Technical University of Denmark

Aquatic Ecotoxicity Testing of Nanoplastics (and microplastics) - Lessons learned from nanoecotoxicology

Hartmann, Nanna B.; Rist, Sinja; Baun, Anders

Publication date: 2016

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Hartmann, N. B., Rist, S., & Baun, A. (2016). Aquatic Ecotoxicity Testing of Nanoplastics (and microplastics) -Lessons learned from nanoecotoxicology Kgs. Lyngby: Technical University of Denmark, DTU Environment. [Sound/Visual production (digital)]. SETAC Europe 26th Annual Meeting, France, 22/05/2016

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

-{2.71,82,81,82

Aquatic Ecotoxicity Testing of Nanoplastics (and microplastics)

 $(H_{20}+0_2 \leq CO_2 + H_2)$

Lessons learned from nanoecotoxicology

Nanna B. Hartmann, Sinja Rist, Anders Baun

SETAC Europe 26th Annual Meeting 22-26 May 2016 Nantes, France

Tuning the test system...

Definition of nanoplastics

DTU Environment

Department of Environmental Engineering

Similarities and differences

	Engineered nanomaterials (ENMs)	Nanoplastics (and microplastics)
Composition	Metal, metal oxide, carbon based, organic	Synthetic polymers, natural rubber
Sources to occurrence in the aquatic environment	Mainly primary (intentional production)	Mainly secondary (degradation in the environment)
Regulatory intervention options	Specific ENM production & use	General plastic production & use
Detection in the environment and biota	Challenging - but possible for ENMs made of non- ubiquitous elements	More challenging!

Similarities and differences

	Engineered nanomaterials (ENMs)	Nanoplastics (and microplastics)
Hazardous properties	Can be designed to have a specific biological effects or functionalities	Not intentionally hazardous
Toxic effects potentially caused by	 Leaching (ions) Physical interactions ENM reactivity Carrier effects 	 Leaching (additives) Physical interactions Carrier effects
Novel properties as nano	Inert → Reactive	???

Nanoplastics – an environmental problem?

Will nano stay nano?

Probably not...

+ interactions with organic matter, phytoplankton etc.

Water soluble chemicals VS. particles

Department of Environmental Engineering

Effect = f(conc.,time, organism, media etc)

Baalousha & Lead (2013). Nature Nanotechnology, 8, 308-309 Baun, et al. (2008).. Ecotoxicology, 17 (5), 387-395 Hartmann et al.. (2013)..Nanotoxicology DOI: 10.3109/17435390.2012.710657

The 'solution'...

Effect = f(conc.,time, organism, media etc.)

Ecotioxicity testing of nanoplastics – key challenges and suggestions

• Making our studies (more) relevant:

- What we test VS nanoplastics in the environment
- Properties of environmentally weathered nanoplastics?
- In lack of environmental nanoplastic samples → more studies on artificial weathering are needed!
- Detection, identification and quantification in the environment
 - Need for standardised methods \rightarrow increased comparability
 - Increased analytical sensitivity (size & concentration)
- Detection and quantification in lab experiments

Lessons learned from microplastic research

Thank you for your attention!

Acknowledgements:

Lars Michael Skjolding, DTU Environment Signe Qualmann, DTU Environment Sara Nørgaard Sørensen, DTU Environment Tom Nolte, Radboud University Nijmegen Anders W. Hansen, DTU Environment Matias Flyckt-Nielsen, DTU Environment Pernille Rehne Jensen, DTU Environment Ann Sofie Mørberg, DTU Environment

European Research Council Starting Grant – ENV Nano

Contact:

Nanna B. Hartmann DTU Environment, Technical University of Denmark