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Spatio-temporal reconstruction of brain dynamics from EEG
with a Markov prior

Sofie Therese Hansena,∗, Lars Kai Hansena
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of Denmark, Richard Petersens Plads, Building 324, DK-2800 Kgs. Lyngby

Abstract

Electroencephalography (EEG) can capture brain dynamics in high temporal resolution.

By projecting the scalp EEG signal back to its origin in the brain also high spatial resolu-

tion can be achieved. Source localized EEG therefore has potential to be a very powerful

tool for understanding the functional dynamics of the brain. Solving the inverse problem

of EEG is however highly ill-posed as there are many more potential locations of the

EEG generators than EEG measurement points. Several well-known properties of brain

dynamics can be exploited to alleviate this problem. More short ranging connections

exist in the brain than long ranging, arguing for spatially focal sources. Additionally,

recent work (Delorme et al., 2012) argues that EEG can be decomposed into components

having sparse source distributions. On the temporal side both short and long term sta-

tionarity of brain activation are seen. We summarize these insights in an inverse solver,

the so-called ”Variational Garrote” (Kappen and Gómez, 2013). Using a Markov prior

we can incorporate flexible degrees of temporal stationarity. Through spatial basis func-

tions spatially smooth distributions are obtained. Sparsity of these are inherent to the

Variational Garrote solver. We name our method the MarkoVG and demonstrate its

ability to adapt to the temporal smoothness and spatial sparsity in simulated EEG data.

Finally a benchmark EEG dataset is used to demonstrate MarkoVG’s ability to recover

non-stationary brain dynamics.
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1. Introduction

The large body of event-related potential (ERP) studies demonstrates that EEG is a

productive tool for detailed and accurate understanding of brain dynamics. While ERP

studies are typically based on the native scalp electrode measures, imaging of human

brain dynamics is gaining interest. Imaging by source reconstruction solves one of the5

main issues with EEG scalp studies, namely the limited spatial specificity due to volume

conduction (Nunez et al., 1997). EEG imaging is obtained by solving an inverse problem,

where the measured EEG scalp data is used to reconstruct the location and strength

of the signal’s cortical sources. However, the inverse problem is very ill-posed as the

number of possible source locations exceeds the number of EEG electrodes by orders of10

magnitude (Hämäläinen and Ilmoniemi, 1994; Pascual-Marqui et al., 1994; Baillet et al.,

2001; Hulbert and Adeli, 2013; De Ciantis and Lemieux, 2013). The inverse problem is

based on a forward model which describes the mapping from a large set of hypothetical

local sources to a smaller number of scalp electrodes. The forward model is constructed

from electrophysiological first principles based on anatomical data and assumed values15

of conductivities of the various tissues; scull, scalp, etc. Attempts have been made at

estimating the forward model from the EEG data, see e.g., (Stahlhut et al., 2011; Akalin

Acar et al., 2016; Hansen et al., 2016). However, in the following we will assume the

forward model known and focus on solving the inverse problem.

Although no gold standard EEG inverse solver has been established, the field is con-20

verging on methods that employ spatial sparsity (Gorodnitsky and Rao, 1997; Wipf

and Rao, 2007; Vega-Hernández et al., 2008; Friston et al., 2008; Zhang and Rao, 2011;

Stahlhut et al., 2011; Montoya-Martinez et al., 2012; Gramfort et al., 2013; Hansen et al.,

2013c; Hansen and Hansen, 2014; Andersen et al., 2014). Evidence was presented, in re-

cent work (Delorme et al., 2012) that the instantaneous independent components of EEG25

signals are dipolar and localized. In particular it was shown that the residual variance

after a dipole fit to the component scalp maps is less than 5% for large fractions of the in-

dependent components. ICA can thus provide sparse source distributions supporting the

search for sets of localized sources, and motivates reconstruction algorithms that empha-

size sparsity in contrast to the distributed spatial source patterns promoted in classical30

alternatives (Pascual-Marqui et al., 1994, 2002). The connectivity of the brain tissue
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speaks in favor of focal and sparse solutions in general as there exists more short than

long ranging cortical connections (Schüz and Braitenberg, 2002; Markov et al., 2011),

enabling local coordination at typical EEG time scales. Sparsity can furthermore result

from averaging repetitions of stimuli leaving only focal or a sparse network of activity, as35

in ERP studies.

Imaging strategies can in general be divided into two categories, each having their

own limitations. Dipole fits assume the number of active dipoles to be fixed and estimate

their locations (Scherg and Von Cramon, 1985). Meaningful solutions thus rely on a qual-

ified guess at the number of active dipoles. In contrast, distributed imaging approaches40

estimate the source strength in a large number of source locations (Gorodnitsky et al.,

1995; Friston et al., 2008). These methods thus avoid making subjective assumptions, but

do render the EEG inverse problem underdetermined. Constraints are therefore needed

to obtain unique solutions. These can, however, be formulated based on physiological

assumptions (Haufe et al., 2008) and spatial priors obtained from other neuroimaging45

modalities can be incorporated (Henson et al., 2010).

As we are interested in brain dynamics, the goal is to reconstruct not only sources

at a given moment in time, but rather the spatio-temporal source distribution from a

sequence of scalp measurements. To stabilize the solution it is useful to impose some level

of temporal smoothness. A basic scheme is to enforce that the locations of activity are50

fixed throughout an analysis window (Wipf and Rao, 2007; Friston et al., 2008; Ou et al.,

2009; Zhang and Rao, 2011; Hansen et al., 2013c). While useful for short time windows,

this may be less appropriate for more extended and non-stationary settings. Recently

proposed methods enforce temporal coherency while also allowing for dynamic activation

patterns (Montoya-Martinez et al., 2012; Gramfort et al., 2013). These methods model55

the temporal dynamics more realistically by assuming brain areas to be sequentially or

simultaneously activated during, e.g. a stimulus after which the activity returns to a

baseline level (Gramfort et al., 2013). Both methods employ a mixed-norm scheme to

recover what is hypothesized to be a structured sparsity pattern across time, see also

(Haufe et al., 2008; Gramfort et al., 2012). These types of convex relaxation schemes are60

very interesting and are frequently applied to solve inverse problems in general (Vega-

Hernández et al., 2008). We have started investigations in a recent alternative for sparse
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recovery proposed in (Kappen, 2011; Kappen and Gómez, 2013). The approach, called the

Variational Garrote (VG), solves the sparse recovery problem directly without resorting

to convex relaxation. In addition VG enables separation of the variables encoding the65

location and source magnitude estimation, which is relevant when a given dipole is active

for an extended period (i.e., location is smooth in time) in which the activation magnitude

involves high-frequency changes. Finally, a Bayesian inference scheme leads to a relatively

low-complexity set of non-linear equations that are iterated towards the solution.

The contribution of the present paper is to advance our understanding of this new70

algorithm. VG has been applied to EEG brain imaging, where it was extended to the

spatio-temporal setting by assuming a fixed sparsity profile in time windows (Hansen

et al., 2013c,b). In this presentation our aim is to replace the fixed sparsity model with a

more flexible Markov prior, which in a preliminary unpublished workshop note was named

“MarkoVG” (Hansen and Hansen, 2013). Here we further develop this model by including75

spatial basis functions to obtain focal smooth sources, and improve on the optimization

scheme. In the following sections we analyze our proposed inverse solver and show how

the model’s degree of spatial and temporal sparsity can be adapted to fit the data. Finally

we demonstrate MarkoVG’s application to the spatio-temporal reconstruction of the EEG

response to a face perception task.80

1.1. Notation

In the following we have defined X> and Xij as the transpose and the scalar element

in row i and column j of the matrix X, respectively. Capital bold thus indicates a matrix,

a vector is in lower case and in bold font, while a scalar is in normal font, either in lower

or upper case. The L2-norm of x is denoted by ||x||2.85

2. Methods

2.1. The Variational Garrote

At the frequencies relevant for EEG acquisition the scalp EEG can be considered

as a linear combination of the underlying brain activity (Baillet et al., 2001). The VG

is therefore immediately applicable as it provides a framework to solve a linear inverse

problem by imposing a “spike-and-slab” like representation (Ishwaran and Rao, 2005).
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For T time samples the linear relation between N possible brain sources, X ∈ RN×T , and

K EEG recordings, Y ∈ RK×T , is given by the forward model, A ∈ RK×N . This relation

is modified in VG (Kappen, 2011) by introducing binary variables S ∈ {0, 1}N×T that

dictate the spatio-temporal activation states (inactive or active), i.e.

Ykt =
N∑

n=1

AknSntXnt + Ekt. (1)

We assume the noise, Ekt, to be i.i.d. with zero mean and normally distributed with

scalar unknown precision β. As seen in eq. (1) there will for each dipolar location n

and time sample t be an estimate of its state Snt and its dipolar strength Xnt. The VG90

therefore supplies a framework which is highly flexible for including different priors into

the solver.

2.2. Temporal coherence

We now impose temporal coherence through the binary variable Snt. In a previous

study we suggested to enforce a strict prior on the temporal smoothness by keeping Snt

fixed for each source for a given time window, while allowing for the activity strength,

Xnt, to vary (Hansen et al., 2013c). Here we adapt the VG to provide a data-driven

flexible degree of temporal smoothness of Snt by imposing a Markov prior on this variable

(Hansen and Hansen, 2013; Hansen et al., 2013a). For dipole location n the transition

probabilities of Snt thus depend on the activation state at time sample t− 1 and is given

by Γji = P(Snt = j|Sn,t−1 = i), where i, j = 0, 1. The full transition matrix can be

described by two parameters, as Γ00 + Γ10 = 1 and Γ01 + Γ11 = 1, and is given by

Γ =

Γ00 Γ01

Γ10 Γ11

 =

1− Γ10 Γ01

Γ10 1− Γ01

 . (2)

Through different combinations of Γ10 and Γ01 the Markov prior thus enables flexibility

in both temporal smoothness and spatial sparsity. Temporal smoothness is for example95

achieved by having large probabilities of staying in a state, i.e. large Γ00 and Γ11, while

spatial sparsity is achieved by large probabilities of staying in or switching to an inactive

state, i.e. large Γ00 and Γ01.

Lucka et al. suggested to use hierarchical Bayesian methods to solve the inverse prob-

lem of EEG using fully Bayesian inference methods (Lucka et al., 2012). Practically,
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Lucka et al. showed these methods’ strengths in the single-measurements setup for es-

pecially deeply located sources. Here we follow Kappen et al., and instead solve the

inverse problem by turning to approximate variational Bayesian inference (Kappen, 2011;

Kappen and Gómez, 2013). First we define the posterior

p(S,X, β|D,Γ) =
p(X, β)p(S|Γ)p(D|X,S,β)

p(D|Γ)
, (3)

where D is the data. Since we intend to optimize the posterior with respect to the source

dipole activations we can ignore the denominator of eq. (3). Next we follow Kappen et

al. by 1) assuming a flat prior on X and β, 2) marginalizing over Snt, and 3) introducing

the variational approximation q(S) =
∏N

n=1 qnt(Snt), where qnt(Snt) = MntSnt + (1 −

Mnt)(1 − Snt). Mnt ∈ [0, 1] describes the posterior probability of source n being active

at time sample t, corresponding to the probability of Snt being 1. The marginal log-

likelihood is by these definitions

log
∑
S

p(S|Γ)p(D|X,S,β) ≥ −
∑
S

q(S) log

(
q(S)

p(S|Γ)p(D|X,S,β)

)
= −F (q,X, β). (4)

where F is an estimate of model evidence and is the so-called “variational free energy”.

As the free energy describes an upper bound on the negative log-likelihood it is minimized

to find the optimal solution. As suggested in (Kappen, 2011; Kappen and Gómez, 2013)

we apply a dual formulation to reduce the computational complexity by defining Zkt =∑
nAknMntXnt and Lagrange multipliers, λkt. The free energy with the Markovian prior

can be derived from eq. (4) and is given by

F =− KT

2
log

β

2π
+
β

2

∑
t,k

(Ykt − Zkt)
2

+
Kβ

2

∑
t,n

Mnt(1−Mnt)X
2
ntχnn (5)

−
∑
n,t

Mnt log
Γ10

Γ00
+Mn,t−1 log

Γ01

Γ00
+ (MntMn,t−1) log

Γ00Γ11

Γ01Γ10
(6)

+NT log
1

Γ00
+
∑
n,t

[Mnt log(Mnt) + (1−Mnt) log(1−Mnt)] (7)

+
∑
t,k

λkt

(
Zkt −

∑
n

AknMntXnt

)
. (8)

Here we define χ ∈ RN×N to be the covariance of the forward model A.

Calculating the partial derivatives of the free energy and equating them to zero, yields
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the following equation set

Xnt =
1

Kβ

1

(1−Mnt)χnn

∑
k

λktAkn, Zkt = Ykt −
1

β
λkt, (9)

β =
1

TK

∑
t,k,c

λktλctCkct (10)

where Ckct = δkc +
1

K

∑
n

Mnt

(1−Mnt)χnn
AknAcn, (11)

λct = βŶct def.
∑
c

CkctŶct = Ykt, (12)

Mnt = σ

(
Kβ

2
χnnX

2
nt + γ1 + γ2 (Mn,t−1 +Mn,t+1)

)
, (13)

where σ(x) = (1 + exp(−x))−1 and where the estimated source strength of source n in100

time sample t is given by Vnt = MntXnt. While Kappen et al. solve the equation set by

iteration, we implement gradient descent for the variational mean to ensure convergence.

The complexity of the equations set is dominated by the computation of the tensor C

and its inversion; which are of order NK2T and K3T , respectively.

Inspecting the modified VG equations, it is clear that the combination of the Markov105

parameters γ1 = log

(
Γ10Γ01

Γ2
00

)
and γ2 = log

(
Γ00Γ11

Γ01Γ10

)
dictates how sparse and smooth

the solution will be. The parameter γ2 thus determines the degree of temporal smooth-

ness, and γ1 corresponds to a sparsity control parameter, where more negative values will

yield more sparse solutions. We note that if Γ01 + Γ10 = 1 then γ2 = 0 and the original

VG formulation of the variational mean is obtained.110

In Fig. 1 we show how applying different combinations of sparsity and smoothness

affect the solution in a simulation. In the example we synthesized 25 time samples con-

taining non-stationary support on the activation for two out of 500 sources (Fig. 1A and

B). A random forward model of size 50× 500 was used to project the signal to 50 obser-

vations. From Fig. 1C and D we see that if the sparsity is too high some of the relevant115

time samples are turned off and that this can only be partly remedied by a high temporal

smoothness. If on the other hand the sparsity is too low we obtain activity in other than

the relevant source locations. It is furthermore evident from Fig. 1 that having too little

temporal smoothness will cause the solver to miss activation in the time samples of low

magnitude activity. However, the temporal smoothness must not be too large or activity120

outside the activated period will emerge. We can therefore conclude that only the right

7



Time samples

Time samples

S
o
u
rc

e
 i
n
d
e
x

A
m

p
lit

u
d
e

A C D
Activation strength

B

Activation state

1

0

5 10 15 20 25

5 10 15 20 25

1
2
3
4
5

-1

S
m

o
o

th
n
e
s
s

SparsityLow High

High

Low

S
m

o
o

th
n
e
s
s

SparsityLow High

High

Low

Figure 1: Example of sparsity and smoothness dependency. A) The simulated signal. Two out of 500

sources are active. These were projected through a random forward model with 50 observations and

added with noise to give a signal-to-noise ratio (SNR) of 10 dB. B) True activation states for five of the

sources. White indicate active state while black illustrates an inactive state. Source 1 and 2 were active

in some time samples, and the remaining 498 were completely turned off. C) and D) The MarkoVG

estimated signal and their activation state for different combinations of sparsity and smoothness degree.

The parameter setting for the solution in the mid insets of C) and D) was found through four-fold

cross-validation on the 50 observations.

amount of temporal smoothness improves the solution. Importantly we also demonstrate

that we are able to match the true signal’s properties (Fig. 1A and B) using four fold

cross-validation to find the optimal level of sparsity and smoothness (mid inset in Fig.

1C and D).125

2.3. Spatial coherence

EEG activity arises when regional active neurons are active in synchrony (Baillet

et al., 2001) and therefore many EEG inverse solvers incorporate an assumption of spatial

smoothness (Phillips et al., 2002; Pascual-Marqui et al., 2002; Friston et al., 2008; Haufe

et al., 2008). To obtain a spatially smooth source distribution we introduce spatial basis130

functions following the implementation described in the multiple sparse priors model

(MSP) (Friston et al., 2008). The basis functions are based on the adjacency matrix, which

describes how the source space is connected. The connectivity contained in the adjacency

matrix is propagated to neighbors’ neighbors in eight steps and finally a thresholding is

performed. This translates to basis functions extending from their center to maximally135
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A B

Figure 2: The spatial basis functions. A) Example of one basis function’s spatial distribution. Red/blue

indicate high/low numeric activity. B) Centers of the 776 sampled basis functions.

their eighth-order neighbors (Fig. 2A). The degree of smoothness is controlled by a

parameter that is set as suggested in (Friston et al., 2008). With this setting each basis

function covers between 98-128 dipoles when the cortex surface has been segmented into

a mesh of 8196 nodes.

In order to reduce the complexity of the inverse solver not all dipoles (or nodes)140

in the source space will serve as centers of basis functions. Friston et al. placed the

centers by first sampling 256 evenly spaced source indices (Friston et al., 2008), and then

also included their symmetrically located sources on the other hemisphere. Finally the

hemispherical symmetric centers were paired to create 256 additional basis functions. In

total 768 basis function were created with 512 representing unilateral activity and 256145

bilateral activity (Friston et al., 2008).

To ensure an even distribution in space, rather than in the source index, we propose

to sample the basis function centers based on the connectivity of the mesh and thereby

obtain better coverage of the cortex. We thus let the adjacency matrix determine whether

a randomly sampled center should be included. The precise requirement is that there150

must be at least three vertices between all centers. By seeding the random generator

the locations of the basis function centers are controlled. With our applied seeding, 776

centers are obtained, shown in Fig. 2B. In both sampling techniques all locations are part

of more than 1 basis function. In the original method each source location is included in

3 to 17 basis functions while in our method each source location is a part of 8 to 16 basis155

functions.
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2.4. MarkoVG

The inference scheme for VG with a Markovian prior is explained in eqs. (1)-(13)

and seen implemented in https://github.com/STherese/VG_inverse_solvers. The

spatial basis functions are included simply by projecting the forward model A onto these.160

This produces the reduced forward model Abasis = AB, where B contains the basis

functions in the columns. The optimum level of sparsity and smoothness is determined

through four-fold cross-validation on the electrodes. The free energy is used to estimate

the optimum setting for each fold, and the median across these defines the parameter

setting. Since we apply 70 electrodes 17-18 electrodes are in each fold, and we therefore165

believe that it is likely that the brain activity will be seen to some degree by all four folds.

We compare our proposed method with the below three inverse solvers, that all produce

temporally stationary source distributions.

2.5. Multiple sparse priors

MSP (Friston et al., 2008) specifies another Bayesian approach of finding sparse source170

distributions. As previously described, inference is based on a number of spatial basis

functions with compact support, these are pruned or incorporated in the solution through

a restricted maximum likelihood procedure. Smooth temporal source distributions are

obtained by creating temporal projectors from the EEG signal. In effect this creates

rather stationary temporal activation patterns. The implementation used in the following175

experiments is from the SPM12 software (Ashburner et al., 2014).

2.6. T-MSBL

T-MSBL (Zhang and Rao, 2011) is an extension of the multiple measurement vec-

tors (MMV) sparse Bayesian learning (SBL) (Wipf and Rao, 2007) method that ex-

ploits temporal correlation to obtain smooth temporal dynamics. T-MSBL assumes180

a block-structure where temporal correlations are modeled in the blocks. Automatic

relevance determination (ARD) (Hansen and Rasmussen, 1994; MacKay, 1995) is ap-

plied to identify the active sources (blocks) and prune the irrelevant. In the following

experiments we employ the implementation provided in the toolbox by Zhilin Zhang

http://dsp.ucsd.edu/~zhilin/TMSBL.html. We apply two versions of T-MSBL. In the185

first version we follow the recommendations of the toolbox and set the noise level to

10
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“large” if SNR< 6 dB and to “mild” if SNR≥6. These two intervals translate into two

numerical noise levels. We refer to the first version as “T-MSBL” which is partly favored

in the simulations as the true noise level is provided. In the second version we perform

four-fold cross-validation to estimate the regularization parameter, we call this version190

“T-MSBL cross”.

2.7. M-FOCUSS

The FOCal Underdetermined System Solver (FOCUSS) employs a reweighted norm

minimization and finds sparse solutions by defining the regularization norm to be equal to

or less than 1 (Gorodnitsky and Rao, 1997). M-FOCUSS is an MMV extension developed

in (Cotter et al., 2005) and also here extended to be applicable to noisy data. The latter

version is the so-called regularized M-FOCUSS which performs iterative weighting using

the diagonal matrix W ∈ RN×N to find the dipole estimates X, i.e. in iteration it

W(it)
n,n = ||X(it−1)

n,: ||1−p/22 , with p ∈ [0, 2] (14)

X(it) = W(it)W(it)>A>(AW(it)W(it)>A> + λI)−1Y. (15)

We use the implementation of the regularized M-FOCUSS provided in the same toolbox

as the T-MSBL algorithm. The regularization parameter, λ, can be approximated by the

noise variance of the data (Zhang and Rao, 2011) and in the simulations we therefore195

use the exact noise variance for this parameter. The M-FOCUSS is thus favored in the

simulations. As suggested by Cotter et al. we set the norm to be p = 0.8, which should,

according to the authors, provide a reasonable balance between being sparse and not

having to many local minima.

2.8. Simulations200

We first evaluate MarkoVG in a simulation study. In line with previous EEG simu-

lation studies (Friston et al., 2008; Stahlhut et al., 2011; Montoya-Martinez et al., 2012;

Gramfort et al., 2013) we generated synthetic EEG signals by randomly planting one

to four sources and projecting their temporal dynamics through a forward model. The

sources were modeled as having a spatial distribution given by the earlier described basis205

functions where the centers could be placed in any of the dipoles of the mesh (and not

only in the reduced set used for reconstruction). The source signal was projected to scalp
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Figure 3: Example of two simulated sources. In each repetition one to four sources were planted.

EEG electrodes through a forward model generated for subject ”A” in the real data ex-

periment described below. The forward model contains the projection of 8196 dipoles to

70 EEG electrodes.210

The temporal dynamics of the sources were each generated from random white noise

which was low pass filtered to yield frequency content up to 20 Hz. We created a signal of

25 time samples. To obtain varying degrees of non-stationarity we only kept the activity

in the mid section of these time samples. An example of the temporal dynamics of a set

of sources is shown in Fig. 3. Noise was added to yield SNRs of 0 to 14 dB.215

Across the applied SNRs 100 data sets were used to compare MarkoVG to MSP, T-

MSBL and M-FOCUSS with all performing reconstruction using the 776 earlier described

basis functions. The performance was judged based on a source retrieval score called the

F1-measure (Rijsbergen, 1979; Makhoul et al., 1999), as well as the source localization

error. The F1-measure is defined as

F1-measure =
2 · precision · recall

precision + recall
=

2 · TP

TP + FP + P
, (16)

where TP , FP and P are the true, false and actual positives, respectively. It is noted

that this is a rather strict measure as only a perfect correspondence between planted and

estimated activity will yield perfect source retrieval, i.e. F1-measure = 1. Since we only

used a subset of the possible basis function centers (776 out of 8196) to reconstruct from,

perfect reconstruction was only obtainable when the planted sources were basis functions220

from the subset. However, since the basis functions describe locally coherent activation

some of the actual activity can be recovered even if the planted source component is not

directly contained in the set used for reconstruction.
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We defined the localization error as the Euclidean distance between each estimated

source and the nearest planted source. The reported error is the average over all estimated225

sources and all time samples containing simulated activity. We proceeded in this way as

considering only the maximum magnitude source from the estimation would disregard

any spurious activity located far from the true sources.

2.9. Benchmark EEG data

To further investigate MarkoVG we applied it to EEG recorded during a well studied230

paradigm, namely the multi-subject multimodal dataset studying face recognition (Wake-

man and Henson, 2015). Images of famous faces, unfamiliar faces and scrambled faces

were presented to 19 subjects in six runs of 7.5 minutes. We investigated face perception

from the 70-channel EEG data recorded in run 1 for three subjects, here termed ”A”,

”B” and ”C”. In this run the subjects were presented with approximately 50 famous, 50235

unfamiliar and 50 scrambled faces. As we are interested in finding the response to faces

we averaged over the two face conditions and subtracted the average of the scrambled face

condition (see EEG sensor data in Supplementary Fig. 1 and 2A). For further informa-

tion on the experimental setup used in the data collection we refer to the documentation

provided by Wakeman et al. (Wakeman and Henson, 2015). We built forward models in240

SPM8 using a three layered boundary element method head model (Phillips, 2000). The

head model was the result of segmenting T1-weighted MRI scans of the three investigated

subjects.

It has been shown that face perception exhibits partially bilateral activation (Eimer

and McCarthy, 1999; Henson et al., 2009). In the source reconstruction we therefore245

employed the basis functions set described by Friston et al. comprising both unilateral

and bilateral basis functions. For comparison we also show the solutions obtained using

MSP, T-MSBL and M-FOCUSS; also with the basis function set described by Friston

et al. As the EEG signal was averaged over many repetitions we judged the noise level

needed for T-MSBL to be “mild”. For M-FOCUSS an estimate of the noise variance was250

calculated based on a 100 ms pre-stimuls window.
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Figure 4: Example of the dependence of sparsity and smoothness on the MarkoVG solution illustrated

on simulated data. The simulated source distribution for this example can be seen in Fig. 3 and was

created using an EEG forward model. The black dashed line indicates γ1 = −γ2. White areas in the plots

illustrate where combinations of γ1 and γ2 are not meaningful, see text. A) The free energy calculated

on the validation sets in a four-fold cross-validation scheme. Shown is the mean across these folds. B)

The localization error averaged across time and estimated sources, and C) F1-measure of the MarkoVG

solution; 0 indicates no correct sources are retrieved/many false sources are retrieved and 1 indicates all

correct and no false sources are recovered.

3. Results

3.1. Simulations

In Fig. 4 we investigated the effect different combinations of sparsity and smoothness

levels have on the MarkoVG solution. Note that these combinations have to respect the255

specification of the prior probabilities, i.e. the columns of the matrix in eq. (2) must

sum to 1 and have elements with values between 0 and 1. The relevant combinations of

sparsity and temporal smoothness were therefore investigated in the band shown in Fig.

4.

Fig. 4A demonstrates that low free energy calculated on the validation folds in a cross-260

validation scheme coincides with low localization error (Fig. 4B) and high F1-measure

(Fig. 4C). This is evidence that the free energy can be used to optimize parameters for

performance. The optimal solution was located in the vicinity of the dashed line where

γ2 = −γ1 and more precisely just above the dashed line, particularly when considering

the F1-measure. In the following we assumed the relation γ2 = −0.9γ1, and thus reduced265

the search space of the optimal parameter setting from two to one parameter. Some

intuition on the implications of the defined relation can be gained by propagating the
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Figure 5: Performance on simulated data; created with a real EEG forward model. 100 repetitions

were run with simulated activity consisting of one to four sources (basis functions) randomly placed on

the cortex, each having non-stationary temporal dynamics, see example in Fig. 3. Errorbars indicate

standard error of the mean. A) Localization error averaged across time and sources. B) The source

retrieval score, F1-measure; 1 indicates optimal retrieval. Note, perfect performance is not expected as

the locations of the planted sources were drawn from the entire mesh and sought reconstructed based on

a subset.

relation to the transition probabilities, i.e., setting γ2 = −γ1 implies that the probability

of staying in an inactive and active state are equal (Γ00 = Γ11). Hence, implies that

transitioning from an inactive to an active state is as likely as the reverse. In this case270

there is no sparsity bias, only temporal smoothness is enforced if Γ00 > 0.5. To promote

sparse solutions we heuristically applied the factor 0.9, based on complete scans of the

parameter space as seen in Fig. 4.

In Fig. 5 we applied the above mentioned sparsity-smoothness relation and per-

formed cross-validation on one parameter for MarkoVG. We compared MarkoVG to MSP,275

T-MSBL, T-MSBL with cross-validation, and M-FOCUSS, in 100 repetitions and with

different levels of noise. It can be observed that MarkoVG achieved the best localization

error and that MarkoVG and T-MSBL outperformed the other methods with respect to

the F1-measure. We further observe that cross-validation was not effective for T-MSBL.

3.2. Face perception EEG data280

Fig. 6 presents the source distributions of the face perception data as estimated by

MSP, T-MSBL, M-FOCUSS and MarkoVG for three subjects. The temporal dynamics of

the basis function having highest acitivity in the time interval 130 to 200 ms after stimuli

onset is shown in blue in the top panel with the locations marked in blue in the lower
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Figure 6: Reconstruction of EEG face perception data for subject ”A”, ”B” and ”C”. The two strongest

basis functions’ temporal dynamics (top) and their locations (bottom) for MSP, T-MSBL, M-FOCUSS

and MarkoVG. The highest magnitude source is shown in blue and second highest in red. The highest

magnitude basis functions were for several of the examples bilateral. The glass brains show the activity

for the 512 maximum magnitude dipoles at the time sample with highest magnitude source, here at

151-170 ms after stimuli onset. Source strengths are directly comparable between sources, subjects and

solvers but are in arbitrary unit due to lack of units of the forward model Litvak (2016)
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panel. The second largest valued basis function is similarly shown in red. These basis285

functions were bilateral in several of the shown examples.

Most solvers recovered contrast activity in or close to the expected areas, i.e. the

left and right occipital face area (OFA) and fusiform face area (FFA). More specifically

MarkoVG placed the strongest activation (blue circles) in or near the FFA for all sub-

jects. Focusing on subject ”A” the strongest basis function for T-MSBL, M-FOCUSS and290

MarkoVG were located in the FFAs, marked with blue circles in Fig. 6A. All four meth-

ods found activation in the OFAs; MSP had its strongest activated sources close to the

OFA, the same for the second strongest activation for M-FOCUSS and finally MarkoVG

had its second strongest activation in the OFA.

The presented inverse solvers generally showed the well-known temporal response to295

viewing faces, i.e. the N170 ERP component. The N170 component normally appears

130-200 ms after presentation of a face (Itier and Taylor, 2004) The solvers peaked

between 150 ms and 170 ms after stimuli, however, the N170 peak was less defined for

MSP, TMSBL and M-FOCUSS for subject ”B”. It is further noted that MarkoVG differed

from the other methods by being temporally as well as spatially more sparse.300

In Fig. 7 we show the averaged observed ERP as well as the ERP predicted by

MarkoVG. These are quite similar, however with a slight bias towards zero of the MarkoVG

predicted ERPs. This is similarly demonstrated for MSP, T-MSBL and M-FOCUSS in

Supplementary Fig. 1. To avoid scaling issues in a comparison we show in supplementary

Fig. 2B the temporal correlations across channels between the observed and predicted305

EEG signals for subject ”A”. These were again similar for all methods.
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4. Discussion

Solving the ill-posed inverse problem of EEG and obtaining detailed spatio-temporal

knowledge of cognitive processes require us to make relevant prior assumptions on the

solution. Such assumptions should be based on prior knowledge of the brain, for example,310

from brain anatomy and physiology. Common assumptions include on the spatial side

sparsity and smoothness, meaning that the source distribution of interest is believed to

consist of relatively few source patches, each having temporally coherent source strength.

Sparsity is a common assumption when solving ill-posed inverse problems in general as it

mitigates the non-uniqueness of the problem (Donoho et al., 2006). In EEG imaging it is,315

as mentioned earlier, further motivated by the existence of more short ranging connections

than long ranging. Sparsity has previously been obtained through regularization of the

inverse problem, e.g., by imposing the Lp-norm, where p ≤ 1 (Gorodnitsky and Rao,

1997; Matsuura and Okabe, 1995). When p = 1 the problem is still convex however

the correct solution is only guaranteed under certain conditions that are usually not met320

because of the highly correlated columns of the EEG forward model (Donoho et al., 2006).

Furthermore, studies have shown that the L1-norm produces spurious sources (Liu et al.,

2004; Hansen et al., 2013c). Employing Lp-norms where p < 1 will produce more sparse

solutions, it however also implies non-convexity.

Bayesian approximations such as SBL (Tipping, 2001) should produce fewer local325

minima (Zhang and Rao, 2011) and are therefore also very promising. ARD is in SBL

used to prune away variables by assigning a hyperparameter to each variable dictating

whether to keep or discard the variable. Extending SBL to the MMV framework one

hyperparameter controls all the time samples for each variable (Wipf and Rao, 2007).

As more samples are available in determining whether a variable is relevant in the MMV330

model an improved solution is obtained (Wipf and Rao, 2007; Zhang and Rao, 2011).

However, the assumption of common sparsity profile across time does not always hold

physiologically.

More flexible ways of handling and exploiting temporal coherency have been proposed

(Montoya-Martinez et al., 2012; Gramfort et al., 2013), wherein signals are modeled as335

being non-stationary. Structured sparsity profiles are achieved by Gramfort et al. by

time-frequency analysis and modeling each active source as a summation of Gabor atoms
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(Gramfort et al., 2013) . Montoya-Martines et al. avoid synthesizing a dictionary contain-

ing temporal patterns by using the sparse group LASSO regularizer (Montoya-Martinez

et al., 2012). While these two methods both base their solution on regularization through340

the L1/L2-norm, we propose to obtain sparser solutions through the VG (Kappen, 2011)

which approximates the L0-norm regularizer. Furthermore the VG has the favorable trait

of estimating both the state of activation (active/non-active) and the activation strength

of the active sources. This allows for modeling the temporal dynamics in EEG as having

smooth temporal support, while allowing for more rapid changes in the dipole strength,345

under the assumption that the location of activation varies slower than the activation

strength. By applying a Markovian prior on the support, the level of smoothness in the

temporal sparsity profile is adapted to the observed EEG data.

We extended MarkoVG by incorporating spatial basis functions inspired by earlier

implementations (Friston et al., 2008). Spatial smooth compact source patches are mo-350

tivated by knowledge of the EEG generators’ spatial extension, which is estimated to be

at least 5× 5 mm2 (Baillet et al., 2001) and often extending several centimeters (Michel,

2009). Incorporating spatial basis functions has the additional benefit of reducing the

computational complexity when there are fewer basis functions than original sources.

There is however a risk that the center of a “true” source is a source with low activity355

in the basis functions. This is a potential bias that is incurred to counter the uncer-

tainty and ill-posedness of the EEG inverse problem. These assumptions are argued to

impose limited bias as in (Friston et al., 2008). Another related possible concern is the

use of fixed orientations and simplified forward models in general. Several studies argue

for improving source reconstruction by using as detailed and accurate forward models as360

possible (Akalin Acar and Makeig, 2013; Windhoff et al., 2013), and we note that it is

indeed possible to combine MarkoVG with any type of forward model. Incorporation of

both flexible dipole orientations and spatial coherency could, for example, be achieved by

the so-called ‘sparse basis fields’ introduced by Haufe et al. (Haufe et al., 2011). Finally,

increasing the number of spatial basis functions should also be investigated in future work.365

In summary we applied the physiological meaningful assumptions that the underlying

EEG generators are spatially smooth and sparse, and temporally variable smooth/sparse.

The effectiveness of implemented assumptions can in general be validated through simu-
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lation studies. We therefore tested the performance of MarkoVG in a controlled setting

where we also compared the proposed algorithm to three other solvers. On the synthetic370

data we found that MarkoVG was better at identifying the correct active sources and

time samples. MarkoVG was thus more effective in recovering the sparsity level, both

spatially and temporally. Importantly, we showed that even when favoring the T-MSBL

and especially the M-FOCUSS algorithm superior performance to MarkoVG was not

accomplished.375

In real data hypothesized assumptions can be validated using other imaging techniques

such as fMRI or through lesion studies which can provide information about the location

of specific information processing in the brain. The estimated temporal dynamics can

be validated through single cell recordings that can indicate when specific brain areas

are involved in an EEG response. We tested our algorithm on the EEG response to380

seeing faces as compared to scrambled faces. In this paradigm we know from fMRI

studies (Henson et al., 2003) and combined EEG/MEG studies (Henson et al., 2009) that

the activated areas include the FFA and OFA. Studies of patients with lesions in the

FFA and OFA further validate the importance of these areas in face perception (Eimer

and McCarthy, 1999; Dalrymple et al., 2011). The face/scrambled face contrasted fMRI385

recordings included in the multimodal study we extracted EEG from, have been analyzed

at the group level in Fig. 3b in (Wakeman and Henson, 2015). The O/FFAs were also here

dominating the face response as compared to the scrambled face condition. Furthermore,

the face-sensitive response was sparse and largely symmetric across hemispheres.

The MSP, T-MSBL, M-FOCUSS and MarkoVG confirmed the existence of face-390

sensitive activity in the FFA and OFA. Frontal activation was also recovered by all al-

gorithms, partly agreeing with the before mentioned fMRI study which also contained

frontal activation. The temporal dynamics recovered by the inverse solvers in the most

strongly activated sources showed focused activity around the N170 component. This

was especially true for MarkoVG which for the shown sources only had activity 130 to395

200 ms after stimuli onset. The strongest sources as estimated by MSP, T-MSBL and

M-FOCUSS had activity in the entire time window including peaks around 50 ms (the

latter mostly pronounced for MSP). A study of the single cell recordings from the inferior

temporal cortex of the macaque brain response to faces revealed predictive power in the
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response after approximately 100 ms (Kiani et al., 2005), thus indicating the relevant400

face response starts well after 50 ms. Our study thus indicates that this evidence can

be transferred to humans. We also note that an ERP study on humans has shown that

significant differences between faces and noise textures begins 130 ms after stimuli onset

(Rousselet et al., 2008).

The reasoning behind promoting zero activation is a model of focal brain activation,405

i.e., specific brain areas become active as a response to given stimuli and then return to

their baseline level. This is for example appropriate when reconstructing contrast EEG

responses. Furthermore the ill-posedness of the inverse problem and the poor signal-to-

noise levels of EEG in general obstruct accurate recovery of dense source activations. By

sparsity promoting priors we focus on activity in time samples having sufficient evidence.410

For reference we provide the computation time required by each inverse solver per

iteration. Computed on a laptop with 2.1-GHz 64-bit i7 processor the time spend per

iteration is 225 ms for MSP, 3 ms for T-MSBL, 0.6 ms for M-FOCUSS and 100 ms for

MarkoVG. We note that MSP in general requires least iterations per inverse problem,

and since MarkoVG performs cross-validation to estimate the sparsity level it is slowest415

among the tested algorithms. However, active set based optimization as implemented

in TMSBL and M-FOCUSS (in which inactive variables are pruned), could dramatically

reduce the computation time. This is a current topic of research. Furthermore, we note

that the goal of MarkoVG is to explore the implementation of meaningful physiologically

priors in order to solve the severely ill-posed inverse EEG problem rather than being fast.420

In conclusion we have introduced temporal smoothness in the support of the brain

dynamics within the so-called MarkoVG framework, and demonstrated how it can adapt

to the degree of temporal coherency and spatial sparsity underlying the recorded EEG sig-

nal. In simulations and in real data MarkoVG showed promise as a tool for EEG dynamic

imaging. Further improvements on the algorithm involves increasing the flexibility of the425

model by optimizing two free parameters instead of working with a fixed relation between

them as here. Such more complex optimization of parameters could be accomplished by

Bayesian optimization methods such as proposed by (Snoek et al., 2012).
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