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The ability to perform computations on encrypted data is a powerful tool for protecting a

client’s privacy, especially in today’s era of cloud and distributed computing. In terms of

privacy, the best solutions that classical techniques can achieve are unfortunately not

unconditionally secure in the sense that they are dependent on a hacker’s computational

power. Here we theoretically investigate, and experimentally demonstrate with Gaussian

displacement and squeezing operations, a quantum solution that achieves the security of a

user’s privacy using the practical technology of continuous variables. We demonstrate losses

of up to 10 km both ways between the client and the server and show that security can still be

achieved. Our approach offers a number of practical benefits (from a quantum perspective)

that could one day allow the potential widespread adoption of this quantum technology in

future cloud-based computing networks.
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I
ncredibly, 2.5 quintillion bytes of data are produced in the
world every single day. In fact, it has been estimated that
490% of the world’s data was created in the past 2 years1.

Most of these data are stored around the world in data centres
and accessed remotely via the cloud. Because cloud computing is
operated by third parties (for example, Amazon, Facebook), one
of the outcomes of this acceleration in information is the need to
better protect our privacy. In principle, the cloud contains various
types of data for which security and privacy are essential. For
example, an individual’s personal data (such as medical records
and credit card information), the trade secrets and intellectual
property of multinational corporations and sensitive government
information (for example, the Central Intelligence Agency bought
cloud space from Amazon). Therefore securing a client’s privacy
in the cloud is one of the core security challenges we face today.

One of the current solutions to this challenge is homomorphic
encryption2. The requirement for such a solution was first
identified in the 1970s by Rivest et al.3 It was not until over
30 years later that Craig Gentry, in his Stanford PhD dissertation,
discovered fully homomorphic encryption4. Although there
has been much progress in recent years, the best known
implementations of fully homomorphic encryption are
impractical for today’s computers2,5–7.

One might hope that a generalization of homomorphic
encryption to quantum computations would be less demanding.
If one restricts the class of quantum operations to be
implemented, then it was shown one can hide up to a constant
fraction, which can be made arbitrarily close to unity, of the
encrypted information while only requiring polynomial over-
head8. Unfortunately, it has been shown that perfectly secure,
deterministic fully homomorphic quantum computation is only
possible at the expense of an exponential overhead9. One can
relax the requirements of quantum homomorphic encryption by
allowing further rounds of interaction between the client and
server. Such a scheme was first studied by Childs10 where he
outlined a protocol to allow an individual of limited quantum
ability (a client) to delegate a quantum computation to another
person (a server) who is in possession of a fully fledged quantum
computer. The idea here being that such a computer is only
initially available to a select few. Progress towards this direction
was demonstrated recently by IBM who made available a small
(5 qubit) quantum computer for access in the cloud11. The crux
of the issue in developing such a protocol lies in the fact that the
client wants to hide some subset of her input, the quantum
program, and the final result. That such a scheme is even possible
is astounding from a classical viewpoint. Seminal work by
Broadbent et al.12 built upon this idea, in the cluster-state
framework13, to develop the notion of universal blind quantum
computing: a protocol that fulfils all three of the above criteria
and requires only that the client is able to prepare and send single
qubits from a finite set.

The field of delegated quantum computing has since exploded
with vast interest in both theoretic advances and experimental
demonstrations14–22. Unfortunately, accomplishing all three
of the client’s criteria places stringent requirements on the
experimental realization of such protocols. One might hope that
by giving up one of these demands, less resources would be
required in a physical implementation, while still providing a
much needed solution. Interesting work by Fisher et al.23 showed
that if the client and server agree on the program beforehand,
then one requires less quantum and classical communication.
Such a protocol can be termed quantum computing on encrypted
data. This scheme offers the advantage of allowing one to carry
out quantum computations on encrypted data with relatively low
overhead, namely, generation of random states and classical key
updates.

In this paper, we offer an approach to quantum computing on
encrypted data that does not require challenging single photon
sources or single photon detectors and is based on a different type
of substrate known as continuous variables (CVs)24,25. CVs offer
a number of practical advantages over its qubit counterpart:
deterministic gate implementation, low cost and affordability of
components (such as laser sources and detectors), high detection
efficiencies (at room temperature), high rate of information
transfer, and the ability to be fully integrated within current
telecommunication infrastructures. Here we answer the questions
of which gates the client is required to perform, how much
classical communication is required between the client and server
and how many classical/quantum operations are needed per gate
in our protocol. Furthermore, we provide proof-of-principle
experimental results that highlight the effect of loss equivalent to
over 10 km of fibre transmission at a telecom wavelength.

Results
Theory. Our protocol for computing on encrypted CVs consists
of three stages (cf. Fig. 1): an encryption stage, a program stage,
and a decryption stage. We will now elaborate in more detail.
First, the client performs an encryption operation on their desired
input to limit the amount of information the server can obtain
about the initial state. The state is then sent to the server, who
performs a predetermined set of gates known to both parties
(corresponding to the program needed to be performed). Finally,
the state is sent back to the client who is able to perform a
decryption operation that recovers the output of the desired
computation. To discuss the encryption operation, we first
define the Heisenberg–Weyl operators25 X Qð Þ ¼ exp � iQp̂ð Þ
and Z Pð Þ ¼ exp iPq̂ð Þ, as well as the displacement operator
D að Þ ¼ expðaâw� a�âÞ where q̂ and p̂ are the canonical
amplitude and phase operators, respectively, which obey
Heisenberg’s uncertainty relation q̂; p̂½ � ¼ i. The annihilation
and creation operators are denoted by â and âw; respectively, and
are defined by â ¼ q̂þ ip̂ð Þ=

ffiffiffi
2
p

and its adjoint. Consider the
action of applying a random displacement in phase space to the
input state; intuitively speaking, if the displacement is chosen
randomly then the state will look mixed and smeared out over all
of phase space to somebody unaware of the displacement para-
meters. This can be made rigorous by invoking the fact that
1
p

R
D að Þ cj i ch jDw að Þd2a ¼ 1 holds for any normalized state cj i.
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Figure 1 | Protocol for quantum computing on encrypted data. The three

stages of our protocol: encryption, gates, and decryption, are illustrated for

a coherent state input where we include a transmission step in both

directions between the client and server. Input: a displaced vacuum state is

prepared as indicated by the red box. Encryption: Next, in the green box,

a random displacement is applied to the initial state as an encryption

procedure. Channel: The state is transmitted, denoted by a right arrow,

over a Gaussian lossy channel to the server (transmission t). Gate: The

server applies the desired unitary (a Gaussian displacement or squeezing

operation in our experiment), indicated by the yellow box. Channel: The

state is sent back over the Gaussian lossy channel to the client, shown in

the figure as a left arrow. Decryption: The client applies a decryption

operation to retrieve the final output state as described in the blue box.
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This shows us that averaging the displacements applied to any
normalized state, over the entire complex plane, results in a
quantity proportional to the identity. In reality, a uniform
distribution of displacements over R2 is unphysical and we must
replace this with a function that dies off sufficiently fast in order
to adhere to some energy threshold. For a fixed energy, a
Gaussian distribution will maximize the entropy of the resulting
state26 and thus we restrict ourselves to Gaussian distributions.
This will potentially give the server the capability of extracting
some information about the input state, but the amount will be
bounded based on the width of the Gaussian. A formal security
analysis of our protocol, in the limit of finite squeezing and
displacements, remains an open problem.

We now turn our attention to the server who is asked to
perform some known algorithm on the encrypted data, where,
in principle, the algorithm corresponds to a universal set of
quantum gates. To show that the server can perform such a
computation, it suffices to show that we can implement a
universal set of gates. Namely, we need to show that the set
G¼ X Qð Þ;Z Pð Þ;U2 Tð Þ;U3 Tð Þ; F;CZf g; where Uk Tð Þ¼exp iTq̂k

� �
,

F ¼ exp ip
4 q̂2þ p̂2ð Þ
� �

and CZ ¼ exp iq̂1 � q̂2ð Þ can be implemen-
ted and decrypted with an appropriately chosen operation. Note
that of the gates in this set only the U3(T) gate27,28 is not
Gaussian, and we only require this one non-Gaussian gate in
order to achieve universal quantum computation29. However, it is
prudent to note that non-Gaussian operations are very
challenging to implement and that there remain many practical
challenges in devising a robust quantum computer based on
CVs29. Except for U3, all of these operations have decryption
operators that correspond to displacements (cf. Table 1), and this
allows for the straightforward composition of gates. To make it
clearer, we consider a simple example, namely, the Z(T) gate. The
encryption operation D(Q, P) consists of a translation in both the
amplitude and phase quadratures and it can be decomposed as a
sequence of an X(Q) as well as a Z(P) gate, the latter commutes
with Z(T) and so will simply slide through the gate. Consider the
application of the X(Q) gate: this gate slides through the Z(T) gate
up to a phase as X(Q)Z(T)¼ e� iQTZ(T)X(Q). Thus we can
construct a decryption operation as

Z Tð ÞD Q; Pð Þ ¼ Cy Q; P;Tð ÞZ Tð Þ; ð1Þ
where C(Q, P, T)¼ exp[i(QP/2�QT)]X(�Q)Z(�P) is the
decryption gate which, when applied, will undo the effect of the
initial encryption operation. However, the U2 decryption gate
present in the U3 operation does not easily slide through the
Fourier gate F, and thus we must have the server correct for this
on-the-fly; this is possible in a manner similar to the discrete-
variable protocol presented in ref. 23. To perform U3(T), the
client instead sends the server two modes, the first of which is the
encrypted state and the second being the state U2(A)Z(Q0)|0ip,
where A and Q0 are chosen randomly and |0ip denotes a

momentum eigenstate; finite squeezing does not present any
issues other than the ones normally associated with teleportation,
namely, the introduction of extra Gaussian noise30. The server is
then able to implement U3(T) as shown in the circuit in Fig. 2.
After the client sends both modes and the value of B, the server
performs the desired U3(T) gate after application of the inverse
Fourier gate, before interacting the two modes with a controlled
phase gate, indicated by the vertical line. The server then
measures the first mode and after performing the U2(B) gate
obtains the desired state U3(T) cj i on the remaining mode, up to
displacement corrections, provided that B¼ � 3QT�A. One can
view this decomposition of � 3QT as an additive white Gaussian
noise channel where the input is modulated by a noise source A;
as the variance of A increases the channel capacity approaches
zero and thus the server obtains no information about the
encryption parameter Q. Note that the additional corrections
depend on the value m1A and so the server must communicate
the value of m1 obtained to the client, thus requiring one round of

Table 1 | Quantum computing gates and corresponding
decryption operations.

Gate Correction

Z(T) X(�Q)Z(� P)
X(T) X(�Q)Z(� P)
U2(T) X(�Q)Z(� 2QT� P)
U3(T) X(�Q)Z(3Q2T� P)U2(� 3QT)
F X(P)Z(�Q)
CZ X1(�Q1)Z1(�Q2� P1)

N
X2(�Q2)Z2(�Q1� P2)

The decryption operations corresponding to each gate are listed, up to a phase, for the
corresponding encryption operation D(Q, P) for single mode gates and D1(Q1, P1)D2(Q2, P2) for
two-mode gates.

• p̂ = m1

• U2(B )

D (Q, P) |�〉

U2 (A) Z (Q ′) |0〉p

F  U3 (T)

D(Q ′′, P ′′)

Figure 2 | Server implementing a cubic gate. A quantum circuit

demonstrating the implementation of U3(T) on a desired qumode held by

the server (top wire). The client is able to correct for the U2(� 3QT) gate in

the decryption operation for U3(T) on-the-fly by sending an ancilla

qumode (bottom wire). By choosing A and Q0 randomly and keeping these

parameters hidden, the client is able to have the server implement the

decryption without divulging information about the encryption parameter Q.

The parameters Q00 and P00 are defined in Supplementary Note 1.
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Error bars are smaller than the point size.
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classical communication for the full implementation. In the limit
of ideal teleportation and infinite variance in the Gaussian
probability density functions governing the selection of A and Q0,
it can be shown that this interactive protocol does not
compromise the encryption; the proof follows identically to that
in ref. 23. A proof in the presence of both finite squeezing and
displacements remains an open challenge.

We discuss the implementation of this protocol in more
detail as well as a discussion of the decryption operations for
each gate in the universal set in Supplementary Note 1. We
provide additional details in Supplementary Information, in
particular: how to compose gates (Supplementary Note 2), the
effects of transmission (Supplementary Note 3) and imperfect
encryption (Supplementary Note 4), an entanglement-based
analogue (Supplementary Note 5), the use of channel estimation
(Supplementary Note 6), and limitations on squeezing
(Supplementary Note 7).

Experiment. The CV quantum gates associated with linear phase
space displacements and squeezing transformations allow for an
experimental test of quantum computing on encrypted data solely
based on Gaussian quantum states and Gaussian operations. Such
operations can be performed with high fidelity within the field of
CV quantum optics. In the following, we thus use Gaussian
displacement and squeezing operations to test the basic principles
of quantum computing on encrypted data, that is, we implement
a server performing first Z and X gates and second a squeezing
gate, related to the U2 gate.

We start by testing the effectiveness of the encryption
operation by using the experimental setup shown in Fig. 3a.
Quantum information at the location of the client was generated
in the form of a coherent state of light |fi¼ |ai. To test the
protocol for many different coherent state excitations simulta-
neously, we produced an ensemble of coherent states by means of
a set of electro-optical modulators (EOMs), thereby preparing the
Gaussian ensemble r ¼

R
Gin Q; Pð ÞD Q; Pð Þ 0j i 0h jDy Q; Pð ÞdQdP

where Gin(Q, P) is a Gaussian probability density function
with variance Vin. This information was then encrypted by

applying a randomized phase space displacement onto the
coherent state ensemble using the same two EOMs driven by
two independent Gaussian white noise sources with equal
variances VQ¼VP¼Venc for the amplitude (Q) and phase (P)
quadratures. This encryption noise results in an encrypted state
r ¼

R
Gtot Q; Pð ÞD Q; Pð Þ 0j i 0h jD Q; Pð ÞwdQdP; where Gtot(Q, P) is

a Gaussian distribution with a total variance of VinþVenc. We
measured the encrypted quantum states with homodyne
detection and recorded the correlations between the measure-
ments and the input signal. Using these correlations, we calculate
the mutual information as plotted in Fig. 3b. The solid line is a
theoretical prediction given by

I serverenc : clientinð Þ ¼ 1
2

ln 1þ Vin

Venc

� �
: ð2Þ

For efficient encryption, the quadrature correlations and thus
the mutual information between the encrypted state received by
the server and the input state prepared by the client should be
vanishingly small. From the plot, we clearly see the effects of a
finite encryption variance.

We first implement the Z and X displacement gates as
illustrated in Fig. 4a. The protocol was performed with a Gaussian
alphabet of coherent states with variance Vin¼ 0.28 shot noise
units (SNU) embedded in encryption noise of Venc¼ 31 SNU. For
this particular encryption, the mutual information is I¼ 0.005
bits per use. The Z and X gates were tested for a symmetric
Gaussian distribution of displacements with variance Vgate¼ 0.6
SNU. This results in the state r after the computation having a
total variance of VgateþVinþVenc.

Finally, the state is sent back through a lossy channel to the
client who is decrypting the state using two EOMs driven by noise
that was optimally anti-correlated with the noise used for
encryption. The final state is then ideally given by D(Q, P)|fi,
but owing to imperfections there is some residual noise from the
encryption protocol and thus we must consider the output state r
with a variance of VinþVgateþVres. For the presented measure-
ment, the residual noise was Vres¼ 0.072 SNU. To visualize the
evolution of the information content at different stages of the

Client

AM PM

AM PM

Gate

P
M

A
M

t

t

C
ha

nn
el

Input

Encryption

Decryption

Server

π π

S
ig

na
l-t

o-
no

is
e 

ra
tio

In
pu

t

E
nc

ry
pt

ed
in

pu
t

E
nc

ry
pt

ed
ou

tp
ut

D
ec

ry
pt

ed
ou

tp
ut

O
ut

pu
t w

/o
en

cr
yp

tio
n

80 85 90 95 100

Transmission (%)

94

95

96

97

98

99

100

F
id

el
ity

 (
%

)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

a b c

Figure 4 | Server implementing Z and X gates. (a) Experimental setup. Ensembles of encrypted input states were generated by two EOMs driven by two

Gaussian white noise sources. The encrypted quantum states were then sent to the server through a channel with transmittivity t simulated by a half-wave

plate and a polarizing beam splitter. The server performed ensembles of displacements by using a second pair of modulators driven by independent

Gaussian white noise generators. After sending the quantum state back to the client, the output of the quantum computer was decrypted by applying phase

shifted modulations using the encryption noise only known to the client. (b) The signal-to-noise ratios of the phase quadrature measured by homodyne

detection behind each stage of the protocol. An ensemble of coherent input states and gate displacements were used and the transmissivity of the channels

was set to 1. The output of the homodyne detector was recorded by a spectrum analyser measuring zero span around 10.5 MHz with a resolution

bandwidth of 300 kHz and a video bandwidth of 30 Hz. A small input state was prepared (red) and subsequently encrypted (green). Then a small

displacement was performed by the server (yellow), acting as the gate. Afterwards the state was returned to the client for decryption (blue), which yields

the output of the quantum computation. For comparison, we have recorded the outcome without encrypting the input (upper trace). The difference

between these is indicative of the loss for signal-to-noise ratio from imperfect decryption. (c) Fidelities between the output state ensembles using quantum

computation on encrypted states and using quantum computation on plain-text states versus the channel transmission t. Statistical error bars are smaller

than the point size. The variation in the fidelities comes mainly from systematic errors in the fine tuning of the phase and gain settings of the decryption

noise for optimal decryption.
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scheme, in Fig. 4b, we plot the signal-to-noise ratios (SNRs) of a
single quadrature after each stage of the protocol. It is clear from
these numbers that the amount of information in the encrypted
state is close to zero and that the decryption operation is almost
ideal. For further quantification, we show in Fig. 4c the fidelity
between the ensembles of output states of the quantum
computation using encrypted states and plain-text states. The
fidelities are 497% for all measured transmission values.

We now turn to the implementation of the squeezing gate,
which is defined as S rð Þ ¼ expðrðâ2� âw2Þ=2Þ, where r is the
squeezing parameter. It is directly related to the U2(T) gate by two
additional phase shifts and a suitable transformation31 between T
and r, see Supplementary Note 8 for a full justification. Figure 5a
shows the experimental setup. In contrast to the implementation
of the displacement gates, we used a single coherent excitation
rather than ensembles of coherent input states. The squeezed-
light source was based on parametric down-conversion in
a periodically poled potassium titanyl phosphate crystal placed

in a linear cavity. In our realization of the gate, we directly
squeezed the (encrypted) input state in the squeezed-light source.
We note that this constitutes the first demonstration of an in-line
squeezing transformation of quantum information. Previous
demonstrations have relied on off-line squeezed states31. A full
Wigner function illustration is presented in Fig. 5c–f measured by
homodyne detection after each of the four steps. The state after
the squeezing gate is shown in Fig. 5e, and it is clear that the
squeezing operation is hardly visible as a result of the encryption
noise. Finally, the transformed state is decrypted through
displacements at the client, thereby revealing the output state
of the server which is displayed in Fig. 5f. The squeezing
transformations of the first and second moments of the state are
now clearly visible.

We quantify the performance of the squeezing protocol on
encrypted data by computing the fidelity between the state
retrieved by the client after decrypting the computed input state
and the state received by the client when no encryption was used.
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Owing to squeezing the amplitude quadrature, the decryption noise was amplified differently in the two quadratures with gains g1 and g2 depending on the

squeezing strength. More details can be found in Supplementary Methods. (b) The fidelity between the output states of the computation on encrypted and

plain-text states with both 100% channel transmission and 5 dB transmission loss corresponding to optical loss in 10 km fibre at telecom wavelength.

Statistical error bars are smaller than the point size. The variation of the fidelities comes mainly from systematic errors in the fine tuning of the decryption
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This comparison is carried out under the variation of the
amount of encryption noise for both no transmission loss and
loss corresponding to 10 km fibre propagation at a telecom
wavelength, equivalent to 5 dB transmission loss. This loss is
implemented with a half-wave plate and polarizing beam splitter
combination. The results are presented in Fig. 5b. The variation
of the fidelities, as was also observed for the displacement gates,
comes mainly from systematic errors in the fine tuning of the
decryption and system drifts. The deviation from unity fidelity is
mainly caused by imperfect reconstruction of the Wigner
functions and system drifts as well as non-ideal decryption
owing to a small amount of decorrelation between the encryption
and decryption noise. Despite these imperfections, the fidelity is
close to unity and stays 498.5% for all parameters. In general, the
fidelities for the loss case are a bit higher owing to the fact that the
loss forces the decrypted states closer to the vacuum state.
The measured high fidelities show that performing quantum
computing on encrypted states rather than on plain-text states is
indeed feasible.

To quantify the performance of the implemented remote gate
itself, we display in Fig. 5g the SNRs of the Q and P quadratures
for the different steps of the protocol. Ideally, that is, without
channel loss, without loss in the gate and with perfect decryption,
the squeezing gate will preserve the SNR as indicated by the two
dashed lines. For the output state, we display the SNRs for both
with and without encryption, showing a small decrease in SNR if
encryption is used. The remaining reduction of the SNR in
comparison to the ideal gate is mainly due to optical loss, that is,
about 2.2 dB for the gate, including the squeezer and the supply
optics. A more detailed loss analysis can be found in
Supplementary Methods.

Discussion
We have developed a continuous-variable protocol for quantum
computing on encrypted variables where we required a baseline of
only two uses of a quantum channel: one use for the input and
another for the output. We required one additional round of
classical communication in each direction and one additional use
of the quantum channel to implement a cubic phase gate U3(T),
while Gaussian gates can be implemented with no communica-
tion cost. The client needs only be capable of performing
displacements to both encrypt and decrypt, except when they
perform a U3(T) gate the client must be capable of implementing
a U2(A) gate as well. Alternatively, one could run an equivalent
entanglement-based version of this protocol, which relies on
teleportation32. To achieve high-fidelity teleportation, one could
use a hybrid teleportation scheme such as that of ref. 33.

In this paper, we also studied how to compose gates for
encryption and decryption, the effects of transmission and
imperfect encryption, an entanglement-based analogue and the
use of channel estimation as well as the limitations on squeezing
in the cubic phase gate. We have experimentally demonstrated
our scheme in performing both displacements and online
squeezing operations on an alphabet of coherent states and
studied the resulting performance in terms of the fidelity. Finally,
to the best of our knowledge, this is the first time quantum
computing on encrypted data has been generalized to CVs as
well as the first proof-of-principle demonstration of any form
(qubit or qumode) of secure delegated quantum computing over a
lossy channel. Extending this protocol to long distances will
inevitably require quantum-repeater technologies to preserve the
encrypted states34. We hope our results will help lay the ground
work for future theoretical explorations and experimental
demonstrations similar to those for quantum key distribution,
such as free space and field demonstrations.

Methods
State preparation and gate operations. In all experiments, state preparation was
carried out using a coherent continuous-wave 1,064 nm laser beam as a carrier. The
investigated quantum states were prepared at 10.5 MHz sidebands relative to the
carrier, where the spectrum was shot-noise limited. Coherent states were prepared in
these sidebands by injecting the laser beam into a pair of EOMs, which were driven
with 10.5 MHz sinusoidal signals. Thermal states were prepared by applying two
independent white noise signals around 10.5 MHz to a pair of EOMs. Squeezed states
were prepared using a semi-monolithic cavity with a temperature-stabilized
periodically poled potassium titanyl phosphate crystal as a non-linear medium,
pumped by 532 nm light. The cavity length was locked using the Hänsch–Couillaud
locking scheme35. The relative phase between the pump and the quantum state
carrier beams was locked through a 36.7 MHz sideband lock applied onto the carrier
beam by the EOM, which also produces the input state in the protocol. See Fig. 5.

Measurements. Output states were measured using scanned homodyne detection.
The detector’s output was mixed with an electronic local oscillator at 10.5 MHz in
an analogue mixer. The down-mixed output was amplified by an amplifier with
adjustable gain and low-pass filtered at 1 MHz. The filtered signal was digitized
with a 14 bit digital-to-analogue converter at a rate of 5 MHz.

Data processing. The digitized signal was filtered with a 10 kHz high-pass filter to
suppress 50 Hz fluctuations in the measurements originating from the voltage supply.
The density matrices of the measured states were reconstructed from the digitized
and filtered data through the use of maximum likelihood and filtered back-projection
algorithms36, depending on the mean photon number of the state. The fidelity was
estimated from the reconstructed density matrices, using the equation25

F ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0
p

r1
ffiffiffiffiffi
r0
pq	 
2

: ð3Þ

SNRs were determined from the estimated variances and mean values of the
reconstructed states.

Data availability. Data and data processing scripts are available from the
corresponding authors upon request.
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