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ABSTRACT 

Nano-textured silicon, known as black silicon (bSi), is 
attractive as an excellent photon trapping properties. bSi 
can be produced using simple one-step fabrication 
reactive ion etching (RIE) technique. In this study, we 
present recent results of doping of nano-structured 
crystalline silicon surfaces and compared their properties 
to planar silicon. We doped planar, KOH-etched random 
pyramid and RIE nano-structured silicon surfaces with 
phosphorous oxychloride (POCl3) in the temperature 
range 850-1000oC for 15 and 20 min, respectively. 
Sheet resistance measurements show slight differences 
in doping density between planar, KOH pyramidal and 
bSi structures. bSi samples have lower sheet resistance, 
pointing to higher doping density presumably due to the 
higher surface area. These results can be used to 
optimize doping processes for industrial production of 
bSi solar cells. 

INTRODUCTION 

Reducing surface reflectance to enhance photon 
absorption allows increasing conversion efficiency of 
silicon solar cell. Nanostructured silicon has already 
attracted attention in photovoltaic research and industry 
with impressive efficiencies reported [1], [2]. It is an 
attractive alternative to conventional silicon texturing 
methods, such as  KOH [3] and acidic texturing for Si  
[4], respectively, or deposited anti-reflective coatings 
(ARC) [5]. On one hand, KOH is currently widely used in 
silicon texturing for solar cells, with a reflectance of 
around 10%. On the other hand, RIE is a scalable, 
mask-less one-step method for nano-texturing of silicon 
with low production costs, and resulting reflectance 
below 1% over a broad range of incident angles [6]. 
Moreover, the method is suitable for doping processes in 
diffusion furnaces, unlike metal assisted chemical 
etching methods, which requires either gold or silver [4], 
which then poses a severe contamination hazard to the 
equipment. 
The doping process of nano-textured bSi is different 
from doping of planar  and other texture surfaces [7] due 
to the higher surface area of bSi. bSi to planar area ratio 
is in the order of 22.25 that potentially leads to higher 
doping density, faster diffusion and modified p-n junction 
and emitter properties. 
In this work, we aim to investigate phosphorous doping 
of nanotextured RIE bSi and compare it to doping of 
planar and KOH textured samples. Experiments were 
carried out in a Tempress diffusion furnace with POCl3 
dopant source. Doping level and recombination 
properties characterized with sheet resistance and 
effective carrier lifetime measurements.   

EXPERIMENT  

 We used double side polished boron doped p-type 4 
inch crystalline Czochralski silicon wafers with (100) 
orientation, resistivity of 5.2 Ohm cm, and thickness of 
350 µm. Prior to the  doping process, we divided the 

wafers into three categories: planar (no surface 
modification), KOH-textured and RIE-textured. Planar 
wafers were only cleaned with standard RCA cleaning 
procedure. KOH wafers were immersed into buffered HF 
(bHF) solution to remove native oxide and then textured 
in 2% KOH solution with 7% IPA. They were then 
cleaned in a piranha solution to remove traces of the 
KOH solution. RIE-textured wafers were dry etched 
(Pegasus SPS) in sulfur hexafluoride (SF6) and oxygen 
(O2) plasma with flow rates of 70 sccm and 100 sccm, 
respectively. The coil power was 3000 W and the platen 
power was set at 10 W. The etching time was 16 min. 
After optional texturing all wafers were RCA cleaned, 
divided in ten groups for 850oC, 875oC, 900oC, 950oC, 
1000oC doping temperature 15 and 20 min doping time 
in combination. The wafers were loaded in a predep  
phosphorous diffusion furnace and doped using POCl3 
as the dopant source. Afterwards all the wafers were 
subjected to bHF etching and removal of phosphor-
silicate glass (PSG) grown during the doping process. 
For surface passivation, an aluminum oxide layer was 
grown by atomic layer deposition (ALD) and annealed at 
400oC for 30 min in N2.  

RESULTS AND ANALYSIS 

Since doping of the semiconductor in the pre-deposition 
process is a diffusion process, it is important to note the 
strong temperature dependency of the diffusivity [8]: 

𝐷 = 𝐷0exp (−
𝐸𝐴

𝑘𝐵𝑇
)  (1) 

where D0 is the material’s diffusion coefficient, EA is the 

activation energy, kB is the Boltzman’s constant and T is 
the temperature in Kelvin. A linear pre-deposition 
process results in a complementary error-function 
doping profile [8] with the expected dose Q obtained 

from 

 𝑄 = 𝐶𝑠
2

√𝜋
√𝐷𝑡 ∝ exp⁡(−

𝐸𝐴

2𝑘𝐵𝑇
) (2) 

where Cs is the surface doping concentration (usually the 

solid solubility), and t is time. The sheet resistance of the 
doped layer is approximately 

𝑅□ =
1

𝑞𝑄𝜇𝑛
   (3) 

where q is the unit charge and 𝜇𝑛 the average electron 

mobility. It follows that the sheet resistance is expected 
to be strongly dependent on the temperature used in the 
doping process 

𝑅□ ∝ exp⁡(
𝐸𝐴

2𝑘𝐵𝑇
)   (4) 
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Figure 1: Sheet resistance of planar, KOH-textured 
and bSi samples for 15 and 20 min doping time 

In Fig. 1 the sheet resistances measured for all doped 
samples are shown as a function of the reciprocal 
absolute doping temperature in a semi-log plot, and the 
expected behaviour (Eq. 4) is to a fair approximation 
observed, i.e., the sheet resistance decreases rapidly as 
doping temperature is increased such that data points 
are almost on a straight line in Fig. 1. 
In Fig. 2 sheet resistance differentials between the 
different surfaces are shown as a function of doping 
temperature. In particular, for 20 min doping time it 
appears that the sheet resistance obtained on bSi is 
lower as those of the other two surfaces, which are very 
similar in sheet resistance value. Data from the 15 min 
experiment does not show the same unique tendency, 
perhaps because of lower total dose, which makes sheet 
resistance measurements more difficult and more prone 
to error. 

 

 
Figure 2: Sheet resistance difference between 
planar- KOH, planar-bSi and KOH-bSi samples 
depending on doping temperature and time  

Surface morphology of KOH pyramidal microstructures 
and bSi nanostructures was investigated by scanning 
electron microscopy in top and cross-section views. 
Note: SEM images and geometrical analysis will be 
available at the conference. Based on image processing 
and theoretical geometrical calculations we extracted the 
surface area ratio as a ratio between the area of the top 
surfaces and their projected area. The surface area ratio 

of the KOH-textured samples was 2.84, resulting in 
almost identical sheet resistance to that of planar silicon. 
The surface area ratio for bSi was of 22.25. This 
difference in area ratio may explain the significantly 
lower sheet resistance of bSi particularly at lower doping 
temperatures where the diffusion length is short (even 
on the length scale of the bSi nanostructures) and the 
effect of the increased surface area is large. At higher 
doping temperatures (i.e. longer diffusion lengths), the 
difference in sheet resistance is much smaller.  
The Microwave Detected Photoconductivity (MDP) 
method was used for minority carrier lifetime 
measurements of reference samples before and after 
the doping process. The effective lifetime decreases with 
increasing doping temperature and doping time. The 
graphic data will be presented at the conference. 
Fig.3 shows normal incidence spectral reflectance of the 
planar, KOH and black silicon samples. Black silicon 
shows an average reflectance below 1% due to its 
unique nanohillock surface structure, while the KOH 
etched sample has average reflectance below 8%.  

 
Figure 3: Experimental reflectance spectra of 
polished, KOH etched and bSi samples before 
doping processes.  

CONCLUSIONS 

Micro- and nano-texturing of silicon affects the doping of 
silicon in a pre-deposition doping process such that the 
doping level is increased compared to that of planar 
silicon, particularly at low doping temperature. With 
increased temperature, this difference almost disappears 
due to higher diffusion coefficient. The effective lifetime 
decreases with increased doping time and temperature.  
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