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Abstract 
A single nucleotide polymorphism on chromosome 4 (SNP TXNIP) has been reported to be associated with roundworm 

(Ascaris suum) burden in pigs. The objective of the present study was to analyse the immune response to A. suum mounted by

pigs with genotype AA (n = 24) and AB (n = 23) at the TXNIP locus. The pigs were repeatedly infected with A. suum from eight

weeks of age until necropsy eight weeks later. An uninfected control group (AA; n = 5 and AB; n = 5) was also included. 

At post mortem, we collected mesenteric lymph nodes and measured the expression of 28 selected immune-related genes.

Recordings of worm burdens confirmed our previous results that pigs of the AA genotype were more resistant to infection than

AB pigs. We estimated the genotype difference in relative expression levels in infected and uninfected animals. No significant

change in expression levels between the two genotypes due to infection was observed for any of the genes, although IL-13

approached significance (P = 0.08; P
unadjusted

=  0.003). Furthermore, statistical analysis testing for the effect of infection sepa-

rately in each genotype showed significant up-regulation of IL-13 (P<0.05) and CCL17 (P<0.05) following A. suum infection

in the ‘resistant’ AA genotype and not in the ‘susceptible’ AB genotype. Pigs of genotype AB had higher expression of the

high-affinity IgG receptor (FCGR1A) than AA pigs in both infected and non-infected animals (P = 1.85*10-11). 

Keywords
Ascaris suum, pig, single nucleotide polymorphism, gene expression, qPCR; RT-qPCR, cytokine, TXNIP, immunity

Introduction

The large roundworm of pigs, Ascaris suum, has a global dis-

tribution with high prevalence in both extensive and intensive

production systems (Vlaminck and Geldhof 2013). Infections

may cause decreased weight gain and reduced productivity,

and may further negatively interfere with vaccinations (Steen-

hard et al. 2009; Thamsborg et al. 2013). Although A. suum
and its sibling species A. lumbricoides – which infects humans

– may both be treated efficiently with anthelmintics (Keiser

and Utzinger, 2008), drug resistance has been reported in an-

other ascarid, Parascaris equorum (Reinemeyer 2012) and

there are sporadic reports that A. lumbricoides does not re-

spond well to treatment (Adugna et al. 2007). In the light of

these challenges, an improved understanding of the host re-

sponse to parasitic infections is crucial for development of

new and more sustainable control strategies. 

Helminth infections typically elicit a Th2-type response

characterized by the production of the cytokines IL-4, IL-5 and

IL-13. These cytokines and other signalling molecules activate

a number of other cells, e.g., eosinophils, mast cells, basophils,

epithelial cells and smooth muscle cells (Anthony et al. 2007).

More recent studies have shown that the immune response dur-

ing helminth infection is regulated by a network of immuno-

suppressive regulatory T cells (T
regs

) and suppressive cytokines

like TGF-β and IL-10 (Taylor et al. 2012). Resistance, i.e., the
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ability to suppress establishment and/or subsequent develop-

ment of infection (Albers et al. 1987), is under genetic control

by the host (Wakelin 1975). There are probably a number of

molecular mechanisms involved in such a complex process.

Studies in susceptible and resistant mouse strains have shown

that resistance to helminth infection is mediated by a Th2-type

response whereas susceptibility is associated with the induc-

tion of a Th1-type response (Else et al. 1992). A similar pat-

tern has been found in sheep (Pernthaner et al. 2005; Gossner

et al. 2013) and cattle (Zaros et al. 2010) though not always

as pronounced as in murine models. Indeed, the use of new mo-

lecular tools which allow the expression of a high number of

genes and proteins to be profiled simultaneously (e.g., mi-

croarray, microfluidic dynamic arrays, protein arrays) has re-

vealed a much more complex picture than previously expected

(Ingham et al. 2008; Araujo et al. 2009; Andronicos et al.
2010). 

There is evidence that pigs mount a Th2-type response fol-

lowing helminth infection (e.g., Dawson et al. 2005); however,

these studies did not compare genetically susceptible and re-

sistant animals. Regulation of A. suum infections has been

demonstrated to be under genetic control with a heritability of

0.45 for worm burdens (Nejsum et al. 2009). Our group has

identified a single nucleotide polymorphism (SNP TXNIP) on

porcine chromosome 4 which is associated with the burden of

A. suum in crossbred Duroc/Danish Landrace/Yorkshire (DLY)

pigs (Skallerup et al. 2012). Hence, pigs with the ‘susceptible’

AB genotype at the TXNIP locus had a 2.5 fold higher total

worm burden than the ‘resistant’ AA genotype (Skallerup et al.
2012). 

The objective of the present study was to characterize the

transcriptional immune response mounted by an independent

group of crossbred DLY pigs with these two different TXNIP

genotypes after repeated (trickle) infections with A. suum for

eight weeks. Their parasitological traits have been described

elsewhere (Skallerup et al. 2014). Briefly, at the end of the

study pigs of the AA genotype had lower mean macroscopic

worm burden than pigs of the AB genotype (2.4 vs. 19.3; P =

0.06) and lower mean total worm burden (26.5 vs. 70.1; P =

0.09). In the present study we measured the expression of dif-

ferent genes in mesenteric lymph nodes sampled from in-

fected pigs and uninfected controls. We analysed candidate

genes in linkage disequilibrium (LD) with the TXNIP marker

(Skallerup et al. 2012) as well as different markers of immune

activation that would allow us to analyse the immune response

(i.e., markers indicative of ‘innate’/Th1/Th2/Th17/T
reg

re-

sponse). 

Materials and Methods

Experimental design

The study was designed to demonstrate a significant differ-

ence in macroscopic A. suum worm burden between experi-

mentally infected pigs with genotypes AA and genotype AB

(SNP TXNIP). A statistical power analysis showed that 24 pigs

of each genotype would be sufficient to achieve significance

(Skallerup et al. 2014). Pigs (crossbred Duroc/Danish Land-

race/Yorkshire) were purchased from a commercial specific

pathogen-free farm. In order to identify pigs with the geno-

types needed for the study (AA, AB), 112 piglets from this

herd were genotyped prior to inclusion as described previously

(Skallerup et al. 2014). Based on genotype, pigs from 10 dif-

ferent litters were allocated to trickle-infected groups (n
AA

=

27; n
AB

= 25) or uninfected groups (n
AA

= 5; n
AB

= 5). The

farmer used mixed semen to produce the littermates which

were thus full-sibs or half-sibs; males were castrated. 

The experimental protocol used to generate A. suum
infected pigs as well as their phenotypic traits has been 

described elsewhere (Skallerup et al. 2014). Briefly, upon 

arrival at seven weeks of age the pigs were allocated into

three pens with concrete floors ensuring an equal distribution

of genotype, litter of origin, sex and weight in each pen; 

a fourth pen was used for the uninfected controls. Embry-

onated eggs used for trickle infections were prepared from

uteri of female A. suum worms collected at a Danish slaugh-

terhouse (Oksanen et al. 1990). After one week of acclima-

tization, pigs were infected with A. suum eggs (25

eggs/kg/day) twice per week. The pens were littered with

wood shavings on a daily basis, and water was provided ad

libitum. The animals were fed a diet consisting of ground bar-

ley supplemented with proteins and minerals. Staff used sep-

arate boots and protective clothing to avoid accidental in-

fections of the control group. One pig of each genotype was

sacrificed on day 13 post first infection (PI) to test the in-

fectivity of the A. suum egg batch and these two animals were

excluded from the gene expression analysis. 

The pigs were euthanized using a captive bolt pistol fol-

lowed by exsanguination on days 55–59 PI. From each pig, a

mesenteric lymph node was sampled from the central part of

jejunum because by week 8 PI most of the worms are located

here (Roepstorff et al. 1997). The samples were immediately

snap-frozen in liquid nitrogen and stored at –80°C until RNA

extraction. The small intestine was opened longitudinally and

any macroscopic A. suum worms (large juveniles and adults)

were removed and counted. Larvae were isolated from the in-

testinal contents by the agar-gel method (Slotved et al. 1997).

The study was approved by the Animal Experiments Inspec-

torate, Ministry of Justice, Denmark (Ref. 2010/561-1914).

Care and maintenance of all animals were in accordance with

applicable Danish and European guidelines.

Primer design and optimization (Fludigm and MxPro plat-

forms)

Primers were designed using Primer3 (http://primer3.wi.mit.edu)

(Rozen and Skaletsky, 2000). Primers were designed to span

an intron, if possible, and to target most or all splice variants

of the gene of interest, if applicable. We performed a BLAST
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search (http://blast.ncbi.nlm.nih.gov/Blast.cgi) of each primer

sequence to confirm binding at the intended locus. Further-

more, primer specificity was confirmed by visual inspection of

amplicons on agarose gels and by inspection of melting curves.

For the Fluidigm array, three separate pools of equal amounts

of pre-amplified cDNA from all samples were used to prepare

three standard curves (dilutions: 1:2, 1:10, 1:50, 1:250) from

which PCR amplification efficiencies were calculated. Primer

sequences, amplicon lengths, and primer PCR efficiencies are

shown in a separate file (Supplementary Table S1). With the

objective of characterizing the immune response of the two

SNP TXNIP genotypes, we included a panel of genes involved

in the innate and adaptive branches of the immune system, 

including a Th1-type and Th2-type immune response and 

regulatory T cells. We also included four candidate genes 

in LD with SNP TXNIP (TNFAIP8L2, PIAS3, RFX5,

RBM8A) (Skallerup et al. 2012) as well as an additional can-

didate gene within our QTL (FCGR1A). In addition, we tested

the expression of TNFSF13B, a candidate gene for A. lumbri-
coides burden (Williams-Blangero et al. 2002; 2008). A func-

tional grouping of the genes is provided in Supplementary

Table S1.

RNA extraction

Total RNA was extracted from lymph nodes using Tri

Reagent® (Molecular Research Center, Inc., USA) according

to the manufacturer’s instructions. Briefly, 100 mg of tissue

were homogenized in 1 ml Tri Reagent on a gentleMACS™

Octo Dissociator (Miltenyi Biotec, Germany); after addition of

100 µl bromochloropropane, RNA was precipitated with iso-

propanol, washed in 75% ethanol and dissolved in 200 µl

RNAase-free water. RNA concentration and purity was meas-

ured using a NanoDrop 1000 spectrophotometer (Thermo Fis-

cher Scientific, USA). Total RNA quality was evaluated by

visual inspection of 28S/18S rRNA bands on agarose gels and

subsequently by assessment of RNA integrity data (Expe-

rion™ machine, BioRad Laboratories, USA) using RNA Std-

Sens Analysis Kit (BioRad Laboratories, USA). RNA quality

indicator (RQI) values above 6 were accepted. RNA was kept

at –80°C until cDNA synthesis.

Reverse transcription of mRNA into cDNA

Genomic DNA removal and reverse transcription of total RNA

was performed using QuantiTect Reverse Transcription Kit

(Qiagen) following the instructions of the manufacturer with

minor modifications. In brief, 500 ng of total RNA was

DNAase treated in 96-well PCR plates by incubating (2 min,

42°C) in a DNA Engine® Peltier Thermal Cycler (Bio-Rad

Laboratories, Inc., USA). Next, reverse transcriptase enzyme

and a mix of random primers and dNTPs (1:4) were added and

samples were incubated for 15 min at 42°C; enzymes were

denatured for 3 min at 95°C and cDNA cooled down to 4°C.

For each sample two cDNA replicates were prepared. We also

included non-reverse transcriptase controls. Samples were di-

luted 1:8 or 1:10 in low EDTA TE-buffer (VWR-Bie &

Berntsen, Denmark) prior to pre-amplification (Fluidigm

array) or qPCR (MxPro), respectively.

Pre-amplification and exonuclease treatment (Fluidigm

array)

The pre-amplification was performed as described previously

(Skovgaard et al. 2013). Briefly, five µL of TaqMan PreAmp

Master Mix (Applied Biosystems), 2.5 µL of primer pair mix

(a 200 nM pool of all primer pairs used in the present study)

and 2.5 µL diluted cDNA were mixed and incubated at 95°C

for 10 min followed by 15 cycles at 95°C for 15 sec and 60°C

for 4 min. Next, pre-amplified cDNA was incubated with 4

µL of 4U/µL exonuclease (30 min at 37°C, followed by 15

min at 80°C). Then samples were diluted 1:8 in low EDTA

TE-buffer before quantitative real-time PCR (qPCR). 

Quantitative real-time PCR (qPCR)

Fluidigm array

The qPCR was performed in 48.48 Dynamic Array Inte-

grated Fluidic Circuits (Fluidigm, CA, USA). This platform

allows the simultaneous analysis of 48 primers in 48 cDNA

samples, i.e., a total of 2,304 individual qPCR reactions

arranged in a grid as described elsewhere (Skovgaard et al.
2013). In brief, for each of the 48 cDNA sample lanes on

the chip, we prepared a ‘sample mix’ consisting of 3 µL of

ABI TaqMan Gene Expression Master Mix (Applied

Biosystems), 0.3 µL of 20X DNA Binding Dye Sample

Loading Reagent (Fluidigm), 0.3 µL 20X EvaGreen (Bi-

otium, VWR-Bie & Berntsen), 0.9 µL low EDTA TE-buffer

and 1.5 µL of pre-amplified exonuclease-treated cDNA.

Next, for each of the 48 primer set lanes on the chip, we pre-

pared a ‘primer mix’ consisting of 2.5 µL of 2X Assay Load-

ing Reagent (Fluidigm), 0.25 µL low EDTA TE-buffer and

2.3 µL of 20 µM forward and reverse primer (Supplemen-

tary Table S1). After priming the 48.48 Dynamic Array chip

in the IFC controller (Fluidigm), it was loaded with cDNA

samples and primers and again placed in the IFC controller

to ensure the solution in each inlet was equally distributed

across all 48 reactions in a lane, thus combining the 48

primer sets with the 48 cDNA samples. 

The qPCR was performed on a BioMark HD Reader (Flu-

idigm) under the following conditions: 2 min at 50°C, 10 min

at 95°C followed by 35 rounds of 15 s at 95°C and 1 min at

60°C. After each run, melting curves were generated to confirm

primer specificity (from 60°C to 95°C, increasing 1°C/3 s).

Reactions were run in duplicate (two cDNA replicates). The

three cDNA pools (each diluted 1:10) described above were

used as interplate calibrators. Data were retrieved and in-

spected using Fluidigm’s Real-Time PCR Analysis software,

version 3.0.2.
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MxPro

Fluidigm qPCR data for the gene encoding the high affinity 

receptor for Fc fragment of IgG (FCGR1A) were excluded 

because the variation between cDNA replicates was too large

(see below). Hence, expression of this gene was measured on

a Stratagene Mx3000P™ (Agilent) using the QuantiFast™

SYBR Green PCR Kit (Qiagen) according to the manufac-

turer’s recommendations. The qPCR reaction was run under

the following conditions: 5 min at 95°C followed by 40 rounds

of 10 s at 95°C and 30 s at 62°C (FCGR1A) or 60°C

(GAPDH, TBP, HPRT1). After each run, melting curves were

generated to confirm primer specificity (from 55°C to 95°C).

For each transcript, a calibration curve was made using serial

dilutions of pre-amplified PCR product. We used the baseline-

corrected normalized fluorescence method of the Stratagene

Mx3000P™ software (Agilent) to determine the Cq in each

reaction.

Data processing and statistical analysis

Data processing was made in GenEx version 5.4.0 (MultiD,

Sweden) and included the following steps (in sequential

order): Interplate calibration, amplification efficiency correc-

tion (calculated separately for each primer pair), normaliza-

tion to several reference genes, calculation of average of the

two technical cDNA replicates, calculation of relative expres-

sion values, and log2 transformation. Careful quality checks

were performed after each step. We used NormFinder (An-

dersen et al. 2004) to determine the optimal number of refer-

ence genes. For the Fluidigm array the following six reference

genes were tested: glyceraldehyde-3-phosphate dehydroge-

nase (GAPDH), hypoxanthine phosphoribosyltransferase 1

(HPRT1), ribosomal protein L13a (RPL13A), peptidylprolyl

isomerase A (PPIA), TATA box binding protein (TBP), and ty-

rosine 3-monooxygenase/tryptophan 5-monooxygenase acti-

vation protein, beta polypeptide (YWHAB). For the MxPro

platform we tested GAPDH, TBP, and HPRT1. Accounting

for intra- and intergroup expression, the NormFinder algo-

rithm ranks reference genes according to stability values. The

following reference genes were selected for normalization

based on their stability value: TBP, HPRT1, GAPDH,

YWHAB and PPIA (Fluidigm array) and TBP and HPRT1

(MxPro) (Supplementary Table S1).

To visualize the variation in expression levels of each

gene, Cq values were transformed to relative gene expression

levels by setting the maximum Cq value (the lowest expressed

sample) in each the primer-specific dataset to one. Relative

quantities were log2-transformed prior to statistical analysis.

Primer pairs with too low efficiencies (<0.69), with too many

missing values, or with too many cDNA replicates varying

more than +/– 1.5 Cq (cutoff: more than 14% of samples out

of range) were excluded from the analysis of Fluidigm array

data. Samples for which there were no data for neither of the

cDNA replicates (Fluidigm array only) were assigned a con-

servative Cq value by adding one to the highest Cq value in the

primer-specific dataset (20 out of 3078 cDNA samples). On the

MxPro platform, the expression of FCGR1A in 6 out of 57

samples could not be detected reliably and these samples were

excluded from the analysis. Data from a total of 28 non-refer-

ence genes were included in the analyses (Supplementary

Table S1). Experimental practice and reporting was performed

according to the Minimum Information for Publication of

Quantitative Real-Time PCR Experiments (MIQE) guidelines

(Bustin et al. 2009). 

Log2-transformed relative gene expression profiles (Flu-

idigm array) were analysed in R version 3.0.0 (R Core Team

2013) by a mixed linear model. We fitted gender, starting

weight, and a gene-specific combined effect of SNP TXNIP

genotype (AA, AB) and infection (A. suum-infected, unin-

fected) as fixed effects (Barger 1993). Pig, litter of origin, pen,

and necropsy day were fitted as random effects. Model as-

sumptions in the initial model were checked graphically by

means of normal quantile-quantile plots and residual plots. 

For each gene, the difference between the genotypes in rel-

ative expression level was estimated for infected and unin-

fected pigs and compared by the model described above;

hence, we tested if there was a modification of expression lev-

els in pigs with the two marker genotypes due to infection. To

test the effect of infection, we evaluated the difference in ex-

pression level between infected and uninfected pigs for each

genotype using the above model. REML estimation was used

to compute estimates in the model and comparisons were ad-

justed for multiple testing by means of the single step proce-

dure (Hothorn et al. 2008). 

Since the expression of the FCGR1A gene was measured

on a different platform (MxPro platform), these data were

analysed separately; we used a mixed linear model which in-

cluded a systematic combined effect of genotype and infection

(infected, uninfected) adjusted for gender and starting weight

as well as random effects of litter of origin, pen, and necropsy

day. The effect of genotype and infection was assessed by

backwards elimination based on likelihood ratio tests.

Results

Two of the infected pigs (both genotype AA) died during 

the experiment for reasons not related to the study treatment.

Tissue samples were taken from all but one pig (infec-

ted, genotype AB) and the final dataset comprised 57 pigs

(trickle-infected pigs: n
AA

= 24; n
AB

= 23; uninfected pigs: 

n
AA

= 5; n
AB

= 5).

Detailed parasitological data from infected pigs such as

worm counts, liver white spots and serum IgG antibody titres

are presented elsewhere (Skallerup et al. 2014). Briefly, pigs

of the AA genotype had lower mean macroscopic worm 

burden (2.4 vs. 19.3; P = 0.06), lower mean total worm burden

(26.5 vs. 70.1; P = 0.09) and excreted fewer A. suum eggs at

week 8 PI (mean number of eggs/g faeces: 238 vs. 1259; 
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P = 0.14) than pigs of the AB genotype. No differences in num-

ber of liver white spots were observed between the two geno-

types. None of the pigs in the control groups had any worms

at necropsy.

A total of 27 genes (Fluidigm array) passed quality testing

and were included in the analysis. The relative expression

levels of the 27 genes stratified by infection (infected, unin-

fected) and TXNIP genotype (AA, AB) have been plotted in

Figure 1. For each gene, we estimated the genotype difference

(AA vs. AB) in relative expression level (infected, uninfected)

and a comparison between infected and uninfected pigs was

then made to test if there was a modification of expression lev-

els in pigs with the two marker genotypes due to infection. We

did not observe a significant change in expression between the

two genotypes due to infection for any of the genes. However,

for IL-13 the difference approached significance (P = 0.077;

P
unadjusted

= 0.00313; Figures 1 and 2). 

We next sought to determine the effect of A. suum infec-

tion on relative expression levels. For each gene and each SNP

TXNIP genotype, we estimated the difference in relative ex-

pression in infected vs. uninfected pigs. We found a significant

up-regulation of IL-4 in infected pigs of genotype AA (P<0.05)

and genotype AB (P<0.05). In addition, a significant up-reg-

ulation of CCL17 (P<0.05) and IL-13 (P<0.05) was observed

in infected pigs of genotype AA only (Figures 1 and 2).

The expression of the FCGR1A gene was evaluated using

another platform and the statistical analysis showed that there

was no modification of expression levels in pigs with the two

TXNIP genotypes due to infection. Interestingly, we found that

genotype had a highly significant effect on the expression of this

receptor (P = 1.85*10-11) with higher expression levels in pigs

with the AB genotype than pigs with AA genotype whereas there

was no effect of infection (P = 0.59) (Figure 2). Gender also had

a significant effect on expression of this gene (P<0.05). 

Fig. 1. Relative estimated gene expression levels in mesenteric lymph nodes. The pigs were either homozygous or heterozygous at the 
single nucleotide polymorphism (SNP) 0_TXNIP_DS087128.1_2_2 (TXNIP) locus. Lymph nodes were sampled from uninfected pigs 
(n

AA
= 5; n

AB
= 5) and pigs trickle-infected with Ascaris suum (n

AA
= 24; n

AB
= 23) at 8 weeks post first infection. Cq values were transformed

to relative gene expression levels by setting the maximum Cq value in each primer-specific dataset to one and then log2-transformed. Gene
expression levels were estimated according to a statistical model in which gender, starting weight, and a gene-specific combined effect of SNP
TXNIP genotype (AA, AB) and infection (A. suum-infected, uninfected) were fitted as fixed effects. Pig, litter of origin, pen, and necropsy
day were fitted as random effects

Brought to you by | The Royal Library (Det Kongelige Bibliotek) - National Library of Denmark / Copenhagen University Library
Authenticated

Download Date | 1/3/17 12:34 PM



Per Skallerup et al.146

Disscussion

The host response to several pathogens of livestock, humans

and mouse models has been dissected using gene expression

analysis and proteomics (Dawson et al. 2005; Noyes et al.
2011). As part of these efforts, studies in murine models and

ruminants have compared strains, breeds or individuals with

predicted variation in resistance/susceptibility to various

helminths (Else et al. 1992; Pernthaner et al. 2005; Ingham

et al. 2008; Gossner et al. 2013). However, such studies have

not been conducted in pigs. 

In the present study we compared trickle-infected pigs

with two genotypes (AA, AB) which we hypothesized had di-

vergent resistance to the large roundworm A. suum based on

prior association (Skallerup et al. 2012). Generally, a low es-

tablishment of adult worms was observed but most pigs har-

boured intestinal larvae at necropsy eight weeks PI. Pigs of

genotype AA had, as expected, lower mean worm counts and

lower faecal egg counts than AB pigs, although the statistical

analyses showed only borderline significance (Skallerup et al.

2014). Despite this limitation of the study it was relevant to in-

vestigate if the transcriptional immune response of selected

genes might be involved in the observed differences. 

Applying a statistical analysis which adjusted for multi-

plicity and which took into account the various layers of

variation in the data, we were not able to detect any signif-

icant modification of gene expression levels in the two

genotypes following A. suum infection. A main explanation

could be the low establishment of adult worms in both

groups as discussed above but it is also possible that samples

were taken too late during trickle infection. Research un-

dertaken in sheep has suggested that the difference between

resistant and susceptible animals is due to the rate at which

protective immunity develops, rather than gene expression

levels per se (Ingham et al. 2008; Andronicos et al. 2010;

Hassan et al. 2011b). It is a limitation to the present study

that we only had one end-point, i.e., when a mature immune

response was expected. Further work should focus on pro-

filing the response of the two phenotypes at earlier stages of

A. suum infection.

Fig. 2. Relative gene expression levels for interleukin (IL)-13, IL-4, chemokine ligand 17 (CCL17) and the high-affinity IgG receptor
(FCGR1A) in mesenteric lymph nodes. Lymph nodes were sampled from uninfected pigs (n

AA
= 5; n

AB
= 5) and pigs trickle-infected with 

Ascaris suum (n
AA

= 24; n
AB

= 23) at 8 weeks post first infection. Error bars are 95% confidence intervals. For further details, see Fig. 1
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We hypothesize that the most important site of immunity

to A. suum is the small intestine. Lymph nodes draining the

small intestine were expected to contain regulatory T cells and

cytokine-secreting T cells (e.g., Th1, Th2, Th17, follicular

helper T cells) which had been activated by antigen-present-

ing cells (Zhu et al. 2010; Taylor et al. 2012). Such antigen-

presenting cells would present A. suum antigens produced in

the small intestine. An additional argument for choosing

mesenteric lymph nodes was that the samples were taken af-

ter long-term trickle infection (at a ‘chronic’ stage of infection),

as opposed to the strong immune response observed around

week 3 PI (Roepstorff et al. 1997); we hypothesized a higher

immune cell activity in mesenteric lymph nodes, which drain

from the entire small intestine, rather than in localized samples

of intestinal mucosa. 

Although several QTLs for parasite resistance have been

identified (Hanotte et al. 2003; Gutiérrez-Gil et al. 2009),

few of these QTLs have been replicated or the underlying ge-

netic markers explored in functional studies (Matika et al.
2011). Hassan et al. (2011a, b) produced carrier and non-car-

rier lambs of the DRB1*1101 allele (MHC locus) which were

experimentally infected with Teladorsagia circumcincta and

subsequently necropsied at various time-points post infection.

While such studies – as well as studies comparing ‘resistant’

and ‘susceptible’ animals identified by genotyping a single

SNP – are scarce, there is extensive research carried out using

animals that are genetically more divergent. Gene expression

studies in phenotypes that are resistant and susceptible to

helminth infection have primarily been conducted in sheep,

cattle, and rodent models; however, the results are difficult to

compare for a number of reasons, e.g., different tissues ex-

amined (mucosa, lymph nodes), infection with different par-

asite species, use of different gene expression platforms (mi-

croarray, qPCR), or use of host animals that cannot easily be

compared between studies. As an example, some use different

breeds or rodent strains whereas others compare resistant and

susceptible lines from resource flocks developed by selection

and assortative mating for several generations (Pernthaner

et al. 2005; Ingham et al. 2008), or measure gene expression

in the most resistant and susceptible animals in a flock after

trickle or natural infection (Araujo et al. 2009; Zaros et al.
2010; Gossner et al. 2012; 2013). Nevertheless, ovine studies

using lymph nodes or lymph cells have found an increased ex-

pression of IL-13 but not IL-4 in resistant animals compared

to susceptible animals (Pernthaner et al. 2005; Gossner et al.
2013). Although increased, we did not find a significant change

of expression levels of IL-13 and cannot conclude that this cy-

tokine is a key player in the ‘resistant’ AA genotype in pigs.

Infection with Ascaris in both humans and pigs has been

shown to be associated with a Th2-type response characterized

by elevated expression of IL-4, IL-5 and IL-13 (Dawson et al.
2005; Cooper and Figuieredo, 2013; Masure et al. 2013) and

our results are in agreement with these findings. Hence, an

analysis specifically testing for the effect of infection (each

genotype at a time) showed the expression of IL-4, the signa-

ture cytokine of a Th2-type response, was significantly ele-

vated in A. suum-infected pigs (both genotypes) compared

with the uninfected controls (Fig. 2). Likewise, pigs of geno-

type AA significantly increased IL-13 expression following 

A. suum infection. Both IL-4 and IL-13 bind to the type II IL-4

receptor complex expressed by a variety of cells types (LaPorte

et al. 2008); activation of the receptor complex initiates dif-

ferent parasite expulsion mechanisms, e.g., elevated mucus and

RETNLB (RELMβ) production by intestinal goblet cells, in-

creased smooth muscle contractility and increased intestinal

permeability (Anthony et al. 2007). In addition, IL-4 induces

alternatively activated macrophages which may impair health

and mobility of tissue-dwelling helminths, including Ascaris
larvae migrating through the liver (Anthony et al. 2006). 

Infection with A. suum also led to a significant up-regula-

tion of chemokine ligand 17 (CCL17; also known as TARC)

in pigs of genotype AA. CCL17 is a chemokine produced by

epithelial cells and dendritic cells which binds to Th2 cells

(Hartl et al. 2009). Dawson et al. (2009) reported significant

higher CCL17 expression on day 7 PI in liver tissue of pigs

given retinoic acid and infected with A. suum than in unin-

fected controls; however, to our knowledge, a significant up-

regulation due to A. suum infection alone has not previously

been demonstrated for this chemokine. In agreement with our

results, Geiger et al. (2013) found infection with helminths was

associated with higher CCL17 concentration in human serum

and Burke et al. (2011) reported higher CCL17 expression in

lungs of Schistosoma japonicum-infected mice compared with

uninfected controls. 

The expression of the high-affinity IgG receptor (FCGR1A;

also known as CD64), a candidate gene within our QTL, was

strongly dependent on genotype but not on infection with 

A. suum (Fig. 2). This receptor is expressed on most myeloid

cells, including macrophages, dendritic cells and granulo-

cytes. Although its role in immunity is not fully elucidated, it

has been proposed to help scavenging extracellular antigen

bound by IgG (van der Poel et al. 2011). In mast cells, activa-

tion of this receptor leads to the release of mediators which

then act on different cells. Whilst expression of FCGR1A in

lymph nodes does not seem to be crucial in determining the

phenotypes in pigs at 8 weeks PI, it could be involved at an ear-

lier time-point or be differentially expressed in other tissues,

e.g., intestinal mucosa. FCGR1A expression levels in the two

genotypes were significantly different, with pigs of the AB

genotype having a higher expression level than the AA geno-

type. This suggests that there are two variants of this gene in

LD with SNP TXNIP. The observed differences in FCGR1A

expression could be due to variation in for instance a regula-

tory region; it is also possible that our marker is linked with 

a copy number variant of the FCGR1A gene (Hindorff et al.
2009). In humans, there is a segmental duplication region on

chromosome 1q23 which encompasses several low-affinity Fc

gamma receptors, e.g., FCGR2A, FCGR2B, and FCGR3A

(Schaschl et al. 2009). This locus is located about 10 Mb

from the human FCGR1A gene. In assembly Sscrofa10.2 of the
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pig genome (Groenen et al. 2012), these low-affinity receptors

are poorly annotated. Since no polymorphisms associated with

FCGR1A receptor affinity or function have been found to

date (van der Poel et al. 2011), it would be interesting to

search for mutation(s) or copy number variants underlying the

different expression in pigs with the two SNP TXNIP geno-

types to assess their importance in the pig’s response to vari-

ous pathogens.

In addition to FCGR1A, we measured the expression of

three candidate genes within our QTL (TNFAIP8L2, PIAS3,

and RBM8A) as well as TNFSF13B, a candidate gene for A.
lumbricoides burden (Williams-Blangero et al. 2002; 2008) lo-

cated on porcine chromosome 11. We did not observe a sig-

nificant change of expression levels in the two genotypes due

to A. suum infection for any of these genes. Likewise, infec-

tion status did not have an effect on their expression levels. As

discussed above, these genes could be differentially expressed

at an earlier time-point or in other tissues. It would be inter-

esting to measure gene expression in mucosa samples from the

small intestine which we have but do not have the resources to

analyse at the moment. 

In conclusion, we set out to decipher gene expression pat-

terns in mesenteric lymph nodes sampled from trickle-in-

fected pigs with two genotypes. We hypothesized that changes

in gene expression levels, in response to infection, were dif-

ferent in the two genotypes. Such a significant modification of

gene expression depending on genotype was not observed for

any of the genes. However, significant up-regulation of IL-13

and CCL17 following A. suum infection was observed in the

‘resistant’ genotype AA and not in the ‘susceptible’ genotype.

Future studies are needed to characterize the differential ef-

fector mechanisms in the two genotypes. No differences in ex-

pression levels due to infection were observed for any of the

five candidate genes tested in this study and they still remain

to be functionally validated. However, we demonstrate that the

two genotypes expressed different levels of the high-affinity

IgG receptor and further work should focus on deciphering the

mechanisms underlying this difference. 
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