All the predicted equilibria for the multicomponent mixtures investigated in
this chapter were performed using either interaction parameters correlated from
the corresponding binary systems or using no interaction parameters at all.
The CR-1 combining rule is employed for all binary pairs consisting of two
associating compounds (not including the binary pairs containing CO

2
). That

is, all calculations for multicomponent mixtures are predictive in the sense that
all parameters are based on pure �uid or binary mixture data only.

For the CO
2
containing systems, Tsivintzelis et al. [14] have presented binary

parameters for most of the binaries subsystems for cases B and C while binary
interaction parameters for cases A, D and E are presented in this thesis (tables
8.3, 8.6 and 8.7) and (for the most part) in Bjørner and Kontogeorgis [37]. In
approaches A, D and E the only binary adjustable parameter is the kij , whereas
both the binary interaction parameter and the cross-association volume (βcross)
are used as adjustable parameters in cases B and C. Table 9.2 summarizes,
for each modeling approach, the binary interaction parameters for the CO

2

containing binary pairs, employed in this chapter. The interaction parameters
for the remaining non-CO

2
containing binary pairs are shown in table 9.3. These

interaction parameters are obtained from the literature [35, 81, 187, 225�227].

9.2 Vapor Liquid Equilibrium

The VLE of seven ternary systems containing CO
2
, n-alkanes, water, and/or

alcohols were investigated using �ash calculations. When possible the centre
of the experimental tie lines were employed as the feed composition. With the
exception of two mixtures containing CO

2
and two n-alkanes, Tsivintzelis et al.

[34] and Tsivintzelis and Kontogeorgis [35] have recently evaluated similar mix-
tures. As the predictions with qCPA are compared to both inert CPA (case A)
and the aforementioned best CPA approaches (cases B and C), similar multi-
component results have already been published for these modeling approaches.
One di�erence for case B is that CO

2
is modeled as a solvating molecule with

one electron donor site by Tsivintzelis and Kontogeorgis [35] whereas CO
2
is

modeled with two electron donor sites in this work.
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Table 9.2: Summarized binary interaction parameters for the binary CO
2
+ n-

alkane, alcohol or water systems with CPA and qCPA. Interaction pa-
rameters originally presented in Refs. [14, 37].

Binary pair kij εcross/R [K] βcross · 1000

Approach A

Methanol + CO
2

0.0267 - -
Ethanol + CO

2
0.051

Propanol + CO
2

0.005830
Water + CO

2
-0.0232 - -

Methane + CO
2

0.089 - -
Ethane + CO

2
0.130 - -

Propane + CO
2

0.129 - -
Butane + CO

2
0.124 - -

Eicosane + CO
2

0.085 - -
Approach B

Methanol + CO
2

0.0493 Exp: 1489 10.8
Ethanol + CO

2
0.1076 Exp: 1489 13.4

Propanol + CO
2

0.0667 Exp: 1489 1.3
Water + CO

2
0.1252 Exp: 1708 7.9

Methane + CO
2

0.089 - -
Ethane + CO

2
0.130 - -

Propane + CO
2

0.129 - -
Butane + CO

2
0.124 - -

Eicosane + CO
2

0.085 - -
Approach C

Methanol + CO
2

-0.0242 Exp: 1489 4
Ethanol + CO

2
0.0109 Exp: 1489 2.1

Propanol + CO
2

-0.0077 Exp 1489 0.05
Water + CO

2
0.030 Exp: 1708 3

Methane + CO
2

0.0292 - -
Ethane + CO

2
0.075 - -

Propane + CO
2

0.0915 - -
Butane + CO

2
0.0599 - -

Eicosane + CO
2

0.05 - -
Approach D

Methanol + CO
2

-0.01 CR-1: 1479 βmethanol

Ethanol + CO
2

-0.019 CR-1: 1295 βethanol

Propanol + CO
2

-0.02 CR-1: 1263 βpropanol

Water + CO
2

0.033 CR-1: 1002 βwater

Methane + CO
2

-0.007 - -
Ethane + CO

2
0.042a - -

Propane + CO
2

0.035 - -
Butane + CO

2
0.040a - -

Eicosane + CO
2

0.015 - -
Approach E

Methanol + CO
2

-0.05 CR-1: 1479 βmethanol

Ethanol + CO
2

-0.057 CR-1: 1295 βethanol

Propanol + CO
2

-0.05 CR-1: 1263 βpropanol

Water + CO
2

-0.015 CR-1: 1002 βwater

Methane + CO
2

-0.057 - -
Ethane + CO

2
0 - -

Propane + CO
2

0 - -
Butane + CO

2
0 - -

Eicosane + CO
2

-0.02 - -
a Improved value compared to [37].
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Table 9.3: CPA and qCPA binary interaction parameters for non-CO
2
containing

binary mixtures. Binary interaction parameters from Refs. [35, 81, 187,
225�227]. binary interaction parameters between two hydrocarbons are
assumed to be zero.

Compound Water Methanol

kij kij
Methanol -0.075 -
Ethanol -0.041 0
Propanol -0.038 0
Methane 0.0098 0.01
Ethane 0.0442 0.0204
Propane 0.1135 0.0555
Butane 0.0875 0.0350

9.2.1 Mixtures containing CO2 and n-alkanes

For multicomponent mixtures containing only hydrocarbons the binary inter-
action parameters are close to zero and satisfactory predictions are typically
obtained with CPA (or SRK). In this regard an interesting group of multicom-
ponent systems are those containing CO

2
and multiple n-alkanes. For these

systems dispersion and quadrupolar forces should essentially be the only in-
teractions and there is no question as to how CO

2
should be modeled with

self-associating compounds.

It is obvious from results in the previous chapter that almost quantitative predic-
tions (kij = 0) was obtained for binary mixtures containing CO

2
and hydrocar-

bons when qCPA was employed with four parameters (case E). The predictions
were also quite satisfactory when the model was employed with three parame-
ters (case D). An important question is whether the excellent phase equilibrium
results for binary mixtures are extensible to multicomponent mixtures.

To investigate this the VLE of the mixtures CO
2
+ methane + ethane and CO

2

+ ethane + eicosane are studied with qCPA and CPA. The binary interaction
parameters between ethane + methane and ethane + eicosane are both assumed
to be zero. Furthermore the mixtures are studied both with and without a kij
between CO

2
and the hydrocarbons. As there are no associating compounds

cases A and B becomes identical.

The deviations between model predictions, both with and without interaction
parameters, and experimental data are shown in table 9.4. When all kij 's are
set to zero no deviations are presented for case A, as VLEs are not predicted
for all data points when the centre of the experimental tie line is used as the
feed composition.

The CO
2
+ methane + ethane system is a very interesting system, which de-

pends strongly on the pressure. At low pressures the bubble- and dew-point
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Table 9.4: CPA and qCPA deviations between model predictions and experimental
composition data from Refs. [67, 228, 229] for the VLE of the two ternary
systems CO

2
(1) + methane(2) + ethane(3) and CO

2
(1) + ethane(2) +

eicosane(3) using four of the modeling approaches. The pressure and
temperature range is 230-250 K and 25-65 bar for the former system and
338.7 K and 104 bar for the latter system. The predictions have been
performed both with and without interaction parameters as indicated in
the table.

%AAD in composition

x1 x2 x3 y1 y2 y3
CO

2
(1) + methane(2) + ethane(3) kij = 0

Case A - - - - - -
Case C 6.2 70.0 6.9 13.3 31.6 18.2
Case D 4.6 45.5 5.8 10.1 20.3 13.8
Case E 5.3 16.4 2.9 6.6 4.2 7.6

CO
2
(1) + methane(2) + ethane(3) kij 6= 0

Case A 4.6 22.0 4.4 8.6 5.6 10.3
Case C 4.5 23.8 4.5 8.6 6.1 9.9
Case D 4.7 22.9 4.6 8.5 5.8 10.2
Case E 4.8 22.3 4.7 8.4 5.3 9.9

CO
2
(1) + ethane(2) + eicosane(3) kij = 0

Case A - - - - - -
Case C 17.9 4.8 38.3 0.7 1.0 26.9
Case D 10.7 4.1 25.4 1.5 1.4 37.8
Case E 0.5 3.9 7.1 2.7 2.8 60.8

CO
2
(1) + ethane(2) + eicosane(3) kij 6= 0

Case A 9.0 4.3 22.4 1.8 2.1 57.7
Case C 11.0 4.0 25.5 1.5 1.4 55.0
Case D 9.5 4.2 23.2 1.7 1.9 52.8
Case E 4.2 3.8 14.1 2.2 2.3 59.0

curves coincide, while at higher pressures the distance between the curves in-
creases and then decreases again. The predictions were compared to experimen-
tal data from Wei et al. [67] at 230 K and 65 bar and Davalos et al. [229] at 250
K and three pressures (21, 25, and 30 bar). It is clear from table 9.4 that case
E performs very well without a kij , as all deviations between model predictions
and experimental data are smaller than 10%, with the exception of the compo-
sition of the liquid methane phase. The deviations with the di�erent modeling
approaches are almost identical when binary interaction parameters are em-
ployed (this is also illustrated in �gure 9.1b). Interestingly most deviations
increase slightly when case E is employed with binary interaction parameters.

Figure 9.1 illustrates, in a ternary diagram, the VLE predictions of the CO
2
+

methane + ethane system at 250 K and 30 bar both without kij 's (�gure 9.1a)
and with kij 's (�gure 9.1b). While case E clearly gives the best predictions
without binary interaction parameters, all models perform well, and almost
identically with binary interaction parameters.
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Figure 9.1: Predictions compared to experimental data for the CO
2
+ methane +

ethane VLE at 250 K and 30 bar. (a) No interaction parameters are
employed (kij = 0) and (b) interaction parameters are employed. Circles
and dotted lines are experimental data from Ref. [229] and experimental
tie lines respectively.

Figure 9.2 compare the predictions of the modeling approaches with experimen-
tal data at 250 K and 25 bar (�gure 9.2a) and 230 K and 65 bar (�gure 9.2b).
In both cases all kij are set to zero. It is clear that case E is fully predictive
at low pressures. Close to the critical pressure of the mixture the accuracy of
the liquid phase predictions tend to deteriorate for case E. This is undoubtedly
caused by the poor representation of the CO

2
+ methane binary near the crit-

ical point when the binary interaction parameter is ignored for case E. While
not quite as good as those of case E the predictions with case D is clearly better
than both purely CPA based approaches.

The CO
2
+ ethane + eicosane predictions were compared to experimental data

from the PhD work of Al-Marri [228] at 338.7 K and 104.4 bar. When the kij 's
are assumed to be zero table 9.4 suggests that very good predictions are obtained
for especially the liquid phase with case E, whereas case C actually predicts
the vapor phase composition more accurately, especially the small amount of
eicosane in the vapor phase.

Figure 9.3a illustrate the predictions. Visually all models predict the vapor
phase composition identically, but based on the deviations it seems that case
C most accurately predicts the amount of eicosane in the vapor phase. For
these large n-alkanes, however, the experimental accuracy may be questionable,
especially for the small amount of eicosane in the vapor phase. In the liquid
phase both quadrupolar approaches are clearly superior to case C (and case A),
despite using fewer pure compound parameters.
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(a) T=250 K and P=25 bar
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(b) T=230 K and P = 65 bar

Figure 9.2: Pure predictions compared to experimental data for the CO
2
+ methane

+ ethane VLE at (a) 250 K and 25 bar and (b) 230 K and 65 bar. In
either case no interaction parameters are employed (kij = 0). Circles and
dotted lines are experimental data from Refs. [67, 229] and experimental
tie lines respectively.
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Figure 9.3: Predictions compared to experimental data for the CO
2
+ ethane +

eicosane VLE at 338.7 K and 104.4 bar. (a) No interaction parameters
are employed (kij = 0) and (b) interaction parameters are employed as
usual. Circles and dotted lines are experimental data from [228] and
experimental tie lines respectively.
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As in the case of the CO
2
+ methane + ethane system the predictions are very

similar when binary interaction parameters are employed. Case E still performs
best of the four approaches, although the liquid phase predictions with case E
actually becomes slightly poorer, than without binary interaction parameters.

9.2.2 Mixtures containing CO2 and associating compounds

Next �ve mixtures containing CO
2
and water and/or alcohols are investigated

to evaluate how well qCPA and the best CPA approaches predicts the VLE
of mixtures containing CO

2
and associating compounds. binary interaction

parameters were employed for all the VLE prediction presented in this section.

The deviations between model predictions and experimental vapor and liquid
composition data are summarized in table 9.5 for four of the mixtures. For the
�nal system (CO

2
+ water + methane) the composition is only measured for

one of the two phases, which means that there are no experimental tie lines.
Thus, no deviations are presented for the VLE of this system. The dew point
deviations for the CO

2
+ water + methane system are also shown in table 9.6.

As would be expected there is an overall tendency for inert CPA (Case A) to
result in higher deviations than the other approaches, particularly for the polar
species in the gas phase. Nevertheless, table 9.5 shows that the predictions are
typically rather similar, irrespective of the modeling approach employed.

Predictions with the �ve CO
2
approaches for the CO

2
+ methanol + propane

system were compared to experimental data from Galivel-Solastiouk et al. [230]
at two di�erent temperatures (313.1 and 343.1 K) and four pressures (5.1, 12.06,
17.1 and 22.03 bar). At the latter two pressures the calculations are only per-
formed at 343.1 K. The predictions and the resulting deviations with the mod-
eling approaches are almost identical, and satisfactory, for all components in
the two phases, although the deviations for the methanol concentration in the
gas phase is a little high (see table 9.5). The two quadrupolar cases are the
two best approaches but the di�erences are small and all approaches essentially
perform identically.

Figures 9.4a and 9.4b compare the predictions with experimental data at 343.1
K and both 5.1 bar and 22.03 bar respectively. Only case E can be seen in the
�gure as the predictions are very similar, and the lines lie on top of each other.
It is clear from the �gures that, at �xed temperature and pressure, the gas
phase consists of a small and almost constant amount of methanol, whereas the
propane and CO

2
concentration varies depending on the feed. The liquid phase

is almost pure methanol. Figure 9.4a illustrates, that the predicted amount of
methanol in the equilibrium gas phase is not quite satisfactory at 343 K and
low pressures, which is the reason for the higher methanol deviations in the gas
phase.
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Table 9.5: CPA and qCPA deviations between model predictions and experimental composition data [201, 230�232] for the VLE of four

ternary systems containing CO
2
and at least one self-associating compound using the �ve modeling approaches. The pressure

and temperature range is included in the table.

P [bar] T [K] %AAD in composition

x1 x2 x3 y1 y2 y3 Average
CO

2
(1) + methanol(2) + propane(3)

Case A 5-22 313.15 - 8.9 0.5 5.5 3.5 17.9 3.5 6.6
Case B 343.15 12.2 0.6 5.4 3.4 17.5 3.5 7.1
Case C 10.2 0.5 5.5 3.4 17.4 3.5 6.8
Case D 8.0 0.5 5.4 3.4 17.1 3.3 6.3
Case E 7.6 0.4 5.4 3.4 17.1 3.2 6.2

CO
2
(1) + methanol(2) + water(3)

Case A 70-120 313.15 35.8 2.3 4.9 2.0 52.4 57.8 25.9
Case B 48.5 6.2 7.8 0.8 23.2 41.5 21.3
Case C 57.1 10.2 11.3 0.8 20.2 50.0 24.9
Case D 29.9 3.9 4.4 0.4 10.5 40.2 14.9
Case E 28.1 3.7 4.0 0.5 11.5 42.1 15.0

CO
2
(1) + ethanol(2) + water(3)

Case A 79-185 313.15 - 41.7 15.9 12.4 6.2 66.5 81.9 37.4
Case B 343.15 35.7 10.2 9.9 4.6 43.1 56.3 26.6
Case C 39.7 8.5 9.1 4.8 50.2 56.7 28.2
Case D 40.8 8.4 9.3 4.8 50.6 54.8 28.1
Case E 39.4 8.2 8.9 4.7 49.0 52.8 27.2

CO
2
(1) + methanol(2) + ethanol(3)

Case A 20-80 313.15 6.8 2.8 3.2 0.2 20.3 31.5 10.8
Case B 3.9 1.5 1.9 0.2 17.0 21.6 7.7
Case C 4.3 1.1 1.4 0.2 17.8 27.2 8.7
Case D 4.7 1.2 1.8 0.2 17.5 27.9 8.9
Case E 7.1 1.9 2.6 0.2 17.7 27.2 9.5
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(b) 22 bar

Figure 9.4: Predictions compared to experimental data for the CO
2
+ methanol +

propane VLE at (a) 343.1 K and 5.1 bar and (b) 343.1 K and 22.03
bar. Full lines are CPA and qCPA predictions. Circles and dashed
lines are experimental data from Ref. [230] and experimental tie lines
respectively.

Wong and Sandler [233] also investigated the CO
2
+ methanol + propane sys-

tem at 313.1 K and 12.1 bar and 17.1 bar using the Peng-Robinson EoS in con-
junction with the Wong-Sandler EoS/GE model (using NRTL as the activity
coe�cient model). Recently NguyenHuynh et al. [111] also presented predic-
tions of the CO

2
+ methanol + propanol system at 313.1 K and 5.1 bar using

a group contribution polar PC-SAFT. The authors treated CO
2
as a solvating

and quadrupolar species just like in this work. No deviations are presented in
either investigations, but the results look similar to the results presented here.
Utilizing the data sets at 5.1 and 17.1 bar, Tsivintzelis and Kontogeorgis [35]
obtained similar deviations as those obtained in this work, for cases A and C.

The pressure range of the available experimental data from Galivel-Solastiouk
et al. [230] for the CO

2
+ methanol + propane system actually goes up to 32

bar. However, at 313.1 K and from 17.1 bar or higher, all modeling approaches
�nd a three-phase VLLE region (see section 9.4), which is not described by the
experimental data. As some of the experimental tie lines enter the predicted
three-phase region, deviations cannot be calculated for these data points. Fig-
ure 9.5 shows the two predicted VLE regions and the three phase VLLE region
at 313.1 K and 17.1 bar. qCPA with three parameters (case D) has been em-
ployed in the �gure, but all approaches yield similar results. Note that the two
experimental tie lines closest to the three-phase region are exactly parallel to
the sides of the three-phase region, which connect the vapor phase to the �rst
and second liquid phase. This, along with the rapid change in slope of the tie
lines around this region, may suggest that there are, in fact, two VLE regions
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Figure 9.5: Predicted VLE and VLLE for the CO
2
+ methanol + propane system

at 313 K and 17.1 bar. Green lines are predictions for the whole phase
diagram with case D. N Predictions at the experimental conditions, the
full black lines are predicted tie lines. • experimental VLE data from
Ref. [230], the dashed black lines are experimental tie lines. The green
triangle indicates the predicted three-phase VLLE region at the speci�ed
temperature and pressure.

separated by a VLLE region, which has not been detected in the experimental
work.

The VLE predictions for the CO
2
+ methanol + water system were compared

to experimental data from Yoon et al. [232] at 313.2 K and at 70, 100 and 120
bar. It is clear from the results shown in table 9.5 that the best predictions in
both the liquid- and vapor phase are obtained when CO

2
is considered to be a

quadrupolar and solvating compound (cases D and E). Case A performs almost
as well as cases D and E in the polar liquid phase. In the CO

2
-rich vapor phase,

however, case A gives the poorest prediction amongst all approaches, as the
water solubility in the CO

2
-rich phase is signi�cantly under-predicted. Figure

9.6 shows a characteristic prediction with the �ve approaches at 313.2 K and
100 bar. It can be seen from the �gure that while the predictions with cases A,
D and E are very similar in the liquid phase the amount of CO

2
in the vapor

phase is over-estimated with case A.

For the CO
2
+ ethanol + water system, the VLE predictions were compared to

experimental data from Lim and Lee [231] using 11 data sets in a temperature
and pressure range of 313.2-343.2 K and 79-185 bar respectively. Deviations are
shown in table 9.5, while �gure 9.7 shows the predictions at 323.2 K and 118
bar. Treating CO

2
as a solvating compound (case B), results in the overall best
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Figure 9.6: Predictions compared to experimental data for the CO
2
+ methanol

+ water VLE at 313.2 K and 100 bar. Full lines are CPA and qCPA
predictions. Circles and dashed lines are experimental data from Ref.
[232] and experimental tie lines respectively.
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Figure 9.7: Predictions compared to experimental data for the CO
2
+ ethanol +

water VLE at 323 K and 118 bar. Full lines are CPA and qCPA pre-
dictions. Circles and dashed lines are experimental data from Ref. [231]
and experimental tie lines respectively.
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(a) 60 bar
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Figure 9.8: Predictions compared to experimental data for the CO
2
+ methanol

+ ethanol VLE at (a) 313 K and 60 bar and (b) 313 K and 80 bar.
Full lines are CPA and qCPA predictions. Circles and dashed lines are
experimental data from Ref. [201] and experimental tie lines.

predictions, except for the predictions of the composition of ethanol and water
in the liquid phase, where cases C, D and E perform better. The di�erences
are quite small, however, and depend on the desired temperature and pressure.
As seen from both table 9.5 and �gure 9.7, cases C, D and E perform almost
identically. Case A results in the poorest predictions for all compositions.

For the CO
2
+ methanol + ethanol system the binary interaction parameter

between methanol and ethanol was assumed to be zero. The VLE predictions
where compared to three experimental data sets from Yoon et al. [201] at 313.2
K and 20, 40 and 60 bar. The deviations (see table 9.5) are quite similar us-
ing approaches B-E, although treating CO

2
as a solvating compound (case B)

seem to give marginally better results in terms of deviations. A characteristic
prediction is shown at 60 bar in �gure 9.8a. Besides the experimental data used
to calculate the deviations from experimental data, an additional data set is
available near critical conditions at 80 bar. Contrary to the other data sets, the
predictions begin to di�er substantially from each other at these near-critical
conditions. Figure 9.8b compares the predicted VLE with four of the di�er-
ent modeling approaches at 80 bar and 313.2 K. Only the two quadrupolar
approaches (cases D and E) produce predictions in good agreement with the
experimental data, whereas cases A and C severely under-predict the solubil-
ity of CO

2
in the polar liquid phase. Only a single (supercritical) phase was

detected for case B, which performed marginally better at the other pressures.

Finally the ternary CO
2
+ water + methane mixture was investigated using wa-

ter content data from Song and Kobayashi [234] for a CO
2
-rich vapor mixture

containing 5.31 mol% methane. This system has recently been studied by Tsiv-
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(b) 316 K
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(c) 323 K

Figure 9.9: Predictions compared to experimental data for the CO
2
-rich phase of

the CO
2
+ water + methane (5.31mol%) mixture at (a) 300 K (b) 316

K and (c) 323 K. Lines are CPA and qCPA predictions. Circles are
experimental data from Ref. [234].
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intzelis et al. [34] with CPA and Austegard et al. [235] with CPA and SRK/HV.
Figure 9.9 shows three predictions of the water content in the vapor phase as a
function of pressure. As expected based on the binary CO

2
+ water correlation

inert CPA fails to predict the minimum in water content of the vapor phase.
The predicted behavior is rather similar for the four remaining approaches and
they all �nd, at least qualitatively, the minimum in water content. Cases D
and E clearly perform best at 300 K. At higher temperatures case C appears to
perform slightly better, but all approaches perform very similarly.

9.3 Dew Point Pressure

The ability of the di�erent approaches for modeling the dew point pressure of
two ternary and four quaternary systems was investigated by comparing the
predictions with experimental data from Refs. [236�240]. For each system
the dew point pressure is calculated for several di�erent compositions in the
temperature range 245-290 K. Details of the compositions of these mixtures
can be found in Refs. [236�240]. The overall deviations, in terms of %AAD in
the dew point pressure, are summarized in table 9.6. With the exception of the
CO

2
+ methanol + water system, case A (inert CPA) results in overall better

dew point predictions than any of the other, more advanced, approaches. The
results with cases A-C are almost identical to those obtained by Tsivintzelis and
Kontogeorgis [35], who arrived at the same conclusion about case A. Cases B-E
perform very similarly. It is somewhat surprising, however, that the quadrupolar
approaches, cases D and E, perform slightly worse than the other cases except
for the CO

2
+ water + methane system. The VLE deviations for the CO

2
+

water + methane system were shown in table 9.5.

It is not very well understood why inert CPA appears to give more accurate dew
point predictions, than the approaches which attempt to account for the inter-
actions between CO

2
, and water, and/or alcohols. We may speculate, however,

whether the fact, that the concentration of water and methanol in the mixtures
is very small may be part of the reason. Another possibility is that the temper-
ature dependence of the binary interaction parameters has been ignored. For
instance, if a temperature dependent binary interaction parameter is employed
for the binary water + methanol pair the deviations typically decrease by about
2-5% for all approaches. Table 9.7 summarizes the calculated deviations for the
dew point pressures when the temperature dependent interaction parameter
kH2O−MeOH = 0.115 − 60.24/T is employed. Note that this linearization has
been developed based on equilibrium data in the temperature range 298-473 K,
and it is thus assumed that it can be extrapolated to the temperature range
of the dew point data. Despite the use of a temperature dependent interaction
parameters (and thus an additional binary parameter for the H

2
O + methanol

subsystem) case A continues to be the overall best approach. It makes lit-
tle di�erence for the results if temperature dependent interaction parameters
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Figure 9.10: Dew point predictions compared to experimental data from Refs.
[236, 239, 240] (selected mixtures) for the systems (a) CO

2
(1) +

methanol(2) + water(3), (b) CO
2
(1) + methanol(2) + water(3) +

ethane(4), (c) CO
2
(1) + methanol(2) + water(3) + propane(4), (d)

CO
2
(1) + methanol(2) + water(3) + n-butane. Symbols are experi-

mental data and the legend indicates the composition of the selected
mixtures.

are employed between the other binaries. Typical predictions for four of the
mixtures are shown in �gure 9.10 for selected compositions of each mixture.
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Table 9.6: Deviations between CPA and qCPA predictions and experimental dew point data for the ternary mixtures CO
2
+ water +

methane, CO
2
+ water + methanol and for the quaternary mixtures CO

2
+ water + methanol + hydrocarbon (methane, ethane,

propane, and n-butane). Experimental data from Refs. [236�240]. The temperature range is approximately 245-290 K in all
cases.

%AAD in dew point pressure

Mixture P range [bar] Case A Case B Case C Case D Case E
CO

2
+ water + methane 1-61 15.5 24.8 22.7 21.5 21.6

CO
2
+ methanol + water 1-44 9.6 7.3 7.2 7.5 7.6

CO
2
+ methanol + water + methane 1-59 22.3 27.6 26.4 27.7 27.9

CO
2
+ methanol + water + ethane 1-22 8.0 11.2 10.6 12.3 12.6

CO
2
+ methanol + water + propane 1-21 22.0 28.8 27.7 31.1 31.6

CO
2
+ methanol + water + n-butane 1-22 14.7 18.9 18.1 19.3 19.5

Average - 15.4 19.8 18.8 19.9 20.1

Table 9.7: Deviations between CPA and qCPA predictions and experimental dew point data for the ternary mixture CO
2
+ water +

methanol and for the quaternary mixtures CO
2
+ water + methanol + hydrocarbon (methane, ethane, propane, and n-butane).

Experimental data from Refs. [236, 238�240]. The temperature range is approximately 245-290 K for all systems. A temperature
dependent kij is employed for the binary water + methanol pair (kH2O−MeOH = 0.115− 60.24/T ). Temperature in Kelvin.

%AAD in dew point pressure

Mixture P range [bar] Case A Case B Case C Case D Case E
CO

2
+ methanol + water 1-44 10.9 5.7 6.1 5.1 5.2

CO
2
+ methanol + water + methane 1-59 18.2 21.9 20.9 21.8 21.9

CO
2
+ methanol + water + ethane 1-22 7.5 6.5 6.0 7.4 7.5

CO
2
+ methanol + water + propane 1-21 17.6 23.8 22.8 25.5 26.0

CO
2
+ methanol + water + n-butane 1-22 12.0 15.5 14.8 15.8 15.9

Average - 13.2 14.7 14.1 15.1 15.3
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Table 9.8: CPA and qCPA deviations between model predictions and experimental
data [241, 242] for the CO

2
(1) + methanol(2) + ethane(3) and CO

2
(1)

+ water(2) + 1-propanol(3) VLLE. The temperature and pressure range
for the former system is 288-298 K and 38-57 bar and 313.2 K and 83-141
bar for the latter system.

Lower liquid phase Upper liquid phase Vapor phase

% AAD in x1 x2 x3 x1 x2 x3 y1 y2 y3 Average
CO

2
(1) + methanol(2) + ethane(3)

Case A 4.9 7.1 8.2 6.8 74.8 8.0 20.4 - 5.0 16.9
Case B 18.2 3.3 4.6 10.2 66.6 6.0 24.2 - 6.1 17.4
Case C 5.4 4.9 5.7 5.9 70.7 7.9 19.0 - 4.7 15.5
Case D 6.1 4.0 5.2 11.5 66.0 5.6 25.4 - 6.5 16.3
Case E 6.0 5.0 5.1 9.7 66.3 6.2 24.2 - 6.0 16.1

CO
2
(1) + water(2) + 1-propanol(3)

Case A 29.2 1.1 34.4 14.2 14.4 9.8 15.5 94.5 89.9 39.3
Case B 11.8 2.3 44.5 10.1 12.9 2.9 14.6 80.8 87.5 29.7
Case C 7.7 2.6 48.0 17.3 11.4 7.7 13.9 76.5 83.8 29.9
Case D 3.3 3.0 48.4 14.9 12.5 1.9 12.9 74.6 75.8 27.5
Case E 3.3 2.6 45.3 8.7 9.4 1.7 14.1 82.2 84.4 28.0

9.4 Vapor Liquid Liquid Equilibrium

As already noted for the CO
2
+ methanol + propane equilibria in the previ-

ous section, an interesting feature of some ternary mixtures is the formation of
a strongly temperature and pressure dependent three-phase vapor-liquid-liquid
region. These systems may serve as an even more demanding test of the pre-
dictive power of a thermodynamic model than ternary VLEs.

In this section the ability of the modeling approaches for predicting the VLLE
of the two ternary mixtures CO

2
+ methanol + ethane and CO

2
+ water +

1-propanol is investigated using experimental data from Refs [241, 242]. These
systems were also studied by Tsivintzelis and Kontogeorgis [35] using, amongst
others, approaches A and C of this work. Table 9.8 summarizes, for the two
systems, the deviations between predictions and experimental data for the com-
positions of the three phases in equilibrium.

Overall the predictions for the CO
2
+ methanol + ethane system are similar

with all �ve modeling approaches. The model performance is illustrated in
�gure 9.11 which shows the predicted equilibrium compositions in the three
phases at 298 K. The best overall approaches are arguably cases C, D and E.
With the exception of the methanol concentration in the upper liquid phase
the predictions are generally quite satisfactory. Part of the explanation for
the high methanol deviations in the upper liquid phase, however, is the very
small methanol concentration which results in high relative errors. There is no
experimental data for the amount of methanol in the vapor phase as it was
assumed by Hong et al. [241] that the amount of methanol in the vapor phase
could be neglected, something which is con�rmed by the model predictions.
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Figure 9.11: VLLE predictions compared to experimental data for the CO
2
+

methanol + ethane VLLE at 298.15 K. Lines are CPA and qCPA pre-
dictions. Symbols are experimental data from Ref. [241] ◦ CO

2
, �

Methanol, 4 Ethane.
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If the results for the CO
2
+ methanol + ethane system are compared with those

obtained by Tsivintzelis and Kontogeorgis [35], it is clear that the predictions
in this work are signi�cantly better in the lower liquid phase and similar for
the other phases. This is true even for cases A and C, which were employed by
Tsivintzelis and Kontogeorgis [35]. The reason for the improvement is that a
di�erent value of the interaction parameter is employed for the binary methanol-
ethane pair (kMeOH-C2 = 0.0204 rather than kMeOH-C2 = 0.05667 in Ref. [35]).

It is interesting to investigate whether qCPA o�ers predictive improvements (in
the sense that kij = 0) over the CPA approaches for other mixtures than CO

2
+

n-alkanes. To preliminarily investigate this the VLLE of the CO2 + methanol
+ ethane mixture is calculated where all kij = 0. However, without a kij only
qCPA with four parameters (case E) predicts the presence of the VLLE in the
whole pressure range. This is of course an improvement in itself, although it
makes a direct comparison di�cult. As shown in �gure 9.12 the predictions with
case E are similar to when a binary interaction parameter was employed, except
in the lower liquid phase, where the composition of methanol and ethane are
captured poorly without a binary interaction parameter. If a methanol-ethane
kij is employed excellent predictions are obtained.

Finally the VLLE of the highly non-ideal CO
2
+ water + 1-propanol mixture

was investigated. Higher deviations are typically obtained for this system espe-
cially for the 1-propanol concentration in the lower liquid phase (around 45%)
and for the compositions of water and 1-propanol in the vapor phase (around
80%). In general the two quadrupolar approaches (case D and especially case
E) seem to perform slightly better than the CPA approaches, especially for the
composition of CO

2
in the various phases.

9.5 Concluding Remarks

This chapter attempted to evaluate and compare the ability of both CPA and
the new qCPA for predicting the phase equilibria of multicomponent mixtures
containing CO

2
, alkanes, water, and/or alcohols. Three approaches was con-

sidered for CPA; The base case where CO
2
is modeled as an inert compound

(case A), as well as the two approaches recommended by Kontogeorgis and co-
workers where CO

2
is modeled either as a solvating compound (case B) or a

self-associating compound (case C) [14, 33, 35]. For cases B and C the ex-
perimental cross-association energy and two binary parameters (βcross and kij)
are employed for binary pairs of CO

2
and water, or alcohols. qCPA is evalu-

ated with either three or four pure compound parameters for CO
2
(cases D and

E) and a single adjustable parameter for each binary system, irrespectively of
whether the mixture contains self-associating compounds or not. Cases A, B
and C have been employed by Tsivintzelis et al. [35] to several of the mixtures
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Figure 9.12: VLLE predictions with case E, where all kij = 0, compared to exper-
imental data for the CO

2
+ methanol + ethane VLLE at 298.15 K.

Experimental data from Ref. [241] ◦ CO
2
, � Methanol, 4 Ethane.
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considered in this chapter, although for case B we use two solvation sites for
CO

2
rather than one.

The multicomponent CPA and qCPA results are all predictive in the sense
that all parameters are based on pure �uid or binary mixture data only. No
parameters have been �tted to the ternary or quaternary systems. Systems
containing CO

2
and two or more n-alkanes were also evaluated without the use

of a binary interaction parameter. When interaction parameters are employed
the di�erence between the various model predictions is quite small. This is
especially true for cases B-E, for which the predictions rarely di�er from each
other by more than a few percent.

Somewhat surprisingly case A seems to be the most accurate approach for the
dew point predictions. On average case A deviates from the experimental dew
point data with about 15% (in terms of %AAD), whereas the other approaches
all deviate by around 19-20%. Tsivintzelis and Kontogeorgis [35] came to the
same conclusion. It is interesting to note that the deviations can be reduced to
about 13% for case A and about 15% for the other approaches if the temperature
dependence of the binary water-methanol pair is accounted for. However, this
is at the cost of an extra parameter for this binary pair.

VLE and VLLE predictions with case A are typically worse than the other
approaches, especially when it comes to predicting the composition of the asso-
ciating compounds. This is expected, as the approach does not account in any
way for the interactions between CO

2
and associating compounds, nor does it

take quadrupolar interactions into account. Cases B-E all perform overall sat-
isfactorily, and generally predict the behavior of the multicomponent systems
quite well. On a relative scale all models have di�culties predicting the quan-
titative amount of associating species in the vapor phase. Part of which is due
to their typically low concentration in this phase.

qCPA was shown to perform very well for multicomponent mixtures containing
CO

2
and n-alkanes even without binary interaction parameters, suggesting that

the excellent results for binary mixtures obtained in the previous chapter are
extensible to multicomponent mixtures. This suggests that qCPA in its four
parameter version may be employed for multicomponent mixtures of CO

2
and

n-alkanes without using any interaction parameters, similar to how SRK or CPA
may be employed for multicomponent hydrocarbon mixtures without kij 's.

While qCPA is de�nitely among the best approaches for VLE and VLLE the
model does, unfortunately, not appear to o�er fundamental improvements for
the prediction of multicomponent systems compared to CPA approaches B and
C, at least not when binary interaction parameters are employed. It is worth
noting, however, that qCPA is compared to the, according to Tsivintzelis and
Kontogeorgis [35], best CPA approaches, where experimental values of the as-
sociation energy are employed rather than combining rules and two adjustable
parameters are used per CO

2
-associating compound pair. When qCPA is em-
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ployed the CR-1 mixing rule is used together with a simple approximation for
the cross-association volume and with a single binary interaction parameter em-
ployed for the binary pairs. Moreover, this interaction parameter is typically
signi�cantly smaller, than with the CPA approaches. That is, compared to CPA
similar predictions are typically obtained with qCPA, but with fewer adjustable
parameters.

For mixtures containing CO
2
and self-associating compounds it essentially seems

to be at least as important to account for the induced association between CO
2

and water or alcohols, as to account for the quadrupole moment of CO
2
. That

is, all successful approaches treat CO
2
as either solvating or self-associating.

The e�ect of the quadrupole is primarily to reduce the value and/or number of
interaction parameters.



CHAPTER10
Conclusion and Future Work

10.1 Conclusion

In this work, in an e�ort to improve the predictive capabilities of classic ther-
modynamic models, primarily for mixtures containing CO

2
, the CPA EoS have

been extended with an explicit quadrupolar term. The extension is essentially a
simpli�cation of a third order perturbation theory for a pure quadrupolar �uid,
which have been extended to mixtures. The resulting qCPA can be used with
the experimental value of the quadrupole moment and without introducing any
additional pure compound parameters. Alternatively a single additional pure
compound parameter may be employed. When an additional adjustable param-
eter is employed it is typically the quadrupolar co-volume, although it is also
possible to use the quadrupolar moment itself as an adjustable parameter.

A systematic improvement in the correlation of the saturated liquid density
and vapor pressure is observed with qCPA, even when the same number of
adjustable parameters are employed in CPA and qCPA. This is particularly true
for the strongly quadrupolar CO

2
molecule, but applies to the other investigated

quadrupolar compounds as well.

For modeling approaches using more than three adjustable parameters sev-
eral di�erent parameter sets could be obtained for the same modeling ap-
proach. High correlations were observed between the energetic parameters in
the quadrupolar model. These observations led to a systematic investigation,
which attempted to estimate the uncertainty in the pure compound parameters
of CO

2
for several di�erent modeling approaches with CPA and qCPA. The ef-

fect of the uncertainties in the pure compound parameters were then quanti�ed
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by propagating them to physical properties, VLE, and LLE using Monte Carlo
simulations. The analysis indicates that:

• The uncertainty in the pure compound parameters are negligible for mod-
eling approaches which employ three adjustable parameters.

• The uncertainties may be signi�cant for modeling approaches with more
than three adjustable parameters.

• The uncertainties are largely due to very high correlations between di�er-
ent parameters, so that a change in one parameter can be compensated
by a change in another. For instance the uncertainties in qCPA (four
parameters) are largely due to high correlations between the energetic Γ

(or a0) parameter in the SRK term and the volumetric bQ0 (or e�ective Q)
parameter in the quadrupole term.

• The uncertainties in VLE are much larger when the four parameter version
of qCPA is employed than when CPA is employed (even when CO

2
is as-

sumed to be self-associating). On the other hand, the highly temperature
dependent properties such as CV are very uncertain with self-associating
CPA. This clearly illustrates that di�erent models are sensitive to di�erent
output properties.

• The parametrization of (similar) multi-parameter models are at least as
important as the model term itself. It may thus be very di�cult to objec-
tively compare two similar models, as the extent to which the predictions
from one model is better than the predictions from another may have less
to do with an inability of the model to structurally represent the data,
and more to do with that particular parameter set.

• Simple parameter estimation procedures based only on pure compound
data and least squares estimation may be insu�cient for models which
incorporate a quadrupole or dipole term.

These conclusions are rigorously only valid for CO
2
and the investigated model-

ing approaches. However, as other quadrupolar and polar terms are structurally
similar to each other, and since SAFT employs the same association term as
CPA, one may suspect the conclusion can be extrapolated to other models such
as SAFT and its quadrupolar variants.

The new model was extensively evaluated and compared to the non-modi�ed
CPA for its ability to predict the thermodynamic properties of pure CO

2
both

in the saturation region, the compressed liquid region and in the critical region.
The model was subsequently employed to predict and correlate binary VLE
and LLE of mixtures containing CO

2
and n-alkanes, water, alcohols, or selected

quadrupolar compounds. Finally qCPA have been applied to predict the VLE
and VLLE of multicomponent mixtures containing CO

2
and alcohols, water,
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and/or n-alkanes. In next to all cases the model is compared to several other
CPA approaches.

The predictions of pure compound properties with qCPA are satisfactory but
similar to other CPA approaches. For binary mixtures all qCPA approaches
appear to o�er systematically improved predictions (kij = 0) and correlations
(smaller kij) compared to the cases where quadrupolar interactions are ignored.
This improvement is particularly pronounced when mixtures of CO

2
and hy-

drocarbons are considered, where the four parameter version of the model is
almost fully predictive, both for binary and ternary mixtures. However, there
are several challenges for mixtures containing CO

2
+ another quadrupolar com-

pound. For some of these mixtures qCPA is clearly an improvement, while for
other mixtures the performance is down-heartening. It was shown that the
originally proposed mixing rules were insu�cient for mixtures containing two
opposite quadrupoles such as the CO

2
+ acetylene mixture, and improvements

have been suggested (see chapter 8).

For multicomponent mixtures qCPA were compared to the CPA approaches
which Kontogeorgis and co-workers have found to perform best (see discussion
in chapters 3 and 9), despite the fact that these approaches typically employ
two parameters per binary compound, whereas qCPA only employs one. It was
found, that the di�erence between the various modeling approaches, was very
small when binary interaction parameters were employed, even though qCPA
uses fewer binary parameters. If binary interaction parameters are ignored for
ternary mixtures of CO

2
+ n-alkane systems signi�cantly better predictions are

obtained with qCPA than with CPA.

Whether qCPA should be investigated further in the future depends very much
on the point of view. On the one hand the model certainly improves the phase
equilibrium predictions and correlations (smaller or even zero kij) for several
mixtures, both those containing associating compounds but especially those
containing hydrocarbons. In the process it typically employs both fewer pure
compound parameters and fewer binary parameters. On the other hand, there is
little to no improvement in the predicted pure compound properties, the cross-
quadrupolar interactions are not well understood and, although the interaction
parameters are smaller with qCPA, the quality of the correlations are essentially
the same with or without the quadrupolar term. Finally there is little to no
improvement in multicomponent predictions at least not when a kij is employed.

In conclusion, the results certainly indicate, that descriptions of the phase be-
havior of mixtures containing CO

2
are improved with qCPA compared to CPA.

In particular in the sense that the model becomes signi�cantly more predic-
tive. That is, despite a few limitations, the model seem to be a step forward
compared to CPA. However, the model does not seem to o�er any fundamental
improvements that larger binary interaction parameter cannot account for.
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10.2 Future Investigations

Despite the overall consistent improvements obtained in almost all cases with
qCPA compared to CPA there are several aspects which could be investigated
further, to improve both the understanding and the accuracy of the model for
phase equilibrium calculations.

10.2.1 Future applications

There are a large number of binary and ternary mixtures, for which the phase
behaviour could be studied with qCPA. The general applicability of qCPA for
quadrupolar compounds other than CO

2
have only been investigated very spar-

ingly, and almost exclusively for mixtures containing CO
2
+ another quadrupo-

lar compound. The performance of qCPA for these mixtures where found to
be somewhat erratic. It remains to be seen, however, whether this is due to
the complex nature of the quadrupole-quadrupole interaction or a failure of the
model for other quadrupolar compounds.

The approximation suggested by Kleiner and Sadowski for the cross-association
between CO

2
and a self-associating compound which have been employed in

qCPA seem to work fairly well. However, a more fair comparison of CPA and
qCPA would probably be to compare the phase equilibrium calculations of qCPA
with those of CPA, where CO

2
is modeled as a solvating compound using in

both cases the same approximation for the cross-association. This was partly
illustrated in �gure 8.15 for the CO

2
+ water system, indicating that equally

good correlations, can be obtained with CPA if this approximation is employed,
although with a higher binary interaction parameter.

Alternatively experimental values for the association energy could also be em-
ployed in qCPA (as Tsivintzelis et al. [14] suggested for CPA). Unfortunately
this results in a plethora of possible combinations for the values of the kij and
βcross which all correlate the phase behavior of CO

2
+ alcohol systems very

well. On the other hand there are indications (see Ref. [14]) that this approach
gives a less temperature dependent kij for the CO2

+ water system, due to the
intricate balance between εcross and βcross in Eq. (3.11).

Of particular interest to the parent FTP project CO
2
-Hydrates - Challenges

and Possibilities are components which may act as promoters for the formation
of gas hydrates, such as cyclopentane and tetrahydrofuran. Whereas alcohols,
which act as inhibitors, have already been studied. Given the positive results
for n-alkanes, there is little doubt that qCPA should improve the predictions
for CO

2
+ cyclic alkanes as well.
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Treating both cyclopentane and CO
2
as non-associating compounds with CPA

Herslund et al. [243] modeled the VLE between the two compounds. However,
the authors found the predictions with CPA to be poor, and that a high binary
interaction parameter was needed to correlate the system. To brie�y illustrate
how accounting for the quadrupolar interactions of CO

2
may improve the ca-

pabilities of the CPA for cyclic alkanes, �gure 10.1 show the predicted VLE
between CO

2
+ cyclopentane at a single temperature using qCPA and inert

CPA. To correlate the VLE a small kij of 0.06 and 0.025 is needed for qCPA
with three and four parameters respectively, whereas a large kij of about 0.15
is needed with CPA.
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Figure 10.1: Prediction (kij = 0) of the CO
2
+ cyclopentane VLE at 293 K using

inert CPA and qCPA with three or four adjustable parameters. The
predictions are compared with experimental data from Ref. [244].

To evaluate the performance of qCPA for hydrate calculations the model should
be incorporated into a van der Waals-Platteeuw hydrate model [245, 246] us-
ing for instance Kihara potentials or the Parrish and Prausnitz [247] method
to estimate the Langmuir adsorption coe�cient in the model. However, as
CPA and qCPA perform almost identically for the prediction of multicompo-
nent mixtures when a binary interaction parameter is employed, no appreciable
di�erence between the two models is expected for hydrate calculations, espe-
cially considering that the additional hydrate parameters, which are �tted to
the pure gas hydrate, may partially compensate for any di�erences. In a recent
PhD thesis Herslund successfully employed the CPA together with the van der
Waals-Platteeuw hydrate model [12].
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10.2.2 Parameter estimation and uncertainty

In terms of the quadrupolar model the parametrization scheme for the (four
parameter) model should be improved as the uncertainties in the parameters
are so large, that the di�erences observed when two similarly structured models
are compared may be entirely due to uncertainties in the parameters. Any model
improvement may thus be partially obscured by uncertainty in the parameters.
If this is not adequately dealt with, it may be almost impossible to evaluate
whether a change in the model results in improvements or not. Alternatively
the model should only be considered in a three parameter version.

The techniques developed for estimating the pure compound uncertainties and
the propagated errors of CO

2
are quite general and applicable to any molecule,

however, it may be that the high uncertainties are speci�c to CO
2
due to its

short saturation curve. It would be enlightening to apply the methods to the
other quadrupolar molecules for which four parameters have been estimated
(either bQ or Q itself) as well as for a molecule with �ve parameters such as
water, where a substantial number of the many parameter sets suggested in the
literature might be explained based on uncertainties in the parameters.

10.2.3 Improvements to qCPA

Following the approximation introduced by Karakatsani et al. [31] the corre-
lation integrals presented in the original quadrupolar terms were truncated in
qCPA. However, despite the excellent results obtained in this work, and those by
Economou and co-workers for tPC-PSAFT, the approximation may be viewed
as rather crude. Moreover the framework of the proposed qCPA is somewhat
simplistic, in that it is based on a truncated quadrupolar term derived for a
pure hard sphere �uid. It is possible that the base model can be improved if the
full polynomial �ts to the correlation integrals are employed or if a somewhat
more involved quadrupolar term developed directly for mixtures is employed,
such as that proposed by Gubbins and Twu [94, 95].

However, to justify the increased complexity caused by the introduction of these
terms, the modi�ed and the original models must be compared. Such a com-
parison, however, may be partially clouded by the identi�ability issues observed
for the pure compound parameters, and may only be meaningful in the three
parameter case. However even in this case the approximate relation between
the molecular volume and the co-volume may potentially cloud the conclusions.

Although not directly discussed in the thesis it was found that choosing a proper
conversion scheme between the molecular volume and the co-volume is crucial; If
the original de�nition of the co-volume is employed the e�ect of the qudrupole is
negligible, whereas the quadrupole e�ect is of a much more adequate magnitude
when Eq. (5.11) is employed. This may suggest that the approximation for the
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co-volume may be improved further if a di�erent conversion scheme is chosen.
For instance several authors use a ratio between the hard-core volume and the
free volume of 1.5-1.7 [8], whereas this ratio is two in the approximation used.
A better value for this parameter may be found by investigating its e�ect on
mixtures containing e.g. hydrocarbons and di�erent quadrupolar compounds.

Dipole and dipole-quadrupole interactions are ignored in the current model,
which may be the reason for the poor CO

2
+ acetone results. To improve

these predictions it may be necessary to explicitly account for such terms in the
model. However, accounting for the dipole moment of self-associating molecules
may have a detrimental e�ect on the predictions. In fact several authors choose
to ignore the dipole moment of self-associating compounds.

The description of mixtures with more than one quadrupolar component may
be problematic in certain cases. This may be due the fact that the cross-
interaction between di�erent quadrupolar molecules results in di�erent preferred
orientations compared to the pure compound, which may not be adequately
modeled by the simple cross-quadrupolar mixing terms. On the other hand, the
results may indicate that the description of the cross-quadrupolar interactions
may be improved if the quadrupole moment is �tted rather than the quadrupole
volume.

This furthermore begs the questions of whether qCPA really can be success-
fully employed with the experimental quadrupole moment and without an addi-
tional adjustable parameter? Certainly this approach seem satisfactory for CO

2

(at least qualitatively), but the predictions for several of the other quadrupo-
lar �uids in mixtures with CO

2
may indicate that an adjustable parameter is

needed, moreover it may be that this parameter should be related more to the
quadrupole moment than the volume parameter. To investigate this more fairly
the predictions with the quadrupolar compound should �rst be evaluated for
simple mixtures, e.g. with hydrocarbons.
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APPENDIXB
Derivatives of the Reduced

Residual Helmholtz Energy

All thermodynamic properties from a model may be calculated from the partial
derivatives of the (reduced) residual Helmholtz energy (Eq. (B.1)) of the model
with respect to the characteristic state variables (T, V,n)

F =
Ar(T, V,n)

RT
=
Ar(T, V,n)

NAkT
(B.1)

The purpose of this appendix is to illustrate how the partial derivatives of the
reduced residual Helmholtz energy of the quadrupolar term may be calculated.
The necessary derivatives for the SRK term and the association term can be
found in Refs. [54, 62, 63]. To calculate the derivatives we shall follow a
modular procedure as recommended in the book by Michelsen and Mollerup
(2007) [54]. This procedure is brie�y presented in the �rst section to facilitate
the presentation in the following sections of this appendix.

B.1 Partial Derivatives

Let the general form of equation (B.1) be

F = F (n, T, V,M) (B.2)

where n is the total number of moles, T the temperature, and V the total
volume. M represents a vector of explicit functions of the temperature, the
total volume and the mole numbers n.
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First order derivatives

The derivatives of any function F (u) with respect to y at constant x can be
calculated using the multidimensional chain rule [54](

∂F

∂y

)
x

=
∑
k

(
∂F

∂uk

)
um

(
∂uk
∂y

)
x

=
∑
k

Fuk

(
∂uk
∂y

)
x

(B.3)

where um 6= uk. The vectors u and x may have some elements in common.
By application of eq. (B.3) it is straightforward to show that the �rst order
derivatives wrt. the mole numbers, temperature and volume are(

∂F

∂ni

)
T,V

= Fn + FMMi (B.4)(
∂F

∂T

)
V,n

= FT + FMMT (B.5)(
∂F

∂V

)
T,n

= FV + FMMV (B.6)

where

My =
∑
i

(
∂F

∂M i

)
um

(
∂M i

∂y

)
x

(B.7)

where M i 6= um and M i denotes the i'th element in the vector M .

Second order derivatives

The general expression for the second order derivative of F with respect to y
and z at constant x is [54](
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)
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∑
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Fuk

(
∂2uk
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(B.8)

where again uk 6= um and ul 6= um. From eq. (B.8) the second order derivatives
may be determined in a similar manner as the �rst order derivatives.
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B.2 Derivatives of the Padé approximation

Almost every multipolar (dipolar and quadrupolar) term suggested in the liter-
ature, including the one considered in this work, are set in the form of a Padé
approximation of the Helmholtz energy or the reduced residual Helmholtz en-
ergy function. It is thus convenient to have general expressions for the �rst and
second order partial derivatives of the Padé approximation, in terms of the two
and three body terms and their derivatives.

The generic form of the Padé approximation in terms of the reduced residual
Helmholtz energy is

F (u) =
F2(u)

1− F3(u)/F2(u)
(B.9)

where u = (n, T, V,M). For brevity we shall write F2(u) and F3(u) simply as
F2 and F3

First order derivatives

Using classical rules of di�erentiation it is straightforward to show that the
partial derivatives of F (u) wrt. to uk at constant um, where uk 6= um is(

∂F

∂uk

)
um

= Fuk =
(1− F32)F2uk + F2F32uk

(1− F32)
2

=
F2 (F2F2uk − 2F3F2uk + F2F3uk)

(F2 − F3)
2 (B.10)

where F32 and F32uk are respectively

F32 = F3/F2 (B.11)

(
∂ (F3/F2)

∂uk

)
um

= F32uk =
F3ukF2 − F3F2uk

F 2
2

(B.12)
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Second order derivatives

Let g = (1 − F32), f = F2uk , and h = F2F32uk . The second order derivatives
wrt. uk and ul at constant um where um 6= ul, uk, are then given by(

∂2F

∂ul∂uk

)
um

=

(
∂

∂ul

(
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g
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))
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(
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(
∂g

∂ul

)
um

g2
+

g2

(
∂h

∂ul

)
um

− h
(
∂g2

∂ul

)
um

g4

(B.13)

where (
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)
um

=

(
∂F2

∂uk∂ul

)
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= F2ukul (B.14)(
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(B.18)

where m = F3F2uk and(
∂m

∂ul

)
um

= F3ulF2ul + F3F2ukul (B.19)

Which gives all necessary variables in terms of F2, F3 and their derivatives.

B.3 Relevant Derivatives of qCPA

The expressions developed in section B.2 are quite general for any multipo-
lar model employing the Padé approximation. To calculate derivatives of the
quadrupolar term speci�c to this work is is necessary to calculate the partial
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derivatives of the second and third order contributions to the reduced residual
Helmholtz energy as required by Eq. (B.10) and Eq. (B.13).

Using the de�nition of the reduced residual Helmholtz energy in Eq. (B.2) the
second and third order contributions to the quadrupolar term as presented in
chapter 5 may be written as

F2(T, V, n,Θ2) = c1
NA

V (kbT )
2 Θ2(n) (B.20)

F3,2(T, V, n,Θ3,2) = c2
NA

V (kbT )
3 Θ3,2(n) (B.21)

F3,3(T, V, n,Θ3,3) = c3
N2
A

V 2 (kbT )
3 Θ3,3(n) (B.22)

and

F3(T, V, n,Θ3,2,Θ3,3) = F3,2(T, V, n,Θ3,2) + F3,3(T, V, n,Θ3,3) (B.23)

where the full model is set in a Padé approximation as given by Eq. (B.12), c1,
c2, and c3 are constants,M is a vector of explicit functions;M = {Θ2,Θ3,2,Θ3,3}
where Θ2, Θ3,2 and Θ3,3 are functions of the mole numbers and are given by:
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nj
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ijσ

3
ikσ

3
jk

IHSTQ (B.26)

where In and ITQ are correlation integrals. In the original work by Larsen et al.
[27] these integrals are approximated by density polynomials. In this work,
however, the polynomials were truncated at the zeroth order term (see Eqs.
(5.8a)-(5.8b)). That is, the correlation functions are essentials three constants.

To calculate the appropriate partial derivatives of the reduced residual Helmholtz
energy F2, F3,2 and F3,3 are di�erentiated with respect to their model variables
and the derivatives of the mixture parameters Θ2, Θ3,2 and Θ3,3 are evaluated.
This results in a set of derivatives independent on the chosen mixing term and
a set of mixing derivatives independent on the other terms [54].
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The (non-zero) �rst order partial derivatives of F2, F3,2 and F3,3 are

F2,V = − c1NA

(V kbT )
2 Θ2 (B.27)

F3,2,V = − c2NA

V 2 (kbT )
3 Θ3,2 (B.28)

F3,3,V = − 2c3N
2
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3
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The (non-zero) second order partial derivatives of F2, F3,2 and F3,3 are
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2 Θ2 (B.36)
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F2,TΘ2 = − 2c1NA
V k2
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The (non-zero) partial derivatives of Θ2, Θ3,2 and Θ3,3 are
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The above partial derivatives can be used to calculate the partial derivatives of
the full quadrupolar term set in the Padé approximation with respect the model
and mixture variables by using Eqs. (B.10) and (B.13). The partial derivatives
of the reduced residual Helmholtz energy with respect to the state variables can
then be calculated from Eqs. (B.3)-(B.8) as:(
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(B.64)

Which can �nally be employed to calculate thermodynamic properties such as
fugacity coe�cients and their derivatives.

It may seem odd to split the model up in so many terms, especially when the
mixture term is relatively simple, but as Michelsen and Mollerup note [54],
application of this approach makes it easy to modify the model as changes in
one term would not change the overall structure of the model, but only a small
subset of derivatives. If, for instance, the non-truncated correlation integrals
where to be used in Eqs. (B.24)-(B.26), it would only be necessary to update
the equations for these term, their derivatives (including those previously zero),
and the equations for the �nal Helmholtz energy. Similarly, if the changes to
the mixture terms suggested in chapter 8 section 8.4.4 were to be implemented
it would only require changes in Eqs. (B.24)-(B.26) and (B.51)-(B.56).



APPENDIXC
Numerical Derivatives

It is often convenient to express an equation of state, such as CPA or SAFT,
in terms of the (reduced) residual Helmholtz energy (F (T, V,n)) since all other
residual properties can be obtained as partial derivatives of the state variables
T , V and n. The partial derivatives are typically derived by hand, however,
as the models grow in complexity this can become a tedious and error-prone
process, and even the most careful e�orts does not eliminate the possibility of
programming errors. It is thus of utmost importance to numerically check the
analytical partial derivatives for errors. This appendix discuss two numerical
techniques, which can be used to check the derivatives.

C.1 First Derivative Approximations

Finite di�erence approximations are a common method for estimating deriva-
tives. These formulas can be derived by truncating a Taylor series expanded
about a given point x. A well-known estimate for the �rst derivative is the
forward di�erence formula

f ′(x) ≈ f(x+ h)− f(x)

h
(C.1)

Where h is the �nite di�erence interval. The truncation error is O(h), and
equation (C.1) is thus a �rst-order approximation. A better estimated may be
obtained by using central di�erences as

f ′(x) ≈ f(x+ h)− f(x− h)

2h
(C.2)
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The truncation error is O(h2) and it is therefore a second-order approximation.

As with any divided-di�erence approximation one is faced with the dilemma
of using a small h to minimize the truncation error, while avoiding the use of
such a small h that errors due to subtractive cancellation becomes signi�cant
[248, 249].

An alternative method, �rst investigated by Lyness and Moler [250] and later
employed by Squire and Trapp [251], to obtain a very simple expression for
estimating the �rst derivative of a function is to use complex variables to develop
estimates of derivatives. Subsequent papers of Martins and co-workers [248, 252,
253] show how the method may be derived from the Cauchy-Riemann equations
and illustrate the strength of the method.

If f is an analytic and real function of a real variable, the derivative of f can
be approximated by

f ′(x) ≈ Im [f(x+ ih)]

h
(C.3)

Which is called the complex-step derivative approximation (CSDA). The trun-
cation error is O(h2), but, more importantly, the estimate does not su�er from
subtractive cancellation, which means that it is possible to chose an arbitrary
small h without loosing accuracy.1

C.2 Numerical Examples

C.2.1 Simple equations

To illustrate the power of the CSDA approach consider the same analytical
function studied by Squire and Trapp [251] and Martins et al. [248] (equation
(C.4)) as well as another simple function (equation (C.5)).

f(x) =
ex

sin3(x) + cos3(x)
(C.4)

f(x) = ln(x) sin(3x) (C.5)

The exact derivative at x = 1.5 was calculated analytically with double pre-
cision (exact down to ≈ 2.2 · 10−16) and then compared with results from the
CSDA formula (eq. (C.3)) and the central di�erences formula (eq. (C.2)) using
di�erent values of h from 1 to 10−20. Figure C.1 shows, for both equations, the
normalized error in the �rst derivatives as a function of the step size.

1Most compilers truncate numbers smaller than 10−308 (or thereabout) to zero, which sets
a lower limit for h.
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(a) Error in eq. (C.4)
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(b) Error in eq. (C.5)

Figure C.1: Relative error in the �rst derivative estimates in equation (C.4) (a) and
(C.5) (b), using either central di�erences or the complex step approxi-
mation. err = |f ′num − f ′analytic|/|f ′analytic|

It can be seen from both �gure C.1a and �gure C.1b that both the central di�er-
ence estimate and the CSDA estimate initially converges towards the analytical
answer, at a quadratic rate, since the truncation error of both methods is O(h2).
However, as the step size is decreased below a value of about 10−5 subtractive
cancellation errors become an issue for the central di�erence estimate and the
errors begin to increase as the step size is reduced. For values of h smaller
than 10−16 there is essentially no di�erence between the outputs and the �nite
di�erence estimate becomes zero.

The complex-step estimate, however, is una�ected by the subtraction errors and
continues to converge quadratically until a step size of about 10−8. Below this
step size the CSDA is accurate to machine precision.

We see that not only is the accuracy of the best derivative approximation with
the CSDA almost six orders of magnitude better than the central di�erence one,
below a step size of about 10−8 the approximation is also insensitive towards
the value of the step size and returns the derivative with machine accuracy.
This is a tremendous advantage over the �nite di�erence formulas since we can
chose an almost arbitrary small step size without worrying whether it is too
small or not. Moreover when analytical derivatives are tested numerically, one
no longer have to wonder whether a relative di�erence of say 10−4 is due to an
improperly chosen step size or a small mistake in the derivative.
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C.2.2 The SRK and the quadrupolar term

Similarly the numerical derivatives of the Helmholtz energy function for e.g.
the SRK or quadrupolar term can also be calculated from the �nite di�erence
formulas (Eq. (C.1)-(C.2)) or from the CSDA approximation (Eq. (C.3)). The
�rst derivatives are thus estimated by taking a small step, h, in one of the
variables, while keeping the other variables constant. To estimate the second
derivatives we found it most convenient to ensure that the �rst derivatives were
correct, and then estimate the second derivatives by estimating the numerical
derivative of the analytical �rst derivatives.

The analytical derivatives of the reduced residual Helmholtz energy function,
were calculated with double precision and compared to results from Eq. (C.2)
and (C.3) using again di�erent values of h. Figures C.2 and C.3 show the
relative error in the important �rst and second order volume derivatives of the
reduced residual Helmholtz energy function for the SRK and quadrupolar term
at T=230 K, n = 10 mol and V = 0.4 L using parameters for CO

2
, either for

inert CPA or qCPA.
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Figure C.2: Relative error in the volume derivatives of the reduced residual
Helmholtz energy for the SRK for CO

2
at T=230 K, n = 10 mol, and

V = 0.4 L, using either central di�erences or the complex step ap-
proximation. The CO

2
parameters are those employed for inert CO

2
.

err = |f ′num − f ′analytic|/|f ′analytic|

The �gures illustrate, that both the SRK and quadrupolar term exhibit the
same characteristics as the more simple functions �rst evaluated. The only
di�erence seem to be, that there is slightly more numerical noise for the �rst
derivative of the SRK term (�gure C.2a) at low step sizes. The very low errors
returned by the complex step derivative approximation, which are essentially
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Figure C.3: Relative error in the volume derivatives of the reduced residual
Helmholtz energy for the quadrupole term for CO

2
at T=230 K, n =

10 mol, and V = 0.4 L, using either central di�erences or the complex
step approximation. The CO

2
parameters are those employed for qCPA

with four parameters for CO
2
. err = |f ′num − f ′analytic|/|f ′analytic|

machine accuracy, clearly indicate that the analytical volume derivatives are
correct.

Tables C.1 and C.2 show the relative error in all relevant derivatives using either
Eq. (C.2) or Eq. (C.3). CO

2
at T = 230 K, n = 10 mol and V = 0.4 L is again

used as sample compound and conditions. The step size is h = 10−20 for the
complex step approximation and h = xε1/3, for the central di�erences, where
x ∈ {T, V,n} and ε is machine accuracy.2 The tables clearly show that the
derivatives of both the SRK term and the quadrupolar term are, essentially,
estimated with machine accuracy when Eq. (C.3) is employed. It is also clear
that the central di�erene approximation seem to be quite good (accurate with
about 10 digits) when the optimal a priori step size is employed.

2It can be shown that the best estimates of h, in the absence of other information about
the function, are

√
εx and (ε)1/3x for forward and central di�erence respectively, where ε is

machine accuracy (≈ 2.2 · 10−16 for �oating point double precision) [249].
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Table C.1: Relative error in the numerical derivatives of the Helmholtz energy func-
tion for the SRK term at T = 230 K, n = 10 mol and V = 0.4 L, using
CO

2
as the sample compound. The error is evaluated both for central

di�erences and the CSDA.

Derivative
|f ′centraldiff − f

′
analytic|

|f ′analytic|
|f ′complexstep − f

′
analytic|

|f ′analytic|

∂F/∂V 1.2 · 10−9 5.3 · 10−16

∂F/∂T 7.4 · 10−11 2.2 · 10−16

∂F/∂ni 9.7 · 10−11 6.6 · 10−16

∂2F/∂V 2 7.6 · 10−10 2.2 · 10−16

∂2F/∂T 2 9.6 · 10−11 2.2 · 10−16

∂2F/∂ni∂nj 9.6 · 10−10 3.9 · 10−16

∂2F/∂V ∂T 7.6 · 10−10 2.2 · 10−16

∂2F/∂ni∂T 2.0 · 10−11 2.2 · 10−16

∂2F/∂ni∂V 2.6 · 10−10 2.2 · 10−16

Table C.2: Relative error in the numerical derivatives of the Helmholtz energy func-
tion for the quadrupole term at T = 230 K, n = 10 mol and V = 0.4
L, using CO

2
as the sample compound. The error is evaluated both for

central di�erences and the CSDA.

Derivative
|f ′centraldiff − f

′
analytic|

|f ′analytic|
|f ′complexstep − f

′
analytic|

|f ′analytic|

∂F/∂V 8.1 · 10−11 3.9 · 10−16

∂F/∂T 1.3 · 10−10 2.5 · 10−16

∂F/∂ni 4.2 · 10−12 5.9 · 10−16

∂2F/∂V 2 8.3 · 10−11 2.2 · 10−16

∂2F/∂T 2 1.1 · 10−10 3.5 · 10−16

∂2F/∂ni∂nj 2.1 · 10−11 2.2 · 10−16

∂2F/∂V ∂T 1.3 · 10−10 4.2 · 10−16

∂2F/∂ni∂T 4.7 · 10−12 4.8 · 10−16

∂2F/∂ni∂V 9.7 · 10−13 8.9 · 10−16
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