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Abstract  

Probiotic cultures encounter oxidative conditions during manufacturing, yet protein abundance 

changes induced by such stress have not been characterized for some of the most common 

probiotics and starters. This comparative proteomics investigation focuses on the response by 

Lactobacillus acidophilus NCFM to H2O2, simulating an oxidative environment. Bacterial 

growth was monitored by BioScreen and batch cultures were harvested at exponential phase for 

protein profiling of stress responses by 2D gel-based comparative proteomics. Proteins 

identified in 19 of 21 spots changing in abundance due to H2O2 were typically related to 

carbohydrate and energy metabolism, cysteine biosynthesis, and stress. In particular, increased 

cysteine synthase activity may accumulate a cysteine pool relevant for protein stability, enzyme 

catalysis and the disulfide-reducing pathway. The stress response further included elevated 

abundance of biomolecules reducing damage such as enzymes from DNA repair pathways and 

metabolic enzymes with active site cysteine residues. By contrast, a protein-refolding chaperone 

showed reduced abundance, possibly reflecting severe oxidative protein destruction that was not 

overcome by refolding. The proteome analysis provides novel insight into resistance 

mechanisms in lactic acid bacteria against reactive oxygen species and constitutes a valuable 

starting point for improving industrial processes, food design or strain engineering preserving 

microorganism viability.   
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Statement of significance  

Lactic Acid Bacteria (LAB) are widely used as starter cultures in food fermentation and as 

probiotics and it is important to secure a high titer of viable cells. During manufacturing 

processes, however, bacteria go through various stresses, one notably being exposure to oxygen 

and reactive oxygen species (ROS). Lactobacillus acidophilus contributes beneficial effects on 

human health, which warranted its wide application as probiotic. In the gastrointestinal tract, 

probiotics encounter oxidative stress from oxygen gradients and the immune system, possibly 

reducing viable cell counts below the recommended daily intake. Here, analyses of proteome 

changes induced by hydrogen peroxide shed light on the molecular response to oxidative 

stressors and represent a first step towards strain amelioration. 
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1 Introduction 

Lactic acid bacteria (LAB) constitute a heterogeneous group of prokaryotes colonizing different 

habitats: human and animal bodies, plants, and food [1]. Since LAB are unable to synthesize heme, 

they lack catalases as well as other oxygen defense enzymes and possess low oxygen tolerance 

thus being defined as aerotolerant anaerobes [2]. This implicates sensitivity to reactive oxygen 

species (ROS); superoxide anion radical (O2
-); hydroxyl radical (OH˙); and hydrogen peroxide 

(H2O2). Oxidative stress reflects imbalance between generation of and ability to detoxify ROS or 

repair resulting damages. Some, but not all, LAB use manganese superoxide dismutase, 

pseudocatalase and peroxidase or manganese (an O2
- scavenger) to convert ROS to harmless 

compounds [3, 4]. However, this is not the sole strategy, indeed some LAB devote a large part of 

their genome to counteracting oxygen stress [5]. Protection mechanisms worth noting include i) 

increased activity of oxygen consuming routes [6], ii) maintenance of a reducing intracellular 

environment through disulfide-reducing pathways [7, 8], iii) protection of sensitive thiols by metal 

ions [9], and as a last resort iv) DNA repair to overcome oxidative damage of the genome [10].  

LAB are crucial in food fermentations and contribute to taste and texture of food products [11]. 

They inhibit food spoilage and pathogenic bacteria by lowering pH through lactic acid formation 

and by producing bacteriocins [12]. Thanks to these properties, LAB are used as starters and as 

biocontrol agents [13]. Furthermore, several LAB are marketed as probiotics, with a range of 

health benefits [14, 15, 16, 17, 18]. 

Lactobacillus acidophilus is among the most widely used LAB species in yogurt and fermented 

milk products [19]. The probiotic functionality of L. acidophilus is well documented in vitro and 

in vivo including attenuation of lactose intolerance, reduction of cholesterol level, 
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immunomodulation via stimulation of host cytokines and immunoglobulin A (IgA) expression, 

exclusion of pathogens, and alleviation of cold-like symptoms in children [20, 21]. L. acidophilus 

grows optimally at 37  42°C [21] suitable for application in food industry, but belongs to the least 

oxygen tolerant LAB because it lacks superoxide dismutase and has low levels of manganese that 

constitutes the major antioxidant defense in heme-deficient strains [11]. These features strongly 

reduce the performance of L. acidophilus during harsh industrial processing. 

Food starters and probiotics have to cope with oxidative stress at manufacturing stages from 

fermentation to freeze- and spray-drying used in production of high-density probiotic powder as 

end-product for the market, and during storage [22]. Several studies recommended a daily 

probiotics intake of 108  109 colony-forming units (cfu) and food with health claims on probiotics 

requires at least 106  107 cfu of probiotic bacteria per gram (FAO/WHO, 2001). However, ambient 

storage temperature and exposure to oxygen might diminish the viable cell count below the 

recommended limit [23]. Thus, various commercial products contained as little as ~103 cfu/mL at 

the end of shelf life, while starting with 107 cfu/mL [24]. Additionally, survival of probiotics during 

gastrointestinal tract (GIT) transit depends on ability to sense and respond to steep oxygen 

gradients [22]. Altogether preserving a high number of viable cells is an important challenge for 

industrial products. 

L. acidophilus NCFM is commercially available since 1972 in the United States in dairy products 

and dietary supplements. It does not encode a superoxide dismutase, but possesses genes 

associated with oxygen consuming routes, disulfide-reducing pathways (a thioredoxin system and 

glutathione reductase) and DNA repair [25]. Reports on levels of relevant enzyme and protein 

forms are lacking, however, the present comparative proteome analysis discloses important 

molecular aspects of the response of L. acidophilus NCFM to oxidative stress, a paradigmatic 
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condition for microaerophilic LAB physiology. The ultimate goal is to gain insights facilitating 

control, improvement and optimization of bacterial behavior in industrial starter and probiotics 

production.   

2 Materials and methods   

2.1 Bacterial strain and growth conditions 

Growth of L. acidophilus NCFM (NCFM 150B, FloraFIT® Probiotics; DuPont, USA Inc., 

Madison, WI) without agitation at 37°C in 50 mL cultures in preheated LABSEM supplemented 

with 1% glucose [26] was monitored by OD600 (Ultrospec 2100pro, Amersham Biosciences) and 

pH (Panpeha pH-indicator strips range 0  14, Sigma-Aldrich) measurements every 3 h. 

2.2 BioScreen  

The BioScreen instrument (Labsystems BioScreen C, Bie & Berntsen A/S) allows simultaneous 

incubation, shaking and OD measurement of up to 200 samples. Cultures at early exponential 

phase (OD600 ∼0.2) were inoculated in fresh preheated LABSEM containing 0.0  1.2 mM H2O2 

[27] and pipetted (300 µL) into wells. OD600 was monitored every 30 min at 37 ⁰C for 48 h. Three 

biological replicates each in three technical replicates were analyzed at each condition.  

2.3 Oxidative stress 

Batch cultures (50 mL) in LABSEM without H2O2 were harvested (3200 x g, room temperature, 

10 min; Centrifuge CR3i, Jouan) at early exponential phase (OD600 ∼0.2; t ~12 h) and sub-cultured 

in fresh preheated LABSEM (50 mL) added nonecontaining no, 0.4, 0.8 or 1.2 mM H2O2 according 

to [28]. The experiment was performed in four biological replicates. 
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2.4 Protein sample preparation 

Cells were harvested as above at late exponential phase (OD600 ∼0.7, t ∼35 h), washed with 0.9% 

NaCl, disrupted by manual grinding with a small amount of acid-washed glass beads (<100 µm 

diameter, Sigma-Aldrich) using a rounded glass Pasteur pipette, 60 μL of sample buffer (28 mM 

Tris-HCl, 22 mM Tris-base pH 8.5, 100 mM DTT) was added to the sample and heated (100 ⁰C, 

2 min). added 60 µL sample buffer (28 mM Tris-HCl, 22 mM Tris-base pH 8.5, 100 mM DTT) 

and heated (100 ⁰C, 2 min). After 5 min at room temperature, 240 µL rehydration buffer (7 M 

urea, 2 M thiourea, 2% CHAPS, 20 mM DTT) was added. The mixture was vortexed, centrifuged 

(10000 x g, 10 min) and the supernatant collected [29]. Protein concentration was determined using 

the Bradford Protein Assay Kit (Thermo Scientific) and BSA as standard. Proteins were 

precipitated by addition of four volumes of ice-cold acetone to ~100 μg protein A volume 

containing ∼100 µg protein was added four volumes of ice-cold acetone, kept (overnight, 20 °C) 

[30] and centrifuged (14000 x g, 25 min, 4 °C). Protein pellets were air-dried and dissolved in 350 

μL rehydration buffer (8 M urea, 2% CHAPS, 0.5% IPG-buffer pH 3  10, 0.3% DTT, Orange G) 

immediately prior to 2DE. 

2.5 2DE  

Rehydrated samples (100 µg protein in 350 μL rehydration buffer) were loaded on 18 cm dry-

strips (pH 3  10; GE Healthcare) for IEF (IPGphor; GE Healthcare) at 20⁰C, 50 µA/strip until 

∼67 kVh [29]. Strips were then soaked with 2 x 5 mL equilibration buffer (6 M urea, 30% glycerol, 

50 mM Tris-HCl pH 8.8, 2% w/v SDS, 0.01% bromophenol blue) containing 1% DTT and 2.5% 

iodoacetamide, respectively (15 min each). The second dimension (12.5% SDS-PAGE, 26×20 cm 

gel size; Ettan™ DALTsix Electrophoresis unit; GE Life Sciences) was run overnight at 1 W/gel. 
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Gels were stained overnight by CBB G250 [31], destained, and scanned (Scan maker 9800XL, 

TM1600, Microtek9).  

2.6 Image analysis 

Differentially abundant proteins were revealed using SameSpots software (TotalLab). Interference 

due to different CBB G250 batches and external conditions affecting spot volume calculation was 

minimized by comparing gels run together. Fold-changes (SameSpots) were averaged for 

individual spots and standard deviations calculated of four biological and three technical replicates 

of stressed and control samples. Data reliability was checked using Student’s t-test (Microsoft 

Excel). Due to low abundance of some proteins displaying changes, high p-values in the range 

0.05  0.09 were also considered, while even higher p-values were just informed. Spots changing 

at least 1.3-fold between control and 1.2 mM H2O2 were analysed by MS.  

2.7 In-gel digestion and protein identification by mass spectrometry 

Differentially abundant spots were excised from a master gel and stored (Eppendorf™ tubes, 20 

°C) until use. Gel pieces were washed with 40% ethanol (100 μL) at 50 °C with shaking until 

colorless and the ethanol was decanted.  ACN (30 μL) was added to shrink the gel (10 min) and 

removed. Gel pieces were air-dried leaving lids open in a LAF bench (10 min), added 5 μL 12.5 

ng/μL trypsin (Promega) in 25 mM NH4HCO3, kept on ice (45 min), added 10 μL NH4HCO3 and 

incubated (overnight, 37 °C). Supernatants were transferred to fresh tubes and stored at 20 °C 

until MS. Digests (1 μL) were loaded on a MALDI AnchorChip target (Bruker-Daltonics), air-

dried (20 min), added 1 μL matrix solution (0.5 μg/μL CHCA in 90% ACN, 0.1% TFA), air-dried 

and washed with 2 μL 0.5% TFA. Tryptic peptides of β-lactoglobulin were used for calibration. 

MS spectra were obtained (Ultraflex II MALDI-TOF MS mass spectrometer; Bruker-Daltonics) 
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in auto-mode using Flex Control v.3.0 (Bruker-Daltonics).  Peaks were identified after calibrating 

the Flex Analysis v3.0 software (Bruker-Daltonics) to exclude peaks of autodigested trypsin and 

keratin. Spectra were searched in NCBI nr database for bacteria (NCBI nr 20140323; 38032689 

sequences; 13525028931 residues) using MASCOT 2.0 (http://www.matrixscience.com) 

integrated in Biotools v3.2 (Bruker-Daltonics). Search parameters were monoisotopic; peptide 

mass tolerance ±50 ppm; maximum of one missed cleavage; fixed carbamidomethylation of 

cysteine; partial oxidation of methionine. Identification by PMF was confirmed with a MASCOT 

score of 86 (p≤0.05) and a minimum six of matched peptides [29]. 

3 Results 

3.1 BioScreen 

Growth of L. acidophilus NCFM with 0.0  1.2 mM H2O2 present was analyzed [7, 27] using 

BioScreen, which indicated a critical level of 0.4 mM H2O2 causing stress without being lethal. 

The growth was retarded as reflected by the longer lag phase and deferred start of exponential 

phase. The slope of the exponential phase decreased with 0.4 mM H2O2 and growth stopped at 

H2O2 > 0.4 mM (Fig. 1).  

3.2 Growth curves and pH profiles  

The time-course of bacterial growth can provide insight into influence of environmental 

conditions. In standard medium (LABSEM, pH 5.5  6.0) L. acidophilus NCFM enters exponential 

phase after ~10 h and stationary phase at ~24 h. pH of the culture decreases (pH 4.0  4.5) due to 

lactic acid production. Initially, the effect of 0.4 mM H2O2 was tested as this was the highest 

concentration allowing growth in BioScreen (Fig 1). Following a protocol of Serata et al. [32], 0.4 
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mM H2O2 was added 7 h after the inoculum, without L. acidophilus NCFM displaying appreciable 

stress (data not shown). Previously 0.6  1.2 mM H2O2 was found to decrease, but not completely 

arrest L. acidophilus growth [27]. Therefore 0.8 mM or 1.2 mM H2O2 was added at the start of the 

exponential phase, using the Bruno-Bàrcena protocol [27]. The growth was slightly more slowed 

at 1.2 than 0.8 mM H2O2 (Fig. 2A).  

3.3 Growth curves and pH profiles after sub-culturing 

Cells were transferred to fresh medium supplemented with H2O2 (OD600 ~0.2, 12  15 h, see 

Methods) L. acidophilus NCFM entered an adapting lag phase (Fig. 2B) and synthesized molecules 

to cope with the stress. The lag phase in 1.2 mM was longer than in 0.8 mM H2O2 and the 

corresponding pH profiles differed importantly (Fig. 2B; Supporting Fig. S1), also considering the 

pH was measured by using indicator paper.”. Notably re-adaptation after sub-culture is well-known 

to cause a second lag prior to the manifested decrease in pH [33]. Because more significant changes 

in protein abundance were assumed for 1.2 mM H2O2, only this culture was subjected to 

differential proteome analysis. 

3.4 2DE-based comparative proteome analyses  

Stressed and control cultures were harvested in late exponential phase (OD600 ~0.7). In total 507 

spots were detected by 2DE of the intracellular proteins. Comparison of stressed and control 

cultures revealed 21 differentially abundant spots (Fig. 3; Table 1) using a threshold of 1.3 fold 

relative abundance change of spots selected for MS analysis [30]. The resulting PMFs searched 

against NCBI identified 19 unique proteins from L. acidophilus NCFM with a high MASCOT 

score, except for ribose-p-pyrophosphokinase (spot 18) that gave a PMF score of 77 (Table 1, 

Supporting Table S1). The proteins are classified into functional categories i) energy metabolism; 
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ii) nucleic acids; iii) general stress; and iv) oxidative stress, discussed below. Protein abundancy 

changes were supported by semi-quantitative RT-PCR (Supporting Methods S1) analysis of 

expression of four selected genes (lba0698 encoding GAPDH, lba0957 encoding pyruvate kinase 

(PK), lba0497 encoding antibiotic biosynthesis monooxygenase, and lba1248 encoding heat shock 

protein GrpE), using expression of 16S rDNA (lba2001) as internal control (Supporting Fig. S2) 

[29].  

4 Discussion 

Stress responses play a key role in cellular adaptation of all organisms to changes in the 

environment. The best known biological stress reaction is synthesis of chaperones and proteases 

which counter accumulation of aberrant proteins [34]. As LAB evolved on Earth before oxygen 

appeared in the atmosphere [5], accommodating oxidative stress has high priority. Bacteria may 

use non-enzymatic (Mn2+, ascorbate, tocopherols, glutathione) and enzymatic (thioredoxin and 

thioredoxin-reductase, catalase, NADH oxidases, NADH peroxidases, superoxide dismutase) 

systems for defense against ROS. LAB genomes however, mostly do not encode enzymes 

eliminating ROS, which adversely affect cell fitness by attacking proteins, lipids and nucleic acids, 

and represent a major cause of cell death [35].  

Reports specifically addressing oxidative stress defense in probiotic prokaryotes are scarce and 

only concern Bifidobacterium longum [36] and Lactobacillus sakei [37]. A larger number of papers 

(mainly review articles) refer to concerted physiological responses to general stressors (heat, cold, 

carbon starvation, osmotic, oxidative and acidic stress) both in LAB [6, 35, 38] and in 

Bifidobacteria [39]. Only one report, however addressed behavior of L. acidophilus in an oxidative 
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environment [40] showing increased NADH oxidase and NADH peroxidase together with H2O2 

decomposing ability upon exposure to 21% oxygen.  

In the present study 1.2 mM H2O2 was not lethal L. acidophilus NCFM but prolonged lag phase 

latency which together with a shallower exponential growth compared to control cultures, 

underlined that time is needed to recover from oxidative damage. Lower H2O2 (> 0.4 mM) was 

harmful to L. acidophilus NCFM in the BioScreen experiment, probably reflecting increased 

exposure to oxygen due to small wells and larger surface in the culture plates which augmented 

H2O2 sensitivity. 

Remarkably, several identified enzymes with increased abundance in 1.2 mM H2O2-treated L. 

acidophilus NCFM e.g. GAPDH and PK have active-site cysteine essential for catalysis,. As thiol 

groups are very sensitive to oxidative stress [22], we speculate de novo synthesis of these enzymes 

and cysteine synthase is triggered to overcome oxidative damage. Moreover, as 2DE allows 

monitoring multiple protein forms, oxidative stress could be observed to cause increased and 

reduced abundance for different protein species derived from the same gene, as described below. 

4.1 Energy metabolism 

GAPDH of 42 kDa (spots 10 and 12,) increased >+1.3-fold in relative abundance, while GAPDH 

of 27 kDa (spot 27) significantly decreased (; p <0.01). Notably RT-PCR of the GAPDHK 

gene (lba0698, Supporting Fig. S2) showed essentially no overall change under oxidative stress 

compared to control, whereas the 2DE analysis revealed specific GAPDH forms to be either 

increased or decreased in abundancy. Previously, proteomics showed two isozymes in 

Lactobacillus spp., GAPDH II (41 kDa), and GAPDH I (38 kDa) exhibiting different expression 

profiles, but only synthesis of GAPDH II was repressed by amino acids in the culture medium 
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[41]. The three L. acidophilus NCFM GAPDH forms are encoded by a single gene (Table 1) 

supporting stress affects post-translational modifications (PTMs). GAPDH is an evolutionary well-

conserved moonlighting protein playing various cellular roles [42, 43]. Jungblut et al. [44] and 

Schluter et al. [45] discussed several GAPDH PTM forms and hypothesized that they exert 

different physiological functions. In Eukarya, for example GAPDH nitrosylated by environmental 

NO is involved in control of apoptosis and not in energy metabolism [45]. Additionally, GAPDH 

acts as a redox sensor, and after appropriate PTM, as mediator of DNA repair in response to 

oxidative stress [46]. The increased relative abundance in H2O2 of both 42 kDa GAPDH and DNA 

repairing enzymes (see below) in L. acidophilus NCFM supports that this GAPDH species in 

bacteria may be a redox sensor eliciting DNA repair mechanisms. GAPDH was also target of 

oxidative modifications in microorganisms due to the active site cysteine [47]. Thus, higher copy 

number of GAPDH could secure functions during oxidative stress. Increased abundance of 

GAPDH under different stresses, such as high selenium exposure, has been demonstrated in other 

LAB [48].  

Two protein species of PK in H2O2 occur with increased abundance: spot 72 changing +1.42 fold, 

and spot 32 change +1.32-fold, although the analysis of the latter was less reliable (Table 1). They 

are products of the same gene. Different molecular mass (68.25 and 68.75) and pI (5.41 and 5.31) 

values support they differ in PTM (Fig. 3; Table 1). PK is the last enzyme of the Embden-Meyerhof 

pathway and plays a central role in the metabolism of microaerophilic LAB. It catalyzes formation 

of pyruvate and produces ATP by phosphate transfer from phosphoenolpyruvate to ADP. Higher 

amounts of PK, as in the present study, leads to more ATP by substrate level phosphorylation, 

improving handling of enhanced energy requirement linked to stress. PK has three functional 

cysteines susceptible to oxidization, Cys358 essential for catalysis, and Cys31 and Cys424 involved 
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in subunit interface interaction [49]. Overexpression of PK can compensate for various inactivating 

reactions and elevated pyruvate production in Pseudomonas fluorescens was part of adaptation to 

H2O2 stress [50]. Moreover, the abundance change of PK was confirmed by slight increase in 

lba0957 gene expression observed by RT-PCR (Supporting Fig. S2).  

4.2 Nucleic acids 

Ribonucleoside triphosphate reductase (spot 3; +1.3 fold) was identified with high MASCOT score 

and 36% sequence coverage. It catalyzes reduction of ribonucleotides to deoxyribonucleotides 

providing all dNTPs for DNA synthesis and repair and is a target of concerted modulations at 

molecular and cellular levels [51]. Ribonucleoside triphosphate reductase is coupled with a 

thioredoxin supplying reducing power for its reaction [52, 53], and the increase in abundance 

generates building blocks to repair damaged DNA. In E. coli, abundance increased of only one of 

two ribonucleoside triphosphate reductase isoforms increased in abundance during oxidative 

stress, especially in strains lacking other antioxidant systems [54]. Similarly, in the present 

investigation one spot (spot 3) increased with good significance (p < 0.05), suggesting an 

analogous regulation in L. acidophilus NCFM.  

Ribose-p pyrophosphokinase (PRPPS) is present in two forms (spots 13 and 18) derived from 

different genes (LBA0131 and LBA0224, respectively). According to KEGG they are isozymes 

having the same specificity (EC 2.7.6.1). They differ significantly both in their molecular mass 

(40.25 and 35.75) and in pI (6.67 and 6.97). One of them (spot 18) showed increased abundance 

(+1.37-fold) during oxidative stress caused by H2O2. Ribose-p pyrophosphokinase catalyzes 

transfer of diphosphate from ATP to ribose-5-phosphate (R5P) generating 5-phospho-α-d-ribosyl-

1-pyrophosphate (PRPP) involved in nucleotide biosynthesis. PRPPS also has a role in 
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biosynthesis of histidine, tryptophan and pyridine nucleotide coenzymes [55] of which especially 

NADH is involved in regeneration of antioxidant enzymes. In rats, oxidative modifications of 

PRPPS affect enzyme activity and hence PRPP availability [57]. L. acidophilus NCFM needs 

PRPP for repair of ROS-damaged nucleic acids and de novo synthesis of DNA. 

4.3 General stress proteins  

L. acidophilus NCFM heat shock protein GrpE (spot 28) related to DnaK [57, 58] possessing 

chaperone functions decreased in abundance (1.30) by H2O2 exposure, and expression of its gene 

(lba1248) was decreased dramatically (35 fold; Supporting Fig. S2). In all living organisms, 

cellular stress responses are concerted to avoid harmful conditions, adjust reversible modifications 

and eliminate irreversibly destroyed molecules. To fulfill these purposes, different stress proteins 

are synthesized as classified according to their main function: i) modifying/protecting enzymes 

(e.g. regulating lipid/protein ratio or unsaturated/saturated lipids ratio in membranes, during 

stress), ii) refolding proteins (chaperones) or iii) hydrolytic enzymes (proteases including 

chaperone-proteases degrading destroyed cellular structures). Generally, when damage is light, 

refolding chaperons are able to restore functional proteins, whereas under harsher conditions 

degradation by proteolytic enzymes prevails. The present results indicate that part of the chaperone 

function is limited by oxidative stress in L. acidophilus NCFM, whereas the ClpP-ATP-dependent 

protease-peptidase subunit (spot 21) increased +1.38 fold (good MASCOT score; Table 1). This 

suggests H2O2 caused irreversible protein damage and that ClpP hydrolyzes unfolded or misfolded 

proteins and recycle amino acids for de novo protein synthesis.  

4.4 Oxidative stress-related proteins  
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Cysteine synthase increased during oxidative stress (spot 34; +1.32 fold; p = 0.09) amplifies the 

cysteine pool and hence availability of cysteine-containing enzymes (e.g. GAPDH and PK) as 

well as disulfide bonds important for protein stability. This finding agrees with cysteine synthase 

reported to protect Staphylococcus aureus against H2O2-induced stress [60]. Secondly, cysteines 

are at the similar active sites in thioredoxin and glutaredoxin, the most universally used 

antioxidant systems in living organisms [25, 32, 59], and undergo intramolecular disulfide bond 

formation in the presence of oxidizing agents. L. acidophilus NCFM contains these two 

members of the disulfide-reducing pathway. Increased abundance of cysteine synthase may be 

a first step to boost the disulfide-reducing pathway.  

Antibiotic biosynthesis monooxygenase (ABM) (spot 52) showing 1.61 fold abundance change 

(p <0.05) and dramatic decrease in gene expression (lba0497, 4.5 fold; Supporting Fig. S2) is a 

non-heme monooxygenase having a ferredoxin-like fold and catalyzing oxidation by activation of 

molecular oxygen to the hydroxyl-radical reacting with substrate [61]. In many monooxygenases, 

e.g. phenol-hydroxylase, uncoupling in the catalytic cycle forms ROS [60] and decreased ABM in 

H2O2-treated L. acidophilus NCFM reduce the overall accumulation of free radicals in the 

environment already rich in ROS.  

5 Concluding remarks 

Molecular aspects connected with growth of L. acidophilus NCFM in an oxidizing environment 

were disclosed using 2DE-based comparative proteomics. The main metabolic responses to H2O2 

stress consisted in enhancement of energy metabolism and nucleic acid repair. With regard to 

general stress responses, proteolytic degradation seems prevalent over refolding (chaperones), 

probably because H2O2 severely damages proteins. Furthermore, specific oxidative-stress related 
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enzymes were detected, among which cysteine synthase deserves attention due to the role of 

cysteine residues in protein stability, catalytic sites, and disulfide-reducing pathways in 

overcoming oxygen stress.  

The findings provide new insights into mechanisms of L. acidophilus NCFM oxidative stress 

resistance, anticipated to favor survival in industrial processes. Knowing how levels of proteins 

and metabolic pathways are regulated during oxidative stress are helpful for i) screening for 

tolerant strains by gene bio-typing, ii) understanding whether cells are fully adapted and able to 

survive or, conversely, are stressed and will be suboptimal in the process, and iii) optimizing 

growth conditions and media to improve fitness during culture. Finally, as suggested [22], 

identification of crucial stress-related proteins can reveal candidates for manipulation at the gene 

level to gain stress resistance.  

The present global identification of H2O2-induced protein abundance changes in L. acidophilus 

NCFM sheds new light on LAB response to oxidative stress. This represents a starting point for 

future investigations and integration of transcriptome and metabolome analyses. From a practical 

stand-point, acclimatization procedures can trigger induction of adaptive responses that can 

increase bacterial tolerance to stress which per se can be useful to improve strains for harsh 

industrial conditions.    
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Captions to figures 

Figure 1. BioScreen of Lactobacillus acidophilus NCFM (see Methods). Growth under stress: 0.2 

( □ ), 0.4 ( △ ), 0.6 ( x ), 0.8 ( * ), 1 ( ○ ), 1.2 ( + ) mM H2O2 and control (0 M H2O2,    ◊-) are 

displayed.  

 

Figure 2. Growth (solid lines) and pH (broken lines) curves of Lactobacillus acidophilus NCFM 

under control (  ◊   and --x--) and stress conditions: 0.8 ( □  and --*--) and 1.2 ( △  and  --○--) mM 

H2O2 (A) and of a representative colony of L. acidophilus NCFM after a sub-culturing step (B). 

The arrows show the harvest time of cells for proteome analysis.  

 

Figure 3. Comparison of 2DE spot patterns of intracellular soluble proteomes. A. Representative 

2DE images of intracellular soluble proteins of L. acidophilus NCFM treated with 1.2 mM H2O2. 

B. Selected spots illustrating differential relative abundance when treated with oxidative stress. 

Mean values of fold changes are indicated. 
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Table 1. Mass spectrometric identification of proteins of Lactobacillus acidophilus NCFM with changed abundance in 1.2 mM H2O2. 

pI and MW are obtained by using the algorithm in SameSpots (TotalLab). Fold changes with standard deviations (S.D) are mean values 

from four biological replicates. 

Spot 

N° 

Fold p 

value 
Accession  Protein name 

MW/pI MW/pI PMF 
E-value 

 Sequence 

Change ±S.D. theoretical measured score  coverage %  

2 +1.34±0.64 0.3 YP_193550 

 

p-enolpyruvate-protein p-transferase PTSI 63.89/4.79 83.5/5.08 160 2.50E-09 44% 

3 +1.30±0.14 0.02 YP_192977 

 

ribonucleoside triphosphate reductase 83.98/5.62 87.5/6.08 220 2.5E-15 36% 

10 +1.45±0.25 0.09 YP_193604 

 

glyceraldehyde-3-p dehydrogenase 36.64/5.92 43/5.98 195 7.80E-13 52% 

11 +1.55±0.55 0.1 YP_193604 

 

glyceraldehyde-3-p dehydrogenase 36.64/5.92 43.25/6.15 227 4.90E-16 61% 

12 +1.30±0.20 0.05 YP_193604 

 

glyceraldehyde-3-p dehydrogenase 36.64/5.92 42/6.51 232 1.6E-16 67% 

13 +1.34±0.59 0.3 YP_193063 

 

ribose-p pyrokinase 36.71/5.81 40.25/6.67 125 7.8E-06 29% 

14 +1.42±0.72 0.3 YP_193604 

 

glyceraldehyde-3-p dehydrogenase 36.64/5.92 42.25/6.72 206 6.2E-14 58% 

18 +1.37±0.30 0.09 YP_193150 

 

ribose-p-pyrophosphokinase 35.68/6.01 35.75/6.97 77 0.26 28% 

21 +1.38±0.35 0.1 WP_003547145 

 

ATP-dependent protease peptidase subunit 18.76/5.21 22/5.79 102 0.0016 44% 

26 1.43±0.31  0.1 YP_194367 

 

transcriptional elongation factor 17.31/4.54 28.75/4.38 93 0.013 58% 
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27 ±0.12 0.01 YP_193604 

 

glyceraldehyde-3-p dehydrogenase 36.64/5.92 27.25/5.89 186 6.2E-12 45% 

28 ±0.04 0.09 YP_194112 

 

heat shock protein GrpE 22.04/5.79 27/6.29 94 0.0099 41% 

32 +1.32±0.36 0.17 YP_193840 

 

pyruvate kinase 63.14/5.23 68.25/5.41 222 1.2E-15 38% 

34 +1.32±0.26 0.09 YP_194102 

 

cysteine synthase 32.66/6.99 35/8.19 164 9.8E-10 62% 

35 +1.31±0.37 0.19 YP_194428 

YP_194361 

 

phenylalanyl-tRNA synthetase subunit beta              

N-acetylglucosamine kinase 

23.73/4.75     

32.9/4.76 

33.75/4.92 132               

101 

1.6E-06                

0.002 

72%                      

42% 

39 +1.56±0.9 0.3 YP_193706 

 

cell division protein FtsZ 48.12/4.55 66.5/4.34 140 2.50E-07 48% 

52 ±0.22 0.04 WP_011254170 

 

antibiotic biosynthesis monooxygenase 

 

24.69/4.85 36.25/4.99 141               

91 

2E-07              46%                     

30% 

64 ±0.17 0.2 YP_194106 

 

adenine phosphoribosyltransferase 19.34/6.1 30/6.72 147 4.9E-08 60% 

72 1.42±0.31 0.07 YP_193840 

 

pyruvate kinase 63.14/5.23 68.75/5.31 217 4.9E-15 38% 

 

 


