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ABSTRACT 

Solar-driven reduction of CO2 to solar fuels as an alternative to H2 via water splitting is an 

intriguing proposition. We model the Solar-To-Fuel (STF) efficiencies using realistic parameters 

based on recently reported CO2 reduction catalysts with a high performance tandem 

photoabsorber structure. CO and formate, which are both 2-electron reduction products, offer 

surprisingly competitive STF efficiencies (20.0% and 18.8%) very close to solar H2 (21.8%) 

despite markedly worse reduction catalysis. The slightly lower efficiency towards carbon 

products is mainly due to electrolyte resistance – not overpotential. Surprisingly, using a cell 

design where electrolyte resistance is minimized makes formate the preferred product from an 

efficiency standpoint (reaching 22.7% STF efficiency). On the other hand, going beyond 2-

electron reductions the more highly reduced products seem unviable with presently available 

electrocatalysts due to excessive overpotentials and poor selectivity. Breaking up the multi-
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electron reduction pathway into individually optimized, separate 2-electron steps could be a way 

forward. 
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The research efforts towards solar fuel synthesis technologies have mostly focused on splitting 

water into hydrogen (fuel) and an oxygen bi-product. The reasons for this are several: Hydrogen 

is perhaps the simplest molecule to produce, it has a reasonable free energy content and there 

exists excellent hydrogen evolution electrocatalysts. 1,2 It is well known that the optimal 

configuration for direct photoelectrochemical (PEC 3) solar driven water splitting is a two-photon 

(or “tandem”)-configuration. In a tandem device, two photoabsorbers – each providing 

photovoltage under illumination, are stacked and series connected such that their combined 

photovoltage can overcome the thermodynamics of water splitting in addition to all the losses 

associated with electrochemical overpotentials and resistive losses in the electrolyte and 

membrane. Both photoabsorbing cells should be designed to evenly split the available solar 

photons in order to achieve the highest possible photocurrent density while maintaining 

sufficiently high photovoltage to run the reaction.4  

 

Photoelectrochemical water splitting 

The specific case of water splitting is covered in both older 5,6 and more recent literature. 7–10 

Depending on the exact assumptions related to losses, the optimum band gaps for the top- and 

bottom cells in the tandem are in the range of 1.7 eV – 1.9 eV and 0.95 eV – 1.4 eV respectively; 
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and the corresponding maximum achievable solar-to-hydrogen (STH) efficiency 11 is in the 

range of 20% – 29%.  

In order to guide the research despite the large gamut of parameters and no obvious “right” set of 

parameter choices two web-based modelling (WBM) tools have been launched: SPECDO and 

Solarfuelsmodeling. SPECDO.epfl.ch, by the Haussener group at EPFL, provides a holistic, 

systems modeling approach including economics 12 while Solarfuelsmodeling.com, focusses on 

the core photoabsorber stack and simulates PEC device thermodynamic performance – not just 

for water splitting, but for any energy harvesting reaction. 13 The WBM software takes a 

thermodynamic approach based on the diode equation to calculate the IV-behavior of the core 

photoabsorber stack. This works well for “buried junction” PEC, but it may also be applicable 

for semiconductor-liquid junction devices, provided a good band alignment between the 

semiconductor and electrolyte. The analysis presented here was performed using this freely 

available WBM tool.  

Besides the optical aspects of the device and the important compromise of the solar absorber 

bandgaps, a significant amount of analysis of the engineering and plant design aspects of the cell 

has appeared in the PEC solar water splitting literature. 14–17  

  

http://specdo.epfl.ch/
http://solarfuelsmodeling.com/
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Photoabsorber parameters 

Temperature 298 K 
Optical water thickness 2 cm 
Parasitic light loss 10 % 
Dark saturation current 
(multiple of theoretical 
minimum) 

100 - 

Shunt resistance 10000 Ω/cm2 
Series resistance 1 Ωcm2 

 

Electrochemical parameters 

Faradaic efficiency 100 % 
OER onset overpotential 
 (1 mA/cm2) 

320 mV 

OER Tafel slope 40 mV/decade 
Ionic path length 0.5 cm 

 

Table 1 Standard parameters in common for all simulations presented in this work. 

Photoelectrochemical CO2 reduction 

Compared to the analysis carried out for PEC-driven hydrogen production, comparatively little 

analysis has so far appeared in the literature on other PEC-driven reactions, although a lively 

debate pro et contra water splitting vs. CO2 reduction is currently ongoing.18–20 This is in spite of 

the fact that a substantial research effort currently devoted to finding electrocatalysts capable of 

directly reducing CO2 into energetic compounds such as methane, ethane, and ethanol and, in 

turn, to integrate such CO2 reduction catalysts into PEC solar harvesting systems. 21–24 Only in 

late 2015 did the first analysis of PEC-driven CO2 reduction appear. 25 In this paper Singh et al. 

modeled single, double and triple junction devices driving various fuel synthesis reactions 

running at the thermoneutral potential (i.e. a hypothetical case). They find that the highest solar 

harvesting efficiency occurs for CO2 reduction to CO, and the best configuration is a double 

junction (tandem) device. It must be emphasized, however, that a simple thermoneutral potential 

analysis ignores catalytic and ohmic losses, which are unavoidable in any realistic device. Hence 

Singh et al. report a theoretical solar-to-hydrogen (STH) efficiency of 35.4% for a tandem device 

which, as noted above, is at least 7%abs higher than a careful “best case” analysis 7 and roughly 

15%abs higher than a very careful “realistic case” analysis. 13 On the other hand, Singh et al. also 

modeled double- and triple junction devices using experimental CO2-reduction current-voltage 
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data and found that using a copper-based CO2-reduction catalyst and an IrO2-based oxygen 

evolution catalyst it should be possible to directly convert CO2 and water into a H2/CH4 mixture 

with around 20.3% solar-to-fuel (STF) efficiency. However, it is worth noting, that even in this 

case hydrogen is still the main product. The non-trivial details of polarization losses and other 

cell dependent non-idealities have been modelled in detail for PEC-based CO2 reducing cells. 

26,27 

Multi-step electrochemical reduction 

The reversible potential for converting CO (and H2O) to any hydrocarbon or oxygenate fuel 

molecule is lower (Ustd ∼1000 mV) than for converting CO2 to CO (Ustd = 1.33 V). This means 

that a mono-functional electrocatalyst which reduces CO2 step by step (via CO) to e.g. CH4 will 

have its thermodynamic efficiency limited by the (most) demanding step.  

In order for the process to run at the thermodynamic equilibrium potential the system must bind 

all intermediates just right so that every electron transfer step may take place at the equilibrium 

potential. However, in general, the binding energies of chemically similar intermediates scale 

linearly with each other on any given site making it impossible for a simple mono-functional 

electrocatalyst to bind everything just right. 28–30 As an illustration we consider the reaction CO2 

+ 2 H2O → CH4 + 2 O2, z=8, ΔG = 817.8 kJ/mol. All 8 electrons must be supplied at (at least) 

the reversible potential of the most thermodynamically demanding step for all steps to be 

downhill. If we assume that the process goes via free CO (as an example) that makes the total 

energy requirement, Eideal = 8 e ˣ 1.33 V = 10.64 eV, (assuming zero overpotential for the CO 

step). However, ΔG = 817.8 kJ/mol which only corresponds to Erev = 8.48 eV. Hence even with 

zero overpotential for both oxygen evolution and for CO2 reduction such a system would still be 
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limited to an electrolysis efficiency of 8.48 eV/10.64 eV = 0.797 (due to too weak binding of the 

CO intermediate). The limit for other fuels like ethanol would be similar.  

In order to circumvent this limitation, the reduction process may be broken up into (at least) two 

steps: A first step where CO2 is reduced to CO, with a reversible thermodynamic potential of Ustd 

= 1.33 V; and subsequent step(s) where CO is reduced further – in the example to CH4, for which 

Ustd = 0.97 V. In this case, the overall efficiency becomes (2 ˣ 1.33 V+6 ˣ 0.97 V)/8.48 V = 1.0, 

i.e. there is no fundamental efficiency limitation beyond the practical problems with real-world 

overpotentials, etc. 

The benefit of breaking the CO2 reduction process into a CO2→CO step and a separate CO→fuel 

step is not only thermodynamic. It also introduces the option to run the 2-electron steps on 

different catalysts, in different electrolytes and under different conditions (pressure, pH, 

temperature, current density, etc.). One could even envision a separate process for each 2-

electron step – i.e. separate electrolyzers/PEC cells for CO2→CO, CO→formaldehyde, 

formaldehyde→methanol, and methanol→methane.  For this reason, this work will focus on 2 e- 

CO2 reduction reactions for PEC. The goal here is to model the realistically achievable Solar-To-

Fuel (STF)-efficiency for two such reaction products (CO and formate) based on published 

experimental CO2-reduction current-voltage data. This entails that we exclusively consider 

electrocatalysts, which make CO or formate with a high faradaic selectivity (better than 80%) 

and at reasonable PEC-relevant current densities (at least 10 mA/cm2). This rules out many CO2 

reduction catalysts, since they either have poor selectivity or current density. 31,32  
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Photoelectrochemical CO synthesis 

We now consider PEC-driven synthesis of carbon monoxide, which is a promising alternative to 

water splitting. Like H2, CO is an energetic gaseous compound and an important industrial 

chemical (in “syngas”). 33 CO, like H2, is a 2-electron reduction product from its parent 

compound and on a per electron basis CO (Ustd = 1.33 V) carries 8% more energy than H2 (Ustd = 

1.23 V). As a fuel, however, CO is impractical (a poisonous gas with a low gravimetric energy 

density). Recent research, however, has shown that CO may be further reduced 

electrochemically to practical liquid fuels such as ethanol.34  

The overall reaction is: 

CO2 → CO + ½ O2  (z=2, Ustd = 1.33 V)  

In 2012 Chen et al. reported that this reaction may run with a faradaic selectivity of almost 100% 

and at low overpotential on oxide-derived Au. 35 At current densities below 2 mA/cm2 the 

measured Tafel slope is only 56 mV/decade. Above 2 mA/cm2 mass transport limitations kick in, 

which gives a higher effective Tafel slope. 35  For this reason we consider two different situations 

based on Chen’s catalyst: One (optimistic) where we assume that clever device design may 

overcome mass transport issues and simply extrapolate low current behavior (∼175 mV 

overvoltage at 1 mA/cm2 and 56 mV/decade Tafel slope). The other (pessimistic), where we use 

the reported I-V data as is – assuming no improvements mass transport. Modestino et al. have 

shown that even modest electrolyte recirculation or agitation may almost eliminate concentration 

gradients in the electrolyte, so there is hope that the extrapolated case may not be unrealistic in a 

real device. 36As per our standard conditions (Table 1) we model OER via conservative 

parameters: (320 mV overpotential at 1 mA/cm2 and a Tafel slope of 40 mV/decade) which is 

easily achieved by existing OER catalysts. 37–39 We also assume an electrolyte layer above the 
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device with an optical thickness equivalent to 2 cm of water. For the simulation we further 

assume a loss of 10% of incident light (reflections, etc.) and that the tandem solar cells are both 

quite good with a dark saturation current only 100x the theoretical minimum and that shunt or 

series resistance losses (beyond that of the electrolyte as mentioned above) are almost negligible. 

These assumptions are consistent with our previous work on water splitting13, are deliberately 

conservative so as to be realizable in practice.  The electrolyte reported by Chen et al. 35 is CO2 

saturated 0.5 M KHCO3 for which the conductivity is assumed to be 38.8 mS/cm at 298 K and 

we model ionic resistance with a 0.5 cm effective ionic path length (which is taken to include the 

resistance of a possible membrane). 40  

The WBM program 13 finds the photocurrent density for every point on the grid and calculates 

the STF-efficiency – in this case it is Solar-to-Carbon monoxide – as:  

𝑆𝑆𝑆 = 1.33 𝑉 ×
𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 

   

  A     B            C 

Figure 1 Solar-to-fuel efficiency for CO production as a function of the band gaps of the 

top and bottom photoabsorber using experimental I-V data for CO2 reduction 35. (A): 

Extrapolated Tafel CO2 reduction current (optimistic case). Peak STF efficiency: 20.0% 

(1.32 eV, 1.89 eV). (B): Raw, as-reported CO2 reduction I-V data 35. Peak STF efficiency: 
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19.0% (1.38 eV, 1.92 eV). (C): Difference plot (A-B) showing that a maximum STF 

efficiency loss of 4.5% in the voltage-constrained part of the plot, while near the optimum 

band-gap range, the loss is only ~1% as indicated in (A) and (B).  Standard conditions 

(Table 1) are assumed. Photon matching of the top- and bottom absorber is assumed. 

The results for the two cases are shown in Figure 1. The extrapolated case reaches an ST-CO 

efficiency of 20.0% while using the raw, measured I-V data 35 without extrapolation yields an 

ST-CO efficiency of 19.0%. 

 

Photoelectrochemical formate/formic acid 

Much like CO, formic acid is a useful product which is used industrially to preserve animal feeds 

and treat leather as well as a chemical feedstock, but it is possible, that it could serve as an 

intermediate for further reduction to solar fuels in the future. In 2015 Min and Kanan reported 

efficient reduction of CO2 to formate over Pd nanoparticles 41, and in early 2016 Gao et al. 

published that a partially oxidized ultrathin cobalt layer may reduce CO2 to formate at current 

densities above 10 mA/cm2 and with a high faradaic selectivity ∼90%. 42 Since formate seems to 

be a viable alternative to CO as a 2-electron reduction product, we present the PEC analysis for 

formate synthesis based on Gao’s catalyst here. The reaction in this electrolyte is: 

CO2 + H2O → HCOO- + ½ O2 + H+ (z=2, Ustd = 1.41 V).  

The electrolyte in this case is CO2 saturated 0.1 M Na2SO4 (pH ≈ 6) for which we estimate a 

conductivity of 18.0 mS/cm at 298 K. 40 The analysis is conducted by assuming an overvoltage at 

1 mA/cm2 of 140 mV and a Tafel slope of 44 mV/decade. This is based on slight extrapolation of 

the reported electrocatalysts performance 42 to ∼14 mA/cm2 (experimental data is available up to 

∼10 mA/cm2 so the extrapolation is small) which turns out to be the maximum current relevant 
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for PEC. We assume that although Gao et al. achieved a 90% faradaic efficiency, optimizations 

should be able to bring this to nearly 100% faradaic efficiency.42 The other assumptions about 

the device are all the same the same as in the CO case. The STF efficiency is calculated as: 

 𝑆𝑆𝑆 = 1.41 𝑉 × 𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

  

The result is shown in Figure 2. 

 

Figure 2 Solar-to-fuel efficiency for CO2 reduction to formate as a function of the band 

gaps of the top and bottom photoabsorber using experimental I-V data for CO2 reduction 

42. Peak STF efficiency: 18.8% (1.42 eV, 1.96 eV). Standard conditions (Table 1) are 

assumed. Photon matching of the top- and bottom absorber is assumed. 

Discussion 

The standard conditions in common for all models in this work (Table 1) are chosen by the 

authors with realism in mind. We note that the STF efficiencies change comparatively little (< 

1%abs) upon adjusting any single the parameters within a reasonable range. The exceptions to this 

(besides the trivial change in STF due to changing the optical light loss or the faradaic 

efficiency) are: 1) decreasing the shunt resistance or 2) increasing the ionic resistance. A table 
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showing parameter sensitivities is included in the supplementary material and the WBM tool is 

freely available on-line to simulate arbitrary parameters. 

 

With the present state-of-the-art catalysts, the three 2-electron products considered (H2, CO and 

HCOOH) all theoretically reach essentially the same maximum PEC-driven STF efficiency limit. 

Viz. for a device design where there is 2 cm of water above the top absorber, but without ohmic 

losses in the electrolyte, all three reactions may reach a maximum STF efficiency of 22.2% +- 

0.5%, but formate is the winner by a small margin. (STH: 21.8%, ST-CO: 21.8%, ST-Formate: 

22.7%) This result is remarkable since the three reactions have different standard potentials (1.23 

V, 1.33 V and 1.41 V respectively), in particular since hydrogen evolution over a platinum 

catalyst has a substantial ∼180 mV overpotential advantage in comparison to the CO2 reduction 

to CO on oxide derived Au and a ∼130 mV advantage compared to CO2 reduction to formate 

over 4-atom Co-layers. The reason that the carbon-containing 2-electron products are 

competitive from an STF efficiency point of view, despite their significant overpotential 

disadvantage, is that a tuned tandem system only suffers a minor drop in photocurrent density 

(from 17.5 mA/cm2 to 16.1 mA/cm2) as the operating point is increased from ∼1660 mV (water 

splitting) to ∼1980 mV (formate production). This drop in photocurrent is compensated by the 

increasing energy content (per electron) of the formate or CO products so the overall result is a 

similar STF efficiency. In fact, if a CO2 reduction catalyst existed, which could make either CO 

or formate at overpotentials similar to HER on Pt (in 2015 such a catalyst was reported for 

formate 41 and very recently it showed great performance in PEC application 43), CO2 reduction 

could reach higher STF efficiency than water splitting. This is illustrated in Figure 3, which 

shows the ideal performance under conditions of zero electrochemical losses, but otherwise 
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standard conditions (Table 1). Clearly, a tandem absorber system is best suited for operating at a 

voltage in the 1800 mV – 2400 mV range – i.e. where the anode-cathode potential difference 

under real conditions is in this range. A water splitting cell, which has a realistic operating 

voltage of ∼1660 mV to be delivered by the photoabsorber(s), therefore misses the efficiency 

peak of a tandem system by about 200 mV whereas CO and formate production  operating at 

1900 mV to 2000 mV  are much closer efficiency peak of a tandem system. 

 

Figure 3 General comparison of maximum Solar-To-Fuel efficiency as a function of the 

operating point (equilibrium potential) of the device. Electrochemical losses are set to be 

zero, but otherwise standard conditions (Table 1) are assumed for the photoabsorbers. The 

operating point for water splitting is ∼1660 mV while it is ∼1980 mV for formate 

production. 

When ionic losses in the membrane and electrolyte are included (via 0.5 cm of effective 

electrolyte thickness in the model), as was the cases considered in Figure 1 & Figure 2, the 

picture becomes more favorable for water splitting because the CO2 reduction electrolytes have 
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reduced conductivity compared to the water splitting case. While the water splitting efficiency 

drops 0.4%abs due to the addition of ionic resistance voltage loss (maximum STH efficiency of 

21.4%), in the ST-CO case the efficiency drops 1.8%abs to 20.0% (Figure 1), and in the ST-

formate case the efficiency drops 3.9%abs to 18.8% (Figure 2, Figure 4)  based on the electrolyte 

conductances of the reported CO2 reduction systems. 

 

Figure 4 Comparison of solar-to-fuel efficiency for CO2 reduction to formate comparing 

the simulated performance including electrolyte potential drop (left) (see also Figure 2 for a 

clean version of the same graph) with a simulation without electrolyte potential drop 

(right). The STF efficiency increases from 18.8% to 22.7% at the optimum bandgap 

combination if electrolyte potential drop is eliminated. The difference plot (center) shows 

that for a low-bandgap tandem (1.15 eV, 1.8 eV), the STF efficiency gain can be up to 

14%abs by eliminating the electrolyte potential drop. Standard conditions (Table 1) are 

assumed. Photon matching of the top- and bottom absorber is assumed. 

This effect underscores the disadvantage of moderate pH electrolytes and the need for clever 

device designs, e.g. using bipolar membranes 44,45 to enable use of high ionic strength 

electrolytes 43 and minimize ionic resistance.  
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Compared to the 2-electron products, all of the more reduced products currently seem 

impractical to make. The present state-of-the-art copper electrocatalyst can be tweaked to give a 

combined faradaic yield of C2-products ethylene, ethanol and ethane (likely via a common 

acetaldehyde intermediate 46) of approximately 55%. 34,47 The low selectivity of Cu and Ag 

electrocatalysts leave much to be desired. 48,49 Even using cationic selectivity tuning C2+ products 

make up no more than half the faradaic current 50, and when the corresponding overpotential of 

roughly 1000 mV for reasonable current densities is also considered, it becomes clear that the 

technology to go beyond the 2-electron products is not yet sufficiently mature to be a viable 

option for a PEC device. For example, if the overall voltage requirement is increased from 2.0 V 

to 3.0 V the maximum efficiency drops from ∼31.5%abs to less than ∼24%abs (Figure 3) – i.e. a 

significant 24% relative loss. Clearly, new electrocatalysts with significantly lower overpotential 

and much higher selectivity are needed in order to make 4e-, 8e-, and 12e- -solar fuels viable via 

PEC. The basic problem, however, is that the scaling relations which govern electrochemical 

CO2 hydrogenation essentially preclude overpotentials below ∼600 mV.22,51 The key to more 

reduced products, therefore, is to find catalysts, which are bi-functional or otherwise may break 

free of the scaling relations and enable lower overpotentials. PEC-based solar fuel synthesis 

should become increasingly attractive as improved electrocatalysts hopefully become available 

in the future, although comprehensive technoeconomic analysis similar to what has appeared for 

solar hydrogen 16 has not yet appeared for PEC-based CO2 reduction.  

 

At present, PEC-based CO- (or formate) synthesis is very promising since there are good 

thermodynamic arguments why these products make sense as intermediates in solar fuel 

synthesis and since selective catalysts for these reactions have appeared in the last few years and 
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a PEC based formate-producing cell was demonstrated very recently. 43 PEC may finally be 

about other reactions than only water splitting. 
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Supplementary information 

 

Parameter sensitivity 

 Optimistic Standard Pessimistic 
Temperature 273 K 

+0.5% 
298K 323K 

-0.8% 
Optical water thickness 1 cm 

+0.2% 
2 cm 3cm 

-0.1% 
Dark saturation current (multiple of theoretical minimum) 10 

+0.7% 
100 1,000 

-1.0% 
Shunt resistance 100,000 Ω/cm2 

+0% 
10,000 Ω/cm2 1,000 Ω/cm2 

-1.4% 
Series resistance 0.2 Ωcm2 

+0.2% 
1 Ωcm2 5 Ωcm2 

-1.0% 
    
OER onset overpotential (1 mA/cm2) 280 mV 

+0.2% 
320 mV 360 mV 

-0.3% 
OER Tafel slope 30 mV/decade 

+0.1% 
40 mV/decade 60 mV/decade 

-0.2% 
Ionic path length 0.25 cm 

+0.6% 
0.5 cm 1 cm 

-1.6% 
Table S1 Sensitivity of the STF efficiency for changes in modelling parameters for CO2 to 

CO reduction. The STF efficiency with the standard parameters is 20.0% for this 

reaction. The change in STF efficiency (in absolute %) is shown when any one of the  

standard parameters is changed to the values stated. 

 

The change in STF efficiency for with a change of the optical light loss – or the faradaic 

efficiency is trivial and therefore not included in table S1. As the data in Table S1 shows, 

improving the tandem solar absorber in terms of shunt resistance or series resistance has very 

limited benefit, but on the other hand, there is a loss as these parameters worsen. Within a 

reasonable range, the OER catalysis parameters only affect the STF efficiency moderately, and 

the same is true for the thickness of the water layer (photons below 1.3 eV aren’t absorbed 

anyway). The conclusion is that effort should be focused on making a good absorber stack and 

on minimizing the equivalent ionic path length.   


