Technical University of Denmark

Health effects from indoor and outdoor exposure to fine particulate matter in life cycle impact assessment

Fantke, Peter; McKone, T.E.; Jolliet, Olivier; Vigon, Bruce

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA)

Fantke, P., McKone, T. E., Jolliet, O., & Vigon, B. (2016). Health effects from indoor and outdoor exposure to fine particulate matter in life cycle impact assessment. Abstract from 12th Biennial International Conference on Ecobalance 2016, Kyoto, Japan.

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

ABSTRACT BOOK

SETAC Europe 26th Annual Meeting 22-26 May 2016, Nantes, France

Environmental contaminants from land to sea: continuities and interface in environmental toxicology and chemistry

robust and simple indicator for assessment of potential impacts from water consumption.

162

Characterisation of water scarcity impact on human health – development of a consensus-based model within WULCA

M. MOTOSHITA, National Institute of Advanced Industrial Sci. and Human health is one of the impacted area of protection from water scarcity. There are several characterisation models to assess the impacts on human health caused by agricultural/domestic water scarcity. However, these models characterise the impacts on human health in different ways even though they focus on the same impact pathways. A recommended characterisation model has been developed based on consensus among method developers and stakeholders in WULCA working group of UNEP/SETAC Life Cycle Initiative. As a first step for the development, sensitivity of parameters used in effect factors of previously developed models on agricultural water scarcity (Pfister et al. 2009; Boulay et al. 2011: Motoshita et al. 2014) and domestic water scarcity (Motoshita et al. 2011; Boulay et al. 2011) were analysed and reviewed to identify critical parameters in characterisation model. The results of sensitivity analysis indicated the significance of health response factor to food/household water deficit and adaptation capacity to potential health damage. In order to test the validity of different types of health response factors and adaptation capacity, health damage due to agricultural/household water deficit was estimated based on those factors and compared with malnutrition/diarrhoea damage reported by WHO. According to the comparison of estimated and reported damage, health damage per calorie/water in deficit and inequality adjusted adaptation capacity (HDI-base) showed closer estimation of health damage to WHO report. Regarding agricultural water scarcity, food trade effects also showed high influence on the effect factor. The trade effect factor is composed of food supply dependency on domestic and imported food, as well as of the adaptation capacity through trade. Critical parameters of trade effect are identified through sensitivity analysis. The outcome of these discussions and the rice case study allowed the group to build a recommended methodology integrating the optimal options for each of these modelling choices. This recommended model is presented as an output of this consensus building within the UNEP/SETAC LCI flagship project of environmental life cycle impact assessment indicators and we expect it to improve the results of water consumption impacts in LCA and water footprinting.

463

Biodiversity impacts of land use

A. Assumpcio, IRTA; L. Mila i Canals, UNEP

Land use and land use change are main drivers for biodiversity loss and degradation of a broad range of ecosystem services. Despite substantial contributions to address biodiversity in LCA, no clear consensus exists on the use of specific impact indicator(s) to quantify land use impacts on biodiversity. This lack of consensus not only limits the application of existing models, but also imposes constraints on the comparability of results of different studies evaluating land use impacts based on applying different models. This TF aims at global guidance and consensus regarding indicators and methods for the assessment of biodiversity impacts from land use in LCA. In order to identify models of particular promise for further application and development, Land use Task force has performed a review of existing indicators in and out of the field of LCA. 30 models were selected. Based on the approach used by the European Commission within the International Reference Life Cycle Data System, we grouped sets of evaluation criteria under the following categories: completeness of scope; biodiversity representation; impact pathway coverage; scientific quality; model transparency and applicability; and stakeholder acceptance. In addition, two expert workshops were organized during 2014 (San Francisco, USA, 7/11 and Brussels, BE, 18-19/11). The events included discussions centred on four key topics: (a) concept of biodiversity and modelling strategies, (b) data availability and feasibility, (c) desired characteristics of indicators, usability and consensus and (d) concerns and limitations about using biodiversity indicators in LCA. Based on outcome of expert workshops and revision conducted we could summarize that there is clearly a need to model characterisation factors in terms of both (i) local damage factor for direct land use, and (ii) regional "state and pressure" weight to reflect broader biodiversity patterns and processes surrounding the location of land use. For reasons of data availability, species richness is an obvious candidate for both local, and regional damage. However, species richness is insufficient to depict the complexity of biodiversity and ecological processes. One pragmatic way of building consensus would be to use a combination of available indicators from the reviewed models for both local and regional biodiversity damage. A rice case study is developed to test different options.

464

Health effects from indoor and outdoor exposure to fine particulate matter in life cycle impact assessment

T.E. McKone, University of California / School of Public Health; P. Fantke, Technical University of Denmark / Quantitative Sustainability Assessment Division

Fine particulate matter (PM2.5) pollution has been estimated to contribute more

than 7% to the total global human disease burden from 1990 to 2013 (http://healthdata.org/gbd). Ambient (outdoor) and household indoor PM2.5 exposures are reported to account for 41% and 58% of this impact, respectively, emphasizing the need to include both, outdoor and indoor exposure into overall estimates of health burdens in life cycle impact assessment. However, lacking clear guidance on how to consistently include health effects from exposure to PM2.5 in life cycle perspective, practitioners fail to report related life cycle impacts. To address this gap, a global initiative has worked on building a coupled indoor-outdoor intake fraction framework combining exposure to PM2.5 emitted indoors and outdoors with exposure to PM2.5 formed indoors and outdoors from chemical reactions. An exposure-response model derived from ambient PM2.5 concentrations is consistently combined with exposures from indoor and outdoor sources. All factors are systematically built into a model parameterized for different archetypal outdoor and indoor settings, such as specific residential and occupational settings and different urban area sizes. Model and parameters are tested in a case study on the production and processing of rice in three distinct scenarios covering urban China, rural India and U.S.-Europe. Recommendations are to use this coupled, generic framework whenever emission locations are unknown and to apply spatial models whenever emission locations are known. Our study constitutes a first step towards providing guidance on how to include health effects from PM2.5 indoor air exposures in product-oriented impact

465

Improving global warming impact assessment: From recent developments in climate science to LCA practice

A. Levasseur, CIRAIG - École Polytechnique de Montréal / Chemical Engineering; F. Cherubini, NTNU / Energy and Process Engineering In life cycle assessment (LCA), global warming impacts are usually assessed using Global Warming Potentials (GWP) for a 100-year time horizon as published by the Intergovernmental Panel on Climate Change (IPCC). In the recent past years, concerns have been raised regarding the use of appropriate modeling choices and alternative metrics have been proposed. The Global Warming Task Force of the project entitled Global Guidance on Environmental LCIA Indicators let by the UNEP/SETAC Life Cycle Initiative has performed an extensive critical review of current knowledge and limitations regarding climate metrics. Topics such as the consideration of near-term climate forcers, the inclusion of carbon-cycle and climate feedbacks in GWP, or the consideration of biogeophysical climate forcings from land use and land cover changes have been discussed. Special focus has been set toward new findings presented in the fifth IPCC assessment report, Working Group I, Chapter 8. The pros and cons of each modeling choices have been identified and recommendations have been drafted. The main line of thought is to first use more than one indicator (e.g. different time horizons, with and without carbon-cycle and climate feedbacks) to test the sensitivity of global warming LCA results to the different metric choices. If conclusions are unchanged, LCA results are robust. If they change from one metric to another, the range of results should be used to communicate about the sensitivity of LCA results to the metric choice. Metrics using different modeling choices have then been applied to a case study about the consumption of rice in three regions of the world. It has shown that LCA results may be particularly sensitive to the time horizon selected, and that the consideration of near-term climate forcers implies uncertainty and inventory data availability issues.

466

Reaching consensus on cross-cutting issues

F. Verones, NTNU / Department of Energy and Process Engineering Consistency across impact categories is important, in order to facilitate and enable comparisons across impact pathways. There are multiple issues that need to be dealt with in a cross-cutting manner and not all of them can be resolved in a simple manner. The focus of last year's work of the cross-cutting issues task force has focused on spatial aspects, normalization, uncertainty, reference states consensus for endpoint units and metrics for human health, ecosystem quality and resources, as well as a glance towards how current life cycle assessment (LCA) can be related to socioeconomic indicators. There is an unanimous consensus to keep DALY (Disability Adjusted Life Years) as endpoint indicator. We acknowledge that this does already contain a weighting, which is however internationally well-accepted. Endpoint indicators for ecosystem quality need to reflect species disappearance at a global level. There are different approaches how this can be reached and consensus is required. It is especially important that method developers provide the means to convert different units, such as PDF and PAF (Potentially disappeared/affected fraction of species). This will ensure full consistency between different impact categories. A preliminary consensus was reached that the vulnerability of different species or ecosystem types needs to be included. Models for doing so within LCA are being developed, but will need further investigation for consensus-finding. Especially important for ecosystem quality is also the discussion of reference states. It is difficult to find one common reference state across all areas of protection or all impact categories within one area of protection. We therefore propose to group impact categories in a meaningful way (e.g. based on ecosystem type affected), in order to share one common reference state. Other sub-tasks, like finding consensus on an optimal