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Abstract  

Abstract 
Bacteria are remarkable organisms with the capacity to adapt to new environments by remodelling 

their gene expression profiles. The specific genomic material of any bacterium determines its 

capacity for any gene regulatory repertoire. However, by evolutionary shaping, these regulatory 

networks are subjected to forces that allow the bacteria to break genomic constraints, remodel 

existing regulatory networks, and colonise new environments. While experimental evolution studies 

have documented that global regulators of gene expression are indeed targets for adaptive 

mutations, it is less clear to which extent these observations relate to natural microbial populations.  

The focus of this thesis has been to study how regulatory networks evolve in natural systems. By 

using a particular infectious disease scenario (human associated persistent airway infections caused 

by the bacterium Pseudomonas aeruginosa) as a natural model system, the work has focused on 

characterising a number of mutations in global regulators that are known to provide an adaptive 

advantage in this specific environment. The aim has been to provide a molecular explanation of the 

effects of the specific mutations in relation to regulatory network remodelling, and to provide 

insight into the extent of epistasis and evolutionary dynamics of these systems. 

The two studies presented in this thesis specifically deal with single amino acid substitutions or 

deletions in the sigma factors RpoD, AlgT, and RpoN. Through in vitro techniques, we 

characterised the direct molecular effects of the sigma factors’ abilities to interact with DNA and 

the core RNA polymerase (RNAP). By combining this approach with in vivo transcription profile 

data, Chromatin Immunoprecipitation-sequencing (ChIP-seq) data and artificial regulatory network 

modifications by in vivo sigma factor overexpression, we were able to investigate how the altered 

molecule-to-molecule interactions induce rewiring of transcriptional regulatory networks and create 

unexpected phenotypes. 

The results show that through remodelling of the respective regulatory networks, mutations fixed in 

global regulator genes facilitate the generation of novel phenotypes which again facilitate the shift 

in life-style of the bacterium from an environmental opportunistic pathogen to a human airway 

specific pathogen. These findings are not only applicable to P. aeruginosa specific studies, but 

suggest that, on a general level, evolutionary remodelling of regulatory network structures may be 

the key to ecological success in the wild. 
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Dansk resume  

Dansk resume 
Bakterier er bemærkelsesværdige organismer med en ekstraordinær evne til at tilpasse sig 

fremmede miljøer ved omprogrammering af deres gen ekspression. En bakteries DNA bestemmer 

kapaciteten for dens gen regulatoriske repertoire. Dog kan evolutionen formgive og ændre gen 

regulatoriske netværk så bakterier bliver i stand til at bryde arvemasse bestemte restriktioner, 

omprogrammere de eksisterende regulatoriske netværk og kolonisere nye miljøer. Eksperimentelle 

evolutions studier har påvist, at globale regulatorer er mål for adaptive mutationer, dog er det 

debatteret, hvor vidt disse observationer kan relateres til naturlige mikrobielle populationer. 

Fokusset i denne afhandling er således at afdække hvordan gen regulatoriske netværk udvikles i 

naturlige systemer. Ved at anvende kroniske luftvejsinfektioner med den opportunistisk patogene 

bakterie, P. aeruginosa som et naturligt modelsystem, er der fokuseret på at karakterisere specifikke 

mutationer i globale genetiske regulatorer, som er associeret med adaptation til det specifikke miljø. 

Formålet har været at afdække de molekylære mekanismer, der resulterer i de effekter som de 

specifikke mutationer har på omprogrammeringen af regulatoriske netværk, samt at afdække 

hvorvidt epistasi påvirker dynamikken i disse systemer.  

I denne afhandlings to studier er der specifikt blevet arbejdet med aminosyre substitutioner og 

deletioner i sigma faktorerne RpoD, AlgT og RpoN. Ved hjælp af in vitro eksperimentelle teknikker 

har vi karakteriseret de direkte effekter af mutationerne i forhold til evnen til at interagere med 

DNA og core RNAP. Ved at kombinere disse teknikker med in vivo gen ekspressions studier og 

Chromatin Immunoprecipitation-sequencing (ChIP-seq), samt artificielle modifikationer af 

regulatoriske netværk ved hjælp af in vivo sigma factor overekspression, har vi været i stand til at 

undersøge hvordan de ændrede molekyle-molekyle interaktioner inducerer en omprogrammering af 

gen regulatoriske netværk og resulterer i uforudsete fænotyper. 

Resultaterne viser, at gennem omprogrammering af de respektive gen regulatoriske netværk kan 

mutationer der er fixeret i globale genetiske regulatorer afstedkomme nye fænotyper. De nye 

fænotyper muliggør et skift i bakteriens livsstil fra værende en miljø-associeret opportunistisk 

patogen, til en luftvejsspecifik patogen der er optimeret til det nye miljø. Disse resultater er ikke 

kun interessante i forhold til andre specifikke studier af P. aeruginosa men kan bruges til at forstå 

hvordan en evolutionær drevet omprogrammering af regulatoriske netværk baner vejen for en 

organismes succes i et specifikt miljø. 
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Chapter 1 Introduction and thesis overview 

 

“Nature does not hurry, yet everything is accomplished” 

Lao-Tzu, Chinese Philosopher, 6th–5th century BC 

Chapter 1 
 

Introduction and thesis overview 
 
Ever since the beginning of life, organisms have evolved and diversified. A constant need to adapt 

to new and changing environments, as well as a need for responding to interacting species has 

resulted in the ongoing process of evolution that we with modern-day techniques and computing 

power can visualise and begin to unravel at much greater depth than just 15 years ago. One of the 

major goals in the field of evolutionary biology is to understand the evolutionary dynamics and 

genetic basis of adaptation. However, this field is not of an isolated interest for evolutionary 

biologists only. The greater technological advances we as humans produce, the more clear it 

becomes not only that a molecular and mechanistic understanding of evolution is central for our 

ability to comprehend the development of life on earth, but also that a molecular and mechanistic 

understanding of evolution will be the prerequisite of many new technological advances, such as 

understanding disease and infection scenarios, the possible and intimidating future use of human 

genetic manipulations, or industrial use of cell factories. This thesis specifically deals with the 

evolution of bacterial transcriptional regulatory networks, though most of the problems that will be 

touched upon relate to all species. The diversity and adaptability of bacteria is of great value in 

industrial applications. The same features, however, make them formidable disease causing agents 

that possess great potential of evading medical treatment. An in-depth understanding of the 

evolution and molecular interplay is therefore important for our ability to engineer and control these 

organisms. 

The focus of this thesis has been to increase our understanding of how bacterial transcriptional 

regulatory networks (TRNs) evolve, and how different molecular mechanisms co-operate to 

produce the most adapted phenotype for a given environment. The model system used for this 

investigation has been long-term chronic airway infections in Cystic Fibrosis (CF) patients caused 

by the opportunistic pathogen P. aeruginosa, and while the findings in this thesis may be specific 
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 Introduction and thesis overview 

for P. aeruginosa in the CF lung environment, the problems presented relate to all fields of 

microbial evolution and genetic adaptation, and are therefore of general interest to the 

microbiological society. 

 

1.1 Thesis outline 
This thesis is organised into seven chapters. While the current chapter (Chapter 1) introduces the 

thesis, Chapter 2 presents a general introduction to evolution and adaptation. This includes an 

introduction to varies forms of mutations that drive evolution, as well as evolution studies of both 

experimental and natural systems. Chapter 3 gives a more in-depth introduction to bacterial gene 

regulation, with special focus on the process of transcription, involving sigma factors, sigma factor 

competition, and factors that influence sigma factor competition. Chapter 4 introduces the concept 

of TRNs and their evolution, in particular related to the evolution and adaptation of P. aeruginosa 

to the CF lung environment. Chapter 5 provides an introduction to the investigations presented in 

this thesis, as well as the background and the thesis aim. Chapter 6 provides an overall conclusion 

and perspective of the thesis, and finally, Chapter 7 contains the research articles presented in this 

thesis in full length. 

 

  

2 
 



Chapter 2 Microbial evolution 

Chapter 2 
 

Microbial evolution 
 

Bacteria are incredible diverse organisms, with a fascinating capability to survive in even the most 

harsh and extreme environments. From hyperthermophiles thriving in high temperatures >80°C and 

halophiles thriving in high salt concentrations (2-5 M NaCl), to alkaliphiles and acidophiles thriving 

in high and low pH and even the bacterium Deinococcus radiodurans which tolerates radiation 

(Rothschild & Mancinelli 2001), it is incredible that these organisms, all build from the same 

building blocks as any other organism, are capable of tolerating such extreme environments that 

would immediately put an end to most other lifeforms. Bacteria are small organisms, not able to 

physically move great distances or at high speed. So how then, do they adapt to and colonise these 

extreme environments that no other organism is capable of enduring? 

Bacteria have an extraordinary ability to evolve and adapt to novel environments. Their small 

genome sizes and short life cycles enable them to reproduce fast, thus allowing evolutionary 

modification to settle at a pace that far exceeds e.g. the human genetic evolution. Two different 

mechanisms account for the ability to adapt to novel environments; phenotypic adaptation and 

genotypic evolution. Phenotypic adaptation involves alterations of gene regulation, and a resulting 

altered phenotype, but with no inheritable genetic changes. Phenotypic adaptation is thus a response 

that can be turned on, if needed, and is not inherited to later descendants of the population (Brooks 

et al. 2011). Phenotypic adaptation in the form of gene regulation will be discussed in depth in 

Chapter 3. Phenotypic adaptation is a quick response to short-term fluctuations in the environments, 

however, has limited capacity and may be inadequate during long-term adaptation to novel 

environments. In such cases, the organism is dependent on genotypic evolution, which involves 

genetic changes, that are inherited to descendants, thus resulting in an alteration of the population 

structure and a selection in favour of the individuals that are capable of producing the most 

beneficial phenotype for the given situation (Brooks et al. 2011). 

The following sections will introduce the reader to distinct types of genetic adaptation, as well as 

environmental forces driving genotypic adaptation, and how evolutionary biologists can study 

bacterial genetic evolution in natural and artificial systems.  
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Chapter 2 Microbial evolution 

2.1 Microbial genetic evolution 
With the advent of whole-genome sequencing researchers now have the tools to identify the 

underlying genetic steps of evolution, rather than being confined to the limitation of observing the 

evolved phenotypes. Genotypic evolution is any kind of genetic alteration or rearrangement that is 

inherited in the population. Point mutations in the existing genetic material, rearrangement of the 

existing genetic material, gene duplication events, acquisition of new genetic material, or deletion 

of genetic material all account for genetic evolution, though each kind facilitates evolution through 

a different mechanism and at different pace (Koskella & Vos 2015). Acquisition of new genetic 

material provides the bacteria with a fast mechanism of adapting to new environments through one 

single step by the uptake of genetic material that encodes for cellular functions encoded by several 

genes (Wiedenbeck & Cohan 2011). The large-scale insertions of genetic material often includes 

addition of genes coding for antibiotic resistance or virulence factors and is thought to play a major 

role in the emergence of epidemic strains and new species (Bryant et al. 2012).  

Acquisition of genetic material in the form of pathogenicity islands was for a long time thought to 

be the major mechanism of pathogen evolution, and while transfer of large sections of DNA indeed 

may result in evolution of pathogenicity, and emergence of pandemic outbreaks (Bryant et al. 

2012), it has become clear that evolution of especially bacterial pathogens are also largely driven by 

genomic deletion events (Merhej et al. 2013). Comparative genomics has shown, that during the 

transition from a free-living lifestyle to a host-associated pathogen, gene loss confer a fitness 

advantage, as well as loss of transcriptional regulators and disruption of ribosomal RNA operons 

seem to trigger the development of pathogenicity (Merhej et al. 2013) 

Deletion of genomic content has indeed been shown to be fitness-increasing in a population of 

Salmonella Enterica grown in rich media in a laboratory experiment (Koskiniemi et al. 2012), and 

also in natural systems, exemplified by the P. aeruginosa DK2 clone adapting to the Cystic Fibrosis 

lung environment, deletion of genetic material has shown to be driving factor for host adaptation, 

rather than acquisition of new DNA  (Rau et al. 2012). Especially the early stages of P. aeruginosa 

adaptation to the CF airway were characterised by loss of genomic material, with an 

overrepresentation of reduction of the accessory genome. 
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Chapter 2 Microbial evolution 

2.1.1 Point mutations 
While genomic deletions and acquisitions may produce instant additions or deletions of entire 

cellular functions during evolution, evolution in the form of point mutations is equally important, 

despite their relative small changes compared to the total genetic material. 

Point mutations in the existing genetic material is an evolutionary slow process and generally occur 

at low frequencies in the bacterial genome with an estimated mutation rate as low as 10-10-10-9  per 

base pair per replication (Barrick & Lenski 2013). Point mutations occur either as a substitution of 

one nucleotide with another (referred to as a single nucleotide polymorphism (SNP)), or as an 

insertion or deletion of a nucleotide (Bryant et al. 2012). Traditionally, point mutations have been 

difficult to study, as they require advanced sequencing technology to detect, and analyses that 

compare and detect point mutations among bacterial species and clones require both skill and 

computing power. However, the constant advances of Next Generation Sequencing (NGS) 

techniques have enabled detailed studies of all aspects of microbial evolution.  

Though point mutations may seem as small changes providing incremental evolutionary steps, 

evidence from recent studies point to, that evolution of pathogenic potential and host adaptation 

often involves rewiring of pre-existing regulatory networks in the pathogen genome, and that this 

rewiring is largely driven by non-synonymous mutations in global regulator genes (Renzoni et al. 

2011; Damkiaer et al. 2013; Flores et al. 2015). For example, it has been shown that in the group A 

streptococci, sequence variation in the control of virulence regulator (CovR) protein directly affects 

the transcriptome and virulence profile (Horstmann et al. 2011), and that a mutation in the sensor 

kinase LiaS results in an alteration, but not elimination of the LiaS protein function (Flores et al. 

2015). 

Often, the phenotypic consequences of emerging SNPs are enforced by epistasis, which is defined 

as interactions between two mutations at different loci that produce an effect on a phenotype that 

deviates from the sum of their individual effects (Elena & Lenski 2003). This was exemplified by 

Damkiaer et al. 2013, who investigated the phenotypic consequences of specific global regulator 

mutations, fixed in the P. aeruginosa DK2 lineage during evolution and adaptation to the CF lung 

environment. The study showed that only few mutations in global regulator genes are necessary to 

reflect the phenotypic transition from an opportunistic pathogen to a primary host-specific 

pathogen. 
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Chapter 2 Microbial evolution 

2.2 Studying microbial evolution – evolution experiments and natural 
model systems 
Historically, studying bacterial evolution has been difficult, partly due to technical difficulties that 

arise from the microscopic sizes of these organisms. Recent technological advances have not only 

enabled the study of bacterial evolution, it has also highlighted the importance of understanding 

how bacteria evolve and adapt to new environments, such as in disease scenarios (Koskella & Vos 

2015). With recent years´ technological advances, microorganisms have increasingly been used for 

evolution studies. Not only do microorganisms represent a field of special interest – 

microorganisms are important players in everything from industry to health and disease. They also 

represent the perfect organism for evolution studies. They reproduce quickly and asexually, they are 

easily grown and stored, and can be kept as frozen fossil records ready to be resurrected for further 

testing. Their genetic material is easily manipulated and with the technological advances during 

recent years, genomic, proteomic, transcriptomic, and a number of other high throughput techniques 

allow for a detailed mapping of not only genetic changes, but also downstream responses to these 

changes (Barrick & Lenski 2013). 

2.2.1 Evolution experiments 
In an evolution experiment, a population of microorganisms is established and propagated in a 

controlled environment, and ancestral samples, as well as samples from different timepoints of the 

experiments are taken and stored for subsequent analysis (Koskella & Vos 2015). By storing 

samples, the evolution rate and phenotypic consequences can be measured directly, e.g. by 

comparing fitness/growth rates of the evolved strain to the ancestor, and this can be directly linked 

to the genotypic evolution from sequencing of the ancestral and evolved genomes. While evolution 

experiments may present an artificial system that lack the complexity of most natural systems, they 

are suitable for answering fundamental evolutionary questions such as whether genetic adaptation 

continues indefinitely, even in a constant environment, how individual mutations contributes to 

fitness improvement, as well as how reproducible evolutionary changes are (Elena & Lenski 2003). 

The longest running experimental evolution study, initiated in 1988, studied the evolution of 

Escherichia coli during continuous serial propagations (Philippe et al. 2007). The evolved 

populations from this experimental evolution study have shown that parallel phenotypic changes, 

genetic parallelism and rewiring of biological networks are accessible on the level of structural 

genes, as well as global regulator genes (Hindré et al. 2012). 
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Chapter 2 Microbial evolution 

While evolution experiments have provided numerous important findings about genomic evolution 

and adaptation rates, how beneficial and neutral mutations accumulate, and also how small-scale 

specific genomic rearrangement can create extensive regulatory and metabolic remodelling that 

facilitates entirely new cellular capacities (Barrick et al. 2009; Blount et al. 2012) there are certain 

drawbacks from studying evolution in controlled experiments. As implied by the name, parameters 

such as population size, interacting organisms, nutrients, etc. are controlled (Elena & Lenski 2003). 

While this may be advantageous in certain ways, is also raises the question about, to which extent 

findings generated from evolution experiments are comparable to natural systems that exhibit a 

much greater variation in nutrients, interacting organisms, as well as includes sub-niches which 

allow for niche differentiation 

2.2.2 Cystic Fibrosis as a natural model system 
The CF lung environment represents a biologically relevant model system for which studying 

microbial evolution produces both relevant basic knowledge about microbial evolution, but also 

contributes important knowledge on infectious disease scenarios that may represent a significant 

improvement to the patients’ health; an improvement that may be expanded to other infectious 

diseases. CF is a genetic autosomal recessive disorder, affecting about 1 in 2500 individuals (Bye et 

al. 1994). In individuals suffering from CF, mutations in the cystic fibrosis transmembrane 

conductance regulator (CFTR) gene causes a defective chloride ion transport across epithelial cell 

surfaces, which leads to extremely viscous lung mucus (Welsh & Smith 1993). Whereas healthy 

individuals remove inhaled microorganisms from their airways by coughing, the viscous lung 

mucus of the CF lung impairs airway clearance, thus allowing microorganisms to colonise and 

adapt to the lung environment (Cutting 2014). 

The CF lung environment 
The CF lung is a highly heterogeneous environment and presents a number of stressful conditions 

for colonising bacteria. The dynamics of this system changes in both time and space, and forces 

incoming microorganisms to constantly adapt to these varying factors. Not only does the natural 

physiological environment present an environmental shift for the bacteria, such as a heterologous 

distribution of oxygen, salts, and nutrients, in addition they are constantly combatted by polymorph 

nuclear leukocytes (PMNs) and aggressive antibiotic treatment as well as stressed by reactive 

oxygen species and reactive nitrogen intermediates produced by the PMNs (Yang, Jelsbak & Molin 

2011; Folkesson et al. 2012). Compared to controlled evolution experiments, the CF lung 

environment is not kept constant, and nutrients as well as stress factors vary over time, creating a 
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Chapter 2 Microbial evolution 

constant need for a flexible adaptation that must accommodate both metabolic adaptation to the 

shift in nutrient distribution, adaptation to survive the aggressive antibiotic treatment as well as 

adaptation to survive, conquer or benefit from the interaction with other microbial species (Sousa & 

Pereira 2014). 

Microbiology of the CF lung 
The most frequent colonisers of the cystic fibrosis lung are P. aeruginosa, Haemophilus influenza, 

and Staphylococcus aureus with  P. aeruginosa as the dominant pathogen present in about 80% of 

adult CF patients (Harrison 2007). Microorganisms entering the lungs initially establish an 

intermittent colonisation of the airways. This colonisation can be combated with aggressive 

antibiotic treatment, as well as reoccurring eradication and emergence of bacterial strains. However, 

intermittent colonisation always transitions into a chronic infection, originating from bacterial 

seeding from the sinuses where the bacteria have survived and adapted to their new environment 

(Figure 1) (Folkesson et al. 2012). This chronic infection state is characterised by continuous 

presence of P. aeruginosa, chronic inflammation and PMNs that lead to respiratory failure with 

extensive airway destruction (Folkesson et al. 2012). 

 

 

 

 

 

 

 

 

Figure 1. Generalised course of the CF airway colonisation and infection with P. aeruginosa. 

(A) An environmental strain of P. aeruginosa invades the CF airways and initiates colonisation of 

both lungs and sinuses. (B) During aggressive antibiotic treatment as well as attack from the host 

immune responses, the lung colonisation is eradicated. However, the sinuses provide a more 

protected environment for the bacteria, where they are thought to be able to colonise and adapt to 

the new environment. (C) At a later stage, the bacteria from the sinuses, now adapted to the new 

environment, are able to seed the lungs and establish a chronic infection. Adapted from (Folkesson 

et al. 2012). 

A B C 
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2.2.3 Evolution of P. aeruginosa in the CF airway 
As mentioned, adaptation of P. aeruginosa to the CF lung involves interaction with a more varied 

and interchangeable environment than those present in controlled laboratory experiments, and 

clinical isolates sampled from the same patient at the same time exhibit phenotypic variety (Mowat 

et al. 2011). Even though the extent of phenotype diversity varies between patients, a number of 

specific phenotypes are repeatedly observed in clinical sample from the CF lung. These CF evolved 

phenotypes are as mentioned a product of the specific environments that exert an evolutionary force 

on the bacteria. 

A common P. aeruginosa CF evolved phenotype is the mucoid phenotype. The mucoid phenotype 

is a result of an overproduction of the exopolysaccharide, alginate, which results in a biofilm-like 

colony morphology of P. aeruginosa. The overproduction of alginate protects P. aeruginosa from a 

number of factors such as inflammatory effects, decreased phagocytosis by PMNs and 

macrophages, and reactive oxygen species (ROS) (Lyczak et al. 2000). The mucoid phenotype is 

unstable in vitro, and is often observed to revert back to a nonmucoid phenotype, suggesting that 

this is a specific CF evolved trait (Ciofu et al. 2001). The genetic machinery required for alginate 

production is an inherent feature of the P. aeruginosa genomic potential, and switches in this 

phenotype often arises from point mutations that remodel existing regulatory networks. Regulation 

of alginate production and the emergence of the mucoid phenotype is a recurring subject in this 

thesis, and a more in-depth discussion of the genetic basis for alginate production is provided in 

Chapters 3 and 4. 

Other common CF evolved traits are the development of antibiotic resistance and loss of virulence 

factors. Antibiotic treatment is used extensively during infections of CF patients, and P. aeruginosa 

is intrinsically resistant towards many antibiotics due to low outer membrane permeability, and the 

presence of efflux pumps, and mutations in regulators of efflux pumps typically lead to their 

overexpression, causing high levels of antibiotic resistance (Poole 2001). Loss of virulence factors 

includes flagella, type IV pili, as well as a number of secreted factors such as proteases, 

siderophores and factors of the type III secretion system. Loss of virulence factors arise through 

mutations affecting global regulators such as a number of sigma factors and the quorum-sensing 

regulators, Vfr and LasR (Smith et al. 2006; Yang, Jelsbak, Marvig, et al. 2011). With the large 

genetic repertoire of P. aeruginosa, it is clear that much of the evolution of this bacterium in the CF 

environment is dependent on an extensive remodelling of regulatory networks and gene expression 
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levels, and that only few mutations in global gene regulators cause large disruptions of the 

transcriptional regulatory networks with resulting epistatic effects (Damkiaer et al. 2013).   
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Bacterial gene regulation 
 

Bacterial gene regulation is the process ensuring a bacterium to express the appropriate genes, at the 

right time, at the exact needed amount. At any time, an immense number of regulatory factors 

secure that each cell produce only the absolutely needed number and kind of mRNA and proteins. 

Being the omnipresent machinery of the cell, it is obvious that the nature and ways of genetic 

regulation must be as complex and extraordinary as bacteria themselves.  

The types of regulatory factors controlling gene regulation and expression in bacteria seem never-

ending. Proteins such as sigma factors, transcription factors (TFs), and two-component systems 

(TCS), DNA, non-coding RNA, small inhibitory RNA, micro RNA, as well as a number of signal 

molecules such as guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), 

collectively referred to as ppGpp herein, all assist in controlling cellular processes. While it is far 

beyond the aim of this thesis to introduce a detailed description of the entire genetic regulatory 

machinery, the following sections will provide an overview of general bacterial gene regulation and 

focus in detail on a smaller subset of genetic regulators, those´ whose functions have been studied 

in the appended research papers, and those whose´ function is directly related to the process of gene 

transcription. 

3.1 Transcription 
Transcription is the process of transcribing DNA to RNA. The process is initiated by the DNA 

directed RNA polymerase, RNAP. The RNAP is a large enzyme consisting of 6 subunits (α2ββ’ωσ) 

and capable of initiating transcription from promoter sequences. The catalytic machinery capable of 

polymerising long RNA chains resides within the ββ’α2ω complex, whereas the σ subunit provides 

translational direction to the RNAP enzyme, directing it to specific promoters of genes that need 

expression (Burgess & Travers 1969). A RNA polymerase complex devoid of the σ factor subunit is 

denoted as the core RNAP, whereas the core RNAP in complex with the σ factor is denoted holo 

RNAP. 

Transcription from a gene is initiated when the core RNAP associates with the σ factor to form the 

holo RNAP (Figure 2.a) and thereafter recognises and binds to the promoter sequence (Figure 2.b).  
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After binding to the promoter in this stable closed complex, the holo RNAP forms an open complex 

by separating the double stranded DNA and initiates elongation (Figure 2.c-e). The growing RNA 

strand produces unfavourable kinetics constrains on the holo RNAP, and the sigma factor is 

released (Figure 2.f) (Gill et al. 1991). The core RNAP is thus able to slide along the DNA while 

producing a growing RNA chain. After release, the sigma factor is again able to associate with a 

new core RNAP and directing transcription from a new promoter, a process known as the sigma 

cycle (Mooney et al. 2005; Raffaelle et al. 2005).  

 

 

Figure 2. Representation of bacterial transcription initiation by the holo RNAP complex and 

the sigma cycle. Transcription is initiated when a sigma factor from the cellular pool gains access 

to, and binds the core RNAP (a). The resulting holo RNAP then recognises and binds a sigma-

specific promoter sequence (b). The holo RNAP then forms an open complex by separating the 

double stranded DNA and initiates elongation (c-e). The growing RNA strand produces 

unfavourable kinetics constrains on the holo RNAP, and the sigma factor is released (f), after which 

the core RNAP is again available for complex formation to a sigma factor. Modified from 

(Österberg et al. 2011). 

3.1.1 Sigma factors 
While the 5 subunits forming the core RNAP are highly conserved among bacteria and exist as a 

single type, the number of different types of σ subunits varies greatly between bacterial species, 
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from only 1 in Mycoplasma sp. to an astonishing 109 sigma factors in the Gram-negative 

myxobacterium Sorangium cellulosum (Gruber & Gross 2003; Han et al. 2013). Sigma factors are 

multi-domain proteins that, based on sequence alignment, can be divided into 2 major families, σ70 

and σ54, which display little sequence conservation (Merrick et al. 1987).  

σ70 family structure and mechanism 
The σ70 family is a broad family that, based on sequence homologies, can be further subdivided into 

4 groups (Lonetto et al. 1992). While all members of this family recognise the classic core 

recognition -35/-10 promoter element, the different specific consensus sequences are the core 

determinant of each sigma factor´s promoter specificity and ability to direct transcription from 

specific genes (Helmann & Chamberlin 1988). 

Group I represents the primary sigma factors involved in housekeeping functions and indispensable 

for growth. The housekeeping sigma factor, σ70, (in E. coli and P. aeruginosa, this enzyme is 

denoted RpoD), belongs to group I. Group II comprises sigma factors that are dispensable for 

growth, but still closely related to group I sigma factors and is represented by the sigma factor 

regulating cellular responses to stress, RpoS. Group III sigma factors control cellular processes such 

as responses to heat shock, sporulation and flagellar biosynthesis. The last group, group IV sigma 

factors, are sigma factors that are more distantly related in terms of sequence analysis as they lack 

some regions present in group I-III sigma factors. Sigma factors from group IV, also known as 

extracytoplasmic functioning sigma factors (ECF), are involved in controlling responses to cellular 

stimuli and membrane functions. Group IV sigma factors represent a stripped down version of 

group I-III sigma factors and contain only regions 2 and 4, whereas group I-III contain 4 structural 

domains (Figure 3) (Lonetto et al. 1992; Gruber & Gross 2003; Österberg et al. 2011). 

Figure 3 shows an illustration of the domain organisation of sigma factors belonging to the σ70 

family. Region 1 is a less conserved region, with an auto inhibitory domain that inhibits DNA 

binding in free σ70 (Gruber & Gross 2003). Region 2 is subdivided into 4 regions each involved in 

functions including binding to the core RNAP (region 2.1), melting of DNA (Region 2.3), and 

recognition of the -10 and -35 promoter element (region 2.4 and region 4.2) (Lesley & Burgess 

1989; Gruber et al. 2001; Burgess & Anthony 2001; Gruber & Gross 2003). 
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Figure 3. Schematic representation of the regions of sigma factors belonging to the σ70 family. 

(A) Representation of the structural domains composing group I-III sigma factors with regions 1-4 

as well as linker regions. (B) Representation of the structural domains composing group IV sigma 

factors with only regions 2 and 4. Inspiration from (Gruber & Gross 2003; Österberg et al. 2011). 

The role of region 3 is less well defined. The region is divided into two subregions, 3.1 and 3.2, 

which have been appointed several functions such as the binding of initiating NTPs, RNA priming, 

and promoter recognition, opening, and escape  (Severinov et al. 1994; Kulbachinskiy & Mustaev 

2006; Pupov et al. 2014). Specific amino acid substitutions of region 3.2 have also been linked to 

the suppression of growth defects of an E. coli ppGpp° strain, as well as being involved in sigma 

affinity for the core RNAP (Zhou et al. 1992; Hernandez & Cashel 1995; Cashel et al. 2003). 

Besides being a major determinant for core binding (region 4.2), region 4 is involved in binding to 

the -35 promoter region (region 4.2) (Sharp et al. 1999; Burgess & Anthony 2001). 

σ54 family structure and mechanism 
The σ54 family consists only of the σ54 protein denoted RpoN in E. coli and P. aeruginosa. Little 

sequence homology exists between the σ54 family and the σ70 family (Merrick et al. 1987), and their 

regulatory mechanisms differ from those of the σ70 family members in regard to both promoter 

recognition and the mechanism of transcription initiation. 

The σ54 sigma factors recognise consensus promoter signatures consisting of conserved GG and GC 

residues at the -24/-12 position (Taylor et al. 1996; Buck et al. 2000), and while the σ70 family 

sigma factors are not able to bind DNA without initial holo RNAP complex formation, the σ54 

sigma factors are able to directly bind to promotor DNA (Buck & Cannon 1992). After DNA 

binding, the σ54 –DNA complex associates with the core to form the holo RNAP in an inactive, 

closed complex. Transition to an open, active complex is facilitated by binding of a bacterial 

Enhancer Binding Protein (bEBP) that via ATP hydrolysis creates an open complex is able to 
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initiate transcription (Studholme & Dixon 2003). bEBPs bind 80-150 nucleotides upstream the -12/-

24 promoter sequence, and require an Integration Host Factor (IHF) to bind DNA, which facilitates 

a loop that brings the bEBP in physical contact with the inactive σ54 holo–DNA complex, illustrated 

in Figure 4 (Shingler 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Regulatory mechanisms of σ54 dependent transcription at -12/-24 promoter 

sequences. A: The σ54 binds the DNA the promoter sequence and forms the σ54 holo-DNA 

complex. 80-150 nucleotides downstream this site, the specific bEBP binds to an upstream 

activating sequence (UAS). B: An IHF binds DNA and facilitates DNA looping, which brings the 

bEBP in physical contact with the σ54 holo-DNA complex and facilitates ATP hydrolysis. C: 

Finally, the ATP hydrolysis favours open complex formation and transcription is initiated. Modified 

from (Dixon & Kahn 2004) 

A 

B 

C 
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The structure of the σ54 family is composed of three structural domains (Figure 5). Region 1 is 

involved in interaction with bEBPs, as well as inhibition of DNA binding. Region 2 is a less 

conserved region and variable in size in different organisms. This linker region is flexible and 

relocates during RNA synthesis. Region 3 consists of a domain involved in core RNAP binding, a 

helix-turn-helix (HTH) motif involved in interaction with the -12 promoter region, as well as the 

RpoN box, involved in interactions with the -24 promoter sequence (Yang et al. 2015).  

 

 

Figure 5. Schematic representation of the three regions composing σ54. Regions involved in 

bEBP binding, core interaction, and DNA binding are marked above and below the figure. 

(Österberg et al. 2011; Yang et al. 2015). 

3.2 Regulation of sigma factor activity 
The regulatory potential stemming from the vast numbers and classes of sigma factors alone 

constitutes a great potential for balancing regulatory responses to environmental fluctuations. But 

how, then, does the cell ensure proper control between the numbers and kinds of sigma factors that 

form holo RNAP and thus activate transcription? The following sections dedicated to descriptions 

of systems and mechanisms that ensure just this: To make sure that only the exact number and kind 

of sigma factors needed to perform a distinct transcriptional activity is allowed access to the core 

RNAP. 

3.2.1 Sigma factor competition 
The reversible binding of sigma factors to the core RNA polymerase allows for competition 

between the different sigma factors for the core RNA polymerase. While association of the 

housekeeping sigma factor for the core RNAP is favoured by the numbers of housekeeping sigma 

compared to alternative sigma factors, bacteria modulate the activity of the alternative sigma factors 

through several strategies such as anti-sigma factors, 6S RNA, and a range of transcriptional 

regulators (e.g. activators or inhibitors). By shifting the outcome of sigma factor competition for the 

16 
 



Chapter 3 Bacterial gene regulation 

core, these modulators help to redirect the transcriptional profile of the cell to accommodate a given 

situation (Mauri & Klumpp 2014). 

The model of sigma factor competition has been supported by both in vitro and in vivo experiments 

which find that both altered concentrations of different sigma factors or reduced binding affinities to 

the core RNAP modulate the transcription profile. For example, overexpression of one sigma factor 

results in the downregulation of genes controlled by another sigma factor (Hicks & Grossman 1996; 

Farewell et al. 1998; Yin et al. 2013), and several cases of mutations in sigma factor encoding genes 

have reported that mutations decrease the affinity to the core RNAP, thereby lowering transcription 

activity from genes controlled by the specific sigma factor (Zhou et al. 1992; Zhou & Gross 1992). 

Furthermore, the relative binding affinities between 6 E. coli sigma factor subunits to the E. coli 

core RNAP were determined, and it was shown that incubating a sigma factor subunit with a 

relatively higher affinity for the core RNAP with a sigma factor with lower affinity for the core 

RNAP did not result in displacement of the high-affinity sigma factor (Maeda et al. 2000).  

Sigma factor competition, and therefore, the transcriptional profile of the cell is as mentioned 

dependent on both the affinities of a sigma factor to the core RNAP, as well as the actual numbers 

of molecules present in a cell at a given time. Measuring binding affinities between two proteins is 

at least conceptually simple, and the absolute affinities between sigma factor subunits and the core 

RNAP have been determined in a number of studies (Ferguson et al. 2000; Maeda et al. 2000; 

Rollenhagen et al. 2003; Ganguly & Chatterji 2012). It is clear from those studies that while each 

sigma factor subunit varies in the affinity to the core RNAP, the experimental conditions such as 

temperature and salt concentrations are the most important parameters in these studies, and 

estimating the exact numbers of any given sigma factor and core RNAP that is biologically 

available for competition is an even more complicated task. 

For example, the numbers of core RNAP available to interact with a certain sigma factor are 

realistically a fraction of the total number of RNAP, because a minor number of core RNAP is 

already bound to a sigma factor, and a large number of core RNAP is unavailable for sigma 

competition as they are already engaged in transcription elongation (Mauri & Klumpp 2014). 

Despite disagreement on the total numbers, most results seem to be in agreement that the total 

number of sigma factor molecules exceed that of RNAP, thus creating competition among sigma 

factor subunits for binding to the core RNAP (Laurie et al. 2003; Nyström 2004; Grigorova et al. 

2006; Mauri & Klumpp 2014). 
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3.2.2 Factors influencing sigma factor competition 

Anti-sigma factors 
While sigma factors control the activation and activity of certain promoters, their own activity is 

controlled by a group of regulatory proteins referred to as anti-sigma factors, by a mechanism that 

ensures a fast and robust transcriptional control to sudden environmental changes. Anti-sigma 

factors exist either as free, cytoplasmic proteins, or as membrane bound, extra-cytoplasmic 

functioning anti-sigma factors (Hughes & Mathee 1998). Free, cytoplasmic anti-sigma factors 

function by directly binding the sigma factor at the core-interacting regions, thereby preventing 

formation of the holo RNAP. An example of this is the sequestering of the E. coli RpoD by its anti-

sigma factor Rsd through interaction with both RpoD region 2 and region 4 (Dove & Hochschild 

2001). An Rsd orthologue, AlgQ, has been identified in P. aeruginosa. Activity of AlgQ is required 

for activation of the genes involved in alginate biosynthesis (Deretic & Konyecsni 1989), and the 

knowledge that AlgQ interacts directly with P. aeruginosa RpoD provides a direct link for 

transcriptional control by anti-sigma factors (Dove & Hochschild 2001). 

Membrane bound, extra-cytoplasmic functioning anti-sigma factors exercise their inhibitory 

function differently than those of the free cytoplasmic anti-sigma factors. The membrane bound 

anti-sigma factors control the activity of ECF sigma factors and function via a mechanism known as 

regulated intermembrane proteolysis (RIP), and contain a periplasmic sensor domain and a 

cytoplasmic sigma factor binding domain (Hughes & Mathee 1998; Paget 2015). In P. aeruginosa 

this is exemplified by inhibition of the ECF sigma factor AlgT by the anti-sigma factor MucA and 

its complex forming partner, MucB. MucA spans the inner membrane of P. aeruginosa. Its C-

terminal domain in the periplasmic space binds another protein, MucB, which protects MucA from 

proteolytic degradation and sensor protein. The N-terminal of MucA binds AlgT, thus inhibiting it 

from interacting with the core RNAP (Schurr et al. 1996; Mathee et al. 1997; Cezairliyan & Sauer 

2009). Stress signals, such as incorrectly folded proteins in the membrane leads to proteolytic 

cleavage of MucA and MucB, thereby release of AlgT and activation of the AlgT regulon (Damron 

& Goldberg 2012). The activity of the Anti-sigma factors themselves is regulated by a variety of 

mechanisms, spanning from proteolytic degradation, as in the case of MucA, to export out of the 

cell. A complete description of the regulation of the anti-sigma factors themselves is, however, 

beyond the scope of this thesis. 
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ppGpp  
While sigma factors compete directly with each other for binding to the core RNA polymerase, 

ppGpp is believed to indirectly affect the competitive ability of many sigma factors (Jishage et al. 

2002; Laurie et al. 2003; Magnusson et al. 2005; Dalebroux & Swanson 2012). ppGpp is a 

nucleotide-based secondary messenger, and the effector molecule of the stringent response. The 

stringent response is the transcriptional response to limiting nutrients, which ensures a rapid 

reallocation of cellular resources by stopping the synthesis components used for growth and cell 

proliferation, and in turn activating the production of factors that are crucial for stress resistance and 

amino acid synthesis (Durfee et al. 2008; Dalebroux & Swanson 2012). 

Under non-stressful conditions, ppGpp is maintained at minimal levels in the cells. However, when 

facing nutrient starvation, ppGpp is produced from the ribosome associated ppGpp synthases, RelA 

and SpoT, to start producing ppGpp (Haseltine & Block 1973). ppGpp exerts its action through a 

number of different mechanisms, many of which specific molecular details still need to be 

unravelled. A general consensus is, however, that it indirectly modulates sigma factor competition 

and redirects transcription from the majority of genes controlled by RpoD involved in growth, and 

instead directs transcription to genes controlled by alternative sigma factors involved in amino acid 

synthesis and stress responses (Österberg et al. 2011). Some evidence points to the fact, that at least 

one of the outcomes of ppGpp is to lower the affinity for RpoD to the core, thus remodelling sigma 

factor competition and allowing alternative sigmas to compete for the core RNAP machinery 

(Hernandez & Cashel 1995; Hernandez & Cashel 1995; Cashel et al. 2003).  

Several in vitro studies also point to ppGpp as having a sigma factor competition modifying 

function. For example, it has been shown that ppGpp in vitro reduces the ability of RpoD to 

compete for core RNAP against RpoH, the sigma factor required for the normal expression of heat 

shock genes, that in vivo, RpoH and RpoS display a decreased affinity for core RNAP compared to 

RpoD in the absence of ppGpp (Jishage et al. 2002), and that ppGpp is involved in regulation of 

RpoN transcription (Laurie et al. 2003; Bernardo et al. 2009), though not necessarily directly. Direct 

involvement of ppGpp in concert with its potentiator DksA has also been suggested for AlgT 

mediated transcription (Costanzo & Ades 2006; Costanzo et al. 2008).  

A model that explains the function of ppGpp as altering sigma factor competition directly is 

however, difficult to unite with recent high resolution crystal structures showing that ppGpp 
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binding to the E. coli RNA polymerase does not involve RpoD. Rather, ppGpp binds at the interface 

between the β’ and ω subunits (Ross et al. 2013; Zuo et al. 2013).  

Direct remodelling of sigma factor competition and a lowered affinity of RpoD to the core RNAP is 

further in contrast to the fact that in situations of high ppGpp concentrations, genes involved in 

amino acid synthesis are upregulated, while genes involved in ribosomal RNA production are 

inhibited (Paul et al. 2005). As both classes of genes are controlled by RpoD, the differential 

regulation of these genes due to ppGpp presence indicates that ppGpp not necessarily modulates 

RpoD structure, or its affinity to core RNAP, but rather exert a promoter specific effect. This 

promoter specific effect is suggested to be dependent on the presence of a GC-rich discriminator in 

the region between the -10 box and the transcription start site, as well as the length of the linker 

between the -35/-10 region (Potrykus & Cashel 2008). 

It is by now clear that ppGpp is an important signalling molecule, best known for its role in the 

bacterial stress response. However, much of its direct function still needs unravelling. Regardless of 

the mechanism of action exerted by ppGpp, the fraction of RpoD bound to core RNAP in vivo is 

lower when ppGpp is present, compared to when ppGpp is absent (Hernandez & Cashel 1995), 

meaning that, whether directly or indirectly, ppGpp may somehow influences sigma factor 

competition and global gene expression. 
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Transcriptional Regulatory Networks 
 

Recent years´ technological advances mean that studying bacterial gene regulation is not limited to 

studying one TF or DNA regulatory sequence at a time. With powerful techniques such as 

comparative genomics, transcriptomics, and high throughput mapping of in vivo TF-DNA 

interactions, researchers have been able to produce models of how-large scale TRNs are structurally 

organised and function in vivo. Whereas the previous Chapter provided insight into a number of 

different regulatory elements individually, the following Chapter will provide an introduction to 

how these different entities interact to create the complex interplay that constitute TRNs. The 

Chapter has been written with the realisation that this presentation is in no way exhaustive, 

however, the most important aspects relating to the aim of this thesis are dealt with. 

A TRN describes the resulting gene expression as a function of regulatory inputs specified by 

interactions between proteins and DNA (Blais & Dynlacht 2005). TRNs are highly complex 

structures and characterised by a multilayer structure that allows for an advanced and precise 

cellular response to environmental factors, a response that is much more variated and complex than 

could be performed by the single TFs alone. Having a fine-tuned TRN is thus a perfect way of 

utilising the already existent capacities lying within the genetic material without introducing 

modifications that become fixed in the population.  TRN representations are thus illustrations of 

network graphs that visualise molecule-molecule interactions and how the relationship between 

these dictates cellular behaviour (Blais & Dynlacht 2005). 

A TRN is arranged in different levels (Figure 6). The first level (Figure 6A, red nodes) consists of 

global regulators, often sigma factors, e.g. RpoD, that act as hubs (that bind a disproportionately 

large number of target genes (Macneil & Walhout 2011) and control expression of a large number 

of genes, either directly or through a second level (Figure 6A, orange nodes), which is composed of 

a local network with a local regulator that controls a smaller number of genes. The third level 

(Figure 6A, blue nodes) consists of single genes that may interact with each other (Brooks et al. 

2011). 
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Given their important role in bacterial adaptation and the ability to respond to continuous 

environmental changes, it is not surprising that TRNs are highly complex structures, and that the 

actual regulatory response of any signal is much more complex than the typical schematic drawings 

depicted in Figure 6. 

 

 

Figure 6. Structure of a TRN. (A) Schematic illustration of the organisation of a TRN displaying 

how, in a simplified form, a global regulator (red nodes) controls the expression of other regulators 

(orange nodes), which in return control the output of a number of structural genes (blue nodes), or 

control a number of structural genes directly. (B) Representation of the E. coli transcriptional 

regulatory network. Green circles represent TFs, brown circles denote regulated genes, and those 

with both functions are coloured in red (Guzman-Vargas & Santillan 2008; Brooks et al. 2011). 

4.1 Modelling of Transcriptional Regulatory Networks 
As system-wide data become available for an increasing number of organisms, regulators and under 

different experimental conditions, computational methods have been developed to integrate 

experimental genome-wide data into intuitive models that can be used as a starting point for further 

exploration. Some computational methods integrate in vivo generated data, while others rely solely 

on in silico analysis and comparative genomics to generate new TRN models (Brooks et al. 2011). 

4.1.1 In silico modelling of Transcriptional Regulatory Networks 
While it is beyond the scope of this thesis to provide the reader with an understanding of how in 

silico modelling is performed in detail, it is important to provide an overview of the approaches that 
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are used, as they each present advantages and limitations when introducing concepts such as 

evolution of TRN, mutations, epistasis, and pleiotropy. 

Most in silico modellings of TRN rely on comparative genomics. The first step in these analyses is 

to identify orthologue TFs (homologous genes that diverged from a common ancestor) and to 

identify conservation of TF binding sites (TFBS), either amongst a set of known co-regulated genes, 

or within homologous promoters of closely related species (Price et al. 2007). While these 

approaches are invaluable as visualisations and starting points for further experimental analyses, it 

has been shown that they suffer from the limitation that orthologous TFs may sense different signals 

and regulate different pathways (Price et al. 2007). Other limitations to in silico modelling are that 

the effects of varying conditions such as stress conditions, other species interactions, or host-

interactions cannot be predicted, just like effects created by mutations, pleiotropy, and epistasis are 

difficult to predict. These limitations may be addressed by experimental data, which can then be 

incorporated into the existing models (Karlebach & Shamir 2008). 

4.1.2 Experimental based construction of transcriptional regulatory networks 
Until the introduction and general use of NGS, experimental methods for investigating TF activities 

and mechanisms relied on low throughput in vitro methods such as in vitro transcription and 

electrophoretic mobility shift assay (EMSA). With microarray and NGS technology, entire genome-

wide TF binding profiles can be investigated with chromatin immunoprecipitation sequencing 

(ChIP-seq), gene expression profiling (mRNA-seq), and high throughput in vitro methods such as 

DNA binding arrays and in vitro DNA immunoprecipitation-sequencing (DIP-ChIP) (Geertz & 

Maerkl 2010). 

Especially ChIP-seq coupled with mRNA-seq has become a popular tool for experimental 

elucidation of TRN structures (Figure 7). For example, genome-wide binding profiles of the sigma 

factor σ54/RpoN has been characterised in both E. coli (Bonocora et al. 2015), Vibrio Cholerae 

(Dong & Mekalanos 2012), and P. aeruginosa (Schulz et al. 2015). These studies act as important 

additions to in silico models, as they add valuable knowledge that would not have emerged from 

pure comparative genomics alone. For example, when studying genome-wide binding of RpoN in 

E. coli, it was suggested that RpoN could serve additional roles beside its well documented role in 

promoter recognition and transcription initiation (Bonocora et al. 2015). The authors found that 

RpoN binds an unexpected large number of intragenic regions and suggested that these regions are 

likely to be functional. While the exact functions of these intracellular binding regions remain to be 

23 
 



Chapter 4 Transcriptional Regulatory Networks 

unravelled, findings like these are important, as traditional in silico modelling of TRN could have 

rejected them based on the fact that they are far away from a transcription start site (TSS). 

 

 

Figure 7. Schematic overview of the steps involved in ChIP-seq. Briefly, cells are proliferated in 

certain conditions until a predetermined growth phase is reached. Formaldehyde is then added to 

crosslink proteins to DNA. Cells are lysed, and DNA is sheared by sonication, after which DNA-TF 

complexes of interest are enriched using antibodies that are specific to the TF being studied. After 

release of the TF from DNA, and after isolation of DNA, the sample contains only the specific 

DNA fragments that interacted with the TF at the time of crosslinking. By sequencing the DNA, 

sequences can thus be mapped to the genome, and areas of the genome bound by the TF are 

visualised as having a higher coverage than unbound regions (Myers et al. 2015). 
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4.2 Evolution of Transcriptional Regulatory Networks 
Understanding how TRNs are shaped and evolve is an important aspect of evolution, since the 

specific evolutionary effects that contribute to the shaping of TRNs (mutations, gene duplications 

and deletions, and HGT) extremely rarely, if ever, result in uniform effects on all genes, or are 

limited to one regulon. HGT results in the transfer of entire functional modules, e.g. transfer of 

elements that enable antibiotic resistance mechanisms in bacteria (Davies & Davies 2010). Gene 

duplication also results in evolution of TRN, and a subsequent functional divergence of duplicated 

genes may further contribute to the development of new cellular functions (Brooks et al. 2011). 

Mutations that shape TRN may occur in both TFs as well as in cis-regulatory elements (regions of 

non-coding DNA which regulate the transcription of nearby genes) and in downstream target genes 

(Brooks et al. 2011). Mutations in TFs may change the ability of the TF to interact with other 

regulators, or they may change the ability to interact with, or recognise TFBS, while mutations in 

cis-regulatory elements may modify, create, or delete new TF binding sites. While it may be less 

complicated to infer about the role of HGT, e.g. when transfer of entire genetic islands coding genes 

for antibiotic resistance is observed, it is more troublesome to infer about the possible roles of SNPs 

and single amino acid deletions in evolution of TRNs. 

An example of the difficulties of predicting the effects of single amino acid mutations on entire 

TRN is exemplified by the transcriptional terminator Rho, in E. coli. While Rho dependent 

transcriptional termination insulates the cell from deleterious expression of prophage and other 

horizontally acquired DNA, as well as safeguards genomic integrity in regard to the transcriptional 

and replication machinery, a mutation in Rho was found to cause both an expected overexpression 

of a number of genes, but also a unexpected and relatively large number of genes that were down 

regulated, illustrating the indirect effects of the Rho mutation on TRNs. Furthermore, the authors 

found that the Rho mutation provided both direct fitness effects, as well as fitness effects arising 

from positive epistatic interactions, which underlines the potential of the Rho mutation to open 

evolutionary paths that would otherwise be inaccessible (Freddolino et al. 2012). 

Consistent with the findings of (Freddolino et al. 2012), it is well established that especially global 

regulators are target for evolution, and given their important role as network regulators, any 

alteration of their function is expected to create large effects that may be overall beneficial, but also 

may have certain maladaptive side-effects, which in turn can be reduced by subsequent 

compensatory mutations (Hindré et al. 2012).  
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This process of TRN evolution, emerging maladaptive side-effects, and subsequent compensatory 

mutations is depicted in Figure 8, p. 27. While one mutation in one global regulator may cause a 

number of unexpected phenotypes, known as pleiotropy, and may complicate any phenotype 

prediction based on genotypic data, this task is even further complicated by epistatic effects. 

Epistatic effects are interactions between two or more mutations that combined produce a 

phenotype which deviates from the sum of the effect of the individual mutations (Elena & Lenski 

2003). An example of the complexity and unpredictability of epistatic effects in evolution of TRN is 

P. aeruginosa adaptation to the CF lung environment. While it has been confirmed that global 

regulators are indeed also target for early adaptive mutations in this natural system (Yang, Jelsbak, 

Marvig, et al. 2011), a follow-up study showed that when introducing an exact combination of four 

of these mutations into an isogenic P. aeruginosa strain, an unexpected rise in antibiotic resistance 

was observed. This indicates that global regulator mutations not only shape their immediate TRN, 

but also that epistatic effects may give further rise to an increase in antibiotic resistance. A 

persistent and unresolved problem when studying TRNs is thus the genotype-phenotype relation 

and how to accurately predict phenotypic outcomes based on genotype data.  

Due to its role as an opportunistic pathogen, and its role in bacterial colonisations and chronic 

infections in the CF lung, P. aeruginosa represents a specific case where evolution of TRNs in a 

natural system can be studied on a time scale estimated to be bacterial 200,000 generations (Yang, 

Jelsbak, Marvig, et al. 2011). During this time, a fluctuating environment, sub-niches, interacting 

species that also evolve, antibiotic treatment, and host immune defences all shape P. aeruginosa 

TRNs, which thus serve as a model case for studying natural evolution of TRNs. 
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Figure 8. Evolution of a TRN. The ancestral network (A) is composed of global regulators (dark 

blue) and regulated genes (light blue) and the expression profiles of the regulated genes (green 

curves) define the phenotype. In an evolved network (B), a mutation (yellow arrow) in the global 

regulator alters the transcription profile of a number of genes (red arrows and curves). The overall 

effect of the mutation is beneficial, but negative pleiotropic effects drive subsequent compensatory 

mutations (orange circles) in lower-level regulatory genes, and restore expression levels to a more 

optimised overall signature (Hindré et al. 2012). 
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4.3 Pseudomonas aeruginosa transcriptional regulatory networks 
A large number of studies have characterised TRNs in P. aeruginosa, both experimentally as well 

as by in silico modelling. In silico, the structural and functional properties of a network representing 

12% of the total 5,570 genes and 16% of the predicted 500 regulatory proteins (including 54% of 

the 26 sigma factors) have been elucidated (Galán-Vásquez et al. 2011). This study found that the 

regulatory functions are biased towards particular biological processes  involved in pathogenesis 

and virulence, such as alginate and biofilm formation, production of virulence factors, and antibiotic 

resistance, many of which are coordinated by quorum sensing in the bacterial population (Galán-

Vásquez et al. 2011).  

Experimentally, a large number of major regulatory networks have been studied in P. aeruginosa 

using both ChIP-seq, mRNA-seq, as well as with traditional low-throughput methods. The 

combination of ChIP-seq coupled with mRNA-seq has been used to study the key transcriptional 

regulator AlgR and its regulation of the sigma factor AlgT and quorum sensing (QS)-regulated 

virulence factors (Kong et al. 2015). Perhaps the most exhaustive transcriptional regulatory network 

study in P. aeruginosa has been that of (Schulz et al. 2015), elucidating the complex structure of 11 

sigma factors regulons in the P. aeruginosa  strain PA14. This exhaustive study revealed that sigma 

factor regulons constitute a highly modular network architecture with insulated functional sigma 

factor modules. The regulon structure also revealed a limited, but highly function-specific, cross- 

talk between different sigma factors. Lastly, these data present a valuable reference dataset that can 

be used for future extended analyses or incorporated into in silico analyses.  

4.3.1 The transcriptional regulatory network controlling alginate production in Pseudomonas 
aeruginosa 
The TRN controlling alginate production in P. aeruginosa is a well-known and well-studied 

regulatory network. The following section will use the TRN controlling alginate production in P. 

aeruginosa as a specific example of the complexity of TRNs, as well as an example of how CF 

driven adaptation may promote remodelling of TRNs through global regulator mutations. 

Overproduction of alginate produces a mucoid phenotype that is protected from various host 

defences (Leid et al. 2005) and antibiotics (Govan & Fyfe 1978). The alginate producing phenotype 

marks the transition from an intermittent colonisation to chronic infection with P. aeruginosa, and 

great effort has been put into understanding the genetic regulation of alginate production, as well as 

the environmental factors driving the adaptation of P. aeruginosa towards the mucoid phenotype. 
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Not only is it of medical importance to achieve an understanding of the factors controlling alginate 

expression, it also serves as a prime example of how regulatory networks may be shaped and 

remodelled by evolution, and how several global regulators compete and interact to control the 

expression of a very defined phenotype. In addition, it serves as an example of the complexity 

variations of TRNs that are difficult to model in silico, since the collective evidence from a number 

of studies have shown that evolutionary shaping of this network works through a number of 

different mechanisms, such as sigma factor point mutations, anti-sigma inactivation, and perhaps 

even modulation of ppGpp levels. 

The production of alginate is regulated through a number of different regulatory pathways, of which 

most converge to a common pathway, controlled by the alternative ECF sigma factor, AlgT (σ22). 

Alginate production is initiated from the algD promoter controlling the 12 gene algD operon 

(Chitnis & Ohman 1993; Schurr et al. 1993) and is activated by stress-conditions, such as 

antimicrobial and oxidising agents, elevated temperatures, and osmotic imbalances. Under non-

inducing conditions, AlgT is sequestered by its anti-sigma factor, MucA, and its complex-forming 

partner, MucB. The binding of AlgT to MucA prevents transcription from the algD promoter (Xie 

et al. 1996) (Figure 9A). In response to envelope stress, a signal transduction pathway confers 

proteolytic cleavage of MucA and MucB, thereby releasing AlgT and activating it for alginate 

production through transcription from the algD promoter (Qiu et al. 2007) (Figure 9B). Release of 

AlgT from the MucA-MucB complex is not an absolute determinant for subsequent AlgT 

transcription from the algD promoter. After release of AlgT, a number of other factors determine 

whether AlgT gains access to the algD promoter and initiates transcription (Figure 9C). For 

example, an RpoN promoter sequence which directly overlaps the AlgT dependent promoter may 

cause antagonistic effects and inhibit AlgT dependent transcription from the algD promoter in vitro 

(Boucher et al. 2000). Also sigma factor competition between AlgT and RpoD (which is further 

regulated by its anti-sigma factor, AlgQ) impacts the transcriptional activity of AlgT (Yin et al. 

2013).  

 

29 
 



Chapter 4 Transcriptional Regulatory Networks 

 

Figure 9. Genetic regulation of alginate production in P. aeruginosa. Expression of the algD 

operon is a highly regulated and complex process. (A) Under non-induced conditions, AlgT is 

sequestered by the MucA-MucB complex. However, both evolutionary rewiring and environmental 

factors such as cell-wall stress may cause proteolytic degradation of the MucA-MucB complex, 

thereby releasing AlgT (B). AlgT is free to initiate transcription from the algD promoter to initiate 

alginate synthesis. Transcription from the algD promoter is, however, a complex interplay between 

sigma factor antagonism from RpoN binding at overlapping promoter sequences, as well as sigma 

factor competition between AlgT and RpoD, to gain access to the core RNA polymerase. 

ppGpp controlled regulation of the AlgT regulatory network 
A number of studies have suggested that activation of the AlgT TRN may be controlled by a 

secondary pathway, independent of envelope stress mediated proteolytic release of AlgT from the 
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MucA-MucB complex. This cascade is initiated as a response to metabolic stress, where the 

accumulation of the alarmone ppGpp directly stimulates AlgT activity during entry to stationary 

phase (Costanzo & Ades 2006; Costanzo et al. 2008; Gopalkrishnan et al. 2014). These studies 

found that the effect of ppGpp and its cofactor DksA was an increased transcription form certain 

AlgT controlled promoters both in vivo and in vitro, but that the production of AlgT itself was not 

affected by ppGpp. This indicates that the promoter specific effect of ppGpp is not limited 

specifically to RpoD controlled promoters, as is the generally accepted model. Instead, ppGpp may 

present a direct way of remodelling transcription through promoter specific effects on complexes 

that are sensitive to ppGpp, such as certain members of the AlgT regulon. 

4.3.2 Evolution of the transcriptional regulatory network controlling alginate production in 
Pseudomonas aeruginosa 
During adaptation of P. aeruginosa to the CF lung environment, the AlgT regulatory network is 

continuously remodelled. The mucoid phenotype is a hall mark of chronic infection (Koch & Høiby 

1993), and both mucoid and non-mucoid phenotypes of P. aeruginosa are frequently isolated 

simultaneously from CF lungs (Thomassen et al. 1979; Shawar et al. 1999). Overproduction of 

alginate is highly demanding for the cell, and the cycling between mucoid and nonmucoid clinical 

isolates indicates that alginate production may produce negative side-effects that require continuous 

remodelling of the regulatory network, much in line with the description of the generalised “TRN 

evolution model” presented in Figure 8, page 27. While alginate production in an environmental 

strain is initiated by proteolytic degradation of MucA, appearance of mucoid P. aeruginosa clinical 

isolates is most often a result of mutations in MucA that inactivate the protein, thereby releasing 

AlgT from the MucA-MucB complex (Martin et al. 1993; Folkesson et al. 2012). 

A subsequent reversion to a non-mucoid phenotype is mediated by a number of different mutations 

in the AlgT gene (Jelsbak et al. 2007; Yang, Jelsbak, Marvig, et al. 2011; Damkiaer et al. 2013), 

and it is speculated that mutations in the core binding domain of AlgT may affect the binding 

affinity to the core RNAP, thereby affecting the ability of AlgT to compete against RpoD for core 

RNAP. Involvement of sigma factor competition between AlgT and RpoD was also suggested by 

(Yin et al. 2013), who showed that overexpression of the RpoD anti-sigma factor AlgQ gave rise to 

a mucoid phenotype due to sequestering of RpoD by AlgQ, thereby enabling AlgT to form holo 

RNAP and activate alginate production. 

Interestingly, the evolutionary tinkering of the AlgT regulatory network does not end with the non-

mucoid phenotype of a MucA-AlgT mutant. Subsequent mutations in the housekeeping sigma 
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factor RpoD has been shown to cause a direct transition to a mucoid phenotype (Damkiaer et al. 

2013). The RpoD mutation was isolated from P. aeruginosa clinical CF isolates a significant period 

of time after emergence of the AlgT mutation, and thus illustrates that evolution of TRNs is an 

ongoing process that constantly reshapes and optimises the bacterial TRN to respond to new 

challenges. By introducing each of the mucA, algT, and rpoD mutations in a PAO1 strain, the 

authors were able to show that these precise mutations were the direct cause of the phenotype 

changes (Figure 10). As a number of different mutations in the genes encoding mucA and algT may 

cause mucoid/nonmucoid phenotype changes (Ciofu et al. 2008), the specific regulatory mutations 

discovered in the CF related P. aeruginosa DK2 strain are denoted with a “DK2” superscript. 

 

 

 
Figure 10. Switch in mucoid/nonmucoid phenotype through remodelling of the AlgT TRN. 

Initially, a non-mucoid P. aeruginosa PAO1 is non-mucoid, but in the CF lung environment, a 

mutation causes inactivation of MucA, which causes a switch to a mucoid phenotype. Subsequently, 

a mutation in the core RNAP binding region of AlgT causes a shift to a non-mucoid phenotype, and 

after a period of time, appearance of mucoid clinical isolates with mutations in the housekeeping 

sigma factor have been isolated. Modified from (Damkiaer et al. 2013). 

 

The above presented evolutionary path that enables P. aeruginosa to shuffle between the mucoid 

and non-mucoid state is centralised on the initial mutation causing MucA inactivation. While this is 

the most common path leading to mucoidy in P. aeruginosa CF clinical isolates, few examples have 

presented evidence that inactivation of MucA is not necessarily a prerequisite for alginate 

overproduction. Mutations in the AlgT negative regulators MucB and MucD discovered in P. 

aeruginosa clinical CF isolates have also been shown to cause moderate alginate production (Ciofu 

et al. 2008), as well as a mutation found in the sensor kinase KinB has been shown to cause a RpoN 

dependent alginate overproduction of alginate (Damron et al. 2012). Common for those are that 

32 
 



Chapter 4 Transcriptional Regulatory Networks 

even though MucA is not directly inactivated, they result in proteolytic degradation of MucA, 

thereby releasing AlgT for subsequent alginate production. 

With the TRN controlling alginate production in P. aeruginosa as an example, it is obvious that a 

great deal of knowledge has already been gathered on the function and organisation of TRN. 

However, common for the major part of these studies is that the specific molecular mechanisms 

connecting the evolutionary changes to the resulting phenotypic are unknown. Therefore, to achieve 

a complete understanding of how mutations may remodel regulatory networks during adaptation to 

novel niches, we must be able to explain the molecular effects of these mutations. 

  

33 
 



Chapter 5 Present Investigations 

Chapter 5 
 

Present Investigations 
 

In chapter 1, the reader was introduced to bacterial evolution, and how deletions, acquisitions and 

point mutations in the genetic material comprise the raw material of evolution that enables bacteria 

to evolve and adapt, and facilitate colonization of novel environments. The reader was introduced to 

the concept of evolution experiments as a mean to study bacterial evolution, and how certain natural 

systems provide the opportunity to study bacterial evolution in its natural context. 

Chapter 2 gave insight into areas of bacterial gene regulation with a focus on transcription and the 

factors involved in its regulation, such as sigma factors, anti-sigma factors, sigma factor 

competition and ppGpp involvement in transcriptional control. Special attention in this chapter has 

been placed on sigma factors and their regulation, since preceding bioinformatics analyses from this 

group have shown that especially sigma factors are target for early adaptive mutations in P. 

aeruginosa.  

In chapter 3, the concepts of evolution and transcription were combined to provide the reader with 

an introduction of TRNs and evolution of TRNs. Important terms such as pleiotropy and epistasis 

were introduced, and special attention was payed to presentation of the P. aeruginosa TRNs, 

exemplified by the regulatory network controlling alginate production controlled by a global 

regulator, the sigma factor AlgT. 

5.1 Background 
The research in this thesis rests heavily on previous bioinformatics analyses of the Copenhagen P. 

aeruginosa collection of clinical isolates, sampled from CF patients since 1972. Intensive 

bioinformatics analyses have gone into characterising these isolates, which have resulted in a 

characterisation of two strains that have spread among the CF patients; DK1 and DK2, respectively. 

A number of bioinformatics analysis have characterised the evolution of especially the DK2 strain 

in respect to rates and detection of SNP mutations (Yang, Jelsbak, Marvig, et al. 2011), changes in 

the genetic composition during evolution (Rau et al. 2012), identification of pathoadaptive genes 

(Marvig et al. 2013) as well as the phenotypic impact of mutations fixed in global regulator genes 
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was illustrated by the reconstruction of just four global regulator mutations that showed striking 

phenotypic similarities to the evolved DK2 clone (Damkiaer et al. 2013). These studies not only 

highlight the evolvability of the P. aeruginosa DK2 clone, they also confirm that especially global 

regulators are targets for adaptive mutations, that these mutations result in extensive remodelling of 

TRNs which produce epistatic effects and phenotypes. 

5.2 Aim of thesis 
Given the in-depth knowledge of the DK2 strain, its evolutionary history and knowledge about the 

mutations in certain important regulators, but also the lack of knowledge about the specific 

molecular mechanisms of these mutations, the focus of this thesis has been to study the molecular 

effect of mutations in 3 global regulators, as well as the overall impact on their corresponding 

TRNs.  

The specific aim of this thesis is therefore 

• To determine the specific molecular mechanisms of the mutations in the global 

regulators AlgT, RpoD and RpoN. 

• To determine how the altered mechanisms of these global regulators affect their entire 

TRN. 

5.3 Outline of studies 
Paper 1: In the first paper, we examined the molecular consequences, as well as the impacts on 

global TRNs, arising from a single amino acid substitution in the σ54 sigma factor RpoN, discovered 

in the P. aeruginosa DK2 lineage. We used a combination of ChIP-seq, mRNA-seq as well as in 

vitro protein-DNA interaction studies, to systematically investigate the functional consequences of 

the amino acid substitution in RpoNDK2, and we demonstrated that the direct effect of the mutation 

was a decreased ability of RpoNDK2 to bind to its promoter sequences. The effect was translated into 

a loss of regulatory connections and a downregulation of the majority of genes controlled by RpoN. 

Interestingly, the mutation was not comparable to a knock out variant. The evolved RpoNDK2 

network gained a regulatory capacity of the tad (tight adherence) locus, which is involved in biofilm 

formation, colonisation, and pathogenesis in a wide range of bacterial species (Tomich et al. 2007). 

RpoN is not previously been assigned any functional control over this specific region, and this 

result thus reflect the complex evolutionary rewiring of regulatory networks. In addition the added 

regulatory capacity of the RpoNDK2, we observed an enhanced crosstalk effects to other sigma 
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factor regulons, confirming that mutations in regulators produces complex effects on neighboring 

networks. 

The work presented in Paper 1 provides a molecular explanation of a naturally occurring global 

regulator mutation, but it also demonstrates how these specific effects can be translated into a 

remodeling of several global TRNs. 

 
Paper 2: In paper 2, we set out to investigate the underlying molecular mechanisms of evolutionary 

modifications of the TRN controlling alginate production in P. aeruginosa. As mentioned, this 

regulatory network has been extensively shaped by global regulator mutations, and the regulatory 

mechanisms involved in controlling alginate production are well-studied on a genotype-phenotype 

level, but poorly understood on a molecular level. It thus presents an excellent opportunity to study 

in detail, how mutations in several global regulators each and in combination shape and rewire their 

respective networks. While the regulatory mechanisms controlling alginate production extends 

further than AlgT and RpoD, we specifically chose these two based on observations from 

(Damkiaer et al. 2013). This study showed that an evolutionary induced shuffling between a 

nonmucoid and mucoid phenotype was dependent consecutive mutations in the ECF sigma factor 

AlgT and housekeeping sigma factor RpoD (Illustrated in Figure 10, p. 32).  

We therefore set up a systematic study in which the molecular consequences of each regulator  was 

studied in vitro by SPR, and in vivo by gene expression profiling, ChIP-seq and by regulation of 

sigma factor levels. By studying the regulatory response of each mutation, as well as the 

combination of mutations, i.e. the PAO1∆mucA, algT(DK2), rpoD(DK2) strain, we were able to assign 

regulator specific  alterations, as well discover which regulatory modifications arose from epistatic 

effects.  

Our results confirm that the combinatorial effect of mutations in global regulators results in 

complex epistatic effects and that mutations in AlgT and RpoD cause very different changes in the 

proteins functions, although both protein mutations are required to produce the evolved mucoid 

phenotype. The AlgTDK2 mediated switch from the mucoid to nonmucoid phenotype resulted from a 

direct decrease in the affinity between the AlgTDK2 and the core RNAP, measured by SPR, and this 

decreased affinity caused the AlgTDK2 protein to compete less efficiently for the core RNAP, thus 

abrogate transcription from the algD promoter, as well as cause a consistent downregulation of 

genes in the AlgT regulon. 
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Further remodelling caused by the RpoDDK2 protein was found to involve complex epistatic effects. 

Interestingly, the RpoDDK2 protein was unaffected in both its ability to interact to the core RNAP 

and to recognise RpoD controlled promoter sequences. We also observed only subtle effects on the 

gene expression analysis when we compared gene expression values of PAO1rpoD(DK2) to 

PAO1rpoD(WT). Regulatory effects from the RpoDDK2 appeared only in combination with the ∆mucA, 

algT(DK2) mutations. We thus concluded that the effects produced by the RpoDDK2 protein were 

contingent on the genetic environment and the presence of the PAO1∆mucA, algT(DK2) combination, and 

could involve an unknown factor not recognised by the gene expression or ChIP-seq data. Based on 

sequence alignment of P. aeruginosa RpoD and E. coli RpoD, we suggested that this unknown 

factor could be an altered sensitivity to the signal molecule, ppGpp, as the RpoDDK2 mutation is 

found in close proximity to two E. coli RpoD variants, discovered as suppressor alleles of 

auxotrophy in a ppGpp0 strain (Hernandez & Cashel 1995). 

We thus propose a model in which initial rewiring of the AlgT regulatory network is mediated by a 

decrease in affinity between the AlgTDK2 and core RNAP. The result is a direct downregulation of 

genes controlled by AlgT, including the entire alginate biosynthesis operon. The subsequent 

remodelling of several regulatory network, is caused by an increased or permanent sensitivity of 

RpoDDK2 to an unknown factor, presumably ppGpp, and this epistatic effect causes an indirect 

remodelling of sigma factor competition, which gives rise to the mucoid phenotype of 

PAO1∆mucA,algT(DK2),rpoD(DK2). 

Paper 2 thus links the direct, functional effects of two mutations in global regulators to the resulting 

network displacement, epistatic effects and resulting phenotype, and the results from this paper 

demonstrate the need for achieving a deeper understanding of the evolution of these complex 

networks. 
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During the past years, studying the evolution of bacterial TRNs has greatly benefitted from the 

development of high throughput experimental techniques, as well as increasing computing power 

and sequencing techniques. The advances have allowed detailed construction of TRNs from a 

number of organisms. With detailed network models, focus has shifted from assigning function to 

individual genes, to understanding how entire sets of genes and molecules work in a complex 

network. A complete understanding of TRNs, however, must encompass both an understanding of 

specific molecular processes as well as how these individual molecular processes are correlated to 

form an entire network. 

The aim of this was to determine the specific molecular mechanisms of adaptive mutations in the 

global regulators AlgT, RpoD and RpoN, and to determine how the altered mechanisms of these 

global regulators affect entire TRNs. By studying these 3 different transcriptional regulators, we 

were able to determine three specific molecular mechanisms which mediate rewiring of regulatory 

networks. 

Investigations of the specific molecular consequences of the three sigma factor mutations RpoNDK2, 

AlgT DK2, and RpoD DK2 revealed that sigma factor function is shaped by evolution through several 

mechanisms. We found that the sigma factor AlgT was modulating by a decreased affinity for the 

core RNAP, that the sigma factor RpoN was modulated by a decreased ability to bind its promoter 

recognition DNA sequences, although it gained the ability to recognise others. RpoD was 

remodelled by a complex mechanism for which the exact details remain to be elucidated; however, 

we speculate that the consequence of the mutation is an altered sensitivity to the signal molecule, 

ppGpp. 

The evolved AlgTDK2 sigma factor displayed a decreased affinity for the core RNAP, resulting in a 

specific downregulation of the entire AlgT controlled regulon, including the genes involved in 

alginate biosynthesis. This alteration in core RNAP binding affinity affected the entire regulon and 

therefore produced a uniform effect on its entire TRN. 
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The RpoNDK2 mutation affected the proteins ability to bind DNA promoter recognition sequences. 

Different from the AlgTDK2 mutation, however, this effect was not observed as a uniform response 

on its TRN. The mutation rather acted as a function modulating mutation, which allowed RpoNDK2 

to bind to a so far unknown RpoN recognition sequence and direct transcription of the entire tad-

locus. Thus, while neither RpoNDK2 nor AlgTDK2 resembles loss-of-function proteins, each of the 

evolved proteins display a different form of modulation, confirming the complexity of these global 

regulators, as well as the difficulties in predicting mutational impacts. 

The RpoDDK2 exemplifies the challenges of studying global regulators and TRNs. The RpoDDK2 

protein resembled the RpoDWT in most of our analyses, however, it was clear that the mutation was 

somehow involved in producing epistatic effects when combined with the AlgT mutation, and that 

the mediator of these epistatic effects most likely is ppGpp. The subtle effects observed from the 

RpoDDK2 mutation could be a consequence of the nature of the protein. As a housekeeping sigma 

factor, the cell cannot afford to introduce permanent, drastic changes to its function. However, in 

combination with other global regulator mutations, small scale alteration of its function may present 

a way of rewire TRNs without creating detrimental side-effects. 

The overall observations that can be drawn from the two studies presented in this thesis is that none 

of the proteins resembled biologically inactive proteins, each of the evolved molecular mechanisms 

differed, and each evolved mechanism resulted in a different output on their respective TRN. The 

findings and conclusion presented here thus not only provide important insight to evolution of 

specific P. aeruginosa TRNs. It exemplifies the difficulties of predicting evolutionary impact on 

entire TRN structures, as well as underlines the difficulties associated with relating genotypic 

changes to phenotypic outcomes. 

Suggestions on future experiments 
While the specific molecular mechanisms of the RpoDDK2 mutation still remain unclear, the results 

presented have paved the way for a set of experiments which could clarify the possible role of 

ppGpp in the TRN rewiring. Any additional experiments should focus in elucidating the possible 

role of ppGpp, and whether RpoDDK2 mimics the presence of ppGpp, whether it becomes 

oversensitive to ppGpp, or if another ppGpp mediated mechanism is involved.  

Two E. coli RpoD variants were found to be suppressor alleles of a ppGpp0 auxotroph phenotype. A 

straightforward method for testing the relation between these two mutations, and the RpoDDK2 

would be to test if the RpoDDK2 mutation was able to supress auxotrophy, as was the case for the 
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two RpoD suppressor alleles in E. coli. However, in a ppGpp0 background, P. aeruginosa does not 

display auxotrophy for any amino acids (data not shown). While this is surprising, and highlights 

the relevance of species-specific differences in studying TRNs, a similar situation has been 

discovered in Pseudomonas putida, which also remains prototrophic even in a ppGpp0 background 

(Bernardo et al. 2009) 

A number of alternative experiments could identify any ppGpp mediated role in the regulatory 

function of RpoDDK2. By measuring ppGpp levels using the method of (Bergman et al. 2014), it 

could be identified if direct altered levels of ppGpp were involved in transcriptional regulation. 

Alternatively, comparing in vitro transcription profiles of the RpoDWT-RNAP and RpoDDK2-RNAP 

at different promoters (rRNA, amino acid synthesis and the algD promoter) could identify if the 

RpoDDK2 mutation mimicked the presence of ppGpp, and altered the transcription properties of the 

RpoDDK2-RNAP complex. Alternatively, if the RpoDDK2 is indeed dependent on, or mimicking the 

presence of ppGpp, any changes in the regulatory properties would be expected to be more 

pronounces in minimal media, as our results (data not shown), as well as previous results have 

shown that any changes in the growth and metabolic capacity of RpoD mutants are more 

pronounced in minimal media. 

6.3 Future perspectives 

6.3.1 Transferability of results to the Pseudomonas aeruginosa DK2 lineage 
The investigation of AlgT, RpoD, and RpoN presented in this thesis is based on experiments 

performed in P. aeruginosa PAO1. The reported results thus directly reflect the specific function of 

each global regulator, and are not influenced by differing experimental conditions (as would be 

expected in the CF lung environment) or other adaptive mutations that have accumulated in the P. 

aeruginosa DK2 lineage.  

Especially this last point is of interest when discussing the future perspectives related to the results 

presented in this thesis. The evolutionary shaping of the DK2 lineage has produced a bacterium that 

is highly optimised for the CF lung environment. While the three global regulators studied in this 

thesis certainly demonstrate that it takes just few mutations to completely alter large TRNs of a 

bacterium, they represent only a subset of the actual genetic modifications accumulated in the DK2 

lineage since it entered the CF lung environment.  
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The genome of the DK2 lineage shares 92.5 % homology with the PAO1 genome, and in addition, 

it contains 216 kbp of genetic material distributed on 195 genes not present in the PAO1 genome 

(Rau et al. 2012). During adaptation to the CF environment, the DK2 lineage experiences a total of 

12 non-synonymous mutations, fixed in global regulators, as well as a total of 180 SNPs that 

separate the early 1973 DK2 clone to the most recent investigated DK2 clone (Yang, Jelsbak, 

Marvig, et al. 2011; Damkiaer et al. 2013). It is therefore likely that any of these mutations, 

deletions, and acquisitions will play a major part in further shaping the TRNs of P. aeruginosa DK2 

beyond what has already been described in this thesis. This speculation therefore raises two 

questions;  

1) Do the additional genomic features of the P. aeruginosa DK2 lineage result in a further and 

more extensive remodelling of the same TRN as studied in this thesis? 

2) To which extent does species, strain, or even lineage specific TRN differentiations take 

place? 

It would be of interest to investigate the TRN dynamics of the same global regulators as used in this 

thesis but perform any investigation on e.g. a laboratory strain (as used in these studies), an early 

adapted DK2 strain, a late adapted DK2 strain as well as a non-CF-related P. aeruginosa, e.g. 

PA14. 

The analysis should subsequently be extended to include most of the global regulators known to be 

targeted for adaptive mutations in the P. aeruginosa DK2 lineage. An integration of these data into 

an entire TRN network model would present a first-time study of the entire evolutionary history of 

TRN from an actual natural and medical system, and would provide valuable knowledge of the 

specific impact each step of evolution has on TRNs, as well as genotype-phenotypes relationships. 

6.3.2 Understanding and manipulating regulatory networks to control CF infections and 
fighting antibiotic resistance 
With an in-depth understanding of the structure and organisation of TRNs during each step in 

evolution, important issues can be addressed, such as how to genetically modify organisms to 

optimise industrial production, or how to combat antibiotic resistance. 

In 2013, the U.S. Centre of Disease Control declared the human race for “now being in the post-

antibiotic era” (Centers for Disease Control and Prevention 2013), and in its 2014 report on global 

surveillance of antimicrobial resistance, The World Health Organization noted that “the world is 
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heading towards a post-antibiotic era, in which common infections and minor injuries, which have 

been treatable for decades, can once again kill” (World Health Organisation 2015). These 

challenges create a unmet need for new antibiotics, and the problem is only accelerating due to the 

low number of new antibiotic discoveries (Hamad 2010). 

Recently, the concept of combination therapy, i.e. combining two or several drugs in one treatment, 

has gained attention in fighting bacterial infections. Combination therapy can be advantageous as it 

may produce synergistic effects (when the effect of combining two or more drugs is greater than the 

sum of their individual effects) as well as result in collateral sensitivity (when mutations conferring 

resistance to one drug increase the sensitivity to another drug) (Munck et al. 2014). Combination 

therapies may, however, also produce unfavourable side effects such as collateral resistance 

development (when a mutation conferring resistance to one drug results in an increase in resistance 

to another drug) (Munck et al. 2014). Unpredicted, but favourable side-effects are, of courses 

desirable to understand in order to reproduce the effect in other systems or in other organisms, and 

likewise, unpredictable, but unfavourable side-effects are, of course, desirable to avoid. 

In this perspective, knowing the exact structure and function of TRNs, how TRNs may differ within 

closely related species, or how they may be shaped in changing environments (such as created by 

antibiotic pressure) is thus a true case of “knowing your enemy”, the enemies taking the form of 

multiple drug resistant pathogenic bacteria. 

The CF model system represents a perfect opportunity to combine the study of evolution in a 

natural system, studying the remodelling of TRNs, and the resulting development of new 

phenotypes, such as antibiotic resistance. Well established TRN network models could then serve as 

regulatory blueprints used for further studying and mapping gene expression routes leading to 

antibiotic resistance. With a detailed map of these routes, identifying alternative possibilities for 

intervention with combinatorial treatment, adjuvant strategies (i.e. drugs that increase the efficacy 

or potency of other drugs, but with no pharmacological effects by themselves [Pieren & Tigges 

2012]) or preventing the rise of multidrug resistance by choosing the right combination for the right 

TRN structure could be feasible. However, before manipulations of TRNs can be used in any form 

for treatment strategies, there is a need for a thorough understanding of the TRN templates that 

might be accessible for manipulation. 

42 
 

http://www.businessdictionary.com/definition/sum.html
http://www.businessdictionary.com/definition/individual.html
https://en.wikipedia.org/wiki/Efficacy%23Pharmacology
https://en.wikipedia.org/wiki/Potency_(pharmacology)


Bibliography  

Bibliography 
  
Barrick, J.E. et al., 2009. Genome evolution and adaptation in a long-term experiment with 

Escherichia coli. Nature, 461(7268), pp.1243–1247. 

Barrick, J.E. & Lenski, R.E., 2013. Genome dynamics during experimental evolution. Nature 
reviews. Genetics, 14(12), pp.827–839. 

Bergman, J.M., Hammarlöf, D.L. & Hughes, D., 2014. Reducing ppGpp level rescues an extreme 
growth defect caused by mutant EF-Tu. PLoS ONE, 9(2). 

Bernardo, L.M.D. et al., 2009. Sigma54-promoter discrimination and regulation by ppGpp and 
DksA. The Journal of biological chemistry, 284(2), pp.828–38. 

Blais, A. & Dynlacht, B.D., 2005. Constructing transcriptional regulatory networks. Genes & 
development, (212), pp.1499–1511. 

Blount, Z.D. et al., 2012. Genomic analysis of a key innovation in an experimental Escherichia coli 
population. Nature, 489(7417), pp.513–518. 

Bonocora, R.P. et al., 2015. Genome-Scale Mapping of Escherichia coli σ54 Reveals Widespread, 
Conserved Intragenic Binding. PLOS Genetics, 11(10). 

Boucher, J.C., Schurr, M.J. & Deretic, V., 2000. Dual regulation of mucoidy in Pseudomonas 
aeruginosa and sigma factor antagonism. Molecular Microbiology, 36(2), pp.341–351. 

Brooks, A.N. et al., 2011. Adaptation of cells to new environments. Wiley Interdisciplinary 
Reviews: Systems Biology and Medicine, 3(5), pp.544–561. 

Bryant, J., Chewapreecha, C. & Bentley, S.D., 2012. Developing insights into the mechanisms of 
evolution of bacterial pathogens from whole-genome sequences. Future Microbiology, 7(11), 
pp.1283–1296. 

Buck, M. et al., 2000. The Bacterial Enhancer-Dependent ς54(ςN) Transcription Factor. Journal of 
bacteriology, 54(15), pp.4129–4136. 

Buck, M. & Cannon, W., 1992. Specific Binding of the transcription factor sigma-54 to promoter 
DNA. Nature, 358. 

Burgess, R.R. & Anthony, L., 2001. How sigma docks to RNA polymerase and what sigma does. 
Current opinion in microbiology, 4(2), pp.126–31. 

Burgess, R.R. & Travers, A.A., 1969. Factor Stimulating Transcription by RNA Polymerase. 
Nature, 221. 

Bye, M.R., Ewig, J.M. & Quittel, L.M., 1994. Cystic fibrosis. Lung, 172(5), pp.251–270. 

Cashel, M., Hsu, L.M. & Hernandez, V.J., 2003. Changes in conserved region 3 of Escherichia 
coli σ70 reduce abortive transcription and enhance promoter escape. Journal of Biological 
Chemistry, 278(8), pp.5539–5547. 

43 
 



Bibliography  

Centers for Disease Control and Prevention, 2013. Antibiotic Resistance Threats in the United 
States, 

Cezairliyan, B.O. & Sauer, R.T., 2009. Control of P. aeruginosa AlgW protease cleavage of MucA 
by peptide signals and MucB. Molecular Microbiology, 72(2), pp.368–379. 

Chitnis, C.E. & Ohman, D.E., 1993. Genetic analysis of the alginate biosynthetic gene cluster of 
Pseudomonas aeruginosa shows evidence of an operonic structure. Molecular Microbiology, 
pp.583–593. 

Ciofu, O. et al., 2001. Characterization of paired mucoid/non-mucoid Pseudomonas aeruginosa 
isolates from Danish cystic fibrosis patients: antibiotic resistance, beta-lactamase activity and 
RiboPrinting. The Journal of antimicrobial chemotherapy, 48(3), pp.391–6. 

Ciofu, O. et al., 2008. Investigation of the algT operon sequence in mucoid and non-mucoid 
Pseudomonas aeruginosa isolates from 115 Scandinavian patients with cystic fibrosis and in 
88 in vitro non-mucoid revertants. Microbiology (Reading, England), 154(Pt 1), pp.103–13. 

Costanzo, A. et al., 2008. ppGpp and DksA likely regulate the activity of the extracytoplasmic 
stress factor SigmaE in Escherichia coli by both direct and indirect mechanisms. Molecular 
Microbiology, 67(3), pp.619–632. 

Costanzo, A. & Ades, S.E., 2006. Growth phase-dependent regulation of the extracytoplasmic stress 
factor, SigmaE, by guanosine 3´,5´-bispyrophosphate (ppGpp). Journal of Bacteriology, 
188(13), pp.4627–4634. 

Cutting, G.R., 2014. Cystic fibrosis genetics : from molecular understanding to clinical application. 
Nature Publishing Group, 16(1), pp.45–56. 

Dalebroux, Z.D. & Swanson, M.S., 2012. ppGpp: magic beyond RNA polymerase. Nature Reviews 
Microbiology, 10(3), pp.203–212. 

Damkiaer, S. et al., 2013. Evolutionary remodeling of global regulatory networks during long-term 
bacterial adaptation to human hosts. Proceedings of the National Academy of Sciences, 
110(19), pp.7766–7771. 

Damron, F.H. et al., 2012. Analysis of the Pseudomonas aeruginosa regulon controlled by the 
sensor kinase KinB and sigma factor RpoN. Journal of bacteriology, 194(6), pp.1317–30. 

Damron, F.H. & Goldberg, J.B., 2012. Proteolytic regulation of alginate overproduction in 
Pseudomonas aeruginosa. Molecular Microbiology, 84(4), pp.595–607. 

Davies, J. & Davies, D., 2010. Origins and Evolution of Antibiotic Resistance. Microbiology and 
Molecular Biology Reviews, 74(3), pp.417–433. 

Deretic, V. & Konyecsni, W.M., 1989. Control of mucoidy in Pseudomonas aeruginosa: 
Transcriptional regulation of algR and identification of the second regulatory gene, algQ. 
Journal of Bacteriology, 171(7), pp.3680–3688. 

Dixon, R. & Kahn, D., 2004. Genetic regulation of biological nitrogen fixation. Nature Reviews 
Microbiology, 2(8), pp.621–631. 

44 
 



Bibliography  

Dong, T.G. & Mekalanos, J.J., 2012. Characterization of the RpoN regulon reveals differential 
regulation of T6SS and new flagellar operons in Vibrio cholerae O37 strain V52. Nucleic acids 
research, 40(16), pp.7766–75. 

Dove, S.L. & Hochschild, A., 2001. Bacterial two-hybrid analysis of interactions between region 4 
of the Sigma 70 subunit of RNA polymerase and the transcriptional regulators Rsd from 
Escherichia coli and AlgQ from Pseudomonas aeruginosa. Journal of Bacteriology, 183(21), 
pp.6413–6421. 

Durfee, T. et al., 2008. Transcription profiling of the stringent response in Escherichia coli. Journal 
of Bacteriology, 190(3), pp.1084–1096. 

Elena, S.F. & Lenski, R.E., 2003. Evolution experiments with microorganisms: the dynamics and 
genetic bases of adaptation. Nature reviews. Genetics, 4(6), pp.457–69. 

Farewell, A., Kvint, K. & Nyström, T., 1998. Negative regulation by RpoS: A case of sigma factor 
competition. Molecular Microbiology, 29(4), pp.1039–1051. 

Ferguson,  a L. et al., 2000. Interaction of sigma 70 with Escherichia coli RNA polymerase core 
enzyme studied by surface plasmon resonance. FEBS letters, 481(3), pp.281–4. 

Flores, A.R. et al., 2015. A Single Amino Acid Replacement in the Sensor Kinase LiaS Contributes 
to a Carrier Phenotype in Group A Streptococcus. Infection and Immunity, 83, pp.4237–4246. 

Folkesson, A. et al., 2012. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an 
evolutionary perspective. Nature Reviews Microbiology, 10(12), pp.841–51. 

Freddolino, P.L., Goodarzi, H. & Tavazoie, S., 2012. Fitness landscape transformation through a 
single Amino acid change in the rho terminator. PLoS Genetics, 8(5). 

Galán-Vásquez, E., Luna, B. & Martínez-Antonio, A., 2011. The Regulatory Network of 
Pseudomonas aeruginosa. Microbial informatics and experimentation, 1(1), p.3. 

Ganguly, A. & Chatterji, D., 2012. A comparative kinetic and thermodynamic perspective of the σ-
competition model in Escherichia coli. Biophysical journal, 103(6), pp.1325–33. 

Geertz, M. & Maerkl, S.J., 2010. Experimental strategies for studying transcription factor-DNA 
binding specificities. Briefings in functional genomics, 9(5-6), pp.362–73. 

Gill, S.C., Weitzel, S.E. & von Hippel, P.H., 1991. Escherichia coli sigma 70 and NusA proteins. I. 
Binding interactions with core RNA polymerase in solution and within the transcription 
complex. Journal of molecular biology, 220(2), pp.307–24. 

Gopalkrishnan, S., Nicoloff, H. & Ades, S.E., 2014. Co-ordinated regulation of the 
extracytoplasmic stress factor, sigmaE, with other Escherichia coli sigma factors by (p)ppGpp 
and DksA may be achieved by specific regulation of individual holoenzymes. Molecular 
Microbiology, 93(3), pp.479–493. 

Govan, J.R. & Fyfe, J.A., 1978. Mucoid Pseudomonas aeruginosa and cystic fibrosis: resistance of 
the mucoid from to carbenicillin, flucloxacillin and tobramycin and the isolation of mucoid 
variants in vitro. Journal of Antimicrobial Chemotherapy, 4(3), pp.233–240. 

45 
 



Bibliography  

Grigorova, I.L. et al., 2006. Insights into transcriptional regulation and sigma competition from an 
equilibrium model of RNA polymerase binding to DNA. Proceedings of the National Academy 
of Sciences of the United States of America, 103(14), pp.5332–7. 

Gruber, T.M. et al., 2001. Binding of the initiation factor σ70 to core RNA polymerase is a 
multistep process. Molecular Cell, 8(1), pp.21–31. 

Gruber, T.M. & Gross, C. a, 2003. Multiple sigma subunits and the partitioning of bacterial 
transcription space. Annual review of microbiology, 57, pp.441–466. 

Guzman-Vargas, L. & Santillan, M., 2008. Comparative analysis of the complex transcription-
factor gene regulatory networks of E. coli and S. cerevisiae. BMC systems biology, 2(1), p.13. 

Hamad, B., 2010. The antibiotics market. Nature reviews. Drug discovery, 9(9), pp.675–676. 

Han, K. et al., 2013. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline 
milieu. Scientific reports, 3, p.2101. 

Harrison, F., 2007. Microbial ecology of the cystic fibrosis lung. Microbiology, 153(4), pp.917–
923. 

Haseltine, W.A. & Block, R., 1973. Synthesis of guanosine tetra- and pentaphosphate requires the 
presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of 
ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 
70(5), pp.1564–8. 

Helmann, J.D. & Chamberlin, M.J., 1988. Structure and Function of Bacterial Sigma factors. Ann. 
Rev. Biochem. 

Hernandez, V.J. & Cashel, M., 1995. Changes in conserved region 3 of Escherichia coli sigma 70 
mediate ppGpp-dependent functions in vivo. Journal of molecular biology, 252(5), pp.536–49. 

Hicks, K.A. & Grossman, A.D., 1996. Altering the level and regulation of the major sigma subunit 
of RNA polymerase affects gene expression and development in Bacillus subtilis. Molecular 
Microbiology, 20(1), pp.201–212. 

Hindré, T. et al., 2012. New insights into bacterial adaptation through in vivo and in silico 
experimental evolution. Nature Reviews Microbiology, 10(5), pp.352–365. 

Horstmann, N. et al., 2011. Distinct single amino acid replacements in the control of virulence 
regulator protein differentially impact streptococcal pathogenesis. PLoS Pathogens, 7(10). 

Hughes, K.T. & Mathee, K., 1998. The Anti-Sigma Factors. Annual Review of Microbiology, 52(1), 
pp.231–286. 

Jelsbak, L. et al., 2007. Molecular Epidemiology and Dynamics of Pseudomonas aeruginosa 
Populations in Lungs of Cystic Fibrosis Patients. Infection and Immunity, 75(0019-9567 (Print) 
LA - ENG PT - JOURNAL ARTICLE), pp.2214–24. 

Jishage, M. et al., 2002. Regulation of sigma factor competition by the alarmone ppGpp. Genes and 
Development, 70, pp.1260–1270. 

Karlebach, G. & Shamir, R., 2008. Modelling and analysis of gene regulatory networks. Nature 

46 
 



Bibliography  

reviews. Molecular cell biology, 9(10), pp.770–780. 

Koch, C. & Høiby, N., 1993. Pathogenesis of cystic fibrosis. The Lancet, 243, pp.1065–1069. 

Kong, W. et al., 2015. ChIP-seq reveals the global regulator AlgR mediating cyclic di-GMP 
synthesis in Pseudomonas aeruginosa. Nucleic Acids Research, 43(17), p.gkv747. 

Koskella, B. & Vos, M., 2015. Adaptation in Natural Microbial Populations. Annual Review of 
Ecology, Evolution, and Systematics, 46, pp.503–522. 

Koskiniemi, S. et al., 2012. Selection-driven gene loss in bacteria. PLoS Genetics, 8(6), pp.1–7. 

Kulbachinskiy, A. & Mustaev, A., 2006. Region 3.2 of the  σ subunit contributes to the binding of 
the 3´-initiating nucleotide in the RNA polymerase active center and facilitates promoter 
clearance during initiation. Journal of Biological Chemistry, 281(27), pp.18273–18276. 

Laurie, A.D. et al., 2003. The role of the alarmone (p)ppGpp in sigma N competition for core RNA 
polymerase. The Journal of biological chemistry, 278(3), pp.1494–503. 

Leid, J.G. et al., 2005. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm 
bacteria from IFN-gamma-mediated macrophage killing. The Journal of Immunology, 175(11), 
pp.7512–7518. 

Lesley, S. a & Burgess, R.R., 1989. Characterization of the Escherichia coli transcription factor 
sigma 70: localization of a region involved in the interaction with core RNA polymerase. 
Biochemistry, 28(19), pp.7728–7734. 

Lonetto, M., Gribskov, M. & Gross, C., 1992. The Sigma7O Family : Sequence Conservation and 
Evolutionary Relationships. Journal of bacteriology, 174(12), pp.3843–3849. 

Lyczak, J.B., Cannon, C.L. & Pier, G.B., 2000. Establishment of Pseudomonas aeruginosa 
infection : lessons from a versatile opportunist. , pp.1051–1060. 

Macneil, L.T. & Walhout, A.J.M., 2011. Gene regulatory networks and the role of robustness and 
stochasticity in the control of gene expression. Genome research, 21, pp.645–657. 

Maeda, H., Fujita, N. & Ishihama,  a, 2000. Competition among seven Escherichia coli sigma 
subunits: relative binding affinities to the core RNA polymerase. Nucleic acids research, 
28(18), pp.3497–503. 

Magnusson, L.U., Farewell, A. & Nyström, T., 2005. ppGpp: A global regulator in Escherichia 
coli. Trends in Microbiology, 13(5), pp.236–242. 

Martin, D.W. et al., 1993. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa 
infecting cystic fibrosis patients. Proc Natl Acad Sci U S A, 90(18), pp.8377–8381. 

Marvig, R.L. et al., 2013. Genome Analysis of a Transmissible Lineage of Pseudomonas 
aeruginosa Reveals Pathoadaptive Mutations and Distinct Evolutionary Paths of 
Hypermutators. PLoS Genetics, 9(9). 

Mathee, K., McPherson, C.J. & Ohman, D.E., 1997. Posttranslational control of the algT (algU)-
encoded sigma 22 for expression of the alginate regulon in Pseudomonas aeruginosa and 
localization of its antagonist proteins MucA and MucB (AlgN). Journal of Bacteriology, 

47 
 



Bibliography  

179(11), pp.3711–3720. 

Mauri, M. & Klumpp, S., 2014. A Model for Sigma Factor Competition in Bacterial Cells. PLoS 
Computational Biology, 10(10), p.e1003845. 

Merhej, V., Georgiades, K. & Raoult, D., 2013. Postgenomic analysis of bacterial pathogens 
repertoire reveals genome reduction rather than virulence factors. Briefings in Functional 
Genomics, 12(4), pp.291–304. 

Merrick, M., Gibbins, J. & Toukdarian, A., 1987. The Nucleotide-Sequence of the Sigma Factor 
Gene Ntra (rpon) of Azotobacter-Vinelandii - Analysis of Conserved Sequences in Ntra 
Proteins. Molecular & General Genetics, 210(2), pp.323–330. 

Mooney, R.A., Darst, S. a & Landick, R., 2005. Sigma and RNA polymerase: an on-again, off-
again relationship? Molecular cell, 20(3), pp.335–45. 

Mowat, E. et al., 2011. Pseudomonas aeruginosa population diversity and turnover in cystic 
fibrosis chronic infections. American Journal of Respiratory and Critical Care Medicine, 
183(12), pp.1674–1679. 

Munck, C. et al., 2014. Prediction of resistance development against drug combinations by 
collateral responses to component drugs. Science Translational Medicine, 6(262), p.262ra156. 

Myers, K.S. et al., 2015. Defining bacterial regulons using ChIP-seq. Methods, 86, pp.80–88. 

Nyström, T., 2004. Growth versus maintenance: a trade-off dictated by RNA polymerase 
availability and sigma factor competition? Molecular microbiology, 54(4), pp.855–62. 

Österberg, S., Peso-Santos, T. Del & Shingler, V., 2011. Regulation of Alternative Sigma Factor 
Use. Annual Review of Microbiology, 65(1), pp.37–55. 

Paget, M., 2015. Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and 
Distribution. Biomolecules, 5(3), pp.1245–1265. 

Paul, B.J., Berkmen, M.B. & Gourse, R.L., 2005. DksA potentiates direct activation of amino acid 
promoters by ppGpp. Proceedings of the National Academy of Sciences, 102(22), pp.7823–
7828. 

Philippe, N. et al., 2007. Evolution of global regulatory networks during a long-term experiment 
with Escherichia coli. BioEssays, 29(9), pp.846–860. 

Pieren, M. & Tigges, M., 2012. Adjuvant strategies for potentiation of antibiotics to overcome 
antimicrobial resistance. Current Opinion in Pharmacology, 12(5), pp.551–555. 

Poole, K., 2001. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa 
and related organisms. Journal of Microbiol. Biotechnol., 3(2), pp.255–264. 

Potrykus, K. & Cashel, M., 2008. (p)ppGpp: Still Magical? *. Annual Review of Microbiology, 
62(1), pp.35–51. 

Price, M.N., Dehal, P.S. & Arkin, A.P., 2007. Orthologous transcription factors in bacteria have 
different functions and regulate different genes. PLoS Computational Biology, 3(9), pp.1739–
1750. 

48 
 



Bibliography  

Pupov, D. et al., 2014. Distinct functions of the RNA polymerase σ subunit region 3.2 in RNA 
priming and promoter escape. Nucleic acids research, 42(7), pp.4494–504. 

Qiu, D. et al., 2007. Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa. 
Proceedings of the National Academy of Sciences of the United States of America, 104(19), 
pp.8107–12. 

Raffaelle, M. et al., 2005. Holoenzyme switching and stochastic release of sigma factors from RNA 
polymerase in vivo. Molecular cell, 20(3), pp.357–66. 

Rau, M.H. et al., 2012. Deletion and acquisition of genomic content during early stage adaptation of 
Pseudomonas aeruginosa to a human host environment. Environmental Microbiology, 14(8), 
pp.2200–2211. 

Renzoni, A. et al., 2011. Whole genome sequencing and complete genetic analysis reveals novel 
pathways to glycopeptide resistance in staphylococcus aureus. PLoS ONE, 6(6). 

Rollenhagen, C. et al., 2003. Binding of σ A and σ B to Core RNA Polymerase after Environmental 
Stress in Bacillus subtilis Journal of bacteriology, 185, pp.35–40. 

Ross, W. et al., 2013. The magic spot: A ppGpp binding site on E. coli RNA polymerase 
responsible for regulation of transcription initiation. Molecular Cell, 50(3), pp.420–429. 

Rothschild, L.J. & Mancinelli, R.L., 2001. Life in Extreme Environments. Nature, 409(February 
2001), pp.1092–1101. 

Schulz, S. et al., 2015. Elucidation of Sigma Factor-Associated Networks in Pseudomonas 
aeruginosa Reveals a Modular Architecture with Limited and Function-Specific Crosstalk. 
PLOS Pathogens, 11(3), p.e1004744. 

Schurr, M.J. et al., 1996. Control of AlgU, a member of the σ(E)-like family of stress sigma factors, 
by the negative regulators mucA and mucB and Pseudomonas aeruginosa conversion to 
mucoidy in cystic fibrosis. Journal of Bacteriology, 178(16), pp.4997–5004. 

Schurr, M.J. et al., 1993. The algD promoter: regulation of alginate production by Pseudomonas 
aeruginosa in cystic fibrosis. Cell Mol Biol Res, pp.371–376. 

Severinov, K. et al., 1994. The sigma subunit conserved region 3 is part of “5’-face” of active center 
of Escherichia coli RNA polymerase. The Journal of biological chemistry., 269(33), 
pp.20826–20828. 

Sharp, M.M. et al., 1999. The interface of sigma with core RNA polymerase is extensive, 
conserved, and functionally specialized. Genes and Development, 13(22), pp.3015–3026. 

Shawar, R.M. et al., 1999. Activities of tobramycin and six other antibiotics against Pseudomonas 
aeruginosa isolates from patients with cystic fibrosis. Antimicrobial agents and chemotherapy, 
43(12), pp.2877–2880. 

Shingler, V., 2011. Signal sensory systems that impact sigma 54 -dependent transcription. FEMS 
Microbiology Reviews, 35, pp.425–440. 

Smith, E.E. et al., 2006. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic 

49 
 



Bibliography  

fibrosis patients. Proc.Natl.Acad.Sci.U.S.A, 103(22), pp.8487–8492. 

Sousa, A.M. & Pereira, M.O., 2014. Pseudomonas aeruginosa Diversification during Infection 
Development in Cystic Fibrosis Lungs-A Review. Pathogens (Basel, Switzerland), 3(3), 
pp.680–703. 

Studholme, D.J. & Dixon, R., 2003. Domain Architectures of σ 54 -Dependent Transcriptional 
Activators. Journal of bacteriology, 185(6), pp.1757–1769. 

Taylor, M. et al., 1996. The RpoN-box motif of the RNA polymerase sigma factor sigma N plays a 
role in promoter recognition. Molecular microbiology, 22(5), pp.1045–54. 

Thomassen, M.J. et al., 1979. Multiple of isolates of Pseudomonas aeruginosa with differing 
antimicrobial susceptibility patterns from patients with cystic fibrosis. The Journal of 
infectious diseases, 140(6), pp.873–880. 

Tomich, M., Planet, P.J. & Figurski, D.H., 2007. The tad locus : postcards from the widespread 
colonization island. Nature Reviews Microbiology, 5(May), pp.363–375. 

Welsh, M.J. & Smith,  a E., 1993. Molecular mechanisms of CFTR Chloride Channel Dysfunction 
in Cystic Fibrosis. Cell, 73(7), pp.1251–1254. 

Wiedenbeck, J. & Cohan, F.M., 2011. Origins of bacterial diversity through horizontal genetic 
transfer and adaptation to new ecological niches. FEMS Microbiology Reviews, 35(5), pp.957–
976. 

World Health Organisation, 2015. Antimicrobial Resistance. Fact Sheet No 194. 

Xie, Z.D. et al., 1996. Sigma factor-anti-sigma factor interaction in alginate synthesis: inhibition of 
AlgT by MucA. Journal of bacteriology, 178(16), pp.4990–4996. 

Yang, L., Jelsbak, L., Marvig, R.L., et al., 2011. Evolutionary dynamics of bacteria in a human host 
environment. Proceedings of the National Academy of Sciences of the United States of 
America, 108(18), pp.7481–6. 

Yang, L., Jelsbak, L. & Molin, S., 2011. Microbial ecology and adaptation in cystic fibrosis 
airways. Environmental Microbiology, 13(7), pp.1682–1689. 

Yang, Y. et al., 2015. Structures of the RNA polymerase-sigma54 reveal new and conserved 
regulatory strategies. Science, 349(6250), pp.882–886. 

Yin, Y. et al., 2013. Evidence for sigma factor competition in the regulation of alginate production 
by Pseudomonas aeruginosa. PloS one, 8(8), p.e72329. 

Zhou, Y.N. & Gross, C., 1992. How a mutation in the gene encoding sigma 70 suppresses the 
defective heat shock response caused by a mutation in the gene encoding sigma 32. Journal of 
bacteriology, 174(22), pp.7128–7137. 

Zhou, Y.N., Walter, W. a & Gross, C., 1992. A mutant sigma 32 with a small deletion in conserved 
region 3 of sigma has reduced affinity for core RNA polymerase. Journal of bacteriology, 
174(15), pp.5005–12. 

Zuo, Y., Wang, Y. & Steitz, T.A., 2013. The Mechanism of E. coli RNA Polymerase Regulation by 

50 
 



Bibliography  

ppGpp is suggested by the structure of their complex. Molecular Cell, 50(3), pp.430–436. 

 

  

51 
 



Chapter 7 Research articles 

Chapter 7 
 

Research articles 
 

The research articles are enclosed in the following order: 

 

Paper 1 

Eva Kammer Andresen, Denitsa Eckweiler, Sebastian Schulz, Susanne Haussler, Tino Krell 

Maher Abou Hachem, Lars Jelsbak (2016). Rewiring of a sigma factor regulatory network in P. 

aeruginosa by a naturally occurring single nucleotide polymorphism. Manuscript submitted for 

publication. 

 

Paper 2 

Eva Kammer Andresen, Denitsa Eckweiler, Sebastian Schulz, Grith Mirriam Maigaard 

Hermansen, Susanne Haussler, Maher Abou Hachem, Lars Jelsbak (2016). Epistasis and sigma 

factor competition in Pseudomonas aeruginosa. Manuscript in preperation. 

 

52 
 



Rewiring of a sigma factor regulatory network in P. aeruginosa by a naturally 1 

occurring single nucleotide polymorphism  2 

 3 

Eva Kammer Andresen1, Denitsa Eckweiler2, Sebastian Schulz2, Susanne Haussler2, Tino Krell3, 4 

Maher Abou Hachem1, Lars Jelsbak1* 5 

1 Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark 6 

2 Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, 7 

Germany. 3Department of Environmental Protection, Estación Experimental del Zaidín, Consejo 8 

Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008, Granada, Spain 9 

*Corresponding author: DTU Systems Biology, Building 301, 2800 Kgs. Lyngby, Denmark, 10 

lj@bio.dtu.dk, +4545256129 11 

 12 

Keywords: Pseudomonas aeruginosa, evolution, transcriptional regulation, sigma factor, σ54, 13 

promoter recognition 14 

 15 

 16 

 17 

 18 

 19 

1 
 

mailto:lj@bio.dtu.dk


Abstract 20 

Transcriptional regulatory networks represent an important organisational element in the bacterial 21 

cell where signals from the cell state and the outside environment are integrated in terms of 22 

activation and inhibition of gene transcription. How these networks evolve is not well understood, 23 

and the effects of natural occurring polymorphisms within network components are often not 24 

known. Here, we systematically investigate the functional consequences of an amino acid 25 

substitution in the sigma factor protein RpoN in the opportunistic pathogen Pseudomonas 26 

aeruginosa. While RpoN is known to be important for virulence gene expression in P. aeruginosa, 27 

the particular amino acid substitution is important for ecological success of the bacteria in cystic 28 

fibrosis infections. We use Chromatin Immunoprecipitation coupled with next generation 29 

sequencing (ChIP-seq), transcriptional profiling, as well as in vitro protein-DNA interaction studies 30 

and show that the rpoN mutation results in reduced connections to only parts of the RpoN controlled 31 

regulatory network. On the other hand, the mutation results in activation of other sigma factor 32 

regulons. Finally, our results also show that the rpoN mutation lead to a rewiring of the RpoN 33 

network in terms of increased connectivity and positive regulatory effect on a virulence associated 34 

locus. This molecular pleiotropy could not have been predicted from in silico analyses alone, and 35 

this work thus underlines the importance of achieving a molecular understanding of the effects of 36 

polymorphisms in regulator network components.  37 

 38 

 39 

 40 

 41 

 42 
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Introduction  43 

Coordinated global transcriptional changes during infection are critical to the pathogenesis of most 44 

bacteria that infect humans, and transcriptional regulatory networks of connected transcriptional 45 

regulators and target genes play a central role in this process by transducing signals from the 46 

physiological state of the cell or the surrounding environment into coordinated expressions of the 47 

genome. At the molecular level, the structure and function of many transcriptional regulatory 48 

networks are well understood (Salgado et al. 2013; Rustad et al. 2014; Schulz et al. 2015). In 49 

contrast, it is less understood how transcriptional regulatory networks evolve and how ecological 50 

and evolutionary forces act to maintain or diversify these networks, and in which way evolutionary 51 

changes in regulatory networks influence bacterial pathogenesis. 52 

Recent studies have pointed out that evolution of pathogenic potential and host adaptation may 53 

involve rewiring of pre-existing regulatory networks in the pathogen genome. For example, point 54 

mutations within promoter regions can create novel regulatory connections critical for pathogen 55 

fitness within hosts (Osborne et al. 2009) and non-synonymous mutations in global regulator genes 56 

can lead to loss of regulatory network connections resulting in reduced virulence of the pathogen 57 

(D’Argenio et al. 2007; Horstmann et al. 2011; Flores et al. 2015). In addition to these specific 58 

cases, advances in genome sequencing of bacterial pathogens have documented regulatory protein 59 

sequence diversity among strains of the same species (Shea et al. 2011). In some cases, this genetic 60 

diversity is selected by evolution during the course of infection in individual patients (Lieberman et 61 

al. 2011; Marvig et al. 2013). However, interpretation of the molecular effects of this genetic 62 

diversity is often difficult since knowledge about gene functionality is most often derived from 63 

experimentation with genetically engineered loss-of-function mutants and not the exact 64 

polymorphisms selected during the course of evolution. So, while these observations clearly 65 

indicate that genetic changes in regulatory networks play an important role in connection with 66 
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pathogen adaptation and evolution, the precise functional consequences of genetic variations within 67 

regulatory components are most often not known.  68 

Among the different families of transcriptional regulator proteins, sigma factors are of exceptional 69 

importance in connection with coordination of global gene expression as they provide promoter 70 

recognition specificity by directing the catalytic core RNA Polymerase to different promoter 71 

sequences (Burgess & Travers 1969). The number of sigma factors varies greatly between bacterial 72 

species, from only 1 in Mycoplasma sp. to more than 100 in the Sorangium cellulosum (Gruber & 73 

Gross 2003; Han et al. 2013). The opportunistic pathogen Pseudomonas aeruginosa encodes more 74 

than 25 sigma factors, most of which have been linked to bacterial virulence and pathogenicity 75 

(Potvin et al. 2008). In P. aeruginosa, one of these sigma factors (RpoN) has been shown to 76 

regulate multiple cellular functions important for pathogenicity, including alginate production 77 

(Boucher et al. 2000), assembly of motility organs (Dasgupta et al. 2003), utilisation of alternative 78 

carbon sources (Valentini et al. 2011), and production of virulence factors such as secretion systems 79 

(Dong & Mekalanos 2012). In spite of the many regulatory effects associated with RpoN, P. 80 

aeruginosa strains from chronic airway infections in individuals with the genetic disorder cystic 81 

fibrosis (CF) have repeatedly been observed to acquire non-synonymous mutations in rpoN during 82 

host colonisation (Smith et al. 2006). We have recently documented the fixation of a specific rpoN 83 

mutation (rpoNDK2) in the epidemic P. aeruginosa DK2 clone type during its decade long 84 

adaptation to the CF airway environment and have shown that the mutation contributed to the 85 

ecological success of the DK2 lineage and the transformation of the lineage from an opportunistic 86 

pathogen to a CF-specific pathogen (Damkiaer et al. 2013). Although rpoN mutations are selected 87 

by evolution in CF airways, the specific molecular effects of these mutations on the function and 88 

activity of RpoN remain unknown.  89 
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Here, we systematically investigate the functional consequences of the DK2 specific amino acid 90 

substitution in RpoN using a combination of Chromatin Immunoprecipitation coupled with next 91 

generation sequencing (ChIP-seq), transcriptional profiling, as well as in vitro protein-DNA 92 

interaction studies. We show that the rpoNDK2 mutation results in reduced connections to only parts 93 

of the RpoN controlled regulatory network and enhanced crosstalk effects to other sigma factor 94 

regulons. Importantly, our results show that the rpoNDK mutation resulted in an increased 95 

connectivity and positive regulatory effect on the tad locus, which is involved in biofilm formation, 96 

colonisation, and pathogenesis in a wide range of bacterial species (Tomich et al. 2007). This work 97 

not only provides a molecular explanation of a naturally occurring global regulator mutation, it also 98 

highlights the need for in-depth molecular analyses of specific mutational events, as these may 99 

result in unpredictable transcriptional rewiring and phenotypic changes. 100 

 101 

Materials and methods 102 

Genetic manipulations 103 

DNA extraction, restriction enzyme treatments, ligation of DNA fragments, and transformation of 104 

Eschericia coli were performed using standard methods (Green & Sambrook 2012). 105 

Chromatin immunoprecipitation 106 

ChIP-seq analysis of RpoNWT was performed by transforming plasmid pJN105-rpoNWT (Schulz et 107 

al. 2015) into PAO1. Construction of pJN105-rpoNDK2 was performed with the Quick Change 108 

Lightning Site Directed Mutagenesis kit (Stratagene) with the primers SD6-F and SD6-R (Table 109 

S1). The resulting plasmid pJN105-rpoNDK2 was then transformed into PAO1rpoN(DK2) (Damkiaer et 110 

al. 2013). 111 
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ChIP experiments were performed as described previously (Schulz et al. 2015). Briefly, 50ml 112 

cultures were grown to an OD600 of 1.0, and sigma factor expression was induced with l-arabinose 113 

to 0.5% (w/v). Crosslinking was performed by adding 0.5% formaldehyde when OD600 reached 2.0. 114 

Before formaldehyde treatment, 1.5 ml culture was sampled for mRNA profiling. The crosslinking 115 

reaction was quenched after 5 minutes with 137 mM glycine, and the cells were pelleted. Pellets 116 

were resuspended in lysis buffer (10 mM Tris-HCl pH 8, 50 mM NaCl, 10 mM EDTA, 20% 117 

sucrose), and DNA was fragmented to an average size of 200-250 bp, using the method of (Schulz 118 

et al. 2015). Bound DNA was incubated with anti-6xHistag antibody (ab9108, Abcam), and 119 

antibody-protein-DNA complexes were captured using Dynabeads Protein G (Life Technologies). 120 

Immunoprecipitated samples were treated with RNAse A and proteinase K, and DNA was purified 121 

using the QIAquick PCR purification Kit (Qiagen). Recovered DNA was subjected to a modified 122 

linear DNA amplification (LinDA) protocol (Shankaranarayanan et al. 2012; Schulz et al. 2015), 123 

and preparation of libraries for sequencing was performed with the NEBNext Ultra DNA Library 124 

Prep Kit for Illumina. DNA was sequenced as paired-end sequences with a read length of 250 bp on 125 

a MiSeq sequencer (Illumina).   126 

ChIP-seq data was analysed in a way similar to that described previously (Schulz et al. 2015). 127 

Because of the paired-end sequencing and read length, we chose the Stampy aligner (Lunter & 128 

Goodson 2011) to map the reads to the PAO1 reference genome. For both RpoNWT and RpoNDK2, 129 

model-based analysis of ChIP-seq (MACS) (Zhang et al. 2008), was applied for peak detection 130 

using a P value cut-off value of 0.05 and shift size 30 for the peak modelling. Promoter hits [-500nt, 131 

TSS, +100nt] were considered significant when they were detected in both ChIP-seq replicates with 132 

an enrichment factor of at least 2 and a P value of less than 0.01. Statistical analysis of the obtained 133 

candidates was performed to assess the number of false positives and the corresponding P value 134 

according to the hypergeometric test in R using the phyper command. 135 

6 
 



Gene expression analysis 136 

The 1.5 ml samples collected above were used for isolation of total RNA using the RNeasy Mini 137 

Kit (Qiagen), and enrichment of mRNA was performed using the ScriptSeq Complete Kit 138 

(Bacteria). cDNA library preparation was performed as described previously (Schulz et al. 2015), 139 

and cDNA was sequenced as paired-end sequences with a read length of 250 bp on a MiSeq 140 

sequencer (Illumina). 141 

Sequences were mapped to the PAO1 genome using Stampy (Lunter & Goodson 2011). Differential 142 

expression was called with the R package DESeq2 (Love et al. 2014) making use of the biological 143 

duplicates for each condition. As differentially expressed genes were identified, those having 144 

absolute logarithmic fold change greater than one (|log2FC|>1) at significance level of less than 5%. 145 

Expression and purification of recombinant proteins 146 

The rpoNWT and rpoNDK2 genes were amplified from genomic DNA prepared from P. aeruginosa 147 

PAO1 and PAO1rpoN(DK2) (Damkiaer et al. 2013), respectively. Both genes were amplified with the 148 

primers rpoN_F and rpoN_R (Table S1) and ligated into plasmid pET28 (Novagen, Merck 149 

Millipore) using restriction sites NdeI and HindIII, producing N-terminal 6xHistidine tagged 150 

sequences of each insert. All plasmids were verified by Sanger sequencing and maintained in E. coli 151 

DH5α.  152 

The recombinant plasmids generated above were transformed into the expression E. coli 153 

Rosetta(DE3) strain (Novagen, Merck Millipore). Cells were grown in LB medium supplemented 154 

with 10 mM glucose, 50 µg/ml kanamycin, and 34 µg/ml chloramphenicol in 1L cultures at 30°C to 155 

an OD600 of 0.5. Expression was induced by adding IPTG to a final concentration of 100 µM, and 156 

the cultures were harvested after 3 hours and stored at -20°C until use.  157 
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Purification was performed by resuspending 5 g frozen cells in 30 ml buffer A (10 mM HEPES pH 158 

7.5, 15 mM Imidazole, 0.5M NaCl, and 10% Glycerol), supplemented with 7µl Benzonase (Sigma-159 

Aldrich) and 1 cOmplete protease inhibitor tablet (Roche Diagnostics) and passed through a French 160 

Press 3 times at 1,000 bar. Cell lysates were centrifuged, and the clarified supernatant was loaded 161 

onto a 5 ml HisTrap column (GE Healthcare) at 0.5 ml/min and 4˚C, washed with 6 column 162 

volumes (CV) of the same, after which bound fractions were eluted with buffer B (10 mM HEPES 163 

pH 7.5, 400 mM Imidazole, 0.5M NaCl, and 10% Glycerol) in 30 CV. Fractions containing 90%< 164 

pure RpoNWT and RpoNDK2 were collected and dialysed against storage buffer (20 mM HEPES pH 165 

7.5, 150 mM NaCl, 5 mM MgCl2, 0.5 mM dithiothreitol (DTT), and 10% glycerol). Proteins were 166 

stored at -80°C in storage buffer and glycerol to a final concentration of 50%.  167 

Preparations of DNA for RpoN – DNA interaction analysis 168 

Duplex DNA oligos containing RpoN promoter recognition sequences for fliD and flgF (enclosed in 169 

Table S1) were purchased from Integrated DNA Technologies. Promoter duplexes were designed 170 

from the core sequence of the known RpoN binding motif GG-N10-GC (Taylor et al. 1996; Buck et 171 

al. 2000), and in addition to this, an additional 15 bp spacer was added to each end creating a final 172 

duplex consisting of N15-GG-N10-GC-N15,where N denotes the genomic DNA between the -24 GG 173 

and -12 GC nucleotides as well as 15 bp up- and downstream of these. The 305 bp intergenic region 174 

between genes rcpC and flp was amplified from P. aeruginosa PAO1 genomic DNA using primers 175 

Intreg_F and Intreg_R. 176 

Electrophoretic Mobility Shift Assays 177 

Electrophoretic mobility shift assays (EMSA) were performed using RpoN promoter sequences 178 

end-labelled with γ-33-ATP using T4 polynucleotide kinase (Thermo Fischer Scientific) and 179 

purified using Micro Bio-Spin 6 Chromatography Columns (Bio-Rad Laboratories). EMSA 180 
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reactions were assembled in 10 μl reactions in binding buffer (20 mM HEPES pH 7.5, 150 mM 181 

NaCl, 5 mM MgCl2, 0.5 mM DTT, and 10% glycerol) using 1 μl of labelled DNA diluted to 1.5∙104 182 

cpm, 0.2 μl 50 mg/ml Bovine Serum Albumin (BSA), 0.5 μl 1 mg/ml Poly[d(I-C)], and increasing 183 

concentrations of purified RpoNWT or RpoNDK2. Reactions were incubated for 20 minutes at 30°C, 184 

after which 1 µl Novex® Hi-Density TBE Sample Buffer (5X) (ThermoFischer Scientific) was 185 

added, and the electrophoresis was performed using Novex® TBE Gels 6% DNA Retardation Gels 186 

(ThermoFischer Scientific) and visualised on a Storm PhosphorImager (GE Healthcare). 187 

Results 188 

Sequence variation of the Pseudomonas aeruginosa σ54 RpoN 189 

To investigate the natural sequence variation of RpoN, we performed a BLAST search of the PAO1 190 

RpoN amino acid sequence against the entire set of P. aeruginosa RpoN sequences deposited in the 191 

Pseudomonas Genome Database (Winsor et al. 2016). We found that 10.8% (163 of 1,507 complete 192 

RpoN sequences) display sequence variation of one or more amino acid substitutions (Dataset S1). 193 

One of these is the RpoNDK2 protein from the transmissible P. aeruginosa clone DK2, originally 194 

isolated from chronically infected Danish CF patients. The RpoNDK2 protein has a single amino acid 195 

substitution, L419P, which is known to result in phenotypic changes and affect regulatory networks 196 

(Damkiaer et al. 2013). 197 

The L419P substitution maps to the DNA interacting domain of RpoN 198 

To infer about the possible consequences of the RpoNDK2 mutation, we performed a sequence 199 

alignment between E. coli RpoN and P. aeruginosa RpoN. The RpoNDK2 L419P substitution maps 200 

to region 3, which is known to be involved in DNA interactions (Buck et al. 2000; Österberg et al. 201 

2011) (Figure 1). Region 3 of RpoN contains 3 domains; a core binding domain (CBD), a helix-202 

turn-helix (HTH) motif involved in interaction with the -12 promoter region, and the RpoN-box 203 
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involved in interactions with the -24 promoter sequence (Buck et al. 2000; Österberg et al. 2011). 204 

The RpoNDK2 mutation is located between the HTH and RpoN-box, and we therefore hypothesised 205 

that the mutation could potentially affect promoter DNA binding abilities, and thus, the ability of 206 

RpoNDK2 to control its regulon. 207 

Regulatory effects of the RpoNDK2 mutation 208 

To determine the regulatory effects of the RpoNDK2 mutations, we first examined the transcriptional 209 

profile of PAO1rpoN(DK2) expressing RpoNDK2 compared to PAO1rpoN(WT) expressing RpoNWT to 210 

create an overall assessment of both direct and indirect effects of the RpoNDK2 mutation (Figure 2, 211 

grey series) (Dataset S2). At a significance level of p<0.05 and log fold change (|log2FC|)>1, 454 212 

genes were significantly differentially expressed, with 341 upregulated and 113 downregulated 213 

genes, altogether corresponding to 8.1% of the total 5,570 open reading frames in P. aeruginosa 214 

PAO1 (Stover et al. 2000).  215 

We next compared our gene expression values to the known core RpoN regulon (defined as genes 216 

containing promoters known to interact directly with RpoN (Schulz et al. 2015) to investigate if the 217 

RpoNDK2 mutation results in a specific up- or downregulation of genes known to be controlled by 218 

RpoN. This analysis shows that genes directly controlled by RpoN are mostly downregulated (47 219 

genes of a total of 66 belonging to the core RpoN regulon, corresponding to 71% of the total core 220 

RpoN regulon) (Figure 2, red series). These results indicate that the RpoNDK2 mutation has a 221 

negative impact on the RpoN regulon as well as substantial pleotropic effects outside the RpoN 222 

regulon. 223 

The RpoNDK2 mutation positively affects the transcription profile of the RpoS regulon 224 

To further understand these pleotropic effects, we explored whether any of the other sigma factor 225 

core regulons characterised in P. aeruginosa were affected by the RpoNDK2 mutation. To this end, 226 
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we compared the total expression dataset from the PAO1rpoN(DK2) expressing RpoNDK2 compared to 227 

PAO1rpoN(WT) expressing RpoNWT to six of the known sigma factor core regulons (RpoD, PvdS, 228 

AlgT, RpoS, FliA, RpoH) (Figure 3). We did not observe any changes in relation to the genes from 229 

the core regulons of RpoD, PvdS, FliA, and RpoH (Schulz et al. 2015). The differential expression 230 

values of the genes belonging to the core regulons of AlgT seemed to be slightly downregulated. On 231 

the other hand, the entire set of genes that constitute the RpoS regulon was upregulated, suggesting 232 

the existence of interplay between the RpoN and RpoS regulons. Data for all comparisons are 233 

provided as Dataset S3. 234 

Genome wide binding site distributions of the RpoNWT and RpoNDK2 proteins 235 

To separate the direct and indirect regulatory effects of the RpoNDK2 mutation, and to investigate if 236 

the RpoNDK2 mutation affects the genome wide binding profile of the sigma factor protein, we 237 

performed a ChIP-seq analysis, and compared the binding profiles of PAO1rpoN(DK2) expressing 238 

RpoNDK2 to PAO1rpoN(WT) expressing RpoNWT (Dataset S4 and S5). This analysis showed that a 239 

majority of unique binding sites were associated with RpoNWT (286 binding sites), whereas three 240 

binding sites appeared to be responsive to RpoNDK2, but not the RpoNWT protein (Figure 4A). 241 

The gene expression analysis and genome wide binding profiling of the RpoNDK2 mutation show 242 

that the direct effects of the RpoNDK2 mutation is a reduced number of binding sites of the RpoNDK2 243 

protein compared to the RpoNWT protein, as well as reduced expression levels of genes that 244 

constitute the core RpoN regulon, indicating a reduced binding affinity of the RpoNDK2 protein to 245 

its promoters. The gene expression profile, however, also reveals an RpoNDK2 positive regulation of 246 

a number of genes, indicating a more complex regulatory rewiring than merely a loss-of-function. 247 
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The RpoNDK2 mutation decreases the direct binding affinity to RpoN promoter sequences 248 

To verify if the RpoNDK2 protein displays a reduced binding affinity to RpoN controlled promoters, 249 

we used EMSA to compare the in vitro binding profile of RpoNWT and RpoNDK2 recombinant 250 

proteins to two well-known RpoN controlled promoters, both called as unique RpoNWT binding 251 

sites in our ChIP-seq experiments. Figure 4B shows the binding of each protein to these two 252 

promoters. It is clear that at comparable concentrations of the RpoNWT and RpoNDK2 protein 253 

(marked by asterisks), the RpoNWT protein produces a stronger binding at both promoters, meaning 254 

that the binding affinity of the RpoNDK2 protein is decreased compared to the RpoNWT. It was not 255 

possible to determine absolute binding affinities due to instability of the purified RpoN proteins at 256 

high concentration in solution, however, it is clear that the binding of RpoNDK2 is either reduced or 257 

lost, confirming the in vivo observations from ChIP-seq. 258 

Remodelling of the RpoNDK2 regulon 259 

To investigate the unique RpoNDK2 binding events discovered from the ChIP-seq analysis, we 260 

correlated the three unique RpoNDK2 ChIP peaks with their corresponding mRNA values and 261 

discovered a clear association between the RpoNDK2 pull-down of two gene promoter regions 262 

(PA4305, rcpC and PA4306, flp), and upregulation of their gene expression values (Figure 6A). 263 

The flp and rcpC genes are transcribed in opposite directions, and both are members of the tad 264 

locus, responsible for the production and assembly of type IVb pili (Bernard et al. 2009). 265 

Interestingly, the positive regulatory effects of RpoNDK2 are not limited to flp and rcpC. As shown 266 

in Figure 6B, most genes of the tad locus are upregulated in response to the RpoNDK2 mutation, 267 

although flp and rcpC are the only two genes producing unique ChIP binding sites for the RpoNDK2 268 

protein.  269 
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We next visually inspected the ChIP binding profiles of RpoNWT and RpoNDK2 at the 1,285 bp 270 

region surrounding the genes rcpC, flp, and pctC, in order to evaluate the actual binding profile of 271 

each protein to this region (Figure 7A). Figure 7.A.1 - 7.A.2 illustrate the replicates of the ChIP 272 

binding profile of the RpoNWT protein, whereas Figure 7.A.3 - 7.A.4 show the replicates of the ChIP 273 

binding profile of the RpoNDK2 protein at this region. While bioinformatics analyses call the peak in 274 

this region as being unique for the RpoNDK2, visual inspection indicates that minimal binding of the 275 

RpoNWT to this region is possible. 276 

To confirm any role of direct RpoNDK2 binding to the intergenic region of flp-rcpC, we searched 277 

this intergenic sequence for RpoN consensus sites. A putative RpoN consensus site was discovered 278 

at the genomic coordinates 4830896-4830912 with the sequence 5´-TCGGCCTAGCCTCAGCG-3´. 279 

Figure 7B shows in vitro EMSA binding ability of both RpoNWT and RpoNDK2 to a 305 bp region of 280 

the intergenic region between rcpC and flp containing the putative RpoN consensus sequence. Even 281 

though both RpoNWT and RpoNDK2 are able to bind this region in vitro, the RpoNDK2 protein 282 

produces a complete shift at 1.1 µM, while RpoNWT requires 4.7 µM - 6.3 µM to produce a 283 

complete shift, indicating that the RpoNDK2 protein binds this region with a higher affinity. 284 

Discussion 285 

The increased use of high throughput comparative genomics and in silico modelling of biological 286 

systems presents both fascinating possibilities as well as complex challenges when used to model 287 

complicated networks such as transcriptional regulatory networks. However, in order to achieve an 288 

in-depth genotype-phenotype understanding and an ability to predict resulting phenotypes from 289 

genomic changes, there is a need for understanding the molecular consequences of genotypic 290 

alterations e.g. mutations in regulatory proteins. 291 
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In this work, we set out to investigate how one naturally occurring amino acid substitution of the P. 292 

aeruginosa sigma factor RpoN alters the transcriptional profile, genome wide binding profile, and 293 

the in vitro DNA binding to the RpoN recognised promoter DNA. We performed experiments both 294 

in vivo and in vitro, as this combination represents a powerful combination of techniques. Whereas 295 

in vitro EMSA binding presents the direct effect of a mutation on a defined DNA sequence, results 296 

of in vivo experiments reveal the entire biological response of the mutation.  297 

We initially hypothesised that the RpoNDK2 mutation would result in an overall reduced binding 298 

affinity to RpoN controlled promoters, reflected in a consistent downregulation of genes belonging 299 

to the RpoN regulon, a reduced genome wide RpoN binding site distribution, as well as a decrease 300 

in binding affinity of RpoNDK2 promoters on in vitro EMSA binding profiles. Interestingly, we 301 

discovered that the mutation results in multiple complex regulatory effects, including a decreased 302 

binding of the RpoNDK2 protein to certain RpoN controlled promoters, as well as a remodelling of 303 

the entire RpoN regulon. In addition, we discovered a unique positive regulatory effect of the 304 

RpoNDK2 protein on the tad locus, a region that has not previously been linked to direct RpoN 305 

regulation. 306 

The random distribution of expression values of genes known to be members of the RpoN regulon 307 

suggests that the RpoNDK2 mutation is not comparable to a loss-of-function mutant, but rather 308 

results in an altered function. A similar situation has been observed in the group A Streptococcus, 309 

where a naturally occurring mutation in the sensor kinase LiaS resulted in an alteration, but not 310 

elimination of the LiaS protein function (Flores et al. 2015).  311 

Interestingly, among the upregulated genes in our gene expression analysis was the entire set of 312 

genes constituting the core RpoS regulon, indicating an additional regulatory effect on sigma factor 313 

crosstalk. Sigma factor crosstalk has been proposed to be limited, but highly function-specific, and 314 
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RpoN has been proposed as the sigma factor participating in the most extensive crosstalk among 315 

sigma factors with direct crosstalk to AlgT, FliA, SigX, RpoH, and RpoS (Schulz et al. 2015). Our 316 

findings that the RpoNDK2 mutation results in an RpoS specific crosstalk, but leaves other regulons 317 

unaffected, support the hypothesis that the RpoNDK2 mutation is a regulon modulating mutation that 318 

is able to direct cellular processes towards specific functions.  319 

Specific interactions between the RpoN and RpoS regulatory networks have been reported 320 

previously. In Borrelia burgdorferi, a central regulatory pathway, known as the σ54-σS sigma factor 321 

cascade, controls expression of the surface protein OspC and a large number of other genes, and it 322 

has been shown for this organism that RpoN directly controls RpoS expression (Smith et al. 2007; 323 

Ouyang et al. 2012). However, it has also been suggested that this specific σ54-σS sigma factor 324 

cascade requires an activator protein that activates transcription through a DNA binding mechanism 325 

different from the normal RpoN activation mechanism, and is dependent on direct repeat sequences 326 

upstream of the rpoS gene (Ouyang et al. 2011). Our findings that RpoNDK2 positively affects RpoS 327 

expression may be yet another variation of the RpoN-RpoS regulatory interplay that is dependent on 328 

the genetic environment and activator proteins. 329 

The RpoNDK2 mutation was originally observed in the P. aeruginosa DK2 lineage that has 330 

successfully adapted to CF hosts over more than 40 years (Yang et al. 2011). In addition to the 331 

RpoNDK2 allele discussed here, many other mutations in regulatory proteins have been observed in 332 

the DK2 lineage (Damkiaer et al. 2013), and it appears that regulatory mutations in addition to 333 

acquisition and loss of genetic material have all been driving factors in the evolution of this specific 334 

lineage. While this study determines the direct regulatory and molecular effects of the RpoNDK2 335 

mutation in a PAO1 background, a complete evolutionary understanding of this mutation, as well as 336 

all other adaptive regulatory mutations should be discussed in relation to their genomic 337 

backgrounds. It is very likely that compensatory mutations, as well as new or lost genetic material, 338 
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will add another layer of complexity, especially when taking into consideration that the RpoN 339 

sigma factor interacts not only with promoter DNA, but also with the core RNAP, bEBPs, and that 340 

transcriptional activation of RpoN requires correct bEBP binding to upstream DNA sequences, as 341 

well as correct DNA looping facilitated by an integration host factor (IHF) protein. In fact, it was 342 

recently reported that mutations in two Pseudomonas flourescens bEBPs result in pleiotropic effects 343 

and unpredictable phenotypes, and activate transcription from certain promoters (Taylor, Mulley, 344 

Mcguffin, et al. 2015; Taylor, Mulley, Dills, et al. 2015). Using the same set of bEBPs (NtrC/NtrB), 345 

Amit et al. 2011 showed that transcriptional control from these two regulators depends 346 

quantitatively on DNA looping. Taken together, these studies of mutations in bEBP, the importance 347 

of the surrounding genetic environment, as well as our findings of an RpoNDK2 facilitated 348 

remodelling of regulatory networks, all point towards an extremely complex system that is 349 

accessible for regulation on many levels. 350 

The tad locus presents a specific example of the complexity of regulatory networks. A literature 351 

search did not reveal any previously described direct RpoN regulation of flp and rcpC genes, and 352 

we therefore speculate that this locus may present a new regulatory function of the RpoNDK2 353 

protein. The improved binding ability of RpoNDK2 at this region is directly translated into increased 354 

gene expression for the rcpC and flp genes, indicating that the specific interaction takes place in the 355 

intergenic region between rcpC and flp, and that any altered regulatory effects exercised by the 356 

RpoNDK2 are specific for rcpC and flp, but not pctC. This interesting case shows that while the 357 

RpoNDK2 protein seems to lose some binding sites, based on the high number of unique binding 358 

events for the RpoNWT protein, the mutation also results in an altered regulatory function at certain 359 

genomic regions.  360 

The potential RpoNDK2 facilitated regulatory mechanism of this specific locus may be a trait that 361 

has been preserved in the evolved P. aeruginosa DK2 strain, or it could represent a trait with no 362 
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evolutionary beneficial value that was later silenced by compensatory mutations. Indeed, sequence 363 

alignment of the genes constituting the tad locus in P. aeruginosa PAO1 and DK2 reveals a number 364 

of mutations in the tad locus genes (Table S2). So far, the only in-depth descriptions of the P. 365 

aeruginosa tad locus have been those of (Bentzmann et al. 2006) and (Bernard et al. 2009). The 366 

genes comprising the tad locus have furthermore been proposed to be directly regulated by RpoS, 367 

FliA, and RpoH. Indirect regulation of the tad locus involves RpoN, FliA, RpoS, and RpoH (Schulz 368 

et al. 2015). The aforementioned roles of the surrounding genetic environment, and both bEBPs and 369 

RpoN as additional evolutionary targets, represent an interesting starting point for future 370 

investigations. 371 

In summary, our results reporting that a single amino acid substitution in a well-known sigma factor 372 

leads to extensive remodelling of its regulatory network as well as an altered DNA binding ability 373 

are a striking example of the difficulties one is confronted with when studying the evolution of 374 

regulatory networks. Our findings not only elucidate the specific molecular mechanisms of this 375 

mutation, they also highlight the importance of understanding evolution of regulatory networks in 376 

their specific context. Ultimately, this should lead to a closer examination of how evolution of 377 

regulatory networks varies within specific strains, and to which extent information on one strain is 378 

applicable to even closely related strains.  379 
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Figures 485 

 486 

Figure 1. Sequence representation of P. aeruginosa RpoN. Grey; P. aeruginosa regions 1 and 2, 487 

blue; P. aeruginosa region 3, red; P. aeruginosa HTH and RpoN-box. CBD denotes the core 488 

binding domain. The RpoNDK2 mutation is marked yellow. Numbers above figure indicate the 489 

amino acid sequence number, determined by sequence alignment to the E. coli RpoN protein. 490 

 491 

Figure 2. Expression profile of PAO1rpoN(DK2) expressing RpoNDK2 compared to PAO1rpoN(WT) 492 

expressing RpoNWT (grey series). Genes that are regulated directly by RpoN, i.e. genes whose 493 

promoters are known to directly bind to RpoN are marked red. Dotted lines indicate the Log2FC cut 494 

off. 495 
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 496 

Figure 3. Gene expression values of PAO1rpoN(DK2) expressing RpoNDK2 compared to PAO1rpoN(WT) 497 

expressing RpoNWT mapped to known sigma factor core regulons (Schulz et al. 2015). Yellow 498 

series denote the specific expression values of each gene in the corresponding regulon, while black 499 

bars denote the average Log2FC for each regulon. 500 
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 501 

Figure 4. (A) Genome wide binding site distribution of a PAO1rpoN(DK2) expressing RpoNDK2 502 

compared to a PAO1rpoN(WT) expressing RpoNWT. (B) EMSA profile of the interactions of RpoNWT 503 

and RpoNDK2 to the fliD and flgF promoter. (B, upper-left) RpoNWT binding to the fliD promoter 504 

with increasing concentrations of RpoNWT (0 µM, 0.5 µM, 1 µM, 1.5 µM, 2.1 µM). (B, upper-right) 505 

RpoNDK2 binding to the fliD promoter with increasing concentrations of RpoNDK2 (0 µM, 0.3 µM, 506 

0.5 µM, 0.8 µM, 1.1 µM). (B, lower-left) RpoNWT binding to the flgF promoter with increasing 507 

concentrations of RpoNWT (0 µM, 0.5 µM, 1 µM, 1.5 µM, 2.1 µM). (B, lower-right) RpoNDK2 508 

binding to the flgF promoter with increasing concentrations of RpoNDK2 (0 µM, 0.3 µM, 0.5 µM, 509 

0.8 µM, 1.1 µM). Binding profiles at comparable protein concentrations are marked by an asterisk. 510 
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 511 

Figure 6. (A) ChIP enrichment and gene expression values for each of the three genes with unique 512 

in vivo binding to the RpoNDK2. The ChIP Log2FC is reported as a replicate average. (B) Gene 513 

expression values of the flp-tad locus in a PAO1rpoN(DK2) expressing RpoNDK2 compared to a 514 

PAO1rpoN(WT) expressing RpoNWT. Numbers above gene organisation chart (modified from the 515 

Pseudomonas Database (Winsor et al. 2016)) indicates the differential expression values, while the 516 

top bars and roman numbers indicate organisation of 5 transcriptional units that constitute the tad 517 

locus (Bernard et al. 2009). 518 
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  519 

Figure 7. ChIP profile and EMSA analysis demonstrating the remodelled molecular functions of 520 

the RpoNDK2 protein. (A) A 1285 bp section (genomic coordinates 4829562 – 4830847) of the ChIP 521 

profile of the PAO1rpoN(WT) expressing RpoNWT (replicates, A.1 and A.2), as well as the ChIP profile 522 

of the PAO1rpoN(DK2) expressing RpoNDK2 (replicates, A.3 and A.4). The orientation of the genes 523 

rcpC, flp, and pctC are illustrated according to the ChIP profile mapping. (B) EMSA displaying the 524 

in vitro binding ability of RpoNWT (left) and RpoNDK2 (right) to a 305 bp intergenic region between 525 

rcpC and flp. 526 

 527 
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Supplementary figures and tables 528 
 529 

Name  Sequence(5´- 3´ ) Comments 
rpoN_F  AAGAGCCATATGAAACCATCGCTAGTCCTCAAG Used for amplification of the rpoN genes 

rpoN_FR TTCACGAAGCTTCACACCAGTCGCTTGCGCTCG Used for amplification of the rpoN genes 

Intreg_F  ACATTGGGGTTATCGACTGG 
Used for amplification of intergenic region for use 
in EMSA 

Intreg_R TTTGCAATACACGAACAGGG 
Used for amplification of intergenic region for use 
in EMSA 

FliD 
promoter 

CGGGTTGAACGACTTGGCATGGTGCTTGCCCTATCGA
AGGGATA Used for EMSA. Synthesised as duplex oligo. 

FlgF 
promoter 

GTTTTTTCGAATTCTGGCACGGCGCTTGCTGGATAACC
TGCAAG Used for EMSA. Synthesised as duplex oligo. 

Table S1 – Sequences for primers and duplex oligos. 530 

 531 

Table S2 –Sequence alignments of the genes constituting the tad locus from P. aeruginosa PAO1 532 

and P. aeruginosa DK2 533 

 534 
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Abstract 14 
Evolution of transcriptional regulatory networks is a complex and not well understood process 15 

which often involves epistatic interactions between genes encoding regulatory proteins. While a 16 

growing body of work have analysed global regulator proteins and how one mutation may affect the 17 

regulatory response, our knowledge of the specific molecular mechanisms as well as perturbations 18 

in network structure from the overall sum of mutations is very limited. Here, we investigate the 19 

combined transcriptional regulatory network dynamics resulting from mutations in two sigma factor 20 

proteins in Pseudomonas aeruginosa. We use Surface Plasmon Resonance (SPR) to study the direct 21 

molecular effects of each mutation, as well as gene expression profiling and Chromatin 22 

Immunoprecipitation (ChIP-seq) to study how each mutation alters their respective regulatory 23 

network, as well as the epistatic effects produced by the combination of mutations. We show that 24 

gene regulatory networks are evolvable structures that may be remodelled either by a switch in 25 

sigma factor competition, caused by a direct decrease in the binding affinity to the core RNAP, or 26 

they may be altered on a more complex scale, involving a specificity factor, presumably ppGpp, to 27 

mediated alteration in gene expression and sigma factor competition. We show that epistasis emerge 28 

as a result of global regulator remodelling, and that this effect is the direct cause of an adapted 29 

phenotype. This study shows that sigma factor competition and epistasis is closely connected, and 30 

that remodelling of sigma factor competition is yet another tool bacteria use to adapt to new 31 

environments. 32 

  33 
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Introduction 34 
Bacteria are faced with continuously changing environments which require the cells to constantly 35 

evolve and adapt to accommodate the need for new phenotypes. Mutations in global regulator 36 

proteins alter and rewire the cells gene regulatory potential to open up new gene expression routes 37 

which enables the bacterium to survive in the constant changing environment. Regulators of gene 38 

regulatory networks are often the target for adaptive mutations (Yang et al. 2011; Hindré et al. 39 

2012) and due to their central role in gene regulation, any alteration of their function may produce 40 

large downstream impact. Predicting the genotype-phenotype correlation is therefore a central 41 

challenge of evolutionary biology, and a number of recent publications have shown that global 42 

regulator mutations often result in unexpected pleiotropic phenotypes besides providing the 43 

bacterium with an adaptive advantage. For example, modulation of a sensor kinase component of a 44 

two-component signal transduction system caused by a 7 bp frameshift caused extensive 45 

remodeling of the transcriptomic profile with a resulting phenotypic variation and disease 46 

specificity in the Group A Streptococci (Sumby et al. 2006). Other mutations in global regulators 47 

have found to dramatically alter a microorganisms host tropism (Viana et al. 2015) or the ability to 48 

adapt to complex environments through metabolic selection (Saxer et al. 2014). Characteristic for 49 

these studies is that even with the underlining of the importance of single global regulator 50 

mutations, the exact molecular mechanisms that facilitate these adapted phenotypes are largely 51 

unknown. 52 

While one global regulator mutation may cause pleiotropic effects on both regulatory network 53 

organisation and phenotypic outcomes, it is known that variations in the cells genetic composition 54 

may cause substantial alterations in the transcription profile of a single global gene regulator 55 

(Chugani et al. 2012). As evolution is not a one-step process, and large variation may exist even 56 

within the genomic composition of the same bacterial strain, the epistatic effects on the structure of 57 
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regulatory network are an important aspect of the evolution of regulatory networks. Epistatic 58 

interactions are, however, still poorly understood at both the molecular level as well as how they 59 

affect entire gene regulatory networks and thus, and thus, they are consequently difficult to predict. 60 

The evolutionary dynamics of the transmissible P. aeruginosa DK2 lineage has been studied 61 

extensively in relation to its adaptation to the cystic fibrosis (CF) lung environment, and this system 62 

represents a well-established model system for investigations of microbial evolutionary dynamics 63 

within a natural environment. During adaptation to the CF lung environment, mutations in 64 

regulators of several large gene regulatory networks cause extensive remodelling of gene expression 65 

profiles and phenotypes, allowing P. aeruginosa to evade both host immune defences and 66 

aggressive antibiotic treatment (Yang et al. 2011; Damkiaer et al. 2013). One of the most extensive 67 

characteristic adapted phenotypes of P. aeruginosa is the conversion to a mucoid phenotype due to 68 

a constitutive production of the extracellular polysaccharide alginate and known as a hallmark of 69 

chronic infection and a poor prognosis for the patients (Folkesson et al. 2012).  70 

The alternative sigma factor AlgT and its anti-sigma factor MucA directly controls expression of 71 

the alginate biosynthetic genes, and mutations in these two genes are well known to affect alginate 72 

production and mucoid conversion (Xie et al. 1996). However, genetic determinants controlling the 73 

mucoid phenotype involves not only remodelling of the AlgT-MucA gene regulatory network, but 74 

may involve other large regulatory networks, such as those controlled by the sigma factor  RpoN 75 

(Boucher et al. 2000), the transcriptional regulator LasR or even the housekeeping sigma factor 76 

RpoD (Damkiaer et al. 2013). Alginate overproduction is thus a specific adapted phenotype, caused 77 

by extensive remodelling and epistatic effects from several gene regulatory networks. 78 

The interplay between AlgT and RpoD is especially interesting, as we have previously observed a 79 

mucoid phenotype which is dependent on a specific sequential combination of regulatory mutations. 80 

4 
 



Initially, inactivation of the anti-sigma factor MucA releases AlgT, which then associates with the 81 

core RNAP and activates alginate biosynthesis by binding and transcribing from the algD promoter, 82 

resulting in a mucoid phenotype. Subsequent, a one amino acid substitution in AlgT reverts the 83 

phenotype back to nonmucoid, followed by a one amino acid deletion in the housekeeping sigma 84 

factor RpoD, which again give rise to a mucoid phenotype (PAO1∆mucA(DK2),algT(DK2),rpoD(DK2)). The 85 

sequential combination of regulatory mutations and the shift between the mucoid and nonmucoid 86 

phenotypes implies that constitutive alginate production in PAO1∆mucA(DK2),algT(DK2),rpoD(DK2) result 87 

from a complex epistatic interplay between the specific mutations in global regulators. In order to 88 

fully understand how epistatic interactions between two seemingly unrelated mutations in global 89 

regulators can give rise to this phenotype, we need a comprehensive understanding of the molecular 90 

basis behind each of the involved regulators, as well as an understanding of the molecular 91 

interaction behind the epistatic interactions. 92 

Here, we investigate the gene regulatory network dynamics and molecular mechanisms of 93 

mutations in two global regulators, AlgT and RpoD, known to cause an adaptive advantage for P. 94 

aeruginosa in the form of a mucoid phenotype. We investigate the molecular consequences of each 95 

sigma factor mutation, as well as the epistatic effects on the network dynamics. By using gene 96 

expression profiling, ChIP-seq, as well as in vitro protein-protein interaction assays, we show that 97 

gene regulatory network dynamics are regulated on a small scale by adjusting simple mechanisms 98 

such as the affinity between a sigma factor and the RNA core polymerase. We also show that, for 99 

the evolved PAO1∆mucA(DK2),algT(DK2),rpoD(DK2) phenotype, mucoidy is the direct result of epistatic 100 

effects, and not a result of alteration of the sigma function factor per se, and we suggest the 101 

involvement of ppGpp as the effector molecule causing these epistatic effects. 102 
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This study links the direct, functional effects of two naturally occurring global regulator mutations 103 

to the resulting network displacement, epistatic effects and resulting phenotype, and our results 104 

clearly demonstrate the need for achieving a deeper understanding of the evolution of these 105 

complex networks. 106 

Materials and Methods 107 
 108 

Genetic manipulations 109 
DNA extraction, treatment with modification enzymes and restriction endonucleases, ligation of 110 

DNA fragments, and transformation of Eschericia coli were performed using standard methods 111 

(Green & Sambrook 2012).  112 

Strains and plasmids  113 
All strains and vectors are listed in Table 1, and primers are listed in Table 2. 114 

Expression vectors pJN105-algT(WT), pJN105-rpoD(WT) and pJN105-rpoN(WT) were obtained from 115 

(Schulz et al. 2015). pJN105-algT(DK2) and pJN105-rpoD(DK2) were constructed by performing site 116 

directed mutagenesis on pJN105-algT(WT) and pJN105-rpoD(WT) using the Quick Change Lightning 117 

Site Directed Mutagenesis kit (Stratagene) with the primers ChIP-AlgT-F and ChIP-AlgT-R, and 118 

ChIP-RpoD-F and ChIP-RpoD-R, respectively. pJN105-rpoS(WT) was constructed by PCR 119 

amplifying the rpoS gene from DNA prepared from P. aeruginosa PAO1 with primers rpoSF and 120 

rpoSR, and ligated into pJN105 using restriction sites EcoRI and XbaI. All transformations of P. 121 

aeruginosa strains were performed by the method of Choi et al. 2006. 122 

Vectors used for the expression of recombinant sigma factors were constructed by PCR amplifying 123 

genes encoding algTWT and rpoDWT from genomic DNA prepared from P. aeruginosa PAO1, and 124 

PCR amplifying genes encoding algTDK2 and rpoDDK2 from genomic DNA prepared from 125 

PAO1∆mucA,algT(DK2) and PAO1rpoD(DK), respectively. algTWT and algTDK2 were amplified with the 126 
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primers AlgT_F and AlgT_R, and rpoDWT and rpoDDK2 were amplified with the primers RpoD_F 127 

and RpoD_R. Genes were ligated into plasmid pET28 (Novagen, Merck Millipore) using restriction 128 

sites NdeI and HindIII, producing N-terminal 6xHistidine tagged sequences of each insert. All 129 

plasmids were verified by Sanger sequencing and maintained in E. coli DH5α. 130 

Expression and Purification of recombinant proteins 131 
The recombinant vectors generated above were transformed into the expression strain E. coli 132 

Rosetta (DE3) (Novagen, Merck Millipore). For expression of pET28-algT(WT), pET28-algT(DK2), 133 

and pET28-rpoD(WT), cells were grown in LB medium supplemented with 10 mM glucose, 50 µg/ml 134 

kanamycine, and 34 µg/ml chloramphenicol in 1 L cultures at 30°C to an OD600 of 0.5. Expression 135 

was induced by adding IPTG to a final concentration of 100 µM and the cultures were harvested 136 

after 3 hours and stored at -20°C until use. For expression of pET28-rpoD(DK2), cells were grown in 137 

LB medium supplemented with 10 mM glucose, 50 µg/ml kanamycine, and 34 µg/ml 138 

chloramphenicol in 1 L cultures at 30°C to an OD600 of 0.5, then shifting the temperature to 16°C 139 

and inducing expression by adding IPTG to a final concentration of 100 µM. Cultures were allowed 140 

to express over night, after which cells were harvested and stored at -20°C until use. 141 

Recombinant AlgTWT, AlgTDK2 and RpoDWT proteins were all purified following the same 142 

procedure. 5g frozen cells were resuspended in 30 ml buffer A (10 mM HEPES pH 7.5, 15 mM 143 

Imidazole, 0.5M  NaCl and 10% Glycerol), supplemented with 7µl Benzonase (Sigma-Aldrich) and 144 

1 cOmplete protease inhibitor tablet (Roche Diagnostics) and passed through a French Press 3 times 145 

at 1,000 bar. Cell lysates were centrifuged and the clarified fraction was loaded onto a 5ml HisTrap 146 

column (GE Healthcare) at 0.5 ml/min and 4°C, washed with 6 column volumes (CV) of buffer A, 147 

after which bound fractions were eluted with buffer B (10 mM HEPES pH 7.5, 400 mM Imidazole, 148 

0.5 M NaCl and 10% Glycerol) in 30 CV. Fractions containing 90%< pure AlgTWT, AlgTDK2 and 149 

RpoDWT were collected and dialysed against storage buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 150 
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5 mM MgCl2, 0.5 mM DTT and 10% glycerol). Proteins were stored at -80°C in storage buffer and 151 

glycerol added to a final concentration of 50%.  152 

Purification of RpoDDK2 followed the initial procedure until clarification of cell lysate after French 153 

Press. After centrifugation, RpoDDK2 was purified from inclusion bodies with a protocol adapted 154 

from (Anthony et al. 2003).  The pelleted cell lysate was resuspended in 30 ml 50 mM Tris–HCl pH 155 

7.9, 100 mM NaCl, 0.1 mM EDTA, 0.1 mM DTT, 5% glycerol and 1% TritonX-100 pr. harvested 156 

2g expression biomass and pelleted by centrifugation. The inclusion body pellet was washed two 157 

times with 50 mM Tris–HCl pH 7.9, 100 mM NaCl, 0.1 mM EDTA, 0.1 mM DTT and 5% glycerol 158 

to remove residual TritonX-100, and solubilised in 15 ml 50 mM Tris–HCl pH 7.9, 6 M guanidine–159 

HCl, 100 M NaCl and 0.1 mM DTT pr. harvested 2g expression biomass. Insoluble material was 160 

removed by centrifugation at. The supernatant was then purified on a 5 ml HisTrap column, which 161 

also facilitated refolding of the RpoDDK2. After loading of the sample, the column was washed with 162 

4 CV of 100% buffer A, 5 CV of 5% buffer B, eluted over 15 CV with a 5-50% gradient of buffer B 163 

and finished with 3 CV of 100% buffer B. Everything at 0.5 ml/min. All steps of this protocol were 164 

performed at 4°C, and all buffers were cooled to at 4°C before use. 165 

Surface Plasmon Resonance analysis of sigma factor-core-RNAP interactions 166 

Surface Plasmon Resonance (SPR) measurements were performed on a Biacore T100 instrument 167 

(GE Healthcare) with Sensor Chip NTA (GE Healtcare). Purified, 6xHistidine tagged sigma factor 168 

was used as ligand and immobilised on the chip by initially following suppliers recommendations 169 

for stripping and activating the chip, after which sigma factor was applied in running buffer (20 mM 170 

HEPES pH 7.5, 150 mM NaCl, 5 mM MgCl2, 0.5 mM DTT and 10% glycerol) to channel 2 until 2-171 

300 Response Units (RU) was reached. For analysis of sigma factor – core RNAP interactions, E. 172 

coli core RNAP (New England Biolabs) was injected with a flowrate of 30 μl/min into both 173 

channels for 180 seconds, followed by a 400 second dissociation time. Regeneration was performed 174 
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by injecting 2.5 mM NaOH at 30 μl/min for 15 seconds in both channels. All measurements were 175 

performed in duplicates at 15°C. 176 

Interactions were analysed using the Biacore T100 Evaluation Software (Biacore, GE Healthcare). 177 

For each analysis, the response of the reference channel was subtracted from the interaction. 178 

Replicates were then fitted to a 1:1 (Langmuir) interaction model. Equilibrium binding constants 179 

were calculated from the ratio Koff /Kon over a range of protein concentrations. 180 

In vivo overexpression of sigma factor levels 181 
Overexpression of each sigma factor was performed by growing strains for 8 hours in LB medium 182 

supplemented with 30 µg/ml gentamycin to maintain constructs and 1% glucose to supress leaky 183 

expression. After 8 hours, cultures were plated on LB-agar plates containing either 30 µg/ml 184 

gentamycin and 1 % glucose as a non-induced control, or 30 µg/ml gentamycin and 0.3% arabinose 185 

to induce sigma factor expression. Plates were incubated overnight, and colony morphologies were 186 

recorded using a CoolSNAPPro cf color camera mounted on a Zeiss Axioplan2 microscope. 187 

Chromatin-Immunoprecipitation followed by deep sequencing 188 
Chromatin immunoprecipitation was performed on PAO1∆mucA,algT(WT) expressing pJN105-algT(WT) 189 

and PAO1∆mucA,algT(DK2) expressing pJN105-algT(DK2) to compare the genome wide binding profiles 190 

of AlgTWT  and AlgTDK2, and on PAO1 expressing pJN105-rpoD(WT) and PAO1rpoD(DK2) expressing 191 

pJN105-rpoD(DK2) to compare the genome wide binding profiles of RpoDWT  and RpoDDK2. 192 

ChIP experiments were performed as described previously (Schulz et al. 2015). Briefly, 2x50 ml 193 

culture was grown to an OD600 of 2.0 for PAO1∆mucA,algT(WT) expressing pJN105-algT(WT) and 194 

PAO1∆mucA,algT(DK2) expressing pJN105-algT(DK2). PAO1 expressing pJN105-rpoD(WT) and 195 

PAO1rpoD(DK2) expressing pJN105-rpoD(DK2) were grown to an OD600 of 0.6. Sigma factor 196 

expression was then induced with 0.5% l-arabinose and AlgTWT and AlgTDK2 were allowed to 197 

express for 75 minutes while RpoDWT and RpoDDK2 were allowed to express for 45 minutes. Before 198 
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formaldehyde treatment, 2x1.5 ml was sampled for mRNA profiling from each sample. 199 

Crosslinking was performed by adding 0.5% formaldehyde and the crosslinking reaction was 200 

quenched after 5 minutes by adding glycine to a final concentration of 137 mM. Cells were pelleted 201 

and resuspended in 0.5 ml lysis buffer (10 mM Tris-HCl pH 8, 50 mM NaCl, 10 mM EDTA, 20% 202 

sucrose), and DNA was fragmented to an average size of 200-250 bp using a Covaris E220 203 

Sonicator with the setting 20% duty cycle, Intensity 7, 200 cycles pr. burst for 30 minutes. 204 

Immunoprecipitation was performed with 15 µl of anti-6xHistag antibody (ab9108, Abcam) 205 

overnight at 4°C and incubated with 30 µl Dynabeads Protein G. Protein-DNA complexes were 206 

eluted from the beads in 25 µl elution buffer (50 mM Tris-HCl pH 7.5, 10 mM EDTA, 1 % (m/v) 207 

SDS) at 65°C for 15 minutes. Immunoprecipitated samples were treated with RNAse A and 208 

proteinase K, and DNA was purified using the QIAquick PCR purification Kit (Qiagen).   209 

DNA was sequenced using the NEBNext Ultra DNA Library Prep Kit for Illumina, and sequenced 210 

on a Mi-Seq, paired end sequencing with a read length of 250 bp. 211 

ChIP-seq data were analysed as described previously (Schulz et al. 2015). For all ChIP samples, 212 

model-based analysis of ChIP-seq (MACS) (Zhang et al. 2008) was applied for peak detection 213 

using a P value cut-off value of 0.05 and shift size 30 for the peak modelling. Promoters were 214 

searched within the window [-500nt, TSS, +100nt] and considered significant when they were 215 

detected in both ChIP-seq replicates with an enrichment factor of at least 2 and a P value of less 216 

than 0.01. 217 

Gene expression profiling 218 
The 1.5 ml samples collected above was used for isolation of total RNA using the Agencourt 219 

RNAClean XP Kit (Beckman Coulter) and enrichment of mRNA as well as library preparation for 220 

sequencing was performed using the ScriptSeq Complete Kit (Bacteria). Samples were sequenced 221 

as paired end 2x76 bp on an Illumina HiSeq 2000. 222 
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Sequences were mapped to the PAO1 genome using Stampy (Lunter & Goodson 2011) and 223 

differential expression was called with the R package DESeq2 (Love et al. 2014) using each 224 

biological duplicate. Differentially expressed genes were identified as those having absolute 225 

logarithmic fold change greater than one ( |log2FC|>1 ) at significance level of less than 5%. 226 

   227 
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Results 228 

 229 
The AlgTDK2 mutation decrease the affinity for the core RNAP 230 

To infer about the possible functional effects of the K19L mutation in AlgTDK2, we performed a 231 

sequence alignment of the E. coli and P. aeruginosa AlgT sequences and mapped the AlgTDK2 232 

mutation to the N-terminal part of region 2  (Figure 1A). Since Region 2 has previously been 233 

associated with interaction between the sigma factor and core RNAP (Burgess & Anthony 2001), 234 

we hypothesized that the AlgTDK2 protein would show altered binding affinity core RNAP. 235 

To examine this hypothesis, we used SPR to characterize the interaction between purified, 236 

recombinant AlgTWT and AlgTDK2 to E. coli core RNAP. We determined the affinity between 237 

AlgTWT and core RNAP to be 0.23 nM, while the affinity between AlgTDK2 and core RNAP was 238 

decreased to 18.1 nM (Figure 1B and Figure S1.A-B). The consequence of a decreased affinity 239 

between AlgTDK2 and the core RNAP is a decreased ability to form holo RNAP complexes, and 240 

therefore most likely a downregulation of the entire set of the AlgT controlled genes in a 241 

PAO1∆mucA,algT(DK2) background. 242 

Genome wide binding profile of AlgT is unaffected by the AlgTDK2 mutation 243 

We next sought to determine, if the altered interaction between AlgTDK2 and the core RNAP results 244 

in an altered ability for the AlgTDK2-RNAP to recognise and bind to AlgT controlled promoters. By 245 

using ChIP-seq, we were able to compare the genome wide binding site distribution of AlgTWT 246 

expressed in PAO1∆mucA,algT(WT) to the binding site distribution of AlgTDK2 expressed in 247 

PAO1∆mucA,algT(DK2). Besides 3 unique peaks called for the AlgTWT (Dataset S1), the two binding 248 

profiles were identical (Figure 1C), indicating that the AlgTDK2-RNAP maintain its ability bind to 249 

AlgT controlled promoters.  250 
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Due to the important role of AlgT in alginate production, we further inspected the binding profiles 251 

at the algD promoter region to verify that both AlgTWT-RNAP and AlgTDK2-RNAP were able to 252 

bind to the algD promoter. The identical binding profiles confirm that both the AlgTWT-RNAP and 253 

the AlgTDK2 -RNAP holoenzymes are able to bind to the algD promoter (Figure 1D). 254 

Gene regulatory effects of the AlgTDK2 variant 255 

We then examined the transcription profile of strains expressing either AlgTWT or AlgTDK2 to 256 

determine how the downstream regulatory system was affected by the decreased binding affinity of 257 

the AlgTDK2 protein to the core RNAP.  258 

At a significance level of p<0.05 and log fold change (|log2FC|)>1, we discovered 788 genes to be 259 

upregulated and 1093 genes be to be downregulated in PAO1∆mucA,algT(DK2) expressing AlgT(DK2) 260 

compared to PAO1∆mucA,algT(WT) expressing AlgT(WT) (Figure 2 and dataset S2). Of these, 98 genes 261 

were heavily upregulated, as well as 61 genes were heavily downregulated with (|log2FC|)>3, with 262 

the entire 12 genes of the alginate biosynthesis operon displaying the most critical downregulation, 263 

indicating that the decreased binding affinity of the AlgTDK2 –RNAP is the direct result of the 264 

nonmucoid phenotype associated with the algTDK2 mutation.  265 

Sigma factor competition is a direct trigger of phenotype changes in the 266 
PAO1∆mucA,algT(DK2) variant 267 

We next used the gene expression dataset to investigate how the decreased binding affinity of the 268 

AlgTDK2 protein to the core RNAP was reflected on the known AlgT regulon. By mapping 269 

expression values of PAO1∆mucA,algT(DK2) expressing AlgT(DK2) compared to PAO1∆mucA,algT(WT) 270 

expressing AlgT(WT) to the core regulon of AlgT (defined as genes containing promoters known to 271 

interact directly with AlgT) (Schulz et al. 2015), we discovered that the negative effect on 272 

expression values was not limited to the algD operon and alginate synthesis, but rather that the 273 

entire core AlgT regulon was negatively affected by the AlgTDK2 mutation (Figure 3, blue series). 274 
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However, this analysis also revealed an AlgTDK2 specific positive effect on the RpoS regulon with 275 

>90% of the direct RpoS controlled genes being positively affected by the AlgT(DK2) mutation 276 

(Figure 3A, yellow series). A similar positive effect was observed for the FliA regulon with 88% of 277 

the direct regulon being upregulated as a response to the AlgT(DK2) mutation (data not shown). The 278 

specific downregulation of the AlgT regulon and upregulation of the RpoS regulon suggest that the 279 

decreased binding affinity between AlgT(DK2) and the core RNAP causes a direct remodeling of 280 

sigma factor competition, resulting in downregulation of AlgT controlled genes, including the algD 281 

operon. 282 

To confirm the involvement of sigma factor competition in the switch from mucoid to a nonmucoid 283 

phenotype, we overexpressed AlgT(DK2) in PAO1∆mucA,algT(DK2) in an attempt reverse the nonmucoid 284 

phenotype of the PAO1∆mucA,algT(DK2) to the mucoid phenotype of the PAO1∆mucA,algT(WT). Indeed, 285 

overexpression of AlgT(DK2) in PAO1∆mucA,algT(DK2) did revert the phenotype back to mucoid (Figure 286 

3B), and we conclude that this effect is due to restoration of the AlgTDK2-RNAP equilibrium, which 287 

then reestablishes transcription from the algD promoter.  288 

Our findings demonstrate that a decreased affinity for the core RNAP directly affects sigma factor 289 

competition by lowering the ability of AlgTDK2 to compete for the core RNAP, and that this effect 290 

can be compensated by an increased numbers of AlgTDK2 molecules. 291 

RpoDDK2 is a functional neutral mutation  292 

To infer about the possible functional effects of the RpoDDK2 ∆E507 mutation, we performed a 293 

sequence alignment of the E. coli and P. aeruginosa RpoD sequence and mapped the RpoDDK2 294 

mutation to region 3.2 (Figure 4A). RpoD consisting of 4 regions, each involved in various 295 

functions. Region I is involved in modulation of DNA binding and some inhibition of DNA 296 

binding. Region 2 is subdivided into 4 regions each involved in functions including binding to the 297 
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core RNAP, melting of DNA and recognition of the -10 promoter element. Region 4 is involved in 298 

binding to the -35 promoter region and interaction to transcriptional activators (Paget & Helmann 299 

2003; Potvin et al. 2008; Österberg et al. 2011). Region 3 is divided into two subregions, 3.1 and 300 

3.2, and these regions has been associated with several functions such as the binding of initiating 301 

NTPs, RNA priming, and promoter recognition, opening, and escape (Severinov et al. 1994; 302 

Kulbachinskiy & Mustaev 2006; Pupov et al. 2014). Specific amino acid substitutions of region 3.2 303 

has also been shown to suppress auxotrophy of an E. coli ppGpp° strain, as well as being involved 304 

in sigma affinity for the core RNAP (Zhou et al. 1992; Hernandez & Cashel 1995; Cashel et al. 305 

2003) .  306 

We initially investigated whether the RpoDDK2 mutation resulted in a decreased binding to the core 307 

RNAP, as was the case for AlgTDK2, by characterising the interaction of RpoDWT and RpoDDK2 to E. 308 

coli core RNAP. However, we found that the affinities of both RpoDWT and RpoDDK2 to the core 309 

RNAP were similar (Figure 4B and Figure S1.C-D). This indicates that directly altered sigma 310 

factor competition is not the cause of the shift from the nonmucoid phenotype of PAO1∆mucA,algT(DK2) 311 

to the mucoid phenotype of PAO1∆mucA,algT(DK2),rpoD(DK2). 312 

We next sought to determine if the molecular effect of the mutation was to be found at the 313 

regulatory level, for example by directly affecting the ability of the RpoDDK2 holo RNAP to 314 

recognise its promoter sequences in vivo. We therefore performed ChIP-seq to compare the genome 315 

wide binding profile of RpoDDK2 expressed in PAO1rpoD(DK2) to the binding profile of RpoDWT 316 

expressed in PAO1rpoD(WT). Comparison of the two ChIP profiles showed only few unique binding 317 

sites (Figure 4C), and compared to the number of known RpoD binding sites in P. aeruginosa 318 

PA14 (Schulz et al. 2015, 308 RpoDWT binding sites), these sites few most likely holds no 319 

biological relevance. 320 
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Gene expression profiling of the RpoDDK2 variant 321 

As neither affinity to the core RNAP, nor the ability of the holo RNAP to recognise DNA promoter 322 

sequences was affected by the RpoDDK2 mutation, we investigated the gene expression profile of 323 

PAO1rpoD(DK2) expressing RpoDDK2 compared to PAO1rpoD(WT) expressing RpoDWT to identify any 324 

leads on the molecular effects of the RpoDDK2 mutation. 325 

Interestingly, the expression profile showed only very subtle changes in response to the RpoDDK2 326 

mutation (Figure 5, black series and dataset S4). At a significance level of p<0.05 and (|log2FC|)>1, 327 

we observed only minor impacts with 49 genes being downregulated and 18 genes being 328 

upregulated, corresponding to only 1.2% of the total number of genes in P. aeruginosa. We did not 329 

observe any notable regulation of the genes involved in alginate biosynthesis, indicating that the 330 

RpoDDK2 mutation affects neither alginate biosynthesis genes, nor the activity of the AlgT sigma 331 

factor directly. 332 

RpoDDK2 regulatory effects and alginate production is a result of epistatic interactions 333 

To investigate if the effects of the RpoDDK2 mutant was contingent on the specific genetic 334 

environment of PAO1∆mucA,algT(DK2),rpoD(DK2), we examined the transcriptional landscape of 335 

PAO1∆mucA,algT(DK2),rpoD(DK2) expressing RpoDDK2 compared to PAO1rpoD(DK2) expressing RpoDDK2.  336 

Introducing the ∆mucA, algT(DK2) mutations clearly affects the global transcription profile in a 337 

drastic manner (Figure 5, grey series, and dataset S5). The epistatic interactions of the 3 mutations 338 

results in a drastically altered transcriptional landscape with 1353 genes found to be upregulated 339 

(FC>1), and 1714 genes found to be downregulated (FC<-1) at a significance level of p<0.05. In 340 

addition, the entire alginate biosynthesis operon was upregulated only in the presence of the specific 341 

combination of PAO1∆mucA,algT(DK2), rpoD(DK2), indicating that the phenotypic shift from nonmucoid to 342 

mucoid is contingent on the specific combination of mutations and the interplay of the AlgT-RpoD 343 

regulatory networks. 344 
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An AlgT-RpoD regulatory interplay is the main target for regulation of the mucoid 345 
phenotype 346 

To investigate the robustness of the AlgTDK2 -RpoDDK2 mediated mucoid phenotype, we 347 

overexpressed the sigma factors RpoN and RpoS, as well as the RpoDWT and RpoDDK2 variants in 348 

PAO1∆mucA,algT(DK2),rpoD(DK2). While we expected that overexpression of RpoN and RpoS would result 349 

in a phenotypic shift due to remodelling of sigma factor-holo RNAP distribution, we were not able 350 

to switch the mucoid phenotype to nonmucoid (Figure 6). Overexpression of RpoN did not affect 351 

the colony morphology, while overexpression of RpoS in PAO1∆mucA,algT(DK2),rpoD(DK2) produced 352 

stressed, small colony variants, which none the less remained mucoid. Only overexpression of 353 

RpoDWT and RpoDDK2 supported a switch to the nonmucoid phenotype, indicating that the specific 354 

regulatory network remodelling leading to the mucoid phenotype target the specific AlgT-RpoD 355 

regulatory interplay, but also that this regulatory interplay is robust to other network perturbations. 356 

Discussion  357 
 358 

The results presented here demonstrate that gene regulatory networks are subjected to evolutionary 359 

modifications that work through different molecular mechanisms. Our aim was obtain a molecular 360 

understanding of how mutations in global regulators alter their functions to accommodate new 361 

phenotypes and gene expression patterns. Our starting hypothesis which was that the two sigma 362 

factor mutations, AlgTDK2 and RpoDDK2, each resulted in a decreased affinity for the core RNAP, 363 

and thus resulted in a specific and isolated remodelling of sigma factor competition was refuted. 364 

Instead, we found the specific adapted mucoid phenotype of P. aeruginosa is directly dependent on 365 

epistatic interactions which assist in rewiring of regulatory networks. 366 

The specific K19E mutation in AlgTDK2 reduces affinity for the core RNAP, and directly through 367 

this mechanism alters expression of most genes comprising the AlgT regulon. The mutation does 368 
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not change the ability of the sigma factor to recognise its promoter sequences, thus creating a 369 

specific on-off effect on downstream gene transcription. The involvement of sigma factor 370 

competition in the switch between mucoid and nonmucoid phenotypes of P. aeruginosa has been 371 

addressed previously (Damkiaer et al. 2013; Yin et al. 2013). With our comparison of the actual 372 

binding affinities of AlgTWT and AlgTDK2 to the core RNAP, we here present direct evidence that 373 

mutations may remodel sigma factor competition to accommodate new phenotypes. 374 

The RpoDDK2 mutation was discovered due to the sudden emergence of mucoid clinical P. 375 

aeruginosa CF isolates (Damkiaer et al. 2013). We initially hypothesised that, like AlgTDK2, the 376 

RpoDDK2 mutation would cause a reduced affinity for the core RNAP, thus causing a simple 377 

regulatory shift due to reestablishment of sigma factor competition. We found that neither binding 378 

to the core RNAP, nor the ability of the RpoDDK2-RNAP to recognise promoter sequences was 379 

affected by the mutation.  380 

While our studies have not clearly defined the mechanism by which RpoDDK2 further rewire the 381 

PAO1∆mucA,algT(DK2) regulatory network, our gene expression analysis shows that the combination of 382 

PAO1∆mucA,algT(DK2),rpoD(DK2) creates massive disturbance in the gene regulatory network and activates 383 

alginate production, which is not further influenced by activation of the RpoN or RpoS regulon. We 384 

speculate that the RpoDDK mutation alters the protein’s sensitivity or regulatory response to an 385 

unknown factor, which then allows activation the AlgT regulon. A possible candidate for this 386 

unknown factor is the stringent response regulator, ppGpp. While ppGpp has not previously been 387 

appointed a role in mucoid conversion and adaptation of P. aeruginosa to the CF lung environment, 388 

its role as a global transcriptional regulator of gene expression during the stringent response is well 389 

documented. ppGpp is known to be a negative regulator of rRNA synthesis during starvation, a 390 

positive regulator of amino acid biosynthesis and virulence genes, as well as a modulator of sigma 391 

factor competition (Magnusson et al. 2005). ppGpp binds to the core RNAP (Ross et al. 2013) and 392 
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negatively regulates promoters with short linkers between the -35/-10 consensus sequence and GC-393 

rich discriminator sequence, while it results in positive regulation of promoters with longer linkers 394 

and AT-rich discriminators (Potrykus & Cashel 2008). When cells experience stress or starvation, 395 

binding of ppGpp destabilises the RpoD-RNAP complex at intrinsically unstable rRNA promoters, 396 

which may cause an increase in the levels of free core RNAP (Laurie et al. 2003), and thus 397 

indirectly modulate sigma factor competition. 398 

Interestingly, two mutations in the E. coli RpoD (P504L and S506F) have previously been found to 399 

be suppressor alleles of a ppGpp0 phenotype which is auxotroph for several amino acids, and it was 400 

shown that the RpoD(P504L) and RpoD(S506F) variants displayed either a hypersensitivity to 401 

ppGpp, or mimicked the presence of ppGpp, respectively (Hernandez & Cashel 1995). 402 

Interestingly, the P. aeruginosa rpoDDK2 mutation is located in close proximity (∆507E), which 403 

raises the possibility that a similar effect may be the case for the P. aeruginosa RpoDDK2 mutation. 404 

If the RpoDDK2 mutation modulates the proteins sensitivity to ppGpp, or mimicks the function of 405 

ppGpp, the RpoDDK2-RNAP would become destabilised at intrinsically unstable rRNA promoters, 406 

which would increase the fraction of free core RNAP available for sigma factor competition. In 407 

accordance with this, the direct affinity between the RpoDDK2-RNAP would not have to be altered, 408 

as shown by our in vitro interaction assay. Rather, the increase in the pool of free core would be due 409 

instability of the RpoDDK2-RNAP at rRNA promoters. 410 

From our expression data, however, it is evident that the isolated effect of the RpoDDK2 mutation 411 

does not cause the observed transcriptional rewiring. What then, could explain the need of both the 412 

AlgTDK2 and RpoDDK2 mutation to produce the specific activation at the algD promoter, observed in 413 

the PAO1∆mucA,algT(DK2),rpoD(DK2)? Among the numerous regulatory functions of ppGpp, it is 414 

suggested that ppGpp may also directly alter AlgT activity. In vitro, ppGpp and its potentiator 415 

DksA directly activate transcription by AlgT-RNAP (Costanzo et al. 2008), and in vivo, ppGpp is 416 
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required for activation of the AlgT-RNAP under certain starvation conditions  (Gopalkrishnan et al. 417 

2014). We speculate that that ppGpp may be involved in both the regulatory effects of RpoDDK2, as 418 

well as activity of AlgT. ppGpp would then serve as a master regulator of the epistatic effects 419 

observed from the combination of the AlgTDK2 and RpoDDK2 mutations. 420 

Based on these observations, we suggest the following molecular and regulatory model for the 421 

stepwise remodelling of the two regulatory networks controlled by AlgT and RpoD; An initial 422 

mucoid PAO1∆mucA strain is able to produce alginate due to release of AlgT from its anti-sigma 423 

factor, MucA that becomes inactivated by mutation. A subsequent mutation in the AlgT sigma 424 

factor reduces its affinity for the core RNAP, thereby lowers its ability to compete for holo RNAP 425 

formation. The result is abrogation of transcription from the algD promoter, and a downregulation 426 

of all genes in the core AlgT regulon. Finally, the RpoDDK2 mutation causes a modulated sensitivity 427 

to ppGpp, which indirectly alters the sigma factor competition landscape and allows AlgTDK2 to 428 

form holo RNAP, thus initiating transcription from the algD promoter.  429 

Though the specific mechanistic involvement of ppGpp remains to be elucidated, our results show 430 

that gene regulatory networks may be remodelled directly by changes protein-protein interaction 431 

abilities, or they may be remodelled through complex epistatic effects, mediated through direct 432 

ppGpp involvement, or by ppGpp mimicry.  433 

Interestingly, any ppGpp mediated rewiring of the two regulatory networks studied here was 434 

contingent on the presence of both mutations. We speculate that AlgT and RpoD may be mutational 435 

hotspots for regulatory protein modifications to propel the mucoid phenotype, and an interesting 436 

starting point for future studies could be whether this regulatory network rewiring presents the only 437 

regulatory road to the mucoid phenotype, or if alternative regulatory modifications will create the 438 

same effect, through different routes. 439 
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Figures 530 
 531 

 532 

Figure 1. Molecular effects of the AlgTDK2 mutation. (A) Schematic illustration of the P. 533 

aeruginosa AlgT protein annotated with regions 2.1 - 2.4 and region 4. The AlgTDK2 mutation is 534 

marked yellow in region 2.1. (B) SPR determined binding affinities between P. aeruginosa AlgTWT 535 

or AlgTDK2 to E. coli core RNAP. (C) Number of unique genome wide binding events resulting 536 

from AlgTWT and AlgTDK2 interactions at promoter sites. (D) Visual inspection of ChIP sequence 537 

data (in replicates) showing AlgTWT and AlgTDK2 binding events at the at the algD promoter region. 538 

 539 
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 540 

 541 

Figure 2. AlgTDK2 induced alterations on the gene expression profile. Gene expression profile of 542 

PAO1∆mucA, algT(DK2) expressing AlgT(DK2) compared to PAO1∆mucA,algT(WT) expressing AlgT(WT) after 543 

filtering for a false discovery rate of padj<0.05. PAO1 identifier numbers are mapped on the X axis, 544 

and the log2FC change is mapped to the Y axis. The 12 gene operon involved in alginate 545 

biosynthesis is specifically marked on the graph. 546 
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 548 

Figure 3. Regulatory response of the AlgT and RpoS regulons from the AlgTDK2 mutation (A) 549 

Scatterplot showing the AlgT regulon (blue series) and RpoS regulon (yellow series) specific 550 

regulatory response from the AlgTDK2 mutation. (B) Phenotype switching in response to AlgTDK2 551 

overexpression in PAO1∆mucA,algT(DK2). Shown to the left is non-induced PAO1∆mucA,algT(DK2) 552 

displaying a nonmucoid phenotype. Shown to the right is PAO1∆mucA,algT(DK2) overexpressing 553 

AlgTDK2 which results in a phenotypic shift to a mucoid, alginate over-producing phenotype due to 554 

restoration of AlgTDK2-RNAP equilibrium. 555 

 556 

 557 
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 559 

Figure 4. Molecular effects of the RpoDDK2 mutation. (A) Schematic representation of P. 560 

aeruginosa RpoD with regions 1.1, 1.2, non-coding region (NCR), 2, 3.2, and region 4 annotated. 561 

The RpoDDK2 ∆E507 deletion is marked yellow. (B) SPR determined affinities between P. 562 

aeruginosa RpoDWT and RpoDDK2 to E. coli core RNAP. (C) Number of unique genome wide 563 

binding events resulting from RpoDWT and RpoDDK2 interactions at promoter sites. Only 3 and 9 564 

promoters were called as unique binding events for the RpoDWT and RpoDDK2, respectively, 565 

indicating that the RpoDDK2 mutation does not affect the ability of the RpoDDK2-RNAP to recognise 566 

its promoter sequences. 567 
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 569 

 570 

Figure 5. Gene expression profiles illustrating the epistatic effects generated by the 571 

PAO1∆mucA,algT(DK2),rpoD(DK2) mutations. The black series denotes the expression profile of 572 

PAO1rpoD(DK2)  expressing RpoDDK2 compared to PAO1rpoD(WT)  expressing RpoDWT. The grey graph 573 

denotes the expression profile of PAO1∆mucA,algT(DK2),rpoD(DK2)  expressing RpoDDK2 against 574 

PAO1rpoD(DK2)  expressing RpoDDK2. The red series denotes the specific gene expression values of 575 

the 12 gene operon responsible for alginate synthesis. 576 

 577 
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 580 

Figure 6. Robustness of the mucoid phenotype. Phenotype variations of 581 

PAO1∆mucA,algT(DK2)rpoD(DK2)  due to in vivo overexpression of the sigma factors RpoN, RpoDWT , 582 

RpoDDK2, and RpoS. While overexpression of RpoN did not produce any phenotypic changes 583 

compared to PAO1∆mucA,algT(DK2),rpoD(DK2) , overexpression of RpoS resulted in small colony variant 584 

which remained mucoid. Only by overexpression of either RpoDWT or RpoDDK2 were we able to 585 

produce a phenotypic shift back to the nonmucoid phenotype.  586 

 587 
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Table 1 589 

Strains used in this study Features Reference 

PAO1   

PAO1∆mucA  (Damkiaer et al. 2013) 

PAO1∆mucA, algT(DK2)  (Damkiaer et al. 2013) 

PAO1∆mucA, algT(DK2), rpoD(DK2)  (Damkiaer et al. 2013) 

PAO1rpoD(DK2)  (Damkiaer et al. 2013) 

E. coli DH5-α   

E. coli Rosetta(DE3)  Novagen, Merck Millipore 

Vectors used in this study   

pJN105  (Schulz et al. 2015) 

pJN105-algT(WT)  (Schulz et al. 2015) 

pJN105-algT(DK2)  This study 

pJN105-rpoD(WT)  (Schulz et al. 2015) 

pJN105-rpoD(DK2)  This study 

pJN105-rpoN(WT)  (Schulz et al. 2015) 

pJN105-rpoS(WT)  This study 

pET28  Novagen, Merck Millipore 

pET28-algT(WT)  This study 

pET28-algT(DK2)  This study 

pET28-rpoD(WT)  This study 

pET28-rpoDDK2)  This study 

 590 

32 
 



Table 2 591 

Primers used in 

this study 

Sequence 5´-3´ 

ChIP-AlgT-F CAGCGCGGAGACGAGCGGGCTTTCG 

ChIP-AlgT-R CGAAAGCCCGCTCGTCTCCGCGCTG 

ChIP-RpoD-F GCAAGGTACTGAAGATCGCCAAACCGATCTCCATG 

ChIP-RpoD-R CATGGAGATCGGTTTGGCGATCTTCAGTACCTTGC 

rpoSF ACTGGAATTCTTAACTTTAAGGAGGAGATATAATGGCACTCAAAAAAGAAGGGC 

rpoSR ACTGTCTAGATCACTGGAACAGCGCGTCA 

AlgT_F AGATACATATGCTAACCCAGGAACAGGAT 

AlgT_R AGGTAAAGCTTCAGGCTTCTCGCAACAAAG 

RpoD_F AAAGCCATATGTCCGGAAAAGCGCAACA 

RpoD_R CGCGAAGCTTCACTCGTCGAGGAAGGAGC 
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Supplementary material 593 

 594 

 595 

Figure S1. Sensorgrams of sigma factor interactions to E. coli core RNAP, measured by SPR. 596 

S1.A: Immobilised AlgTWT binding to E. coli core RNAP. S1.B: Immobilised AlgTDK2 binding to E. 597 

coli core RNAP. S1.C. Immobilised RpoDWT binding to E. coli core RNAP. S1.D. Immobilised 598 

RpoDDK2 binding to E. coli core RNAP. 599 
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