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Abstract

A Wave Boundary Layer Model (WBLM) is implemented in the third-generation ocean wave

model SWAN to improve the wind-input source function under idealized, fetch-limited con-

dition. Accordingly, the white capping dissipation parameters are re-calibrated to fit the new

wind-input source function to parametric growth curves. The performance of the new pair of

wind-input and dissipation source functions is validated by numerical simulations of fetch-limited

evolution of wind-driven waves. As a result, fetch-limited growth curves of significant wave

height and peak frequency show close agreement with benchmark studies at all wind speeds

(5 ∼ 60 ms−1) and fetches (1 ∼ 3000 km). The WBLM wind-input source function explic-

itly calculates the drag coefficient based on the momentum and kinetic energy conservation.

The modeled drag coefficient using WBLM wind-input source function is in rather good agree-

ment with field measurements. Thus, the new pair of wind-input and dissipation source func-

tions not only improve the wave simulation but also have the potential of improving air-sea

coupling systems by providing reliable momentum flux estimation at the air-sea interface.

1 Introduction

Momentum flux at the air-sea interface is important for wind and wave simulations in

providing the lower boundary for atmospheric models and influencing the wind-input source

functions for spectral ocean wave models. The momentum flux is usually described by sur-

face roughness length (z0) or drag coefficient (Cd). In the last five decades, numerous stud-

ies have been focused on parameterizing z0 and Cd through wind and wave parameters such

as 10-meters wind speed (u10), inverse wave age (u∗/cp), wave steepness (Hm0/Lp) etc. [e.g.

Wu, 1982; Taylor and Yelland, 2001; Zijlema et al., 2012; Edson et al., 2013]. Such kind of pa-

rameterizations are often empirically based on limited measurements that do not represent the

overall complexity of the wind and wave conditions, especially during storms or in coastal ar-

eas.

An alternative, theoretical approach of calculating z0 and Cd is through the momentum

conservation within the wave boundary layer (WBL). That is, at the lower part of the atmo-

spheric boundary layer, the total wind stress is constant with height and it is equal to the sum

of wave-induced stress (form stress) and turbulence stress. Such kind of methods were first

introduced by Janssen et al. [1989] and further developed by Janssen [1991], Chalikov and Makin

[1991], Makin et al. [1995], Hara and Belcher [2002, 2004], and Moon et al. [2004]. Among

them, Janssen [1991] successfully developed a wind-wave coupling approach that has been
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widely applied in many ocean wave models as wind-input source functions, such as the WAve

Model (WAM) [Komen et al., 1996], Simulating WAves Nearshore (SWAN) [Booij et al., 1999],

WAVEWATCH III [Tolman and Chalikov, 1996], and MIKE 21 SW [Sørensen et al., 2004].

However, it has been reported that Janssen [1991] overestimates the wind stress in strong-

wind conditions e.g. [Jensen et al., 2006]. The overestimation of wind stress at high wind speeds

was also found in WAVEWATCH III by using other wind-input source terms according to Moon

et al. [2004, 2009]. In order to avoid this, Jensen et al. [2006] introduced a cap to limit u∗/u10

to be in the range of 0.05 ∼ 0.06. Ardhuin et al. [2010] added a maximum value of z0 as 0.0015

m in Janssen [1991] wind-input source function to reduce possible unrealistic wind stresses

at high winds. Alternatively, a spectral sheltering mechanism was introduced to reduce the wind-

input at high frequencies [e.g. Banner and Morison, 2010]. The spectral sheltering mechanism

describes that longer waves absorb the turbulent stress from wind so that the growth of shorter

waves is reduced in the existence of longer waves [Chen and Belcher, 2000]. In the last three

decades, the sheltering mechanism has been discussed, observed, and verified by many stud-

ies [e.g. Makin and Mastenbroek, 1996; Kudryavtsev et al., 1999; Chen and Belcher, 2000; Hara

and Belcher, 2002; Makin et al., 2007]. One effort of introducing sheltering effect to the wind-

input source function was carried out by Banner and Morison [2010], who, instead of using

the total stress in Janssen [1991] wind-input source function, used the reduced stress which

equals to the total stress minus the wave-induced stress accounting for the cumulative effect

of wave number contribution. It was shown that the growth rate of high frequency waves was

reduced due to the sheltering effect. Another attempt of introducing the sheltering effect is by

using a Wave Boundary Layer Model (WBLM) [Makin and Mastenbroek, 1996; Hara and Belcher,

2002, 2004; Moon et al., 2004]. The WBLM not only takes into account of the momentum

conservation and sheltering effect, but also makes sure that the turbulent kinetic energy (TKE)

conserves at all levels in the WBL. The WBLM has been used by several studies [e.g. Moon

et al., 2004, 2009; Reichl et al., 2014]. Moon et al. [2009] showed that the use of reduced Cd

estimated from a WBLM [Moon et al., 2004] in WAVEWATCH III [Tolman and Chalikov, 1996]

improves the wave simulations during hurricanes. More recently, Chen and Yu [2016] improved

Moon et al. [2004] WBLM by including the energy dissipation due to the presence of sea spray

under idealized tropical cyclones.

The main objective of the present study is to improve the third-generation ocean wave

model SWAN under fetch-limited conditions on wave simulation and stress estimation by in-

troducing the WBLM to the Janssen [1991] wind-input source function. It should be pointed
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out that in the previous studies in the literature [e.g. Moon et al., 2004, 2009; Reichl et al., 2014;

Chen and Yu, 2016], the WBLM was used to calculate the surface stress, but was not used as

a wind-input source function for the wave model, and therefore the wave growth within the

WBLM was not consistent with the wave growth in the wave model. Thus, the momentum

loss from the atmosphere is not exactly the same as the momentum gained by the waves. In

this study, the WBLM and SWAN share the same wind-input source function, thus ensuring

the momentum flux is consistent. Accordingly, the white capping dissipation parameters are

re-calibrated to reproduce the fetch limited wave growth curves under a wide range of wind

conditions.

2 Background

In SWAN, the evolution of the wave spectrum is governed by the action balance equa-

tion. In deep water condition, it can be written as:

dN

dt
= Sin + Snl + Sds (1)

where N (σ, θ, ~x, t) = φ/σ is the action density spectrum, φ (σ, θ, ~x, t) is the energy den-

sity spectrum. σ, θ, ~x, t are the radian frequency, wave direction, spatial coordinate, and time

respectively. On the right hand side of equation (1) are the three source terms of wind-wave

generation and dissipation: wave growth by the wind Sin, non-linear four-wave interaction Snl,

and wave dissipation due to white capping Sds. In this study, we focus on the momentum ex-

change at the air-sea interface. Thus Sin will be investigated in details in Section 3.1. Accord-

ingly, Sds will then be modified (Section 3.2) to balance Sin to ensure the wave evolution to

be consistent with benchmark fetch-limited wave growth studies [e.g. Kahma and Calkoen, 1992;

Young, 1999] (hereafter KC92, Y99). The method for solving the Snl will be discussed in Sec-

tion 4.

2.1 Wind-input source function Sin

The wind-input source function is described as the growth rate multiplied by the action

density spectrum, Sin = βg (σ, θ)N (σ, θ). In this study, three expressions for the wave growth

(βg) in SWAN 41.01 [The SWAN Team, 2015] are used. One follows Komen et al. [1984] (here-

after KOM):

βg (σ, θ) = 0.25σ
ρa
ρw

(
28
u∗
c

cos (θ − θw)− 1
)

(2)
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where ρa and ρw are the air and water density, respectively, c is the phase velocity, u∗ is the

friction velocity, θw is the wind direction. The wave model is driven by the wind speed at 10

m (u10) above the mean sea level. u10 is transformed into u∗ through the drag relation:

u2∗ = Cdu
2
10 (3)

where Cd is the drag coefficient at 10 m. According to Zijlema et al. [2012]:

Cd =
(
0.55 + 2.97ũ− 1.49ũ2

)
× 10−3 (4)

where ũ = u10/uref , uref =31.5 ms−1.

The second expression for βg follows Janssen [1991] (hereafter JANS):

βg (σ, θ) = Cβσ
ρa
ρw

(u∗
c

)2
cos2 (θ − θw) (5)

where Cβ is the Miles constant, and it is described as a function of the non-dimensional crit-

ical height λ:

Cβ =
J

κ2
λ ln4 λ, λ ≤ 1, where

λ =
gz0
c
er, r = κc/u∗ |cos (θ − θw)| (6)

where κ = 0.41 is the von Kármán constant, g is the gravity acceleration and J = 1.2 is a

constant. JANS wave growth rate expression implicitly takes into account of the wave impact

to the air-sea momentum flux through a wind-wave coupling approach. In this approach, it is

first assumed that in neutral condition the wind profile above the sea surface keeps a logarith-

mic shape, and the roughness length above the sea surface is parameterized by Charnock re-

lation [Charnock, 1958]:

uz =
u∗
κ

ln

(
z

z0

)
, z0 = αu2∗/g (7)

where α is the Charnock parameter. Janssen [1991] described the Charnock parameter to be

dependent on the wave-induced stress (~τw):

α = α0

(
1− ~τw

~τtot

)−1/2
, α0 = 0.01 (8)

where ~τtot is the surface total wind stress, and ~τw is obtained from the integration of wind-

input source function:

~τw = ρw

∫ ∞
0

∫ π

−π
σ2Sin

~k

k
dθdσ (9)

where k is the wavenumber. The drag relation can thus be derived from equations (7) and (8),

and the total stress could be calculated from 10 m wind speed through u∗ =
√
Cdu10, where
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the drag coefficient:

Cd = [κ/ ln (10/z0)]
2 (10)

Relating equation (7) to (9) results in a stress table where ~τtot is a function of u10 and ~τw. It

should be noted that the original algorithm of SWAN for calculating the stress table would cause

numerical errors. In this study, this problem is solved by introducing the algorithm from WAM

(https://github.com/mywave/WAM) to SWAN. A more detailed description of this is given in

Appendix A.

A third choice of the wind-input source function is implemented by van der Westhuy-

sen et al. [2007] (hereafter WES). The expression of WES wind-input source function is based

on the laboratory and field observations [e.g. Plant, 1982] that for strong wind forcing (u∗/c >

0.1) βg is proportional to (u∗/c)
2, which is similar to JANS; whereas for weaker wind forc-

ing (u∗/c < 0.1) βg is proportional to u∗/c, which is similar to KOM. Through an analyt-

ical fit to the experimental dataset of Snyder et al. [1981] and Plant [1982], Yan [1987] pro-

posed the following expression for the growth rate:

βg (σ, θ) = D
(u∗
c

)2
cos (θ − θw) + E

(u∗
c

)
cos (θ − θw) + F cos (θ − θw) +H (11)

van der Westhuysen et al. [2007] refitted equation (11) to better match Snyder et al. [1981]’s

expression for mature waves, and the following parameter values are used: D = 4.0×10−5,

E = 5.52× 10−3, F = 5.2× 10−5, H = −3.02× 10−4.

2.2 White capping dissipation source function Sds

Over the last decade, efforts have been put to include physical parameters such as break-

ing probability, the dissipation rate per unit area etc. in the dissipation source term [e.g. Ard-

huin et al., 2010; Banner and Morison, 2010; Filipot and Ardhuin, 2012; Leckler et al., 2013].

However, since the main objective of the present study is to improve the wind-input source

function in SWAN, in this study, we use the standard white capping dissipation expression of

Komen et al. [1984], which could be written as:

Sds (σ, θ) = −Cds 〈σ〉
(
〈k〉2m0

)2 [
(1−∆)

k

〈k〉
+ ∆

(
k

〈k〉

)2
]
φ (σ, θ) (12)

where 〈σ〉 and 〈k〉 are the mean wave radian frequency and mean wave number respectively,

with 〈σ〉 = m0/
∫ ∫

σ−1φ (σ, θ) dθdσ and 〈k〉 =
[
m0/

∫ ∫
k−1/2φ (σ, θ) dθdσ

]2
, where

m0 =
∫ ∫

φ (σ, θ) dθdσ is the total wave energy. Cds and ∆ are dissipation parameters that

should be calibrated for each particular wind-input source function. For KOM Sin (equation

2), Cds = 2.5876,∆ = 1; for JANS Sin (equation 5), Cds = 4.5,∆ = 0.5.
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Dissipation source function of WES for deep water is written as:

Sds (σ, θ) = −Cds
(
B (k)

Br

)p/2√
gkφ (σ, θ) (13)

where B (k) =
∫

(dσ/dk)·k3φ (σ, θ) dθ is the azimuthal-integrated spectral saturation, Br =

1.75 × 10−3 is a threshold saturation level, and Cds = 5.0 × 10−5 is a dissipation coeffi-

cient. The exponent p is given by Alves and Banner [2003]:

p =
p0
2

+
p0
2

tanh

10

√B (k)

Br
− 1

 (14)

where p0 (σ) = 3 + tanh [26 (u∗/c− 0.1)].

3 Methodology

3.1 WBLM and the modified wind-input source function

In this study, the WBLM as developed by Hara and Belcher [2004] and Moon et al. [2004]

is implemented to modify the JANS wind-input source function. The WBLM is based on the

momentum conservation at the lower part of atmospheric boundary layer above the sea sur-

face, the Wave Boundary Layer. The total stress ~τtot(z) is constant with height within WBL

and equals to the sum of the turbulent stress ~τt(z) and wave-induced stress ~τw(z):

~τtot (z) = ~τt (z) + ~τw (z) = constant (15)

The wave induced stress is expressed as:

~τw (z) = ρw

∫ σz

σmin

∫ π

−π
βg (σ, θ)σ2N (σ, θ)

~k

k
dθdσ (16)

where σz =
√
gδ/z, δ = 0.01 [Moon et al., 2004], σmin is the minimum radian frequency

of the wave spectrum. Equation (16) means that the wave-induced stress at height z is equal

to the integration of momentum flux to the waves within the range of σmin < σ < σz . Con-

sidering the sheltering mechanism that the turbulent wind stress near the sea surface is reduced

by low frequency waves, the turbulent stress can be expressed by the combination of equa-

tions (15) and (16):

~τt (z) = ~τtot − ρw
∫ σz

σmin

∫ π

−π
βg (σ, θ)σ2N (σ, θ)

~k

k
dθdσ (17)

According to the sheltering mechanism, the turbulent stress rather than total stress contributes

to the wave growth. Thus, in this study, the growth rate function is expressed as a modified
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JANS (equation 5) which is proportional to the local friction velocity ul∗ =
√
|~τt (z) /ρa| in-

stead of the total friction velocity, u∗:

βg (σ, θ) = Cβσ
ρa
ρw

(
ul∗
c

)2

cos2 (θ − θw) (18)

The constant J in equation (6) is changed to 1.6 according to Banner and Morison [2010] in-

stead of the original of 1.2 in Janssen [1991].

The wind profile within the wave boundary layer is calculated from the kinetic energy

conservation equation:
d

dz
(~u · ~τtot) +

dΠ

dz
+
dΠ′

dz
− ρaε = 0 (19)

where u is the mean wind speed, Π and Π′ are the vertical transport of the kinetic energy due

to the wave-induced motions and the vertical transport of TKE, respectively, and ε is the vis-

cous dissipation of TKE. It is assumed that the wave-induced vertical transport of kinetic en-

ergy is mainly from the pressure transport [Hara and Belcher, 2004], which is equal to the en-

ergy flux into the surface waves:

Π (z) =

∫ σ

σmin

F̃w (σ) dσ (20)

where F̃w is the vertical decay function:

F̃w (σ) = ρw

∫ π

−π
βg (σ, θ) gσN (σ, θ) dθ (21)

The viscous dissipation rate is parameterized as in [Hara and Belcher, 2004]:

ε (z) =
|~τt (z) /ρa|

3
2

κz
(22)

Assuming that the gradient of the vertical transport of the TKE, dΠ′/dz, is small com-

pared to the other terms [Hara and Belcher, 2004], the wind profile near the sea surface can

be expressed as:

d~u
dz = u∗

κz
~τtot
|~τtot| , z ≥ gδ

σ2
min

d~u
dz =

[
δ
z2 F̃w

(
σ =

√
gδ/z

)
+ ρa

κz

∣∣∣~τt(z)ρa

∣∣∣ 32 ]× ~τt(z)
~τt(z)·~τtot ,

gδ
σ2
max
≤ z < gδ

σ2
min

d~u
dz = ρa

κz

∣∣∣ ~τνρa ∣∣∣ 32 × ~τν
~τν ·~τtot , zν ≤ z < gδ

σ2
max

(23)

where zν = 0.1 νa√
|~τν/ρa|

is the roughness length of the viscous sublayer where the wind speed

turns into zero, and νa is the air viscosity.

The calculation of WBLM starts with an initial estimation of ~τtot, and it calculates Sin,

~τw, and ~τt at each frequency (height) by equations (16) to (18), and then calculates the wind

profile by equation (23). The process repeats using the Newton-Raphson method until the wind
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speed at the reference height zref calculated from equation (23) equals to the provided wind

speed. In this paper, we use zref = 10 m. The efficiency of WBLM is highly related to how

many iterations it takes. During the experiments, most of the cases took 4 to 6 iterations to

find the solution, and the maximum number of iteration was set to 20.

3.2 Re-calibration of dissipation source function

When Sin is modified, the dissipation parameters in Sds as described in Section 2.2, Cds

and ∆, also need to be re-calibrated to make sure that the fetch-limited wave generation ex-

periments are consistent with benchmark studies. It is found that with constant Cds and ∆,

the slop of the fetch-limited wave growth curves are too low compared with the benchmark

studies of KC92 and Y99. Babanin et al. [2010] introduced an approach based on the phys-

ical constraints that the ratio of Sin and Sds could be described as a function of the wave de-

velopment stage. The relation of Sin and Sds can be written as:∫
Sds (σ) dσ = Rds

∫
Sin (σ) dσ (24)

where Rds is the ratio of the dissipation integral to the input integral. In Babanin et al. [2010],

Rds is parameterized as a function of inverse wave age u10/cp. However, with this parame-

terization, the WBLM as implemented in SWAN cannot reproduce the benchmark fetch-limited

wave growth curves of KC92 and Y99. Therefore, in this study, Rds is described as:Rds = 1− 0.15
(

10
u10

) 1
2 ·max

[
1.0, 1.53

(
5.2×10−7

Ẽ

) 1
4

]
, Ẽ ≤ ẼPM

Rds = 1, Ẽ ≥ ẼPM
(25)

where Ẽ = m0g
2/u410 is non-dimensional energy; ẼPM = 3.64×10−3 is the Pierson-Moskowitz

limit [Pierson and Moskowitz, 1964] (PM64). The details of the calculation of Rds are given

in Appendix B.

The new dissipation source function reads:

S+
ds (σ) =

Rds
∫
Sin (σ) dσ∫

Sds (σ) dσ
Sds (σ) (26)

where Sds is calculated from equation (12). Equation (26) can only modify the integrated mag-

nitude of Sds which is controlled by Cds. However, the spectral distribution in the high fre-

quency range which is controlled by ∆ still needs to be adjusted. Based on the tests of ∆ in

the range from 0 to 1, ∆ = 0.1 is chosen so that the balance of the source functions main-

tain a f−4 high frequency spectral tail for deep water condition following the arguments of

van der Westhuysen et al. [2007].

–9–
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3.3 Diagnostic part of the wave spectrum

Wave models such as WAM solves the action density spectrum within a frequency range

around the peak σmin ≤ σ ≤ σc using the action balance equation (equation 1). σmin is

the minimum radian frequency, and σc is the cut-off frequency. In WAM σc = min (2.5 〈σ〉 , σmax),

where 〈σ〉 is the mean frequency and σmax is the maximum frequency. Beyond σc, a high fre-

quency tail must be specified. SWAN uses a different approach than WAM, the cut-off fre-

quency in SWAN is always the same as the maximum frequency (σc = σmax). The high fre-

quency tail is solved diagnostically using a standard power spectra shape φ (σ, θ) = Rhσ
−5.

Rh is a coefficient that is determined so that the diagnostic part of the wave spectrum has a

smooth transition to the rest of the spectrum:

Rh = φ (σc, θ)σ
5
c = N (σc, θ)σ

6
c (27)

At frequencies higher than σc, the action density spectrum is solved by:

N (σ, θ) = Rhσ
−6 = N (σc, θ)

(σc
σ

)6
(28)

In the calculation of WBLM, a high frequency tail is also needed for the integration of wave

stresses (τw). The high frequency tail is proven to not only affect the wave spectrum evolu-

tion but also have a strong impact on the estimation of the drag coefficient [Reichl et al., 2014].

To avoid the constraint of the parameterized high frequency tail, in this study, the cut-off fre-

quency is setup to 10.5 Hz so that the source terms are calculated for a wide range of frequen-

cies. The sensitivity of WBLM to the choice of cut-off frequency is discussed in Section 6.

4 Experiment design

In this section, numerical experiments of fetch-limited wave evolution done in this study

are described. Such type of experiments have earlier been used by many to calibrate and val-

idate the performance of spectral wave models when new source terms were introduced [e.g.

Komen et al., 1984; Alves and Banner, 2003; van der Westhuysen et al., 2007; Gagnaire-Renou

et al., 2011]. The general idea of such experiments is to simulate the wave evolution along the

fetch under constant offshore wind in deep water condition. The wind direction is perpendic-

ular to a straight coastline. Fetch-limited wave evolution has been extensively investigated through

field and laboratory measurements [e.g. Hasselmann et al., 1973; Kahma and Calkoen, 1992;

Hwang and Wang, 2004; Young, 1999]. The evolution of wave energy and peak frequency over

–10–
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fetch can be described by the following two dimensionless relations [e.g. Young, 1999]:

{
Ẽ = Aex̃

Be

F̃p = Af x̃
Bf

(29)

where F̃p = fpu10/g is non-dimensional peak frequency and x̃ = xg/u210 is non-dimensional

fetch. Ae, Be, Af , Bf are parameters in the corresponding energy-fetch and frequency-fetch

relationship. In this study we choose the parameters from the benchmark studies of Kahma

and Calkoen [1992] (Composite, Ae = 5.2 × 10−7, Be = 0.9, Af = 2.18, Bf = −0.27)

and Young [1999] (Ae = 7.5 × 10−7, Be = 0.8, Af = 2.0, Bf = −0.25). It should be

noted that the benchmark studies normally apply to u10 ≤ 25 ms−1 and x ≤ 300 km due to

lack of measurements at higher wind speeds and longer fetches. Here we linearly extend them

to higher wind speed and longer fetches to investigate if the WBLM also applies to storm con-

ditions. Both storm conditions and fetch-limited waves have very young waves that dominate

the surface stress. Extending the benchmark studies to higher wind speeds and longer fetches

is debatable, however the estimates of drag with the WBLM for those winds have shown to

be within the measured range as shown in Section 5.4.

The one-dimensional SWAN model is used for the fetch-limited study. The spatial dis-

tribution of resolution (∆x) is set as follows. For fetch between 0 and 20 km, ∆x = 100 m;

between 20 km and 100 km, ∆x = 400 m; between 100 km and 300 km, ∆x = 1 km; between

300 km and 1000 km, ∆x = 4 km; between 1000 km and 3000 km, ∆x = 10 km. The fre-

quency dimension of the wave spectrum ranges from 0.01 Hz to 10.5 Hz with geometric pro-

gression, fn+1/fn = 1.1 giving a total number of frequencies of 73. When using JANS Sin,

the cut-off frequency (fc) varies with wind speed to make sure that the simulation remains nu-

merically stable. fc grows linearly from 0.45 Hz to 3.0 Hz for wind speed decreasing from

30 ms−1 to 5 ms−1; for u10 > 30 ms−1, fc = 0.45 Hz. The directional dimension of the

wave spectrum utilizes 36 directions with a constant spacing of 10◦. The wind speeds at 10

m are set to constant values between 5 to 60 ms−1. The simulations initiate from JONSWAP

spectrum with local wind speed and 100 m fetch. It runs for 72 hours with a time step of 1

min until the model reaches an equilibrium state. Note that, the combination of very large wind

and very long fetch (e.g. u10 of 60 ms−1 and fetch x of more than 500 km) is mostly of aca-

demic interest only.

Four different wind-input source functions are used in the experiments: KOM (equation

2), JANS (equation 5), WES [van der Westhuysen et al., 2007], and the one developed here,

WBLM (equation 18). For Sin with KOM, JANS, and WES, the corresponding dissipation pa-
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Figure 1. Two dimensional wave spectra in SWAN using KOM option with wind speed of 20 ms−1 at fetch

x = 1 km after 72 hours simulation. Sub-figure a) is in deep water condition (depth = 5 km); sub-figure b) is in

shallow water condition (depth = 5 m); sub-figure c) is in deep water after the modification with N(θ, σ) = 0

for |θ − θw| > 90◦; sub-figure d) is the significant wave height as a function of fetch in those three cases.

rameters use the standard setups as described in Section 2.2. For Sin with WBLM, the dis-

sipation parameters are described by equation (25) and (26).

In this study, it is found that using KOM in deep water condition, for fetches x ≤ 5

km, energy of the wave spectrum spreads too wide in direction space. Thus, it results in some

extra energy that propagate against the wind in the low frequency part of the wave spectrum

(for both 1D and 2D SWAN version). This phenomenon is clearly seen in Figure 1 a) that in

deep water condition (depth = 5 km), with u10 = 20 ms−1 and wind direction at 180◦, after

72 hours simulation, at 1 km fetch there is energy at directions θ < 90◦ and θ > 270◦ at

low frequencies. JANS, WES, and WBLM have similar phenomenon, but since the directional

spreading seems much narrower, the extra energy is much smaller and negligible. An addi-

tional test with KOM in shallower water condition was done using a water depth of 5 m and

the extra energy in low frequencies disappeared (Figure 1 b). Thus in real cases, such a phe-
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Figure 2. Wave spectra calculated by KOM and WBLM Sin with DIA and XNL Snl methods. The black

solid lines are calculated from Donelan et al. [1985] with fp estimated from Kahma and Calkoen [1992].

nomenon rarely happens since the near shore waters are mostly shallow. In this study, we use

the idealized deep water condition, so that it is necessary to remove the unrealistic extra low

frequency waves that propagate against the wind. We introduced a directional limiter that for

wave direction |θ − θw| > 90◦, N(θ, σ) = 0. The corresponding wave spectrum is shown in

Figure 1 c). Figure 1 d) presents the growth curves of significant height (Hm0 = 4
√
m0) as

a function of fetch in kilometer. It is seen that after introducing the directional limiter, the ex-

tra energy in short fetches is removed and the growth curves are closer to the benchmark stud-

ies of KC92 and Y99.

There are two methods in SWAN to solve the non-linear four-wave interactions in deep

water. One is the Discrete Interaction Approximation (DIA) method [Hasselmann and Has-

selmann, 1985], the other is a more exact method (XNL) which solves the original six-dimensional

Boltzmann integral formulation [van Vledder, 2006]. Both the DIA and XNL methods are tested

for KOM and WBLM for short fetches. The wave spectra at x = 5 km after 24 hours of sim-

ulation are shown in Figure 2. The difference in the spectra between XNL and DIA Snl meth-

ods at the high frequencies is significantly smaller than the difference between KOM and WBLM

Sin methods. The computation time of XNL method is about 200 times the DIA method dur-

ing this experiment. Considering the small difference in the spectra and huge difference in the

computation time, the DIA method was chosen for the other experiments in this study.
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5 Results

5.1 Fetch-limited wind-wave growth

Figure 3 shows Hm0 as a function of fetch, with 10 m wind speed u10 = 5 to 60 ms−1

presented in the sub-figures. In each panel, the benchmark wave evolution curves and the re-

sults from our experiments with different Sin (KOM, JANS, WES, and WBLM) are compared.

Table 5.1 presents the deviation of Hm0 from the KC92 curves which were calculated from

the numerical experiments with wind-input source function tested. For each wind speed and

fetch category, the values of smallest deviation are shown in bold text.

For 15 ms−1 ≤ u10 ≤ 40 ms−1, KOM tends to overestimate Hm0. The overestima-

tion increases with wind speed, and it reaches about 2 m for u10 = 40 ms−1. This is consis-

tent with the results presented by Huang et al. [2013], that SWAN using Wu [1982] Cd with

a cap of Cd ≤ 2×10−3 tends to overestimate the maximum Hm0 in the deep Gulf of Mex-

ico.

For u10 ≥ 15 ms−1, JANS significantly overestimates Hm0, the overestimation increases

with wind speed and fetch. This is consistent with Jensen et al. [2006]’s results which show

overestimation of Hm0 in extreme winds if a cap on the drag coefficient (Cmaxd = 3.6×10−3)

is not applied to JANS. There is a clear discontinuity in JANS growth curve around x = 50

km because the change in action density between two iterations is limited by Hersbach and

Janssen [1999] limiter.

For 15 ms−1 ≤ u10 ≤ 50 ms−1, WES overestimates Hm0 about 0.1 ∼ 1 m in short

fetches. This is consistent with the study of Bottema and van Vledder [2009], showing persis-

tent overestimations of Hm0 with WES for short fetches.

The green lines in Figure 3 and the bold text in Table 5.1 show that the results of WBLM

closely reproduce the KC92 curves for most wind speeds and fetches. Its good performance

does not vary with wind speeds and fetches, except the underestimation of Hm0 at very high

wind speed and very long fetches, namely u10 > 50 ms−1 and x > 500 km. Nevertheless,

its value is still between the KC92 and Y99 curves.

Figure 4 shows the peak wave frequency fp as a function of fetch. For u10 = 5 ms−1,

the original options of KOM, JANS, and WES in SWAN tend to underestimate fp for fetches

x ≤ 1 km, and overestimate fp for x ≥ 10 km. For 10 ms−1 ≤ u10 ≤ 50 ms−1, KOM gives

close agreement with the benchmark studies; WES and JANS underestimate fp for short fetches;

the underestimation of JANS is larger than WES, and it is proportional with the wind speed.

It is also clearly seen that WBLM gives the best agreement with KC92 for most of the cases,
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Figure 3. Significant wave height Hm0 as a function of fetch for 10 m wind speed u10 from 5 to 60 ms−1

presented in panels. The black solid and black dashed lines are from the benchmark studies of Kahma and

Calkoen [1992] and Young [1999], respectively. The colored lines represent the results of the numerical

experiments with wind-input source functions of KOM, JANS, WES, and WBLM, respectively.
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Table 1. The deviation of Hm0 (m) from KC92 curves calculated from the numerical experiments with

wind-input source functions of KOM, JANS, WES, and WBLM, respectively. The columns and rows are

fetches and wind speeds respectively. In each wind speed and fetch, the values of smallest deviation are

shown in bold text.

Fetch (km) 100 101 102 5× 102 100 101 102 5× 102

u10 (ms−1) Hm0(KOM - KC92) (m) Hm0(JANS- KC92) (m)

5 -0.003 -0.077 -0.273 -0.207 -0.014 -0.117 -0.284 -0.247

10 0.027 0.029 -0.409 -0.625 0.048 -0.118 -0.636 -0.721

20 0.086 0.303 0.718 -0.480 0.408 0.479 -0.456 -1.695

30 0.105 0.477 1.781 2.030 1.203 2.016 1.604 -0.090

40 0.046 0.410 2.073 3.312 2.057 4.172 3.683 2.062

50 -0.141 -0.089 0.973 1.243 3.278 7.449 7.253 5.773

60 -0.579 -1.369 -2.995 -7.294 4.871 12.948 15.195 12.856

Hm0(WES- KC92) (m) Hm0(WBLM- KC92) (m)

5 -0.006 -0.093 -0.325 -0.302 -0.005 -0.055 -0.100 -0.000

10 0.019 -0.012 -0.545 -0.890 0.012 -0.016 -0.290 -0.132

20 0.173 0.141 0.426 -1.206 -0.027 0.013 -0.162 -1.308

30 0.372 0.379 1.124 1.060 -0.069 -0.162 -0.309 -1.400

40 0.498 0.465 1.032 2.032 -0.099 -0.414 -0.448 -2.068

50 0.408 0.088 -0.287 -0.097 -0.133 -0.507 -0.846 -3.187

60 -0.159 -1.343 -4.015 -8.514 -0.163 -0.555 -0.455 -3.374
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Figure 4. Peak wave frequency fp as a function of fetch for 10 m wind speed u10 from 5 to 60 ms−1 pre-

sented in panels. The black solid and black dashed lines are from the benchmark studies of Young [1999] and

Kahma and Calkoen [1992] respectively. The colored lines represent the results of the numerical experiments

with wind-input source functions of KOM, JANS, WES, and WBLM respectively.
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Figure 5. Direction-integrated one-dimensional wave spectra for short fetch (sub-figure a 5 km) and long

fetch ( sub-figure b 3000 km). Both with wind speed (u10) of 10 ms−1. The black solid lines are calculated

from Donelan et al. [1985] with fp estimated from Kahma and Calkoen [1992].

and again its good performance remains with different wind speeds and fetches in compari-

son with the original options in SWAN. Considering both the results of Hm0 and fp, we con-

clude that WBLM outperforms KOM, JANS, and WES in the idealized studies with KC92 and

Y99 as references.

5.2 Wave spectrum and source function balance

To better understand how WBLM affects the wave growth, the wave spectrum from KOM,

JANS, WES, and WBLM are examined and presented in Figure 5, the corresponding source

function balance is presented in Figures 6 and 7 for short fetch (x = 5 km) and long fetch (x

= 3000 km), respectively. Both analyses correspond to u10 = 10 ms−1 and t = 72 hours. It

should be mentioned here that the cut-off frequency of KOM, WES, and WBLM are set to

10.5 Hz while JANS is set to 1.7 Hz, without using any cap for the drag coefficient. However,

if the cut-off frequency in JANS is set higher than 1.7 Hz, the drag coefficient will be signif-

icantly overestimated and the computation will become unstable.

Figure 5 a) shows that for short fetch, the high frequency part of the wave spectrum us-

ing WES and WBLM has a f−4 shape, which is consistent with Donelan et al. [1985] spec-

trum. A f−4 tail is also seen in the experiments of Leckler et al. [2013] when they apply the

breaking property based dissipation source function to WAVEWATCH III; JANS has a high
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Figure 6. Direction-integrated one-dimensional source functions for short fetch (5 km) and wind speed

(u10) of 10 ms−1. Sub-figure a) to d) are calculated from KOM, JANS, WES, and WBLM respectively.
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Figure 7. Direction-integrated one-dimensional source functions for long fetch (3000 km) and wind speed

(u10) of 10 ms−1. Sub-figure a) to d) are calculated from KOM, JANS, WES, and WBLM respectively.
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frequency spectrum shape of f−5; KOM has a high frequency spectrum shape lower than f−5.

Figure 6 a), b), c), and d) present the corresponding source function balance of KOM, JANS,

WES, and WBLM, respectively. Near the spectral peak, Sin of WBLM is lower than KOM,

JANS, and WES; Sin at the high frequency part are closely related to the spectral tail level.

Thus, Sin of WES at high frequencies are much larger than that of KOM because the spec-

tral tail level of WES is f−4 while that of KOM is lower than f−5. Similarly, although Sin

of KOM around fp are much larger than that of WBLM, Sin of WBLM at the high frequency

part are larger than KOM because the former has a tail level of f−4 while the latter has one

lower than f−5.

Figure 5 b) presents the one-dimensional wave spectrum at long fetch (x = 3000km) where

fp reaches Pierson-Moskowitz limit. For this case, WES and WBLM maintain a spectral tail

level of f−4; KOM and JANS maintain a spectral tail level of f−5 or lower. The correspond-

ing source functions are shown in Figure 7. Stot in the four panels are close to zero, which

means that the waves are fully developed. The spectral shape of WBLM Sin is similar to WES.

Both of them have higher wind-input than KOM and JANS in high frequencies.

From the results of Figures 5, 6 and 7, we conclude that the new pair of WBLM Sin

and Sds succeeded in reproducing Donelan et al. [1985] wave spectrum under idealized fetch-

limited condition and maintains a f−4 high frequency tail.

5.3 Stress balance and wind profile

In Section 3.1, we described the momentum conservation within the WBL (equation 15).

The wave-induced stress is integrated from Sin following equation (9). Figure 8 shows the stress

distribution and the wind profile within the WBL for u10 = 10 ms−1 (Figure 8 a, b), and u10

= 40 ms−1 (Figure 8 c, d) after 72 hours, respectively. The vertical distribution of ~τt, ~τw, and

~τtot show similar features as Makin and Mastenbroek [1996] (Figure 1 in their paper). The vis-

cous sublayer height and WBL height are marked as black squares and black circles, respec-

tively. Within the viscous sublayer, ~τt remains constant; above WBL, ~τt = ~τtot. ~τtot = ~τw+

~τt remains constant with height throughout WBL. The viscous sublayer height and WBL height

at u10 = 40 ms−1 are higher than those at u10 = 10 ms−1. The blue solid lines in Figure

8 b) and d) are the wind profiles in the lower 10 m of the atmospheric boundary layer. It shows

the same feature as Moon et al. [2004] (Figure 9 in their paper), that within the WBL, the wind

profiles are not logarithmic. Since z0 is a parameter that is usually used in the atmospheric
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Figure 8. Vertical distribution of stress and wind profile after 72 hours simulation at 3000 km fetch.

Sub-figure a) and b) are in 10 ms−1 wind speed condition; sub-figure c) and d) are in 40 ms−1 wind speed

condition; sub-figure a) and c) present wave-induced stress ~τw, turbulent stress ~τt, and total stress ~τtot = ~τt +

~τw vary with height; sub-figure b) and d) present the corresponding wind profiles. The WBL height, viscus

sub-layer (VBL) height, and equivalent z0 are mark as circles, squares, and diamonds, respectively.
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models, an equivalent z0 (marked by black diamonds) could be obtained by extending the log-

arithmic wind profile from higher levels into WBL (red dashed lines).

5.4 Drag coefficient

The dependence of Cd on u10, fetch x and simulating time t are displayed in Figure 9.

Figure 9 a) and b) present the Cd−u10 relationships simulated in this study with JANS and

WBLM Sin, respectively, including field measurements compiled by Soloviev et al. [2014], drag

relations from Wu [1982], Zijlema et al. [2012], and COARE3.0 [Fairall et al., 2003]. The red

solid line with triangles in Figure 9 a) shows the mean Cd calculated from JANS for each wind

speed. It is clear that JANS significantly overestimates Cd when compared with measurements.

The overestimation grows with increasing wind speed. Wu [1982] and COARE3.0 approxi-

mately follow the upper bound of the measurement data for u10 < 30 ms−1, but continues

to increase at stronger winds. Zijlema et al. [2012] approximately follows the trend of the mea-

surement data, because it is fitted from the similar dataset. However, it has no wave param-

eterization and cannot explain the variance of the measurement data for each wind speed. The

green solid line with inverted triangles in Figure 9 b) shows the mean Cd calculated from WBLM

for each wind speed. Cd of WBLM follows the trend of the measurement data and its distri-

bution gives a wide overlapping with the measurement data for u10 ≤ 40 ms−1, though the

variance of Cd at each wind speed is still small compared with measurements. Considering

that the waves are much more complex in the ocean compared with the idealized fetch-limited

experiments, the variance of Cd calculated by WBLM is expected to be larger in real appli-

cations. For u10 > 40 ms−1, Cd from WBLM does not decrease with u10. The decrease of

Cd with u10 has been attributed to different processes such as sea spray [e.g. Chen and Yu, 2016],

which needs further investigations.

Figure 9 c) and d) present the variation of Cd with fetch and simulation time, calculated

from WBLM for four wind speeds, respectively. The fetch and duration dependence of Cd cal-

culated from WBLM in this study show similar tendency as the Hwang [2005] model. Com-

pared with the Hwang [2005] model, Cd of WBLM has lower values, and peaks at longer fetch

and longer time. For fetches shorter than 10 km, Cd increases with fetch; for fetches longer

than 10 km, Cd decreases with fetch. Cd increases with time in the first 1 or 2 hours and de-

creases with time afterwards.
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Figure 9. Drag coefficient (Cd) as a function of u10 (a, b), fetch (c), and simulating time (d). Sub-figure a)

and b) present the distribution of Cd modeled by JANS (red triangle with bars) and WBLM (green inverted

triangle with bars) after 72 hours at all fetches, respectively. The black diamonds with error bars in sub-figure

a) and b) are from field measurements compiled by Soloviev et al. [2014]. The orange dashed lines are from

COARE3.0 [Fairall et al., 2003]. The purple solid lines with circles and blue solid lines with squares are from

KOM Sin [Wu, 1982; Zijlema et al., 2012]. Sub-figure c) and d) present Cd as a function of fetch after 72

hours and Cd as a function of simulating time at 3000 km calculated from WBLM.
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6 Discussion

In previous wave studies [e.g. Moon et al., 2004, 2009; Chen and Yu, 2016], the wave

boundary layer model was used in the estimation of Cd, but not used directly in the calcula-

tion of Sin in the wave model. Reichl et al. [2014] reported that Cd is very sensitive to the

energy level at the spectral tail and the calculation methods. From equations (16) to (18), it

is also clear that the estimated Cd is highly dependent on the shape of the wave spectrum and

the Miles constant, Cβ , in equation (18). At the same time, Sin of the wave model is highly

dependent on the magnitude of Cd. Thus, there will be uncertainties if the growth rate βg for

Sin of the wave model is different from the one used for the estimation of Cd as in many pre-

vious studies. In this study, the same βg is used for the calculation of Sin and Cd with the

WBLM.

The choice of the Miles constant, Cβ , affects the magnitude of Sin and Cd through in-

creasing or decreasing βg . In Hara and Belcher [2002], Cβ = 40; in Moon et al. [2004], Cβ

= 32; in Reichl et al. [2014] and Chen and Yu [2016], Cβ = 25. In this study, we use equation

(6) according to Janssen [1991], with the constant J = 1.6 according to Banner and Mori-

son [2010]. The non-dimensional growth rates, βg/f , as a function of ul∗/c calculated from

JANS and WBLM are shown in Figure 10. For comparison, the observations as compiled by

[Plant, 1982] are also plotted. Both JANS and WBLM show fair agreement with observations.

The dissipation source function indirectly affects the magnitude of Sin and Cd by in-

fluencing the wave spectrum and the energy level in high frequency tail. Although there have

been more physically based dissipation source functions developed in recent years in the lit-

erature [e.g. Ardhuin et al., 2010; Banner and Morison, 2010; Leckler et al., 2013], in this study,

we mainly concern the wind-input source function. Thus, we only re-calibrated the dissipa-

tion coefficients of Komen et al. [1984] instead of implementing a new dissipation source func-

tion in SWAN. A more physically based dissipation source function could be considered in

a future study.

WBLM is sensitive to the choice of the cut-off frequency for wind speed less than 10

ms−1 and for short fetches. Sensitivity experiments show that reducing the cut-off frequency

from 10.5 Hz to 1 Hz do not have significant impact on the calculation of wave growth for

wind speed higher than 10 ms−1. However, at wind speed of 5 ms−1, the wave growth is con-

siderably reduced when the 1 Hz cut-off frequency is used, since it is close to the peak fre-

quency.
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Figure 10. Dimensionless growth rate βg/f as a function of ul
∗/c calculated in SWAN using JANS and

WBLM respectively for u10 = 10 ms−1, x = 3000 km after 72 hours. Black marks are observations compiled

by [Plant, 1982].

7 Conclusions

In this study, a modification of Janssen [1991] wind-input source function was done by

introducing a wave boundary layer model (WBLM) [Moon et al., 2004] to SWAN. The WBLM

is based on the momentum and kinetic energy conservation at the air sea interface. The spec-

tral sheltering mechanism is implicitly taken into account. Accordingly, the dissipation param-

eters due to white capping are re-calibrated by introducing a ratio factor, Rds = Sin/Sds.

A new way of parameterizing Rds is developed so that the Hm0-fetch relations agree with bench-

mark studies and the wave spectrum maintains a f−4 high frequency tail. The WBLM is val-

idated through numerical fetch-limited wave evolution experiments. Results of Hm0-fetch and

fp-fetch relations are compared with benchmark studies [Kahma and Calkoen, 1992; Young,

1999] and numerical results of the other three original Sin in SWAN [Komen et al., 1984; Janssen,

1991; van der Westhuysen et al., 2007]. Results show that the growth curves simulated using

WBLM are in good agreement with the benchmark studies. The quality of the growth curves

with WBLM are independent of wind speed and fetch, and they are closer to the benchmark

curves than with the other three original Sin in SWAN (Figure 3 and 4). It indicates that the

WBLM could be applied to a wider range of wind speed and sea state conditions than the orig-

inal ones in SWAN.
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Figure A.1. Stress table [Janssen, 1991] used in SWAN (sub-figure a) and WAM (sub-figure b).

The WBLM explicitly calculates the momentum budget within the air-sea interface. The

simulated drag coefficients from the experiments are compared with both field and laboratory

measurements as compiled by Soloviev et al. [2014]. Results show that the WBLM provides

reliable drag coefficient estimation as well as wave estimation for fetch limited conditions un-

der a wide range of wind speed. The results also reflect the fact that the variation of measured

drag coefficients at a certain wind speed are related to the state of the underlying waves. Be-

sides the drag-wind speed dependence, clear drag-fetch and drag-duration dependences are also

found. For short fetch (x ≤ 10 km), drag coefficient increases with fetch; for longer fetch (x

> 10 km), drag coefficient decreases with fetch. In the first 1 or 2 hours, drag coefficient in-

creases with time, after that, it decreases with time.

The approach of applying WBLM in Sin can also be used in other ocean wave mod-

els. The drag coefficient or equivalent roughness length calculated in the WBLM can be fur-

ther used in wind-wave coupling model systems to improve the momentum flux estimation be-

tween wave and atmospheric models.

A: Stress table in SWAN

The drag relations according to the stress table of Janssen [1991] (from equation 7 to

equation 10) calculated by SWAN numerical algorithm and WAM (https://github.com/mywave/WAM)

numerical algorithm are compared in Figure A.1. Both are calculated outside SWAN with given

wind speed ranges from 0 to 80 ms−1 and ~τw ranges from 0 to 60 Nm−2. By comparing sub-

figures A.1 a) and b) it is noticed that the algorithm in SWAN causes numerical noise when
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the relation of u10 and ~τw reaches certain threshold. In this study, this is avoided by replac-

ing the SWAN algorithm with WAM.

B: Derivation of dissipation coefficient

The dissipation ratio Rds as described in equation (25) is parameterized as a function

of inverse wave age u10/cp in Babanin et al. [2010]. However, this parameterization cannot

reproduce the benchmark fetch-limited curves of KC92 [Kahma and Calkoen, 1992] and Y99

[Young, 1999] with WBLM in SWAN. Therefore, in this study, we developed a new method

to parameterize Rds as follows.

First we do the simulation using WBLM with constant Rds = 0.85. As shown in Fig-

ure B.1 a), dimensionless energy-fetch curves (hereafter curves) are close to the benchmark

study of KC92 for wind speed from 5 to 60 ms−1. It is very clear that the curves depend on

the wind speed. Similar wind speed dependence is also found using JANS and KOM (sub-figure

d). We found that such wind speed dependency could be removed by introducing a normal-

ized wind speed:

Ẽ
′

= Ẽ

(
10ms−1

u10

) 1
2

(B.1)

The curves after introducing
(

10
u10

) 1
2

(hereafter the unit of 10 ms−1 are removed) are shown

in Figure B.1 b). For Ẽ > 1.4 × 10−5, the curves are close to KC92. But for Ẽ ≤ 1.4 ×

10−5, the curves are lower than KC92. The curves for Ẽ ≤ 1.4×10−5 can be fitted by equa-

tion (29) with Ae = 2.217×10−7 and Be = 1.125, which is shown in Figure B.1 b) as the

black dashed line. Thus, the expected equation of Rds should contain two main terms:
(

10
u10

) 1
2

and Ẽ.

By integrating equation (1) over σ and θ (
∑
Snl = 0), in duration-unlimited condi-

tion ( ∂∂t = 0), the action balance equation can be written as:

∂E

∂x
=
∑

Sin −
∑

Sds = (1−Rds)
∑

Sin (B.2)

For Rds = 0.85:
∂E0

∂x
= 0.15

∑
Sin (B.3)

Considering Figure B.1 a) and b), the equation of the curves can be written as:

Ẽ0

(
10

u10

) 1
2

= A0x̃
B0 (B.4)

Assuming that we can find a Rds that reproduces KC92 curve:

Ẽk = Akx̃
Bk (B.5)
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10.

The black solid lines are from the benchmark study of Kahma and Calkoen [1992]. The colored lines de-

scribe the results of different numerical experiments; sub-figure a), b) and c) show the results of WBLM with

different Rds; sub-figure d) shows the results of JANS (dashed lines) and KOM (solid lines).
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where the values of Ak and Bk are from KC92. The combination of equations (B.2) and (B.3)

will result in the equation for Rds:

Rds = 1− 0.15
∂Ek
∂E0

(B.6)

From equations (B.4) and (B.5), we can find the solution for equation (B.6):

Rds = 1− 0.15

(
10

u10

) 1
2 BkẼk
A0B0

(
Ẽk
Ak

)−B0
Bk

(B.7)

For Ẽ ≤ 1.4 × 10−5, A0 = 2.217 × 10−7, B0 = 1.125; Ak = 5.2 × 10−7, Bk = 0.9. So

equation (B.7) becomes:

Rds = 1− 0.15

(
10

u10

) 1
2

· 1.53

(
5.2× 10−7

Ẽ

) 1
4

(B.8)

And for Ẽ > 1.4 × 10−5, A0 = Ak = 5.2 × 10−7, B0 = Bk = 0.9, thus equation (B.7)

becomes:

Rds = 1− 0.15

(
10

u10

) 1
2

(B.9)

Here we introduce a maximum function so that equation (B.8) transfers to equation (B.9) smoothly:

Rds = 1− 0.15

(
10

u10

) 1
2

·max

[
1.0, 1.53

(
5.2× 10−7

Ẽ

) 1
4

]
(B.10)

For Ẽ > 3.64×10−3, Rds =1; the value 3.64×10−3 is the Pierson-Moskowitz limit [Pier-

son and Moskowitz, 1964]. Results using the new Rds equation at wind speed ranges from 5

to 60 ms−1 are shown together in Figure B.1 c). It is clearly seen that with the new Rds equa-

tion, the result of dimensionless energy-fetch relation is significantly improved.

Acronyms

JANS Wind-input source function according to Janssen [1991].

KOM Wind-input source function according to Komen et al. [1984].

WES Wind-input source function according to van der Westhuysen et al. [2007].

WBL Wave boundary layer.

WBLM Wind-input source function of Janssen [1991] refined by WBL model.

PM64 Pierson-Moskowitz limit [Pierson and Moskowitz, 1964].

KC92 Fetch-limited wave evolution according to Kahma and Calkoen [1992].

Y99 Fetch-limited wave evolution according to Young [1999].

DIA Discrete Interaction Approximation method [Hasselmann and Hasselmann, 1985] for non-

linear four wave interaction.
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XNL Exact method [van Vledder, 2006] for non-linear four wave interaction.
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