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Abstract

Abstract

Biological systems are complex. When we want to understand biological processes we often need

advanced methods to reveal the relationship between genotype and phenotype.

The focus of this thesis has been to extract biological meaningful features from complex data sets
and to use mathematical modeling to uncover how human pathogens adapt to the human host.
Pseudomonas aeruginosa infections in cystic fibrosis patients are used as a model system for under-

standing these adaptation processes.

The exploratory systems biology approach facilitates identification of important phenotypes and
metabolic pathways that are necessary or related to establishment of chronic infections. Archetypal
analysis showed to be successful in extracting relevant phenotypes from global gene expression da-
ta. Furthermore, genome-scale metabolic modeling showed to be useful in connecting the genotype
to phenotype at a systemic level. Particular metabolic subsystems were identified as important for
metabolic adaptation in P. aeruginosa. One altered metabolic phenotype was connected to a genetic
change; a finding that was possible through the systems characterization and which was not identi-
fied by classical molecular biology approaches where genes and reactions typically are investigated

in a one to one relationship.

This thesis is an example of how mathematical approaches and modeling can facilitate new biologi-

cal understanding and provide new surprising ideas to important biological processes.
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Dansk resumé

Dansk resumé

Biologiske systemer er komplekse. Nar vi gnsker at forsta biologiske processer, har vi ofte brug for
avancerede metoder til at afslgre sammenhangen mellem en organismes arveanleeg og dens obser-

vérbare karaktertraek.

Fokus for denne Ph.d.-afhandling har vaeret at ekstrahere biologiske meningsfulde egenskaber fra
komplekse datasaet samt at bruge matematisk modellering til at afdeekke, hvordan sygdomsfremkal-
dende bakterier udvikler sig under kroniske infektioner i mennesket. Infektioner med bakterien
Pseudomonas aeruginosa i cystisk fibrose patienter er anvendt som model-system til at forsta disse

tilpasningsprocesser.

Den anvendte systembiologi-metode muligggr identifikation af vigtige karaktertraek og stofskiftere-
aktioner som er ngdvendige eller relaterede til etablering af kroniske infektioner. "Arketype-analyse"
viste sig at vaere nyttig til ekstrahering af relevante karaktertraek fra data. Derudover viste matema-
tisk modellering af hele stofskiftet sig ogsa at veere nyttig til at forstd hvordan de overordnede stof-
skiftereaktioner i bakterien aendrer sig. Specifikke stofskiftereaktioner blev identificeret som vaeren-
de vigtige for tilpasningen af P. aeruginosa. En specifik eendring i stofskiftet blev koblet til en gene-
tisk eendring. Denne opdagelse var mulig ved hjzlp af den anvendte systembiologiske metode, men

havde derimod ikke veeret mulig gennem klassiske molekylaerbiologiske metoder, hvor reaktioner og

gener typisk undersgges i et en-til-en forhold.

Denne afhandling er et eksempel pa, hvordan matematiske metoder og modellering kan fgre til ny

biologisk forstaelse og bidrage med nye overraskende ideer til vigtige biologiske processer

Technical University of Denmark iv
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Chapter 1 | Introduction

Chapter 1

Introduction

Technological advances during the past 10-15 years have led to generation of numerous high-
throughput data sets including whole-genome sequences and global gene expression data. The rap-
idly growing number of high-throughput data sets has raised a demand for new analytical tools that
can assist in generating biological understanding from these data. There is a need for modeling ap-
proaches to assist in connecting genotype to phenotype at a systemic level and for analytical tools
that can extract biological features from the complex high-throughput data sets, both of which are

important elements of systems biology (Bordbar et al, 2014; Heinemann & Sauer, 2010).

Systems biology contains elements from chemistry, biology, engineering and computer science and
it deals with integration of technology, biology and computation (Aebersold et al/, 2000; Ideker et al,
2001). Systems biology can be described as the multidisciplinary approach to investigating the com-
plexity of an organism (Hindré et al, 2012). In molecular biology genes are often investigated indi-
vidually to assign a function to a single gene. Systems biology deals with the understanding of how
molecular components collectively give rise to phenotype and physiology and in systems biology the
interrelationship of all elements in a system is studied rather than studying them one at a time

(Gunawardena, 2014; Hood, 2003).

One area where there is a need for connecting the genotype to a phenotype at a systemic level is in
our pursuit of understanding pathogen behavior in terms of what makes a pathogen a pathogen and
how does a pathogen evolve (de Lorenzo, 2015). A human pathogen is characterized by being able
to colonize and grow within the human host and cause disease (Madigan & Martinko, 2006a). The
latter is often due to virulence factors produced by the pathogen. There has been a lot of attention
to virulence factors produced by human pathogens (Rahme et al, 1995; McDermott et al, 2011;
Clatworthy et al, 2007; Eisenreich et al, 2010). However, it is also important to understand how the
pathogens beyond virulence factors are able to grow within the human host and how they adapt to
the host environment to ensure survival. Metabolism can be defined as all chemical reactions in a
living organism including pathways necessary to degrade nutrients in the surrounding environment
to obtain energy for survival and growth (Madigan & Martinko, 2006b). Therefore, in order to un-

derstand pathogen behavior in terms of how they survive in the host environment, it is necessary to

PhD Thesis by Juliane C. Thggersen Page 1 of 121



Chapter 1 | Introduction

study metabolism and when we try to eradicate invading pathogens from the human host, insight

into pathogen metabolism is crucial (de Lorenzo, 2014).

The opportunistic pathogenic bacterium Pseudomonas aeruginosa is an ideal model organism for
understanding these processes. Environmental P. aeruginosa strains have optimized their metabo-
lism for survival in their natural environment outside the human host. During long-term infections in
the CF lung environment P. aeruginosa will most likely undergo adaptation to obtain a metabolic
phenotype, which is optimal for survival in the human host environment. The identification of meta-
bolic pathways that change during adaptation may therefore uncover, which metabolic pathways
are important for pathogenesis. Since metabolism is a complex network of chemical reactions we
need a systemic approach, which consider all reactions at ones. In general, identification of pheno-

typic patterns that characterizes pathogen persistence is desired.

| consider systems biology to fall within the field of research termed discovery science or exploratory
research in contrast to hypothesis-driven research, but it can also be argued that it is a combination
of both (Aebersold et al, 2000; Ideker et al, 2001). Hypothesis-driven research is well established and
accepted and it is based on concrete hypothesis backed up by theory. Exploratory research on the
other hand, examines unknown areas with little or no supporting theory and the fundamental idea is
to explain variations observed in data without prior knowledge (Haufe, 2013; Waters, 2007). This
can be a great advantage in providing new knowledge, but at the same time it is a big challenge for
systems biology because the limited level of detail and mechanistic insight can be considered a
weakness. Often the systems analysis is followed up by multiple hypothesis-driven experiments,
which makes these studies quite comprehensive in terms of resources and collaborations across dif-
ferent academic disciplines. Therefore, when we model a system we often need to make compro-
mises between the size of the system we wish to consider and the level of detail at which we model

the system (Heinemann & Sauer, 2010).

Aim of project

The overall aim of this PhD project is to gain more knowledge in the adaptation process of human
pathogens during chronic infections through a systems biology approach. The system biology ap-
proach consists in extracting biological knowledge from complex data sets through advanced explor-
atory methods. The project can be divided into two parts, which are represented by Paper 1 (Chap-

ter 5) and Paper 2 (Chapter 6) respectively:

Technical University of Denmark Page 2 of 121



Chapter 1 | Introduction

(1) The first project aims to identify patterns in global gene expression data sets through Archetypal
Analysis, and to understand the biological meaning of these patterns related to the adaptation pro-

cess of Pseudomonas aeruginosa during long-term airway infections of cystic fibrosis patients.

(2) The second project aims to identify which metabolic pathways that change during adaptation of
Pseudomonas aeruginosa to the cystic fibrosis lung environment through a combined experimental
and computational approach including isotope-labeling experiments and genome-scale metabolic

modeling.

Outline of thesis

The next chapter (Chapter 2) introduces P. aeruginosa and cystic fibrosis, which is followed by an
introduction into feature extraction in data analysis in Chapter 3 and genome-scale metabolic mod-
elling including the concept of isotope-labeling experiments in Chapter 4. The results of this PhD pro-
ject are described in Paper 1 (Chapter 5) and Paper 2 (Chapter 6) and | recommend reading Paper 1

and Paper 2 before the discussion in Chapter 7.
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Chapter 2

Pseudomonas aeruginosa and cystic fibrosis

Pseudomonas aeruginosa

We use the gram-negative bacterium Pseudomonas aeruginosa as a model organism to investigate
pathogen adaptation in a human host environment. P. aeruginosa is an opportunistic pathogen,
which means that it rarely infects healthy individuals, but it is a major cause of infections in patients
with cystic fibrosis (CF) and it is also causing infections in immunocompromised individuals and peo-
ple with severe burns and diabetes mellitus (Ramos, 2004). It is easy to isolate from the environ-
ment, where it is often found in soil, water and plants. Usually, the P. aeruginosa infections are ac-
quired from the environmental sources, but transmission between CF patients also occurs (Jelsbak et

al, 2007).

Cystic fibrosis

Cystic fibrosis is an autosomal recessive disorder caused by a mutation in the cystic fibrosis trans-
membrane conductance regulator (CFTR) gene. It is the most common inherited disease among Cau-
casians, where it appears in approximately one out of 2500 newborns (Folkesson et al, 2012). The
CFTR gene encodes a chloride channel responsible for epithelial ion transport. Impaired function of
this channel mostly affects the airways of the lungs, but it is also causing gastrointestinal, nutritional
and other abnormalities (Lyczak et al, 2002; Gilligan, 1991). In healthy lungs, the airway epithelial
cells are covered with a periciliary liquid layer (PCL) and an upper mucus layer (Figure 1). Together
they form an essential part of the mucociliary clearance, which provides protection towards inhaled
particles including microorganisms. Inhaled particles get stuck on the upper mucus layer and the PCL
(separating the mucus layer from the epithelial cell surface) facilitates motility of cilia that serve as

an escalator to remove the inhaled particles (Buchanan et al, 2009; Knowles & Boucher, 2002).

In CF patients, one consequence of the defect chloride channel is dehydration of the PCL and a thick
mucus layer in the airways, which impairs the mucociliary clearance and the CF patients are there-
fore very susceptible to airway infections (Figure 1) (Lyczak et al, 2002; Gilligan, 1991; Govan &
Deretic, 1996).
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Normal airway epithelium CF airway epithelium
FLOW
- -— —>
-\
MUCUS
PCL Cilia b

Figure 1. Comparison of the mucociliary clearance between
normal airway epithelium and cystic fibrosis airway epithelium.
The normal airway epithelium is covered by a hydrated periciliary liquid lay-
er (PCL) and on top of this thin mucus layer. Motion of the cilia ensures a
unidirectional flow of mucus and thereby excretion of any inhaled bacte-
rium. In the cystic fibrosis (CF) airway, a thick mucus layer covers the epithe-
lium due to dehydration of the periciliary liquid layer. Motion of the cilia is
impaired and bacteria can persist in the CF airway. The figure is modified
from (Lyczak et al, 2002; Folkesson et al, 2012).

Airway infections in cystic fibrosis patients

In addition to P. aeruginosa, a range of different microorganisms are associated with CF lung infec-
tions including the bacterial species Staphylococcus aureus, Haemophilus influenzae, Streptococcus
pneumonia, Burkholderia cepacia, Burkholderia pseudomallei and also the fungal species Aspergillus
and Candida are frequently observed (Burns et al, 1998; Foweraker, 2009). The prevalence of these
species changes over time, where the first lung infections of the cystic fibrosis patients often appear
in early childhood with S. aureus and H. influenzae and later, P. aeruginosa becomes most dominant
(Harrison, 2007). Often the patients have recurrent acute infections with P. aeruginosa, but eventu-
ally these infections turn chronic where P. aeruginosa cannot be eradicated despite of host immune
response and intensive antibiotic treatment. These chronic infections result in prolonged inflamma-
tory response leading to destruction of the lung tissue and loss of lung function, and chronic infec-
tions with P. aeruginosa are the main cause of morbidity and mortality in CF patients (Doring et al,

2012).

Treatment and prognosis

The CF patients are treated with a range of different antibiotics. Eradication of early infection and
prevention of chronic infection has been associated with clinical benefits (Doring et al, 2012). In in-
dustrialized countries, antibiotic therapy has played a major role in increasing mean life expectancy
from 14 years for CF patients born in 1969 to more than 40 years for CF patients born in 2010 (Cystic
fibrosis foundation patient registry 2009 annual data report, 2010; Doring et al, 2012). In the Copen-

hagen CF clinic the young CF patients with acute P. aeruginosa infections are treated occasionally

Technical University of Denmark Page 6 of 121



Chapter 2 | Pseudomonas aeruginosa and cystic fibrosis

with antibiotics, whereas the patients chronically infected with P. aeruginosa continuously receive

suppressive antibiotic therapy (Doring et al, 2000; Hgiby et al, 2005).

The cystic fibrosis lung environment

When P. aeruginosa enters the airways of a CF patient it meets a lot of physical changes. The transi-
tion from the natural environment to the lung environment is characterized by changes in tempera-
ture, nutrient accessibility, gas composition (e.g. oxygen and carbon dioxide) and composition of
surrounding microbes and presence of polymorphonuclear neutrophils (PMNs) of the immune sys-
tem (Hauser et al, 2011). In addition to that, P. geruginosa is exposed to a range of antibiotics while
being inside the human airways as described above. It has been shown that P. aeruginosa grows
within the characteristic CF sticky mucus, where it meets hypoxic conditions (Ohman & Chakrabarty,
1982; Worlitzsch et al, 2002; Palmer et al, 2005). The nutrient composition of the CF mucus has pre-
viously been analyzed and a synthetic CF sputum medium (SCFM) was defined to mimic the CF mu-
cus composition (Palmer et al, 2007). The CF mucus is characterized by being rich in amino acids and
it also contains glucose and lactate (Palmer et al, 2007). Although being a nutrient-rich environment,
the CF lungs also provide stressful conditions for invading pathogens due to the frequent antibiotic
treatment and host immune response (Folkesson et al, 2012). Oxidative stress results from reactive
oxygen species (ROS) produced by PMNs as part of the host immune response to infection (Hull et
al, 1997; Heiby, 2006). Most recently, it has also been suggested that antibiotics may induce inter-
cellular ROS production in bacteria (Dwyer et al, 2014; Kohanski et al, 2010). The presence of oxida-
tive stress can induce bacterial mutation rates and select for variants that are less sensitive to oxida-

tive stress (Folkesson et al, 2012).

Adaptation of Pseudomonas aeruginosa

The ability of P. aeruginosa to thrive and persist in the human lung environment is facilitated
through its large metabolic versatility and regulatory genes (Ramos, 2004), but also through genetic
mutations as observed for many clinical isolates of P. aeruginosa (Smith et al, 2006; Yang et al, 2011;

Dettman et al, 2013).

The adaptation process of P. aeruginosa is interesting from several points of view. First of all,
knowledge on adaptation can guide new therapeutic intervention. For example reactions that be-
come essential for adapted strains of P. aeruginosa compared to the original infecting strains can
serve as targets for future antibiotics. Second, the fact that P. aeruginosa persists in the lung envi-

ronment over many decades allow us to study long-term evolution of a pathogen inside the human
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host. The knowledge gained from adaptation studies of P. aeruginosa is also relevant for industrial
applications. The process by which P. aeruginosa reshapes its metabolism to fit the new environ-
ment can be parallel to the way we wish to engineer a production organism to obtain a certain phe-

notype in an industrial setting.

Past studies of within-host evolution of Pseudomonas aeruginosa

The transition from initial colonization to chronic infection of P. aeruginosa is often followed by ob-
served phenotypic changes in P. aeruginosa caused by genetic adaptation to the CF lung environ-
ment. Frequently observed phenotypic changes include a slow-growth phenotype (at least in vitro),
conversion to a mucoid phenotype, gain of antibiotic resistance, loss of motility, loss of quorum
sensing, appearance of small colony variants, increased mutation rate (hereafter ‘hypermutators’),
decreased production of virulence factors and cell envelope changes (Harrison, 2007; Burns et al,
1998; Lyczak et al, 2002). Among the listed phenotypes are the mucoid phenotype and the hypermu-

tator that | will return to in the discussion.

The mucoid phenotype is most often caused by a mutation in the anti-sigma factor mucA and it is
characterized by a high production of alginate, which is easy to detect on laboratory growth plates,
since the bacterial colonies appear very moist and sticky (Ciofu et al, 2008; Rau et al, 2010). Alginate
is thought to protect the bacteria from phagocytosis by neutrophils and macrophages and to resist
oxidative stress (Mathee et al, 1999; Oliver & Weir, 1985). However, a conversion back to a non-
mucoid phenotype also appears in clinical isolates, why it is speculated that it may not be the algi-
nate production itself providing the adaptive advantage, but maybe alginate production is a second-

ary effect of the mucA mutation (Damkizer et al, 2013; Rau et al, 2010).

Hypermutators are frequently observed among isolates of P. aeruginosa isolated from chronic CF
infections, but the hypermutators are also widespread among other pathogenic bacteria suggesting
that being a hypermutator is an advantage in pathogenesis (Weigand & Sundin, 2012; Oliver &
Mena, 2010; Hogardt et al, 2007; Sundin & Weigand, 2007). The mutator phenotype has been asso-
ciated with an evolutionary advantage during bacterial adaptation to new environments or stressful
conditions (Oliver & Mena, 2010). Hypermutation creates genetic and phenotypic variations in a
population and it is suggested that hypermutation is a mechanism for acceleration of bacterial evo-

lution (Oliver & Mena, 2010).

Over the past years, there has been an increasing number of genomic studies of P. aeruginosa with

the aim of understanding pathogen behavior inside the human host (Tummler et al, 2014; Yang et al,
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2011; Marvig et al, 2015). One extensive study from 2011 (Yang et al, 2011) (including genome se-
guencing, transcriptional profiling and phenotypic arrays) characterizes the within-host evolution of
a particular P. aeruginosa clone type, P. aeruginosa DK2 (formerly known as the 'b' clone), which has
successfully been transmitted between patients attending the Copenhagen CF clinic (Jelsbak et al,
2007). The DK2 clone was isolated for the first time in the Copenhagen CF clinic in 1973. Since then it
has caused chronic infections in several patients and it has now persisted in the CF lung environment
for four decades. The study of multiple DK2 strains isolated from 1973 to 2007, revealed that the
DK2 lineage underwent an initial period of rapid adaptation before 1979 and important mutations
were identified in global regulatory genes (Yang et al, 2011). Phenotypic characterization of catabolic
performances showed that the adapted phenotype had lost its catabolic function on various carbon

and nitrogen sources compared to the phenotype of the initial strains (Yang et al, 2011).

In a recent study a list of 52 so-called pathoadaptive genes were identified among 474 genome-
sequenced clinical P. ageruginosa isolates representing 36 different lineages (Marvig et al, 2015).
Pathoadaptive genes are described as genes in which mutations optimize pathogen fitness and they
are identified as genes in which mutations appear very frequently in the 36 lineages. The list of
pathoadaptive genes includes genes that are well-known to be involved in adaptation. The list also
includes genes potentially important for adaptation, which have not been emphasized previously.
This type of study is very valuable in creating an overview of common genetic adaptation. However,
we must not neglect mutations in genes that may not appear often enough to be considered among
the pathoadaptive genes, since diverse genetic mutations could result in the same functional effect.
We therefore need also to focus our attention to adaptive changes that appear on a functional level
- for example on metabolism. However, little is known about metabolic adaptation of P. aeruginosa
inside the CF lung and in general in vivo metabolism of bacterial pathogens is poorly understood

(Eisenreich et al, 2010).

A well-annotated genome will give us information about the organism’s metabolic repertoire in
terms of a list of metabolic reactions that are possible based on proteins encoded in the genome. A
study of metabolism will add information on pathway activities and understanding of which path-
ways are essential for survival under given conditions. Identification of pathways necessary for with-

in-host pathogen survival will bring us a step closer to new treatment strategies.

Present study: applying systems biology tools in the data interpretation process
Traditional long-term evolution experiments carried out in vitro focus on adaptive events connected

to defined selective pressures (Cooper et al, 2003; Elena & Lenski, 2003). For our model system
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many unknown parameters may influence the adaptation and it is therefore a more complex task
both to identify the adaptive phenotypes and to define the relevant selective pressures present in

the CF lung environment.

When P. ageruginosa adapts to the CF lung environment it will adapt in response to many changed
factors at one time. It is far from the simple case where adaptive evolution is observed in response
to for example a single antibiotic or carbon source in a test tube experiment. Therefore the analysis
of P. aeruginosa adaptation is also complicated. We need to consider many objectives and here the
exploratory analysis as discussed in Chapter 1 may have its benefits. Instead of formulating clear hy-

potheses about adaptation, we ask what we can learn about adaptation from the available data sets.

As described above, identification of pathoadaptive genes can be done without focusing directly on
the function of the genes. Instead multiple adapted strains are compared and if the same single nu-
cleotide polymorphism (SNP) appears more frequently than it would be expected statistically it is
indicating that the SNP has a function for adaptation (Feliziani et al, 2014; Marvig et al, 2015). Alt-
hough these individual SNPs may be linked to phenotypes through genome annotations, we will not
be able to deduce how the combination of SNPs may affect the phenotype of the organism. Experi-
mentally, it is possible to genetically engineer a SNP or a combination of SNPs into a wild type strain
and compare the physiology between the strain with and without the mutation. However, one chal-
lenge connected to studying metabolism is that metabolism changes rapidly in response to envi-
ronmental changes. Therefore, it can be difficult to measure the relevant metabolic phenotype,
since the growth environment can very likely influence the effect of the SNP, and the conditions in

the laboratory may not be optimal to study an effect within the human airways.

Our ultimate aim is to understand how metabolism changes during adaptation in the CF lung envi-
ronment at a systemic level. One way to accomplish that can be to model this effect in silico by inte-
grating information from genetic mutations and gene regulation through global gene expression

studies into a genome-scale metabolic model of P. aeruginosa.

The next chapters will introduce different analytical methods that can be used to extract information
from complex high-throughput data sets and introduce the concepts in genome-scale metabolic

modeling.
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Chapter 3

Data analysis - Feature extraction from complex data sets

High-dimensional datasets are essential to systems biology. When you deal with high-dimensional
data sets it is often desired to reduce the number of dimensions in order to extract features of the
data set. The general principle is to identify a few components that can represent the data set and

each point in the data set can then be described by a combination of these components.

Figure 2. lllustration of di-
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combination of archetypes.

Imagine a case where we have 20 data points. It would be much easier if we could reduce the num-
ber of points that we have to interpret. If we can describe the whole data sets by finding for example
three representative points (or components) we have succeeded in making a dimension reduction,

which facilitates easier interpretation.

This chapter will provide some conceptual background on the commonly used dimension-reduction
techniques, principal component analysis (PCA) and k-means clustering, and also introduce the con-
cept of archetypal analysis, which is applied for gene expression data analysis in Paper 1. For sim-

plicity, | have decided to leave out mathematical formulas. However, they appear in the Materials
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and Methods section of Paper 1. The concepts of PCA, k-means clustering and archetypal analysis

are illustrated in Figure 2.

Principal component analysis

One widely used dimension-reduction technique is principle component analysis. In PCA, the com-
ponents are defined in such a way that they represent most variance present in the dataset, while
being orthogonal to each other. The data is transformed into a new coordinate system, where the
first axis is placed in direction of most variance and this is defined as the first principal component
(PC1). The second component (PC2) is orthogonal to PC1 and again oriented to account for most var-
iance given the orthogonality constraint to PC1. The number of components equals the number of
data points and the subsequent components are defined similar to PC1 and PC2. Each data point will
be assigned a coordinate for each principal component. The data can then be visualized by plotting
data as a combination of two or three principal components. This visualization possibility of other-
wise complex data sets makes PCA popular (Friedman et al, 2009). PCA has a large degree of flexibil-
ity and it is perfect for capturing variance in data. However, the principal components may be hard

to characterize due to their complex representation (Mgrup & Hansen, 2012).

K-means clustring

K-means clustering is a method that separates all observations in a data set into a pre-defined num-
ber of subsets or clusters. For each defined cluster the mean of observations is defined as the cluster
centroid (or component). The k-means clustering algorithm identifies the clusters, so that each data
point within a cluster is closest to its own cluster centroid (Friedman et al, 2009). The benefit of clus-
tering approaches is that the features of the cluster components are similar to the data and this
makes the results easier to interpret. However, the rigid assignment of data points into a single clus-
ter may cause loss of information connected to similarities between data points assigned to differ-

ent clusters (Mgrup & Hansen, 2012).

Archetypal analysis

Archetypal analysis estimates the principle convex hull of the data set, which can be described as a
minimal set of points that can wrap a given data set (Cutler & Breiman, 1994). Archetypal analysis is
different from k-means clustering in that it identifies the extreme (but representative) data points
(archetypes) in the data. Each data point can then be described as a combination of archetypes and

each archetype can be described as a combination of data points. Archetypal analysis thereby also
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includes the features of factorization like PCA. In archetypal analysis a pre-defined number of com-
ponents are identified, so that each data point is best described by a combination of these compo-
nents (Friedman et al, 2009). The archetypes will often be placed at the surface of the convex hull
and the advantage of archetypal analysis is that these extreme profiles are more likely easier to

characterize (Mgrup & Hansen, 2012).

PCA, k-means clustering and archetypal analysis all fall within the statistical category unsupervised
learning. The goal of unsupervised learning is to reduce dimensionality of data, cluster data and to
find the hidden sources and causes of the data (Roweis & Ghahramani, 1999). In Paper 1 we apply
these three methods for analysis of gene expression data. We use the methods to identify patterns
or similarities between samples (each of which has its own gene expression profile). Thereby we find
expression patterns that represent the total data set instead of analyzing each expression profile
individually. The use of different unsupervised learning techniques can be compared to visualizing a

problem wearing different sets of glasses or from different angles.
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Chapter 4

Genome-scale metabolic modeling

The increasing amount of genome-scale data and whole genome sequences since the 1990s have
enabled development of genome-scale metabolic models accounting for metabolism at a systemic
level (Covert et al, 2001). Genome-scale metabolic models are mathematical representations of the
interactions between metabolites, enzymes, and genes that enable metabolic activity such as pro-
duction of biomass and synthesis of important byproducts through the catabolism of growth sub-

strates in the environment.

The first published genome scale metabolic model was developed for H. influenzae and published in
1999 by Edwards and Palsson (Edwards & Palsson, 1999). Since then various models have been de-
veloped for different organisms and updated versions of the models are generated as new infor-
mation becomes available (Feist et al, 2009). The first genome scale metabolic model of P. aerugino-
sa was published in 2008 (Oberhardt et al, 2008). This chapter will introduce the concepts of ge-

nome-scale metabolic modeling and round off with application examples.

Genome-scale metabolic model reconstruction

The process of reconstructing a genome scale metabolic model is visualized in Figure 3. First, a com-
plete list of reactions present in the organism of choice is defined based on the genome annotation
and through review of databases and literature (Oberhardt et al, 2009). The model can be built
manually or a draft model can also be generated through different semi-automated tools e.g. the
online generation of genome-scale metabolic models using the tool ‘Model SEED' (Overbeek et al,
2005). The quality of the first model draft will rely on how well the genome annotation is and how
much is known about metabolism in the organism from the literature. The modeling process will also
give rise to improved annotation through identification of incomplete pathways for example con-
nected to catabolism of substrates (known to be degraded in the organism) or production of metab-
olites that are observed experimentally (Bartell et al, 2014; Monk et al, 2013). The resulting genome-
scale model can be considered as a collection of all known metabolic pathways in the organism in-
cluding information about which enzymes are catalyzing the reactions linked to genes that are en-
coding the enzymes - the so-called Gene-Protein-Reaction (GPR) relationship. The physical product

of the model at this stage could be an excel spreadsheet with reactions listed in rows and for each
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reaction information about metabolite substrates and products and genes related to that reaction.

The next step is to convert the model into a stoichiometric matrix S, which is the mathematical rep-

resentation of the model. The stoichiometric matrix S is an m x n matrix where m equals the number

of metabolites and n equals the number of reactions. The numbers inside the S matrix indicates the

stoichiometry between substrates and products for a given reaction. For all metabolites that are not

involved in the given reaction the values in S will be listed as zeros, substrates will take negative val-

ues and products will take positive values (Figure 3B) (Becker & Palsson, 2008; Oberhardt et al,

2009).
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Figure 3. Genome-scale metabolic modeling.

A. Genome annotations and information from literature form the base of the
metabolic model. The genome map is from (Weigand & Sundin, 2012).

B. All metabolic reactions are listed in Excel including connections between reac-
tions, metabolites and genes. This information can be translated into a stoichio-
metric matrix (S), which is the mathematical representation of the model. C.
Fluxes can now be calculated and constraints can be applied to the model to find
the optimal solution. The figure in panel C is modified from (Orth et al, 2010).
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In silico flux predictions

Flux balance analysis (FBA) is an in silico prediction of flux profiles through a metabolic network. FBA
is based on the assumption that all metabolites are at steady state. That means that the metabolite
concentrations are constant, and hence that the sum of reaction fluxes producing or importing a
given metabolite equal the sum of reaction fluxes that are consuming or exporting the same metab-
olite. Mathematically it can be written as Equation 1, where S is the Stoichiometric matrix and v is
the flux vector, which represents the fluxes through all reactions in the network (Varma & Palsson,

1994; Edwards & Covert, 2002).

Sv=0 (Equation 1)
a;i< Vi< b; (Equation 2)
Max(vbiomass) (Equation 3)

Experimentally, the steady-state requirement can be achieved under exponential growth. FBA uses
linear programming to determine a solution of fluxes through the metabolic network that fulfill this
steady state assumption and also additional defined constraints while optimizing an objective func-

tion (for example maximizing biomass production) (Haggart et al, 2011).

Typical constraints applied to FBA are defined reaction boundaries (Equation 2). If unconstrained,
these can be mathematically defined as lower and upper bounds (a; and b,respectively) being arbi-
trarily set to for example -1000 and +1000. Some bounds can be constrained based on literature and
experiments. Knowledge about irreversible reactions can for example change the lower bounds to

zero. Both upper and lower bounds can also be set to zero to simulate a gene (or reaction) knockout.

The most commonly used objective function in constrained based modeling like FBA is maximizing
biomass production (the rate at which metabolic compounds are converted into biomass compo-
nents such as nucleic acids, proteins and lipids) (Orth et al, 2010). The biomass objective finds the
flux solution with the highest in silico biomass yield among the possible solutions to the network
(Equation 4). However, other objective functions can be defined e.g. minimizing or maximizing ATP

production, and even a combination of objective functions can be defined (Schuetz et al, 2007).

When evaluating fluxes through a system it can also be relevant to perform a flux variability analysis
(FVA). FVA determines the variability of each reaction, while maintaining the optimal objective func-
tion value (e.g. maximum biomass production level). The maximum objective function value is first

determined through FBA, which allows reaction fluxes within the defined bounds. Then, for each

PhD Thesis by Juliane C. Thggersen Page 17 of 121



Chapter 4 | Genome-scale metabolic modeling

reaction the minimum and maximum reaction fluxes are determined with the constraint applied,
that the maximum objective function value should be maintained. FVA thereby gives you the range
of possible solutions for a given reaction to fulfill the objective function. The study of FVA will give a
more robust analysis of metabolic activity since specific reaction fluxes proposed by the model
through FBA could be one of many solutions to the objective function, whereas the FVA is more the

solution space (Haggart et al, 2011).

Integration of data sets into genome-scale metabolic models

The genome-scale models can be combined with transcriptomic data or other omics data, which will
add an additional layer of constraints for reaction fluxes (Bordbar et al, 2014). The model only ac-
counts for metabolic genes; that means genes that are directly involved in the metabolic reactions.
However, integration of gene expression data will make a fingerprint of regulatory events causing

reactions to be inactive due or active due to down-regulated or up-regulated gene expression.

A variety of transcriptome integration tools have been developed over the past 10 years (Becker &
Palsson, 2008; Zur et al, 2010; Jensen et al, 2011; Machado & Herrgard, 2014). Among the tools are
both discrete and continuous integrations, but there is no clear preference when the methods are
compared (Machado & Herrgard, 2014). One option is to develop proposed ‘off’ and ‘on’ gene activi-
ty levels based on gene expression values. Although gene expression levels do not necessarily reflect
flux levels, the gene expression values can help to guide the determination of the correct phenotype

among the space of solutions from the metabolic network (Machado & Herrgard, 2014).

Another layer of constraints can be based on genetic variations. If we wish to model differences in
metabolic phenotypes due to genetic variations between strains, we need to define how genetic
variations should be implemented into the models. When we look at SNPs in light of genetic adapta-
tion of an organism there are different ways of evaluating whether the SNP has any functional effect
on the organism. The SNPs can be divided into silent, missense and nonsense mutations. The silent
mutations do not result in an amino acid change in the encoded protein and it is "tempting" to in-
terpret this, as the SNP has no functional effect. However, silent mutations may have an impact on
regulation, why they shouldn't just be neglected. For example a silent mutation in Mycobacterium
tuberculosis has been associated with antibiotic resistance by converting a region adjacent to the
silent mutation into an alternate promoter (Ando et al, 2014). Missense mutations on the other
hand do result in a change in amino acid composition in the encoded protein. In order to evaluate
the effect of a missense mutation, it can be relevant to look at the properties of the original and

substituting amino acid. In 2009 an algorithm called SIFT ("Sorting Intolerant from Tolerant") was
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developed with the aim of predicting effects of coding missense SNPs on protein function (Kumar et
al, 2009). The algorithm takes the amino acid properties into consideration when calculating a score
for the probability of the protein function being affected. Finally, nonsense mutations result in
frame-shifts of the mRNA translation and the resulting amino acid sequence after a nonsense muta-
tion must be assumed dysfunctional. The impact of a nonsense SNP therefore depends on where the
SNP is located in the sequence, where an early nonsense SNP most likely result in a non-functional

protein, whereas a late nonsense SNP can result in impaired or sustained function of the protein.

For our study presented in Paper 2 we have chosen to define three different constraints that should
resemble SNP impact. All of the reaction bound constraints are based on original FVA ranges calcu-
lated without implementing constraints due to SNPs. Then, these FVA ranges are adjusted in a way
to resemble the likelihood of functional impact of the SNP. Thus, silent SNPs and missense SNPs that
are predicted to be tolerated by the SIFT algorithm are implemented as constraints for the affected
reactions defined as 10% reduced FVA range. Missense SNPs that are predicted to affect protein
function are implemented with constraints defined as 50% reduced FVA range. Finally, nonsense

mutations are implemented as a constraint reducing FVA range of the affected reaction with 90%.

Constraints can also be stated based on known fluxes through the network. Isotope labeling sub-
strates can be used to determine fluxes through different convergent pathways (del Castillo et al,
2007; Nanchen et al, 2007; Wiechert, 2001). The concept is illustrated in Figure 4 and is briefly de-

scribed below.

When a heterogeneous labeled substrate as [1-"*C]-glucose (glucose labeled with the *C carbon iso-
tope at position 1) is catabolized, different labeling patterns on downstream intermediates (e.g. py-
ruvate) will occur depending on which pathway glucose has been degraded through (Figure 4). The
degradation of glucose into pyruvate can happen through three alternate pathways; The Embden-
Meyerhof Parnas (EMP) pathway (standard glycolysis in textbooks), the pentose phosphate (PP)
pathway and finally the Entner Doudoroff (ED) pathway. If one glucose molecule is degraded through
the EMP pathway the labeled carbon will end up in the third position for one out of two pyruvate
molecules. If one glucose molecule is degraded through the PP pathway, the labeled carbon atom
will end up in CO, and no labeled pyruvate will occur. If one glucose molecule is degraded through
the ED pathway the labeled carbon will end up in the first position for one out of two pyruvate mol-
ecules. The resulting mix of pyruvate molecules with different labeling patterns can therefore be
applied to calculate how much glucose is degraded through each of the pathways (Thggersen, 2010).

If we know the relative activities of these pathways, this information can be integrated into the
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model by constraining the reactions to attain these values. Labeling patterns on other intracellular

metabolites will likewise be useful for determining reaction fluxes.

Glucose
00000
EMP ED PP
CO® @O0 OO0
Pyruvate Pyruvate Pyruvate
OO OO0
Pyruvate Pyruvate

Figure 4. Isotope-labeling experiment.
Glucose can be degraded into two molecules
of pyruvate through three alternate path-
ways: Embden-Meyerhof-Parnas pathway
(EMP), Entner-Doudoroff pathway (ED) and
Pentose Phosphate pathway (PP). The labeled
carbon atom from [1-'3Cl-labeled glucose
ends up at different positions in pyruvate
dependent on which pathway is used to de-
grade glucose. Figure adapted from
(Thegersen, 2010).

Applications of genome-scale metabolic models

One major contribution from genome scale metabolic models is derived from the model reconstruc-
tion process itself. The reconstruction of the model will give rise to improved genome annotation.
This happens through identification of pathways that are known to operate in the organism, but
which are not complete in the in silico model. Searching for genes encoding proteins that are known
to catalyze the relevant reactions can complete those pathways. Through directed blast analysis new
gene annotations can thus be made. The manual curation process of the model will make the re-
searcher relate information from the literature to databases and sometimes clarify discrepancies

(Oberhardt et al, 2008; Monk et al, 2013).

The application of the genome-scale metabolic models that is closest to our use in Paper 2 is contex-
tualizing high-throughput data sets, where the model is used as a tool for analyzing high-throughput
data and for predicting the systemic impact of information stored in the data. The model as a tool
thereby allows us to interpret these high-throughput data at a network level. One example where

genome-scale modeling is used to contextualize data is in the study by Lobel et al (2012), where
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transcriptome data is combined with genome-scale metabolic models to define metabolic require-
ments of Listeria monocytogenes during infection (Lobel et al, 2012). Another study integrate gene
expression data to make comparisons between P. aeruginosa strains representing different stages of
adaptation and they make in silico predictions to determine production of virulence factors, growth

capabilities and essential genes (Oberhardt et al, 2010).

The models can also be used for comparative modeling analysis where two or more models are
compared to evaluate for example differences in metabolic capacity between models. One example
is the study by Bartell et al (Bartell et al, 2014) where they compare metabolic capabilities and con-
textualizes genetic differences between Burkholderia cenocepacia and Burkholderia multivorans.
Another study compare 55 genome-scale metabolic models of Escherichia coli in order to character-
ize the pan (collective) and core (shared) metabolic capabilities of the E. coli species (Monk et al,
2013). Through their comparative analyses, they are able to group the individual strains into correct
pathotypes and environmental niches based on the in silico strain-specific metabolic capabilities and
they suggest that a small number of nutrient sources can be used to classify different E. coli types

(Monk et al, 2013).

Genome-scale metabolic models are often used in the biotech industry for making predictions for
optimized product yield or quality that is useful prior to metabolic engineering (Puchatka et al, 2008;
Kjeldsen & Nielsen, 2009). One example is to apply the model for making predictions about reduced
byproduct formation. It is possible that knockout of certain genes will disrupt the byproduct for-
mation. The models allow the researcher to make in silico knockout studies, which is less resource
demanding than the corresponding in vitro experiments of gene knockouts. The model can help to
select among a list of candidate genes based on the model predictions and the number of experi-
mental knockouts can therefore be reduced. Another application of genome scale modeling in an
industrial context could be identification of missing pathways for production of a desired product.
The missing pathways could be constructed in silico and the model analysis could indicate whether
the reactions are feasible in the context of the available metabolic pathways in the organism. In the
study by Kjeldsen and Nielsen, they used genome-scale metabolic modeling for optimizing lysine

yield in the bacterium Corynebacterium glutamicum (Kjeldsen & Nielsen, 2009).

The model can also be used to make in silico predictions of essential genes, which is highly relevant
when studying pathogens, since essential genes can serve as targets for therapeutic intervention
(Oberhardt et al, 2008; Bartell et al, 2014; Wodke et al, 2013). In silico essential gene analysis is car-

ried out by removing one gene at a time from the model. If the model fails to produce biomass after

PhD Thesis by Juliane C. Thggersen Page 21 of 121



Chapter 4 | Genome-scale metabolic modeling

the deletion, the gene is called in silico essential. Some times more genes account for one reaction
and this reaction will only be disrupted if all of the genes (with an 'or' relationship) are removed
from the model. Therefore it is also interesting to perform an essential reaction analysis, where one
reaction at a time is removed from the model in order to identify in silico essential reactions. The
analysis of essential genes is often used to validate genome scale metabolic models since these val-
ues are easy to compare with experimentally determined essential genes (Oberhardt et al, 2008;

Monk et al, 2013).

Genome-scale metabolic modeling is applied in Paper 2 to contextualize the impact of SNPs and al-
tered gene expression on metabolism at a systemic level. Subsystems subject to metabolic changes
are identified as well as genes that become essential during the adaptation of P. aeruginosa to the
CF lung environment. The modeling approach is also utilized to make predictions about the selective
forces within the CF lung environment and to evaluate the feasibility of suspected metabolic chang-

es.
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Abstract

Background: Analysis of global gene expression by DNA microarrays is widely used in experimental molecular
biology. However, the complexity of such high-dimensional data sets makes it difficult to fully understand the
underlying biological features present in the data.

The aim of this study is to introduce a method for DNA microarray analysis that provides an intuitive interpretation
of data through dimension reduction and pattern recognition. We present the first “Archetypal Analysis” of global
gene expression. The analysis is based on microarray data from five integrated studies of Pseudomonas aeruginosa
isolated from the airways of cystic fibrosis patients.

Results: Our analysis clustered samples into distinct groups with comprehensible characteristics since the
archetypes representing the individual groups are closely related to samples present in the data set. Significant
changes in gene expression between different groups identified adaptive changes of the bacteria residing in the
cystic fibrosis lung. The analysis suggests a similar gene expression pattern between isolates with a high mutation
rate (hypermutators) despite accumulation of different mutations for these isolates. This suggests positive selection
in the cystic fibrosis lung environment, and changes in gene expression for these isolates are therefore most likely
related to adaptation of the bacteria.

Conclusions: Archetypal analysis succeeded in identifying adaptive changes of P. geruginosa. The combination of

current methods used to analyze DNA microarray data.

clustering and matrix factorization made it possible to reveal minor similarities among different groups of data,
which other analytical methods failed to identify. We suggest that this analysis could be used to supplement

Keywords: Archetypal analysis, Gene expression, Pseudomonas aeruginosa, Cystic fibrosis, Hypermutators
&

Background

DNA microarrays simultaneously monitor expression
levels of thousands of genes, and this technology is widely
used in experimental molecular biology. However, the
complexity of such high-dimensional data sets makes it dif-
ficult to fully comprehend the underlying biological fea-
tures present in the data. Different dimension reduction
techniques aim to find patterns in high complexity data
sets. The choice of analytical method can influence the in-
terpretation of the data, and it can be useful to combine
different methods.
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K-means clustering and principal component analysis
(PCA) are techniques for unsupervised pattern recogni-
tion commonly used in microarray data analysis. K-means
clustering aims to group samples (or genes) with similar
behavior [1]. Each sample is then assigned to a cluster rep-
resented by a cluster centroid. PCA is an orthogonal linear
transformation transforming the data into a new coord-
inate system where the axes are oriented to account for
maximal variation in the data set. PCA decomposes
data into a set of uncorrelated variables called principal
components [2-4].

Clustering approaches give easy interpretable features
but pay a price in terms of modeling flexibility, because
each sample must be grouped in only one cluster and no
intermediate between clusters is allowed. PCA on the

© 2013 Thegersen et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http//creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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other hand can lead to complex representations from
which we learn relatively little about the data. Archetypal
analysis (AA) combines the virtues of both clustering
and PCA in that AA results in easy interpretable compo-
nents that have added flexibility over clustering by
allowing intermediates [5]. Cutler and Breiman first intro-
duced AA in 1994, where they used AA to analyze air pol-
lution and head shape [6]. Later, AA has been applied in
the identification of extreme practices in benchmarking
and market research and signal enhancement and feature
extraction of IR image sequences [7,8]. Recently, AA has
been shown to be useful in extracting features from differ-
ent high-dimensional data sets including neuroimaging,
computer vision and text mining data sets [5] and also in
identifying extreme and representative human genotypes
within the human population [9].

AA estimates the principle convex hull of a data set.
The convex hull can be described as a minimal set of
points that can wrap a given data set. The idea of AA is
to find a few representative points (archetypes) in a data
set such that all data can be described as a convex com-
bination of these archetypes. The archetypes are related
to experimental data but they are not necessarily ob-
served points in the data set. Each archetype represents
distinct characteristic features. Explaining data as a com-
bination of these features can make the data set easier
to interpret [5]. Unlike PCA, AA is not restricted by
orthogonality, and it is possible that this method will
clarify biologically meaningful features that are not dis-
covered by PCA, while resulting in a more detailed ac-
count of the data than given by clustering approaches
such as k-means clustering.

AA has been shown to be useful in extracting features
from different high-dimensional data sets. So far, the
method has not been applied to gene expression data des-
pite clear advantages such as the intuitive and straight-
forward interpretation of the AA components. AA can be
considered an unmixing approach that decomposes each
observation into a weighted average of features defining
distinct aspects in the data. In the related unmixing frame-
work for gene expression data proposed in [10] the data is
projected to a PCA subspace. In this subspace each obser-
vation is defined as convex combinations of features
forming the simplex with smallest volume among candi-
date simplices that are found by an iterative boundary
growing procedure that is terminated when all obser-
vations are enclosed. Contrary to this framework, AA
operates directly on the full data and as the features are
constrained to be convex combinations of the observations
the archetypes will not in general enclose all observations.

Variation of phenotypes found in nature has recently
been described as weighted averages of archetypes, where
archetypes represent phenotypes that are optimized for a
single adaptive task [11]. The phenotype space will often
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be arranged in a simple geometric shape where archetypes
represent the corners, and the closer a point is to a corner
the more important the corresponding task is to fitness in
the organism’s habitat [11]. From this it can be concluded
that it is possible to identify the tasks that are important
for fitness by analyzing these corners [12]. Furthermore,
the variation within a species (the combination of arche-
types) reflects the different environments it inhabits [11].
The message of the paper by Shoval et al. (Science) [11]
clearly illustrates the value of AA and the idea of consider-
ing a phenotype space as a combination of extreme but
representative points, which is exactly the concept of this
present analysis: Archetypal Analysis.

In this study, we apply AA to five gene expression data
sets for Pseudomonas aeruginosa isolated from the lungs
of cystic fibrosis patients. The five data sets were based
on different experimental conditions including growth
medium and growth state during cell harvesting. A method
like PCA most likely captures this experimental variance in
the first few components. The first components will make
restrictions for the additional components due to the or-
thogonality constraint, and information that is linked to
the real biological difference between the samples may be
difficult to extract. Since AA is not restricted by orthogon-
ality like PCA, we propose that AA will be able to extract
biological information despite the different experimental
conditions of the five studies. We show how AA succeeds
in identifying genes that undergo changes in gene expres-
sion during evolutionary adaptation of the bacteria to the
cystic fibrosis lung.

Methods

The diagram in Figure 1 illustrates the process of AA.
First data is collected and pre-processed. Pre-processing
includes extraction of the raw data cel-files in R by use
of the package affy [13]. Then, data is normalized using
the gspline method [14] and gene expression index values
are calculated using robust multiarray average expression
measure [15]. The next stage is to apply the AA algorithm
to the expression matrix and calculate explained variance
in order to evaluate the solution. Once the archetypes
are defined, it is possible to see how samples cluster to-
gether based on their relation to the archetypes. Finally,
the archetypes can be characterized in a biological con-
text based on their gene expression profiles. The gene
expression values were not calculated relative to control
strains since different control strains were used across
the five analyzed studies.

Data collection

We analyzed cDNA microarray data from four previously
published in vitro studies (study 1-4) of P. aeruginosa sam-
pled from CF lung infections. Three of the data sets were
obtained from the online NCBI Gene Expression Omnibus
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Figure 1 Flow diagram of the archetypal analysis. First, data is collected and pre-processed. Then, Archetypal Analysis is applied resulting in a
clustering of samples based on the closest defined archetype. Finally, the archetypes are characterized and evaluated in a biological context.

(GEO) Database with the accession numbers GSE21966
[16], GSE31227 [17] and GSE10362 [18]. The fourth data
set by Lee et al. [19] was obtained through request directly
to the corresponding author. A fifth data set was generated
for this study (study 5). An overview of the microarray data
set is shown in Table 1.

Study 1 [16]. This gene expression data set consists of
17 samples (in duplicates) representing clonal isolates
sampled from three CF patients on timescales ranging
from 3 months to 8 years. Two of the patients each har-
bored a unique clone (A and B), whereas a strain replace-
ment occurred in the third patient, and two individual
clones Ca and Cb were therefore isolated from this pa-
tient. For each isolate, information about colony mor-
phology is available, and for the present analysis, we
grouped these morphotypes into two categories: Mucoid
(‘mucoid’ morphotypes) and non-mucoid (‘dwarf” and
‘classic’ morphotypes).

The experimental procedures are fully described by
Huse et al. [16]. In brief, cells were grown in synthetic cys-
tic fibrosis sputum medium (SCFSM) to an optical density
read at 600 nm (ODggo) of 0.4-0.5 prior to Affymetrix
P. aeruginosa GeneChip microarray analysis. The strains
P. aeruginosa PAO1 and P. aeruginosa PA14 (referred to
as PAO1 and PA14 respectively) were included as controls
in their study. PAO1 was originally isolated from a burn
wound [20] and has been widely used as a reference strain
for studies of P. aeruginosa. PA14 is a highly virulent
laboratory strain that most likely represents an environ-
mental strain of P. aeruginosa, although it has also been
isolated from CF lungs in Europe [21,22].

Study 2 [17]. This data set consists of different clonal
lineages isolated from the lungs of CF patients (B6, B12,
B38, CF30, CF46, CF66, CF105, CF114, CF173, CF211,
CF243, CF333 and CF506) between 1973 and 2008 span-
ning early stage infection to chronic stage infection [23].
Many of the isolates from study 2 share the same clonal
type called “DK2”. The data set consists of 29 samples in
triplicates. One group of samples was isolated from CF
children between 2006 and 2008 and these isolates rep-
resent early stage infection. Each isolate was character-
ized based on two colony morphotypes; mucoid and
non-mucoid. The data set includes a sequential mucoid

and non-mucoid paired strain, where the non-mucoid
strain (B38-2NM) was generated in vitro by allelic re-
placement of its mucA allele [24]. Cells were grown in
Luria-Bertani (LB) medium to ODggg of 0.5 (ODggg = 1
for samples #129-140) prior to Affymetrix P. aeruginosa
GeneChip microarray analysis. PAO1 was included as con-
trol in this study.

Study 3 [19]. This data set consists of twelve clonally re-
lated, sequential mucoid and non-mucoid paired P. aeru-
ginosa isolates. The isolates were obtained from three CF
patients. All isolates from study 3 share the same clonal
type called “DK1”. Cells were grown in beef broth (BB) to
an ODggg of 1 prior to Affymetrix P. aeruginosa GeneChip
microarray analysis. Each experiment was done in du-
plicate. Isolates with high mutation rates (hereafter,
“hypermutators”) were identified within the data set.

Study 4 [18]. This data set consists of eight sequential
isogenic isolates recovered over a period of three to five
years from a single CF patient (patient M). The isolates in-
cluded both hypermutators and non-hypermutators and
one isolate was mucoid. Cells were grown in LB medium
and harvested during late-logarithmic growth phase at op-
tical density above 3. Each sample was triplicated.

Study 5 (this study). This data set consists of four iso-
lates from the same patient (CF211). The isolates are two
mucoid/non-mucoid pairs isolated together in 1997 and
2006 respectively. Cells were grown in BB to an ODg of 1
prior to Affymetrix P. aeruginosa GeneChip microarray
analysis. Microarray data were generated using Affymetrix
protocols as previously described [23]. Each experiment
was done in triplicates. The isolates share the same clone
type “DK2” as many of the isolates from study 2, but the
experimental conditions are similar to those in study 3.

Archetypal analysis

The fundamental principle of AA is briefly introduced
below. AA is fully described by Cutler and Breiman [6].
AA is defined by the decomposition

X~XCS,

N D
st. €20 cu=1, §20> S4u=1.
n=1 d=1
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Table 1 List of samples
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1

Sample # Sample name Study Patient Clone Year Mucoid Mutator State Medium? op?
[1.2] Huse_A1 Study 1 A "A" ~1983 No N/A Early SCFSM 04-0.5
[34] Huse_A2 Study 1 A "A" ~1984 No N/A Early SCFSM 04-0.5
[5,6] Huse_A3.1 (m) Study 1 A “A" ~1985 Yes N/A Early SCFSM 04-0.5
[7,8] Huse_A3.2 Study 1 A “A" ~1985 No N/A Early SCFSM 04-0.5
[9,10] Huse_A4 (m) Study 1 A "A" ~1986 Yes N/A Early SCFSM 04-05

[11,12] Huse_B1 Study 1 B "B ~1983 No N/A Early SCFSM 04-0.5
[13,14] Huse_B2.1 Study 1 B "B" ~1987 No N/A Late SCFSM 04-0.5
[15,16] Huse_B2.2 Study 1 B "B’ ~1987 No N/A Late SCFSM 04-0.5
[17,18] Huse_B2.3 (m) Study 1 B "B" ~1987 Yes N/A Late SCFSM 04-0.5
[19,20] Huse_B3.1 (m) Study 1 B "B" ~1991 Yes N/A Late SCFSM 04-0.5
[21,22] Huse_B3.2 Study 1 B "B ~1991 No N/A Late SCFSM 04-0.5
[23,24] Huse_B3.3 (m) Study 1 B "B" ~1991 Yes N/A Late SCFSM 04-0.5
[25,26] Huse_Ca1 Study 1 C "Ca" ~1983 No N/A Early SCFSM 04-0.5
[27,28] Huse_Ca2 (m) Study 1 C "Ca" ~1983 Yes N/A Early SCFSM 04-0.5
[29,30] Huse_Cb1 (m) Study 1 C “Cb” ~1987 Yes N/A Early SCFSM 04-0.5
[31,32] Huse_Cb2 Study 1 C "Cb” ~1987 No N/A Late SCFSM 04-0.5
[33,34] Huse_Cb3 (m) Study 1 C “Cb” ~1987 Yes N/A Late SCFSM 04-0.5
[35-36] Huse_PA14 Study 1 N/A "PA14" N/A No N/A wt SCFSM 04-0.5
[37-38] Huse_PAO1 Study 1 N/A “PAOT” N/A No N/A wt SCFSM 04-0.5
[39-41] Yang_PAO1 Study 2 N/A "PAOT" N/A No N/A wt LB 05
[42-47] Yang_CF510-2006 Study 2 N/A "WTB" N/A No N/A N/A LB 05
[48-50] Yang_B6.0 Study 2 B6 "B6” ~2005 No N/A Early LB 05
[51-53] Yang_B6.4 Study 2 B6 "B6” ~2007 No N/A Early LB 05
[54-56] Yang_B12.0 Study 2 B12 "B12" ~2005 No N/A Early LB 0.5
[57-59] Yang_B124 Study 2 B12 "B12" ~2007 No N/A Early LB 0.5
[60-62] Yang_B12.7 Study 2 B12 “B12" ~2009 No N/A Early LB 0.5
[63-65] Yang_B38.1 Study 2 B38 “B38" ~2005 No N/A Early LB 0.5
[66-68] Yang_B382 (m) Study 2 B38 “B38" N/A Yes N/A Early LB 0.5
[69-71] Yang_B38.2 Study 2 B38 “B38" ~2005 No N/A Early LB 0.5
[72-74] Yang_B386 (m) Study 2 B38 "B38" ~2006 Yes N/A Early LB 0.5
[75-77] Yang_CF43-1973 Study 2 CF43 "DK2" 1973 No N/A Early LB 0.5
[78-80] Yang_CF66-1973 Study 2 CF66 "DK2" 1973 No N/A Late LB 0.5
[81-83] Yang_CF105_1973 Study 2 CF105 "DK2" 1973 No N/A Early LB 0.5
[84-86] Yang_CF114_1973 Study 2 CF114 "DK2" 1973 No N/A Early LB 0.5
[87-89] Yang_CF30-1979 Study 2 CF30 "DK2" 1979 No N/A Late LB 0.5
[90-92] Yang_CF173-1984 Study 2 CF173 "DK2" 1984 No N/A Late LB 0.5
[93-95] Yang_CF333-1991 Study 2 CF333 "DK2" 1991 No N/A Late LB 0.5
[96-98] Yang_CF66-1992 Study 2 CF66 "DK2" 1992 No N/A Late LB 0.5
[99-101] Yang_CF333_1997 Study 2 CF333 "DK2" 1997 No N/A Late LB 0.5

[102-104] Yang_CF173-2002 Study 2 CF173 "DK2" 2002 No N/A Late LB 0.5

[105-107] Yang_CF243-2002 Study 2 CF243 "DK2" 2002 No N/A Late LB 05

[108-110] Yang_CF333-2003 Study 2 CF333 "DK2" 2003 No N/A Late LB 0.5

[111-113] Yang_CF173-2005 Study 2 CF173 "DK2" 2005 No N/A Late LB 0.5

[114-116] Yang_CF333-2005 Study 2 CF333 "DK2" 2005 No N/A Late LB 0.5

Technical University of Denmark Page 28 of 121



Chapter 5 | Paper 1

Thegersen et al. BVIC Bioinformatics 2013, 14:279 Page 5 of 15
http://www.biomedcentral.com/1471-2105/14/279

Table 1 List of samples (Continued)

[117-119] Yang_CF333-2007.1 Study 2 CF333 "DK2" 2007 No N/A Late LB 0.5
[120-122] Yang_CF333-2007.2 (m) Study 2 CF333 "DK2" 2007 Yes N/A Late LB 0.5
[123-125] Yang_CF333-2007.3 (m) Study 2 CF333 "DK2" 2007 Yes N/A Late LB 0.5
[126-128] Yang_CF66-2008 Study 2 CF66 "DK2" 2008 No N/A Late LB 0.5
[129-131] SD_CF211-1997 (m) Study 5 CF211 "DK2" 1997 Yes N/A Late LB 1
[132-134] SD_CF211-1997 Study 5 CF211 "DK2" 1997 No N/A Late LB 1
[135-137] SD_CF211-2006 (m) Study 5 CF211 "DK2" 2006 Yes N/A Late LB 1
[138-140] SD_CF211-2006 Study 5 CF211 "DK2" 2006 No N/A Late LB 1
[141-142] Lee_CF30-1992 (m) Study 3 CF30 "DK1” 1973 Yes No Late BB 1
[143-144] Lee_CF30-1992 Study 3 CF30 “DK1” 1973 No No Late BB 1
[145-146] Lee_CF30-2001 (m) Study 3 CF30 “DK1” 2001 Yes No Late BB 1
[147-148] Lee_CF30-2001 Study 3 CF30 "DK1” 2001 No No Late BB 1
[149-150] Lee_CF46-1988 (m) Study 3 CF46 "DK1” 1988 Yes No Late BB 1
[151-152] Lee_CF46-1988 Study 3 CF46 "DK1” 1988 No No Late BB 1
[153-154] Lee_CF46-1997 (m) HYP Study 3 CF46 "DK1” 1997 Yes Yes Late BB 1
[155-156] Lee_CF46-1997 HYP Study 3 CF46 "DK1” 1997 No Yes Late BB 1
[157-158] Lee_CF128-1992 (m) Study 3 CF128 "DK1” 1992 Yes No Late BB 1
[159-160] Lee_CF128-1992 HYP Study 3 CF128 "DK1” 1992 No Yes Late BB 1
[161-162] Lee_CF128-2002 (m) Study 3 CF128 "DK1” 2002 Yes No Late BB 1
[163-164] Lee_CF128-2002 HYP Study 3 CF128 "DK1” 2002 No Yes Late BB 1
[165-167] Hob_1998 Study 4 M "M 1998 No No Late LB >3
[168-170] Hob_1998 (m) Study 4 M "M 1998 Yes No Late LB >3
[171-173] Hob_1999 Study 4 M M 1999 No No Late LB >3
[174-176] Hob_2001 Study 4 M "M 2001 No No Late LB >3
[177-179] Hob_1999 HYP Study 4 M “M" 1999 No Yes Late LB >3
[180-182] Hob_2001.1 HYP Study 4 M “M" 2001 No Yes Late LB >3
[183-185] Hob_2001.2 HYP Study 4 M "M 2001 No Yes Late LB >3
[186-188] Hob_2001.3 HYP Study 4 M ‘M 2001 No Yes Late LB >3

‘Adaptation state (early or late).

2Growth medium for the experiments: Synthetic Cystic Fibrosis Sputum Medium (SCFSM), Luria-Bertani Broth (LB), or Beef Broth (BB).

3Optical density (OD) at 600 nm during cell harvest.

Where we use the notation §>0 to denote that
the entries of a matrix § are constrained non-negative.
The archetypes (components) are given as the columns
of the matrix A defined by A = XC such that the col-
umns of A are formed by convex combinations of the
samples.

A K-component AA finds a matrix with elements
A,k defining K M-dimensional archetypes and each
data point can be represented by a convex combin-
ation of these archetypes. Each archetype thereby has
a specific gene profile that is saved in the k'th column
of A, ie. a;. The coefficients («;, ay, .., ag) for a given
data point «x, are saved in the nth column of the
matrix S, i.e. s,, with elements Sy,,. The values of these
coefficients range from 0 to 1 and the sum of the co-
efficients equals 1.

The AA algorithm as for PCA and k-means attempts
to minimize the residual sum of squares (RSS).

M,N
RSS= Y (X-AS),,=|X-AS|;

m=1,n=1

Where M is the number of attributes and N the num-
ber of observations.

Determining the characteristics of each of the arche-
types can clarify the features of the data set.

Principal component analysis and k-means clustering
Principal component analysis and k-means clustering
were applied to the same data set.
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Principal component analysis is given by the decom-
position

X=~AS,
st. ATA=I, SST=D,

where I is the identity matrix and D is a diagonal matrix
with the elements in the diagonal are sorted according
to their magnitude.

In k-means clustering S is constrained to be a binary
assignment matrix such that A = XST (SS7)™ represents
the Euclidean centers of each cluster.

Number of components

For AA, it is necessary to set the number of components
prior to analysis similar to k-means clustering. Our
choice of archetype component was guided by plotting
the explained variance as a function of number of com-
ponents (Figure 2). For the purpose of this study, we
chose to analyze seven components, which kept the num-
ber of components at a minimum while at the same time
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explaining a large part (59.3%) of the variance. The stand-
ard deviation between 10 repeated iterations is very low,
which suggests that the solution is robust. The explained
variance for PCA and k-means clustering with seven com-
ponents were 54.4% and 68.4% respectively. As expected,
the PCA model, which is the most flexible of the con-
sidered models, has a higher explained variance than
AA that in turn has a higher explained variance than
the more restricted k-means clustering.

As a quality measure the deviation between the n
original data point x, and the derived data point
XCs, based on the seven archetypes was calculated.
The measure is given as the Explained Sample Variance
(ESV = W) ranging between 0 and 1
where 1 is a perfect match. By evaluating these ESV
values, it is possible to state which data points are well
described by the model. No conclusions should be made
for data points where ESV is low, because these data
points are poorly described by the model.

—-O—-PCA

Explained variance

——=AA

—A—K-means

0.2

0.1

12 3 45 6 7 8 9 101112 13 14 1516 17 18 19 20 21 22 23 24 25
Number of components
Figure 2 Explained variance. The explained variance plotted as a function of number of components for principal component analysis (PCA)

archetypal analysis (AA) and k-means clustering (K-means). The plotted values are the mean of 10 repeated iterations. The standard deviations are
indicated with error bars for k-means clustering. The standard deviations for archetypal analysis are very small and therefore not visible.
A
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Characterization of archetypes

Each archetype was characterized based on its specific gene
profile. This was done by identifying genes with statistically
significant transcriptional changes. Genes with more than
a two-fold change in expression value, compared to the
mean expression of the respective gene for all samples,
were indicated as up-regulated whereas genes with less
than 0.5-fold change were indicated as down-regulated.
Genes were assigned to 26 different gene ontology (GO)
classes based on the gene annotation for P. aeruginosa
PAOI from the Pseudomonas Genome Database [25]. If a
gene was assigned to more than one GO class it was re-
assigned to the most overall GO class (Additional file 1:
Table S1). GO classes that were over-represented within
the group of up-or down-regulated genes were identified
by the Hypergeometric distribution test with significance
level p =0.01 [26].

Matlab code

The methods mentioned above were implemented in
Matlab unless otherwise stated. The Matlab Code for
AA is available online at http://www.mortenmorup.dk.
This code estimates C and S using a projected gradient
descent iterative approach initialized by the FurthestSum
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procedure, for details see also [5]. A brief description of
the Matlab Code is listed in Additional file 2.

Results and discussion

To explore the value of Archetypal Analysis in gene ex-
pression studies, we assembled microarray data from five
separate studies of clinical P. aeruginosa sampled from
CF lung infections [16-19]. These studies measured global
gene expression of different clonal P. aeruginosa isolates
under diverse in vitro growth conditions. The studied
bacterial isolates exhibited different clinically relevant
phenotypes such as mucoidy and hypermutability, were
different clone types, and were isolated from patients
at different time points in relation to disease progression
(Table 1).

Defining archetypes in the data set

AA was performed on a data set with 188 samples in total
(sum of duplicates and triplicates) using the code provided
in [5] and additional codes that are available online (see
Methods section). Seven archetypes were identified for the
integrated data set. The contribution of the individual ar-
chetypes to each sample is visualized as a heat map of the
coefficient matrix § in Figure 3. The relation between the

-
Study 1 Study 2 Study 5 Study 3 Study 4
A 100 %
Archetype 1
e R
Archetype 2
Archetype 5 © o e{}eol II oooo0o0p0! o
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Figure 3 Heatmap of archetypal analysis results. A. The relation of each sample to the seven different archetypes shown as a heat map of
the coefficient matrix S. Each row represents one of the archetypes and each column represents a sample. The corresponding studies are listed
above the heat map. The shading indicates how much the individual archetypes contribute to each sample. A strong correlation close to 100% is
black whereas a low or no correlation is white. The white dots that appear in archetype 5 indicate mucoid samples and the white dots that
appear in archetype 6 indicate samples that are hypermutators. B. Phenotypic data i.e. adaptation state (early/late), mucoid/non-mucoid and
hypermutability are indicated. Reference strains (PAO1 and PA14 from study 1 and 2) are categorized as “Early”, but they are distinguished with a
blue color. C. The values of Explained Sample Variance (ESV) are included to show how well the samples are described by the model.
A
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gene profiles of the seven archetypes is shown in a den-
drogram based on hierarchical clustering (Figure 3).

Archetypal analysis separates study 2 into two groups
representing adapted and non-adapted isolates
respectively

Archetype 1, 2 and 5 represent samples from study 2.
This appears from Figure 3 by these samples having co-
efficients close to one (100%) in one of the three arche-
types. Study 2 is composed of samples that were isolated
from cystic fibrosis patients from the Danish CF clinic
between 1973 and 2008 [17]. The samples from this study
can be divided into two groups; one group representing
isolates from early infection (hereafter referred to as ‘non-
adapted’ isolates), and one group representing isolates from
long-term chronic infection (hereafter referred to as
‘adapted’ isolates). Archetype 1 represents non-adapted iso-
lates from study 2 including the reference strain PAO1 and
an isolate called CF510-2006 that is considered as an an-
cestor to many of the isolates from study 2 [27]. CF510-
2006 has phenotypic characteristics similar to wild type
environmental P. aeruginosa strains [27]. Archetype 2 rep-
resents adapted isolates from study 2. One of the isolates
from study 2 (triplicate samples #78-80) is best explained
by archetype 2, although it was isolated in 1973 and is con-
sidered as an early isolate with respect to time of isolation.
However, from genomic studies of study 2 it is known that
this isolate has two mutations located in the genes rpoN
and mucA and these mutations are common to the
adapted isolates and they are associated with an adapted
phenotype [23]. This isolate therefore can justifiably be
considered to belong to the group of adapted isolates. The
archetypes 1 and 2 thereby successfully cluster study 2 into
two distinct groups based on adaptation level.

Some of the samples from both groups of study 2 are
also, to a greater or lesser degree, based on archetype 5.
These samples all have a mucoid phenotype characterized
by an over-production of alginate. The transition from a
non-mucoid to a mucoid phenotype is often observed dur-
ing adaptation of the bacteria to the CF lung and this shift
is important for establishment of chronic infections [28].

Characterization of archetype 1, 2 and 5
We next studied the up-and down-regulated genes within
each archetype to find patterns that would suggest specific
biological properties associated with archetype 1, 2 and 5.
Figure 4 shows the distribution of significantly up- and
down-regulated genes with respect to GO classes for these
three archetypes. GO classes that were over-represented
within the group of up-or down-regulated genes were
identified by Hypergeometric distribution test [26].

A full list of up-and down-regulated genes for all arche-
types can be found in Additional file 1: Table S1. From
the archetype characterization in Figure 4A, it appears
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that the early strains represented by archetype 1 have a
high expression of genes belonging to the GO class
“Motility and Attachment”. At the same time, they have
a low expression of genes related to “Amino acid bio-
synthesis and metabolism”. The adapted strains repre-
sented by archetype 2 are characterized by up-regulation
of genes related to “Antibiotic resistance and suscep-
tibility”, “Two-component regulatory systems” and genes
“Related to phage, transposon and plasmid” (Figure 4B).
Down-regulated genes belong to the functional classes
“Adaptation, Protection” and “Secreted factors”. These ob-
servations are in agreement with earlier studies examin-
ing the phenotypic differences between non-adapted and
adapted isolates [17,23,24,29]. Archetype 5 was primarily
characterized by a strong up-regulation of genes related to
alginate biosynthesis belonging to the GO class “Secreted
factors” (Figure 4C). This is in agreement with the mucoid
phenotype, characterized by overproduction of alginate
that is observed for all the samples that have an apparent
coefficient for this archetype. This archetype is also charac-
terized by up-regulation of many genes encoding hypothet-
ical proteins and down-regulation of genes involved in
“Motility and Attachment” and “Protein secretion”.

AA succeeds in clustering study 2 into biologically
meaningful groups. At the same time, it is easy to ex-
tract biological features important for all groups. So far,
the AA analysis is verified since the characteristics of the
archetypes 1, 2 and 5 are consistent with results from
genotypic and phenotypic studies of study 2 [23].

The identification of these genes thereby validates this
model and we are able to find biological characteristics
of the different samples by analyzing the archetypes.
For each of the archetypes the lists of up-and down-
regulated genes also include genes encoding hypothet-
ical proteins and it is possible that such genes are also
involved in the adaptation process. For archetype 5
there are a large proportion of up-regulated genes be-
longing to the GO class “hypothetical proteins”. Fur-
ther experimental studies are required to understand
the function of these genes and their relation to the adapta-
tion process.

Parallel adaptation processes are observed between
study 1 and study 2

Archetype 3 is defined close to a subset of samples (#1-10)
from study 1. These samples all have the same genotype
(clone A) and they are considered as non-adapted since
they were isolated early during the infection history of
the patient (cf. Table 1) [16]. This archetype is charac-
terized by up-regulation of genes belonging to the GO
classes “Motility and attachment”, “Protein secretion” and
“Secreted factors” and many of these genes are related to
type III secretion and pilin biosynthesis. Archetype 3 is
characterized by down-regulation of “Antibiotic resistance
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and susceptibility” and genes “Related to phage, transposon
and plasmid” (Figure 5A).

Archetype 1 and 3 represent early isolates from study 2
and study 1 respectively. The two archetypes share charac-
teristics with respect to up-regulation of “Motility and at-
tachment” and down-regulation of genes with relation to

“Adaptation and antibiotic resistance”. Hierarchical clus-
tering of the seven archetypes also groups archetype 1 and
3 together shown in a dendrogram in Figure 3A.

Samples #11-15 are the earliest isolates of another
clone (clone B) from study 1 and they are also closely
related to archetype 3. Samples #25-30 represent early

PhD Thesis by Juliane C. Thggersen

Page 33 of 121



Chapter 5 | Paper 1

Thegersen et al. BMC Bioinformatics 2013, 14:279
http://www.biomedcentral.com/1471-2105/14/279

Page 10 of 15

Archetype 3 Archetype 6
1 - Up-regulated genes y - Up-regulated genes
2 2 NN
jgy < 1 Down-regulated genes 3 [l Down-regulated genes
a VNN Ll R eeereed
s
H om
7 7
8 8 =
9 9
1 10
1n n
12 . 12 L ]
1 1 =
14 ———— 1 S —————(—
15 - 15 -
16 NN 1 j—
v
T AN w . -
9
:z ._ 20 OOOOOONNN
21 NNNN- am
2 2 -
23 n
2 L] 26 ANNNAANN
2 - s =
% N 2% N
D 0 » oy " o 0 2 30 2 s0 0 n 50 % 100
Archetype 7
: f— AR Up-reQL"aIEd genes
u -
: ] Down-regulated genes
5 NNNNNNNNNNNNNNNNNNN —
[
7
& NODoNNNN
o OODNNN
10 NN
]
2
PR ]
1
15 p e
16 =]
17 OODDNDNNN
18 —
19 ===
20 NN\
2 L
2NN N NNNNANNANN
23 EEE—
u
2
2
o 10 2 2 0 50 © © 50 % 100 110 120 130 160 150
1 Adaptation, Protection 14 Hypothetical, unclassified, unknown
2 Amino acid biosynthesis and metabolism 15 Membrane proteins
3 Antibiotic resistance and susceptibility 16 Motility and attachment
4 Biosynthesis of cofactors, prosthetic groups and carriers 17 Nucleotide biosynthesis and metabolism
5 Carbon compound metabolism 18 Protein secretion / export apparatus
6 Cell division 19 Putative enzymes
7 Cell wall / LPS / capsule 20 Related to phage, transposon or plasmid
8 Central intermediary metabolism 21 Secreted factors (toxins, enzymes, alginate)
9 Chaperones & heat shock proteins 22 Transcription, RNA processing and degradation
10 Chemotaxis 23 Transcriptional regulation
11 DNA replication, recombination, modification and repair 24Translation, post-ti ional modification,
12 Energy metabolism 25 Transport of small molecules
13 Fatty acid and phospholipid metabolism 26 Two-component regulatory systems
Figure 5 Characterization of archetype 3, 6 and 7. Number of up-and down-regulated genes within 26 gene ontology classes for each
archetype for archetype 3 (A), archetype 6 (B) and archetype 7 (C). Enriched gene-ontology classes are cross-hatched in green and red for
up-and down-regulated genes respectively. The values on the x-axes are number of genes.

isolates of two other clones (clone Ca and Cb) from study
1 and they are best described by archetype 3. However,
they also show recognizable coefficients (weak bands in
Figure 3A) for archetype 1, which also indicates the simi-
larity between the non-adapted samples from study 1 and
study 2. This also applies to samples #9-10 that are the lat-
est isolate of the clonal group A from study 1. The refer-
ence strains PA14 and PAO1 are included in study 1 and
they are best described by archetype 1 that also represents
PAO1 samples from study 2. Differences between data
from study 1 and study 2 are therefore most likely to be

due to different clonal lineages more than experimental
differences. Samples #17-24 are late isolates of clone B
from study 1. Unfortunately, the samples are poorly de-
scribed by the model, as indicated by the low ESV values.
However, the samples show similarity to archetype 2
representing the adapted isolates from study 2. Together
these findings suggest that the adaptation processes from
the two studies 1 and 2 are parallel.

Samples #5-6, #9-10, and #27-30 are reported as mu-
coid but they do not appear to be similar to the mucoid
isolates from study 2, where archetype 5 identified all the
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mucoid isolates. However, archetype 5 succeeds in iden-
tifying the mucoid isolates for samples #20, #23-24 (weak
indication) and #33-34.

Archetypal analysis groups the samples from study 5
together with its clonal relatives from study 2 despite
different experimental conditions

Archetype 2 and 5 best describe study 5. The samples
that have a coefficient close to one for archetype 5 are
mucoid and this is consistent to the results for study 2.
The non-mucoid isolates are close to archetype 2, which
represents non-mucoid isolates from study 2 sharing the
same clonal type as the isolates in study 5. This shows
a strong consistency between study 2 and 5, although
study 5 was performed under experimental conditions
similar to those in study 3.

The five analyzed studies were performed under di-
verse experimental conditions including different media
types. We compare the characteristics of the seven de-
scribed archetypes and some of the differences are most
likely due to the effect of the different media. This study
does not account for how the different media alone
affect the transcriptome. However, when we compare the
different archetypes we have seen that the samples cluster
more into groups of clonally related bacteria than into
clusters of samples exposed to the same experimental pro-
cedure e.g. PAOL in study 1 and study 2 and the samples
from study 2 and study 5. The effect of the diverse media
types does therefore not override the real biological rela-
tion between the bacteria and we justify comparing the
samples from the five studies despite different experimen-
tal procedures. Future investigations of clonally related
bacteria may further examine the effect from the media
alone on the transcriptome.

A single archetype represents hypermutators for study 3
and study 4

Archetype 4 mainly represents study 3. Study 3 is also
composed of samples derived from the Danish CF clinic
representing adapted isolates as for study 2. However,
the samples share another clonal type (DK1) and the ex-
periments are performed under different conditions than
those used for study 2. The differences between arche-
type 2 and 4 are most likely due to clonal differences
more than experimental differences since the same dif-
ferences in experimental conditions did not separate
study 2 and study 5 in this analysis. A plot of enriched
gene ontology classes for archetype 4 similar to plots in
Figure 4 is accessible in Additional file 3. The samples
from study 3 differ from each other as some of them
have a minor recognizable coefficient in archetype 5 or
archetype 6. Archetype 5 represented the mucoid iso-
lates from study 2. All the samples from study 3 that
have a recognizable coefficient for archetype 5 are in fact
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mucoid. In this case, knowledge from one study can be
transferred to another study despite the different experi-
mental conditions and clonal types between the two
studies. Archetype 6 represents samples from study 4.
The samples that are closest to this archetype are all
hypermutators.

The samples from study 3 with recognizable coeffi-
cients for archetype 6 are also hypermutators. One of
the hypermutator samples in study 3 is not identified as
having a recognizable coefficient for archetype 6. However,
this sample stands out from the rest of the hypermutators
by also being mucoid. The analysis thereby suggests an
archetype that is able to characterize hypermutators in
general. The similarity of the hypermutators could be due
to similar selective pressures present in the lung environ-
ments of CF patients. This analysis could suggest that the
hypermutators follow the same path of evolution despite
many changes arising as a consequence of mutations.

Hypermutation is often due to mutations in the mutS
or mutL genes that are part of the mismatch repair sys-
tem [30]. The hypermutator trait is often observed for
adapted strains of P. aeruginosa [18,19,31,32] and the
high mutation rate is thought to be advantageous in the
changing host environment due to acceleration of adapta-
tion [18,30]. A reason for the hypermutators to develop a
similar adaptive phenotype, but different from the adapted
non-mutators, could be the chance of obtaining a combin-
ation of multiple adaptive mutations at one time, which is
less likely for strains with a normal mutation rate [32]. An-
other possibility is that the mutS gene or the mutL gene
possesses a regulatory function that is altered due to the
mutation in the respective gene. There is some evidence
that bacteria can sense the missing mismatch repair func-
tion and this will influence transcriptional regulation [33].
This would make a fingerprint on the gene expression
profiles for the hypermutators resulting in similarity be-
tween the gene expression profiles. A third possibility is
that the mutation targets of the hypermutators are biased
due to for example a preference of specific transversions
and transitions and other phenomena [34]. This analysis
suggests that there is a common phenotypic trait between
the hypermutators. The underlying reason needs further
investigation.

Amino acid biosynthesis and metabolism are important
for adaptation to the cystic fibrosis lung

The characteristics of archetype 6 might be used to bet-
ter understand the features shared by the hypermutators.
However, the experimental procedure used for study 4 is
markedly changed since the samples are harvested in
late-logarithmic growth phase (optical density read at
600 nm >3) compared with exponential growth condi-
tions for study 1, 2, 3 and 5. The observed up-and
down-regulated genes can therefore be ascribed to changes
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Figure 6 Comparison between archetypal analysis, principal component analysis and k-means clustering. Visual representation of a
seven-component analysis using archetypal analysis (AA), principal component analysis (PCA) and k-means clustering (K-means). Explained sample
variance (ESV) for each analysis is included. For each PCA component the contribution to explained variance is indicated. The explained variance

for a seven component analysis is indicated in brackets for each analysis.

during the transition from exponential to stationary growth
phase more than to changes due to accumulated muta-
tions. In order to exclude effects due to the growth phase,
archetype 6 is compared to archetype 7. Both archetypes
represent samples from study 4. Archetype 7 is mainly rep-
resented by non-hypermutators that constitute isogenic
pairs to the samples represented by archetype 6.

For archetype 7 many GO classes are overrepresented
by either up-or downregulated genes (Figure 5C). This is
most likely due to the different growth conditions in
study 4 compared to the other four studies. The profile
of archetype 7 is very different from the other studies
suggesting significant changes in the transcriptome due to
the change in growth conditions. If we consider archetype
6 (Figure 5B), we do not observe the same dramatic
changes. This can also be seen from the dendrogram in
Figure 3 where archetype 6 is closer to the remaining ar-
chetypes than archetype 7. This could indicate that the
hypermutators represented by archetype 6 are not that

sensitive to the changes in growth conditions compared to
the non-mutators, represented by archetype 7. An explan-
ation for this could be that the hypermutators possess mu-
tations in regulatory genes that make the gene expression
less sensitive to the surrounding conditions, in this case
growth phase and cell density.

Archetype 6 is also characterized by up-regulation of
genes involved in the GO-class 2 (‘Amino acid biosyn-
thesis and metabolism’) and down-regulation of genes
from GO-class 4 (‘Biosynthesis of cofactors, prosthetic
groups and carriers’) suggesting that these are important
during adaptation of P. aeruginosa to the CF lung for
the hypermutators.

These findings are to a certain extent similar to what
Hoboth et al. [18] found when comparing hypermutator
isolates with a non-mutator isolate. They also found amino
acid biosynthesis and metabolism to be important for
adaptation together with other metabolic pathways [18].
One difference in the comparison is that they compared
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the transcriptomic profiles directly, whereas in this analysis
the two proposed archetypal gene expression profiles
for archetype 6 and 7 are compared, where archetype
6 represents hypermutators and archetype 7 represents
non-mutators. We suggest that the characteristics of the
archetype 6 are representative for general hypermutator
characteristics, since archetype 6 accounts for hyper-
mutators across different clonal types and across differ-
ent experimental conditions (study 3 and 4). The gene
expression profile of archetype 6 therefore most likely
can be linked to the hypermutator trait and its influence
on adaptation in the CF lung.

Archetypal analysis supplements principal component
analysis and k-means clustering

Results of k-means clustering and PCA of the data set
are illustrated together with the results of AA in Figure 6.
The results of k-means clustering show how samples are
divided into seven groups. The clustering pattern is similar
to the pattern from AA but each sample is assigned to
only one cluster making k-means clustering rigid com-
pared to AA.

PCA captures most of the explained variance in the
first three components (50.3%). However, the compo-
nents do not give an apparent grouping of samples in
Figure 6. PCA solutions are often visualized by plotting
the first two components in a two-dimensional scatter
plot as shown in Figure 7. Together the first two compo-
nents account for 40.7% of the variance present in the
data set. From the scatter plot it is neither possible to
see any grouping correlated to the mucoid phenotype
nor the hypermutator phenotype as identified by AA.
This illustrates the value of AA compared to PCA. For
the present analysis we were fortunate to know some
phenotypic traits (mucoidy and hypermutability) of the
samples in the data set. These properties were captured
by AA. Even if this information was not available it
would still be possible to suggest similarities within the
data set based on AA. A drawback of AA and k-means
compared to PCA is that the choice of the number of
components influences how the components are defined
while the iterative estimation procedures for extracting
the components may terminate at suboptimal solutions.
As the archetypes are constrained to be convex combi-
nations of the observations AA relies on the presence of
observations that well represent the distinct aspects in
the data.

Conclusions

This is the first time Archetypal Analysis has been ap-
plied to analysis of gene expression data. Seven arche-
types were able to extract the main characteristics of the
dataset. The results show that Archetypal Analysis is
successful in clustering of data into biologically meaningful
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groups. At the same time, the analysis is strengthened by
matrix factorization making it possible to describe data
points as a combination of archetypes.

Archetype 1 and 2 represent non-adapted and adapted
isolates respectively, and characterization of the two ar-
chetypes identifies the main changes during adaptation
of the bacteria to the CF lung. In this study, it is shown
that one archetype represents a group of hypermutators
(result of clustering) and other data points share charac-
teristics with this group (result of factorization) enabling
identification of hypermutators from another group. The
analysis provides results that are easy to interpret and
we suggest that this analysis could be used to supple-
ment current methods of gene expression analysis.

Availability of supporting data
The Matlab code for our method is freely available online
on the website http://www.mortenmorup.dk.
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Paper 1 - Additional file 2: Short description of Matlab scripts

GeneArc.m

The script GeneArc.m imports microarray data from a specified text file. This text file contains the
expression matrix with the gene expression values for all samples. The number of components for
the analysis should be given as input before. Archetypal analysis of the data set is executed. The A
and S matrices are computed using the function PCHA and the explained variance for the analysis is
calculated. PCHA was described by Mgrup and Hansen (2011), and Matlab code is available. The ma-
trix S is illustrated as a heat map, which allows easy detection of sample clusters. Results from Prin-
cipal component analysis (PCA) and K-means clustering are also displayed as heat maps for compari-
son.

Varexp.m

This script is useful for determination of number of components. Varexp.m calculates the explained
variance for a 1 to k component archetypal analysis and displays explained variance as a function of
number of components. The maximal number of components, k, must be given as input. The results
are displayed as an average of a specified number of runs. Similar plots for PCA and k-means cluster-
ing are made. For k-means clustering a high value of k can result in empty clusters, which will inter-
rupt the calculations. In this case, a different value of k can be defined for k-means clustering and
the calculations can proceed.

Genelist.m

The script GenelList.m finds significantly up- and down-regulated genes for each archetype compared
to the mean values of all samples. The archetypes must be defined using the script GeneArc.m be-
fore this script is applied. Genes that are found significantly up-regulated are saved in a matrix
"Genes_high" whereas genes that are significantly down-regulated are saved in a matrix
"Genes_low". In addition to this, information for each gene can be extracted from a specified data
file including gene annotation, pathways and functional classes belonging to each gene. This infor-
mation is saved in two matrices called "Genes_high_list" and "Genes_low_list" for up- and down-
regulated genes respectively. The log2 expression values of these genes are listed in two matrices
called "Genes_value_high" and "Genes_value_low".
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Paper 1 - Additional file 3: Enriched gene ontology classes for archetype 4
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Figure S3-1. Characterization of Archetype 4. Number of up- and down-regulated genes within 26 gene

ontology classes for archetype 4. Enriched gene-ontology classes are high-lighted in green and red for up- and

down-regulated genes respectively.
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Metabolic rewiring in adapting human pathogen

ABSTRACT

Successful bacterial pathogens must satisfy specific metabolic requirements to avoid eradication by the
human host during chronic infections. Identification of metabolic pathways that adapt during the course
of an infection provides novel targets for potential therapeutic intervention, but distilling broad
metabolic changes into specific and targetable mechanistic contributors to adaptation is challenging. We
use long-term Pseudomonas aeruginosa infections in cystic fibrosis patients as a model system to study
this evolutionary process and interrogate adapting metabolic pathways using an integrated
computational and experimental systems approach. Activity in central metabolism of patient isolates
was determined experimentally using growth profiling and isotope-labeling experiments. We developed
isolate-specific genome-scale metabolic models through integration of transcriptomic and genomic data;
these models contextualize our experimental findings from a systems perspective and elucidate specific
and novel pathway adaptations during chronic infections in the CF lung. We find strong experimental
evidence for a shift in metabolism towards fixation of carbon dioxide through reversal of the glycine
cleavage system, which may operate as an alternative redox recycling reaction as supported by our
computational modeling. This particular metabolic shift may be necessary for the bacteria to survive the
oxidative stresses in the human lung environment; we provide support for this hypothesis with
computational predictions of isolate-specific essential genes and altered redox pathway activity. Redox-
related metabolic adaptation merits greater consideration as an important enabler of pathogen

persistence and a potential therapeutic target in Pseudomonas aeruginosa and other emerging pathogens.

IMPORTANCE

While studies of chronic microbial infections have identified virulence factors that contribute to initial
pathogen colonization as well as mutated transcriptional regulators that appear to alter a broad network
of pathways, there is more limited insight into mechanistic metabolic changes that also directly

contribute to successful pathogenesis. Here we study the metabolic adaptation of cystic fibrosis isolates
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Metabolic rewiring in adapting human pathogen
of Pseudomonas aeruginosa, a highly problematic nosocomial pathogen known for its resistance to
treatment. We use an integrated framework of systems modeling and experiments to perform a
comprehensive examination of changes in metabolic activity. Our results highlight an array of broad
systemic changes, identify targetable genes that are essential for these changes, and propose important
adaptive changes in redox metabolism through unorthodox activity of the glycine cleavage system as

provider of a novel route of carbon fixation.

INTRODUCTION

Opportunistic pathogens change their metabolism in response to the conditions they encounter when
they colonize their host. This metabolic reprogramming is facilitated through complex regulatory and
metabolic networks encoded in the genomes of bacterial pathogens. Metabolic adaptation is necessary to
capitalize on available nutrients for growth and survival and such shifts are essential for successful
pathogenesis (1-3). However, the underlying metabolic mechanisms that contribute to colonization and
persistence are unclear in many bacteria and how these metabolic systems develop during pathogen
adaptation remains unknown. The opportunistic pathogen Pseudomonas aeruginosa is an ideal model
system for understanding these processes. It has principally evolved in its natural habitat outside the
human host, where its specific regulatory and metabolic repertoire enables growth in soil and water
environments. However, during chronic infections with P. aeruginosa in cystic fibrosis (CF) patients,
some clinical P. aeruginosa strains have developed into host-specific organisms by adaptive mutations
that enhance survival in the human lung environment (4, 5). How these particular P. aeruginosa strains
persist to become the dominant, chronic pathogens in the lung in contrast to other initial infecting
species is poorly understood. Improving our understanding of microbial adaptation to the human host
will have important implications in treatment of infectious disease, development of probiotic therapies,

and other applications.
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84  Compared to the natural environment of P. aeruginosa, the host environment is characterized by a
85  complex and novel combination of stressors that could be mitigated by various adaptive strategies. In the
86  CF lung, most of the bacterial population grows within CF sputum, which is rich in nutrient sources and
87 has a low oxygen tension (6-8). Patient airways have elevated numbers of polymorphonuclear
88  neutrophilic leukocytes (PMNs), alveolar macrophages and antibodies; phagocytosis of bacteria by
89  PMNs promotes the generation of reactive oxygen species (ROS) by host cells (9). In addition to the
90  host immune response, P. aeruginosa is exposed to a range of antibiotics during the course of infection
91  in CF patients and resistance towards antibiotics is a common feature observed for adapted strains (10—
92 12).

93

94  We know from previous studies that adaptation of P. aeruginosa to the CF lung environment involves
95  many gene regulatory mutations that affect metabolism as well as mutations in metabolic enzymes (4),
96  but connecting these underlying mechanisms to their global impacts on pathogen behaviour is difficult.
97  The aim of this study is to identify novel metabolic systems that contribute to successful adaptation of P.
98  aeruginosa in the host. Specific metabolic pathways that are undergoing changes in activity during the
99  course of adaptation may be essential for the bacteria in order to persist in the lungs of the patients and
100 could serve as targets for future antibiotics.
101
102 We identify these pathways of interest using a systems-level computational and experimental approach
103 to characterize and compare the metabolic activity of clinical bacterial isolates. By integrating and
104  contextualizing our multi-scale experimental data using a genome-scale computational metabolic model,
105 we can streamline the prediction and comparison of early and late stage isolate phenotypes to connect
106 shifts in the activity of a single enzyme to systems-level changes in metabolism. The results have broad
107 implications in understanding mechanisms underlying pathogen adaptation in chronic infections and

108 microbial evolution under selective pressures.
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109 RESULTS
110  Previously, we studied genomic evolution in an epidemic P. aeruginosa clone type (DK2) during its
111 dissemination across multiple patients over a 40 year time period (4, 13). The DK2 clone has been
112 successfully transmitted between patients and replaced previously colonizing P. aeruginosa clone types
113 (14). Thus, DK2 is highly adapted to the CF airway environment, which likely includes optimization of
114 its metabolic activity for growth within the CF lung. Here, we use DK2 patient isolates to study
115  metabolic adaptation, focusing on DK2-WT (which represents the ancestral genotype at the time of first
116  colonization of the CF niche), and two isolates collected at later stages of clone evolution (DK2-91 and
117 DK2-07) representing host-adapted isolates. We also included the well-studied reference strain P.
118  aeruginosa PAO1 (PAOL1) (see Materials and Methods for detailed description of the strains).
119
120 Major changes in central metabolism occur during adaptation
121 Growth experiments with DK2-WT, DK2-91 and DK2-07 in glucose minimal medium showed a
122 significant reduction in growth rate for DK2-91 (pimax = 0.46 h™) and DK2-07 (ptmax = 0.23 h™") compared
123 to DK2-WT (pmax = 0.87 h™") (Fig. S1). The growth rate of DK2-WT was higher but similar to the
124 growth rate of PAO1 (jmax = 0.63 h™"). Closer inspection of the growth curves revealed diauxic growth
125 curves for DK2-91 and DK2-07, which were not observed for PAO1 and DK2-WT. This observation led
126  us to hypothesize that DK2-91 and DK2-07 excreted one or more metabolites that were later degraded
127  and metabolized after glucose depletion. We then measured extracellular metabolites via GC-MS
128  analysis, (Fig. S2) revealing that the oxidized glucose derivatives gluconate and 2-ketogluconate were
129 accumulating in the medium for DK2-91 and DK2-07. Gluconate and 2-ketogluconate were not detected
130 for the reference strain PAO1 and only a small amount of gluconate was detected for DK2-WT. These
131 results indicate activity in the oxidative route of glucose degradation via gluconate and 2-ketogluconate
132 for DK2-91 and DK2-07 as an alternative to the phosphorylative route where glucose is phosphorylated

133 to glucose-6-phosphate (Fig. 1).
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134 Pseudomonas shifts its metabolism towards fixation of carbon dioxide
135 To further investigate the central metabolism of P. aeruginosa, we performed substrate-labelling
136 experiments. We used a mixture of [I-">C]-labelled glucose and ["*Cg]-labelled glucose. Using
137 uniformly ['*Cg]-labelled glucose has been referred to as reciprocal labelling and it is particularly useful
138 for investigating catabolism of co-substrates (15). By increasing the background labelling of position 2-5
139 of glucose, incorporation of an unlabelled carbon source (e.g. carbon dioxide) could be detected. The
140 [1-"°C]-labelled glucose can be used to track activities of different convergent pathways since the
141 labelled C-atom will end up at different positions in the carbon skeleton of metabolic intermediates
142 depending on which pathway is used to degrade glucose. This method cannot be used to differentiate
143 between the phosphorylative and oxidative route of glucose degradation to 6-phosphogluconate (Fig. 1)
144 since the resulting carbon skeleton of 6-phosphogluconate is the same regardless of the two alternative
145 routes. However, the method makes it possible to distinguish between the three glycolytic pathways: the
146  Embden-Meyerhof Parnas (EMP) pathway, the pentose phosphate (PP) pathway and the Entner-
147 Doudoroff (ED) pathway (16). Different labelling patterns of pyruvate occur depending on which
148 pathway is used to catabolize glucose. By inspecting the labelling patterns of amino acids derived from
149 pyruvate (Fig. S4), we found that the labelling degree of the carbon atom at position 1 in pyruvate was
150 around 50% for all strains grown in 100% [1-"°C]-glucose indicating that most if not all glucose was
151  degraded through the ED pathway. It is well known that the EMP pathway is inactive in Pseudomonas
152 species due to a missing enzyme and the PP pathway has previously been found only to serve
153 biosynthetic purposes for other Pseudomonas species including P. putida and P. fluorescens (17-20).
154
155 When we further examined the labelling patterns of amino acids derived from central metabolites from
156 the combined [1-">C]-glucose and "*Cs-glucose experiment, we found that glycine had a significantly
157  lower labelling degree than the labelled carbon substrate the cells were growing on for all strains (Fig.

158 2A). This observation was most noteworthy for DK2-91 and DK2-07. The minimal medium contained
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159 56% "“Ce-glucose and 44% [1-"*C]-glucose and we would therefore expect the average labelling degree
160  for each carbon atom to be 56% at minimum. Surprisingly, the data showed that the carbon atoms in
161  glycine had an average labelling degree of approximately 30% for DK2-91 and DK2-07 compared to
162 approximately 50% for PAO1 and DK2-WT; all were significantly lower than 56%. Since the labelled
163 substrate was the only carbon source available for the cells in the experiment, we hypothesized that the
164  cells have the capacity to fix carbon through glycine metabolism.

165

166 A literature search identified instances of non-canonical reversal of the glycine cleavage system (GCS)
167  in Clostridia species (21), using CO, as a carbon source for the synthesis of glycine. To test this, we
168 added "*C-labeled bicarbonate into a growing culture in minimal medium with unlabelled glucose. Since
169 the bicarbonate was the only source of the °C isotope (except for 1.1% natural prevalence), any excess
170  labelling on glycine would indicate CO, fixation. Bicarbonate was added during exponential growth and
171 DK2-91 and PAOI1 cells were harvested after one and two generation times. The results were a
172 qualitative measure of the ability of the cells to fix CO; (see Materials and Methods). Fig. 2B shows the
173 labelling patterns of glycine for PAO1 and DK2-91 from the '*C-bicarbonate experiment. We find a
174 significant enrichment of *C in glycine for both PAOI and DK2-91 one generation time after '*C-
175 bicarbonate addition and for PAO1 the same observation was made after two generation times. Based on
176  these results we confirmed that CO, could be fixed into glycine when P. aeruginosa is growing in
177 glucose minimal medium. No significant enrichment of '*C-isotope was measured after two generation
178  times in DK2-91, but since the generation time of DK2-91 is 1.4 fold longer than PAOI, dilution and
179 vaporization of *C-bicarbonate during the course of the experiment can account for this difference. We
180  included the labelling patterns of serine in Fig. 2C since serine can be produced from glycine. We find a
181  significant enrichment of the “C-isotope for DK2-91 harvested two generation times after '*C-
182 bicarbonate addition. The lack of "*C-labeling in serine for the other samples confirms that carbon

183 dioxide is fixed directly into glycine and not into upstream metabolic intermediates in glycolysis, since
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184  otherwise we would expect at least the same degree of labelling in serine as for glycine. In conclusion,
185  we find that the Pseudomonas strains are incorporating carbon dioxide into glycine and under normal
186  laboratory conditions with normal carbon dioxide pressure in glucose minimal medium (Fig. 2A), this
187  observation is more pronounced in DK2-91 and DK2-07 compared to DK2-WT and PAOI. Our
188  experimental analysis of central metabolism therefore resulted in two specific findings related to
189  metabolic adaptation in the late stage isolates: (1) metabolism is shifted towards excretion of gluconate
190  and 2-ketogluconate and (2) the activity of the glycine cleavage system is altered to enable fixation of
191  carbon dioxide in a non-canonical reversal of associated pathways.
192
193 The glycine cleavage system may operate as an alternative redox recycling reaction
194  The ability of P. aeruginosa to fix carbon dioxide into glycine has not been reported previously, and
195  alterations in glycine synthesis indicated by our labelling experiments support our hypothesis that
196  carbon fixation is occurring through the glycine cleavage system (Fig. 2D) (21). A potential selective
197  advantage for the activity of this altered glycine synthesis route may be linked to the regeneration of
198 NAD" from NADH coupled to this reaction. We propose that this unconventional pathway phenotype
199  operates as an electron sink for the recycling of reduced electron carriers, alleviating redox stress as also
200  suggested for some anaerobic bacteria (21). Different factors in the lung environment may contribute to
201  redox stress in P. aeruginosa including oxidative stress from immune system defenses and low
202  availability of electron acceptors. The relative contribution of antibiotic exposure to increased oxidative
203 stress in bacteria is currently under debate (22, 23), but most recently, Dwyer et al. (24) provided
204  evidence for antibiotic-induced redox alterations in E. coli. We cannot specify whether the source of
205  redox stress is limited oxygen, antibiotic exposure or the immune defense within the CF lung; it is
206  possibly a combination of all three factors. However, we hypothesize that the impact of these stressors is
207  substantial, driving the enhanced carbon fixation into glycine for the late-stage clinical isolates and

208 therefore improving the balance of redox equivalents.
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209  Metabolic models evaluate the feasibility of adapted redox metabolism
210 In light of our experimental observations, we focused our studies on the global effects of our proposed
211 isolate-specific phenotypes of glycine metabolism via a well-curated and recently updated genome-scale
212 metabolic model of P. aeruginosa, iPA1139 (http://bme.virginia.edu/csbl/downloads-pseudomonas-
213 v3.php). This approach allowed us to systematically evaluate our observed phenotypes in context with
214  model-integrated transcriptomics and sequencing data. Our experimental examination of glycine
215  metabolism supports non-canonical activity for two connected routes of carbon fixation: glycine
216  dehydrogenase and formate dehydrogenase (as shown in Fig. 2D). To create isolate-specific models
217 using iPA1139, we first altered the possible activity of the glycine cleavage system and formate
218  dehydrogenase (both canonically modelled in the forward direction); we allowed these reactions to run
219 only in the reverse direction in our in silico models of DK2-91 and DK2-07 (mDK2-91 and mDK2-07)
220  while they were modelled as reversible in our in silico model of DK2-WT (mDK2-WT) and the base
221  model (iPA1139) during our data integration process. This enabled us to evaluate the feasibility and
222 systemic impacts of the novel carbon fixation phenotypes indicated by our labelling experiments.
223
224  We additionally constrained the models to replicate isolate-specific phenotypes in our experimental
225  conditions by integrating isolate-specific single nucleotide polymorphisms (SNP) and transcriptome data
226  collected during growth on glucose minimal medium; this effort substantially expands our data
227  integration approach from our earlier study of metabolic activity within CF isolates using a previous
228  genome-scale model of P. aeruginosa (25). In brief, a SNP introducing a nonsense mutation in a given
229  gene resulted in inactivation of that gene in the model; the Sorting Intolerant From Tolerant (SIFT)
230 algorithm (26) was used to predict the functional impact of other SNPs resulting in missense mutations.
231  These data were interpreted as “levels” of gene activity reduction (minimal, moderate, or maximal)
232 implemented in context with transcriptome expression levels (off, potentially active, on) consistent with

233 the gene-protein-reaction relationships to develop activity constraints for associated reactions (further
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234 details of our constraint-based integration of SNP and transcriptome data are described in Materials and
235 Methods). These methods resulted in isolate-specific models that are consistent with the substantial
236 activity changes in pathways suggested by our experimental observations, and also enabled prediction of
237  activity changes that were not highlighted by analysis of the in vitro data.
238
239  Constrained purine metabolism activity contributes to improved redox balance during adaptation
240  Results from the constraint-based flux modelling support the feasibility of alterations in glycine
241  metabolism that result in novel carbon fixation; our isolate-specific models predict comparable levels of
242 optimal biomass production regardless of GCS and formate dehydrogenase directionality. We
243 hypothesized that the experimental phenotypes shown by the late stage isolates might indicate a shift
244 from aerobic growth with high biomass production to microaerobic conditions where redox cofactor
245 recycling was prioritized in addition to biomass production. Given our additional experimental evidence
246  for a novel route of CO, fixation, we evaluated the effects of limitations of O, and CO, uptake and
247  biomass production levels on the ability for each strain model to produce redox cofactors. We
248 specifically compared the ratio of maximized NADH vs. NAD" production fluxes under varied uptake
249  constraints and growth requirements for mDK2-WT and mDK2-07, as shown in Fig. 3A. mDK2-07
250  predicts a stable redox cofactor production ratio across varied O2 and CO2 uptake conditions while the
251  redox ratio of mDK2-WT varies with O, uptake, CO, fixation, and biomass production.
252
253 To identify contributors to these differential predictions between mDK2-WT and mDK2-07, we
254  modulated the gene and SNP-based constraints applied to each model. We identified the restriction of
255  the purine metabolism enzyme phosphoribosylformylglycinamidine synthase (purL) due to an applied
256 SNP constraint (Dataset S1) as the main contributor to the stability of the redox ratio in mDK2-07.
257 While mDK2-WT has several SNPs resulting in model reaction constraints including a SNP affecting

258  GMP synthase (guaA) that also plays a role in purine metabolism, a SNP in purL is not present and thus

Page 10 of 37

Technical University of Denmark Page 54 of 121



Chapter 6 | Paper 2

Metabolic rewiring in adapting human pathogen

259  the associated activity of this reaction is unconstrained. We were surprised to find that a single SNP
260  contributed so substantially to this phenotype of a stable redox ratio under varying uptake and growth
261  constraints; further investigation of our model identified the functional relationship between glycine
262  metabolism and purL as shown in Fig. 3B, which is a non-canonical mapping of pathways that usually
263 would not be obviously linked together. By incrementally increasing the constraints applied to the
264  phosphoribosylformylglycinamidine synthase reaction due to the SNP in purL from unconstrained
265 (mDK2-WT phenotype) to the moderate constraints applied in mDK2-07, we showed that the redox
266  ratio of mDK2-07 transitions to a balanced state as purL activity is constrained. The graded impact on
267  redox metabolism due to the purL constraint is clear in microaerobic conditions at low levels of CO2
268  uptake; high biomass production requirements magnify the impact of purL constraints on the transition
269  to a balanced redox state. We propose that the close connections between the altered glycine metabolism
270 reactions and purL as shown in Fig. 3B support the potential role of purL as a modulator of redox
271  recycling via reversal of the glycine cleavage pathway. Our original constraints based on the SIFT
272 predictions of SNP impact in purl were a broad estimate of how function might be altered; further fine-
273 tuning may reflect the actual degree of impact of the SNP in connection to the experimentally-observed
274 phenotype. Ultimately, our models predict that the purL SNP is tightly tied to improved redox balance
275  via novel CO; fixation in the late stage isolates.

276

277  Many metabolic systems may contribute to the redox balance of a cell in addition to the contributions
278  we have shown from glycine and purine metabolism. Using flux variability analysis (FVA) (27) we
279  evaluated potential changes in redox metabolism by comparing changes in reaction activity within
280  reactions where redox cofactors (here defined as NAD', NADH, NADP’, NADPH, FAD", and/or
281  FADH) participate versus changes in reaction activity across all reactions as shown in “FVA activity
282  analysis” in Dataset S2. We then used a global metric of total flux activity (the sum of the ranges

283 between minimum and maximum potential flux predicted for all reactions using FVA in a given model
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284  divided by the same calculation performed for iPA1139) for each isolate model normalized by the same
285  measure in iPA1139. Albeit a coarse representation of “metabolic capability” of the network, this metric
286  provides a single snapshot of changes in metabolism as a function of changes in the underlying network
287  characteristics. The late stage models predict 73.2% and 74.7% of the iPA1139 global activity metric
288  compared to 69% by mDK2-WT, indicating a total flux activity increase in mDK2-91 and mDK2-07
289  compared to mDK2-WT with this global metabolic metric. However, the late stage models predict 85%
290  and 84.4% of the iPA1139 redox activity metric compared to 90.1% by mDK2-WT within the subset of
291  reactions that utilize redox cofactors, showing a reduction in the redox-related flux activity of the late
292 stage strain models compared to mDK2-WT. We interpret these opposing changes between global and
293 redox metabolism potential activity as an indication of systemic shifts in redox-related reaction activity
294  between the wild-type and late stage isolates.
295
296  Genome-scale metabolic modelling contextualizes global metabolic changes
297  The isolate-specific metabolic models allow us to evaluate altered activity across a far greater expanse
298  of metabolic systems than just glucose and glycine metabolism. They account for the effects of other
299  SNPs in addition to the purL SNP that we previously highlighted as well as the reprogramming of the
300 transcriptome due to adapted regulation and/or mutation. We can readily perturb specific genes and
301  reactions computationally to investigate both the underlying drivers and potential consequences of
302 genetic and transcriptomic adaptations at the genome scale. Here, we performed routine predictions of
303  essential genes and flux variability that are often used to identify novel treatment targets by prioritizing
304  genes and reactions important for growth (28). Our results indicate broad systemic rewiring in the late
305  stage isolates that both complement our conclusions about glycine and redox metabolism as well as
306  highlight other potential therapeutic targets important to adaptation during adaptation to a host
307  environment.

308
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309  Essential metabolic activity alters during adaptation
310  The isolate-specific models enable us to evaluate genes essential to strain growth phenotypes in glucose
311  minimal medium by inactivating a given gene in the models and then predicting maximum possible
312 growth in silico. Fig. 4 shows a Venn diagram categorizing all essential genes across our base model
313 iPA1139, mDK2-WT, mDK2-91, and mDK2-07 together with a stacked histogram of reactions
314  associated with the DK2-specific essential genes. The full list of essential genes is available in Dataset
315 S2.
316
317  Isolate-specific SNPs were located in six genes predicted to be essential for growth in all models. Of
318  these, constraints applied due to the SNP in PA3769, encoding GMP synthase (guad), were the main
319  driver of reduced in silico growth in mDK2-WT compared to the base model; constraints applied due to
320 a SNP in PA1609, encoding beta-ketoacyl-ACP synthase I (fabB), affected growth to a lesser degree in
321  the same strain. In contrast, constraints based on the purL SNP located in PA3763 were the main driver
322 of reduced in silico growth in mDK2-91 and mDK2-07. The presence of SNPs in these genes predicted
323 to be critical in metabolic activity according to our computational models adds emphasis to their
324  potential importance to adaptive selection during infection.
325
326  While an array of interesting pathways have altered gene essentiality between strains, we found the
327  changes in glucose metabolism, glycine metabolism, and oxidative phosphorylation as indicated in Fig.
328 4B to be of particular interest when compared with the results of our previous experiments. These
329  changes are the result of integrating SNP and expression data into our models; we therefore can identify
330  the experimental data underlying the specific constraints that contribute to these gains in gene
331  essentiality. Upregulated pentose phosphate pathway genes in DK2-91 and DK2-07 contribute to
332 differences in essentiality predicted by the late stage isolate models, highlighting adaptation in glucose

333 metabolism. Select glycine cleavage system genes are essential in mDK2-07 due to expression-based
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334 constraints; glycine dehydrogenase is identified as an essential reaction in mDK2-91 and mDK2-07 in
335 contrast to mDK2-WT for similar reasons. In oxidative phosphorylation, there is a switch in preferred
336  cytochrome complexes in oxidative phosphorylation between model mDK2-WT and mDK2-91, which
337  rely on cytochrome bel complex genes (PA4429-4431), while model mDK2-07 relies on cytochrome ¢
338 oxidase genes (PA1317-1321). This phenotype results from transcriptomic changes in DK2-91 and
339  DK2-07 compared to DK2-WT in glucose minimal medium that shows significant downregulation of
340  the nuo operon encoding NADH dehydrogenase (complex I of the electron chain) in the late stage
341  isolates (Dataset S3). The lack of active oxidative phosphorylation could explain the need for alternative
342 redox recycling reactions such as glycine synthesis through the glycine cleavage system. These
343 hypotheses regarding mechanistic drivers of altered essentiality between strains are a key contribution
344  enabled by our integrated systems approach. Identifying the strain-specific genes important to the
345  adaptations occurring in the DK2 lineage allows us to highlight functionally impactful SNPs and offer
346 specific, novel treatment targets within key pathways reprogrammed during evolution within the host.
347
348  Changes in pathway activity highlight adapting systems
349  We evaluated the results of flux variability analysis that predicts the minimum and maximum levels of a
350  reaction’s flux while maintaining maximum biomass production; this enables calculation of the range of
351  potential activity for a given reaction. Fig. 5 shows a full-scale map of the metabolic network where
352 directional differences in adapting reaction activity in mDK2-WT and mDK2-07 are identified by
353  reaction colour and dashed lines identify SNPs in associated reactions. Decreases in the range of
354  reaction activity likely indicate a SNP- or gene expression-associated constraint, while increases in
355 range could be interpreted as increased flexibility of this pathway that is required to enable the
356  expression-associated constraints or produce necessary biomass components by an alternate pathway;
357  broadly, altered range in either direction may indicate areas of potentially important metabolic

358  adaptation.

Page 14 of 37

Technical University of Denmark Page 58 of 121



Chapter 6 | Paper 2

Metabolic rewiring in adapting human pathogen
359  Notable trends visualized on the map include increased constraint of "Purine metabolism" flexibility in
360 mDK2-07 and changes in range of reaction activity in "Glycine, serine & threonine metabolism". These
361  specific metabolic pathways were also identified through our study of central metabolism. However, the
362  network map includes a list of additional metabolic pathways with differential activity including
363  pathways related to "Lysine degradation", "Folate metabolism", "Valine, leucine, and isoleucine
364  degradation”, "Pyrimidine metabolism", and "Histidine metabolism". The mentioned pathways showed
365  the highest degree of altered system activity in comparisons between early and late stage isolates (see
366  Materials and Methods). Our systems analysis highlights areas of potential adaptation due to SNPs and
367  altered transcriptomics in a broad array of pathways, suggesting new avenues of future experimental
368  investigation that could elucidate other important mechanisms of adaptation in addition to our novel
369  relationship between altered carbon fixation and redox metabolism.
370
371  DISCUSSION
372 In this study we have used a systems biology approach to investigate metabolic behaviour during
373 adaptation of a pathogen to the human host. We used genome-scale metabolic models integrated with
374 high throughput data to evaluate the feasibility and potential impacts of novel metabolic adaptations
375  suggested by experimental characterization of glucose metabolism in P. aeruginosa clinical isolates.
376  There is value in evaluating both broad changes in high level systems and specific, detailed molecular
377  mechanisms using systems biology approaches; the former enables the prediction of systemic network
378  production and quantification of network elements while the latter offers specific hypotheses regarding
379  functional roles of the smallest network components (29). Here, we provide a systems level perspective
380  of key pathways connected to metabolic adaptation, but focus our analysis on specific systems suggested
381 by targeted experiments that indicated major changes in metabolism between initial infecting strains of
382 P. aeruginosa and late-stage clinical isolates. We confirmed that the ED pathway is the only active

383  glycolytic pathway in P. aeruginosa, consistent with other Pseudomonas species. Experimental profiling
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384  identified a transition towards accumulation of gluconate and 2-ketogluconate and enhanced fixation of
385  carbon dioxide into glycine specifically in the late stage isolates. Computational modelling supported the
386  feasibility of reversed utilization of the glycine cleavage system, enabling a novel route of carbon
387  fixation that in combination with a previously inconspicuous mutation in purine metabolism contributed
388  to improved redox balance in the late stage isolates. We identify genes and pathways key to the adaptive
389  processes we see in the DK2 lineage using gene essentiality and flux variability analysis, which may
390  contribute to the design of novel treatment strategies. Our approach results in a metabolic map that
391  provides mechanistic insight into how SNP and transcriptional changes affect metabolism at a genome
392 scale, bridging the difficult gap between molecular mechanisms and broad, system-wide adaptation and
393  prioritizing novel areas of metabolic reprogramming that can be targeted therapeutically.

394

395 The production of gluconate has previously been observed for clinical isolates of P. aeruginosa.
396 Behrends et al. (30) found that gluconate excretion is associated with higher tolerance towards
397  antibiotics and another study by Galet et al. (31) found that gluconate produced by P. aeruginosa
398  inhibits production of an antibiotic in Streptomyces coelicolor. In the context of the above analysis
399  indicating the shift in redox balancing, it might also be possible that the accumulation of gluconate and
400  2-ketogluconate is driven by the production of two equivalents of NADPH coupled to the oxidation
401  reactions of glucose to 2-ketogluconate via gluconate in the periplasmic space (Fig. 1). This suggestion
402  is not necessarily in disagreement with the correlation between gluconate and antibiotic resistance since
403  there may also be a link between NADPH generation and antibiotic resistance given the literature on
404  antibiotics and oxidative stress (32, 33). The identification of the ED pathway as the only active
405  glycolytic route in P. aeruginosa can also be linked to generation of NADPH. The ED pathway is found
406  to be essential for glucose metabolism in other Pseudomonas species; in P. putida, its activity has

407  recently been associated with resistance towards oxidative stress (20). The activity of these pathways
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408  can thereby be a mechanism to accommodate the conditions within the lung environment including both
409  antibiotics and ROS generated by PMNs, both of which are sources of oxidative stress.
410
411  The genome scale models support the potential for novel carbon fixation routes in the late stage isolates;
412 they also enable us to connect the late stage isolate glycine metabolism phenotype and altered redox
413 balance in microaerobic conditions to a specific SNP in purine metabolism through network analysis. A
414 study by Ryssel ef al. (34) recently identified upregulated purine metabolism activity as a contributor to
415 poor stress response in Lactococcus lactis, citing the production of guanine nucleotides in inducing
416  stress sensitivity (34) while a prior study had noted the essentiality of purine synthesis in Escherichia
417 coli during blood infections (35). To our knowledge, adaptation in purine metabolism has not been
418  identified as noteworthy in cystic fibrosis infections; we evaluated published genotyping studies of
419  cystic fibrosis isolates and identified purine SNPs in other clinical isolates (36). We suggest that altered
420  purine metabolism may be tied to the reversal of the glycine cleavage system and contributes to resultant
421  altered redox physiology. Whether the purL SNP also contributes to the need for glycine production via
422 the GCS or is a simple way to modulate effects of the reversed GCS phenotype is currently uncertain.
423 However, it is likely that the downregulated oxidative phosphorylation highlighted by our late stage
424  isolate gene essentiality predictions is a way to avoid generation of oxygen radicals through the electron
425  chain. The bacteria therefore need to redirect the metabolic flux through the glycine cleavage system to
426 ensure regeneration of NAD" that is used in glycolysis.
427
428  Our hypothesis regarding the role of the glycine cleavage system as an important mediator of successful
429  adaptation in P. aeruginosa led to our investigation of other cases where the glycine cleavage system is
430  important. The glycine cleavage system is not only present in bacteria but is present across all domains
431 of life (21). In cancer cells, elevated activity of the glycine cleavage system has been associated with

432 tumorigenesis; glycine decarboxylase activity was correlated with reduced survival of patients with lung
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433 cancer (37). Further investigation of the GCS in other bacterial pathogens and disordered human cells
434 such as cancer cells may merit evaluation of a potential reversal of the pathway that enables beneficial
435  adaptation in redox metabolism during cell proliferation in stressful environments.
436
437  Changes in metabolism in P. aeruginosa during adaptation have previously been considered as
438 pleiotropic effects of regulatory actions on other targets, such as virulence factor production (38, 39).
439  Here, we suggest that changes in metabolism are a direct target of adaptation and a driving force is
440  selection for improved redox balance. Our systems-based analysis highlights important genes and
441  metabolic activities involved in these adaptive processes, proposing specific pathways for novel
442 therapeutic measures that could be used to pre-emptively combat an organism’s evolutionary goals such
443 as rewired redox metabolism. We suggest a concrete example of redox balancing through the glycine
444  cleavage system, identifying a future target of interest for unwanted cell growth in the human body.
445
446  MATERIALS AND METHODS
447
448  Pseudomonas aeruginosa strains used in this study
449  We selected three isolates of the DK2 clone type for our analysis. Two of them, DK2-91 and DK2-07,
450  are late-stage clinical isolates isolated from the same patient in 1991 and 2007, respectively (DK2-91
451  and DK2-07 are referred to as CF333-1991 and CF333-2007 respectively in (14)). The third isolate,
452 DK2-WT (referred to as CF510-2006 in (13)) also shares the DK2 clone type, but has a phenotype
453 similar to strains isolated from outside the CF lung (P. aeruginosa PAO1 (40) and P. aeruginosa PA14
454 (41)) and its genotype is similar to the predicted most common recent ancestor for DK2 dated back to
455 1970 (13). DK2-WT therefore resembles a non-adapted isolate of DK2 and this isolate serves as our
456  point of reference for the DK2 lineage. Other early isolates of the DK2-lineage collected in the early

457 1970s exist. However, we chose DK2-WT as our reference for the DK2 lineage since its phylogenetic
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458  branching from the most common recent ancestor is distinct from the adaptation path of DK2-91 and
459  DK2-07 in contrast to the other early isolates. We therefore expect to capture most adaptive events in
460  DK2-91 and DK2-07 by comparing to DK2-WT. P. aeruginosa PAO1 (PAOL1) is also included as
461 reference throughout most of our experimental and in silico analyses. PAO1 was originally isolated from
462 aburn wound (40) and has been widely used as a reference strain for studies of P. aeruginosa.
463
464  Cell storage and cultivation
465  Cells were stored at -80°C in a 20% glycerol solution. DK2-91 and DK2-07 were streaked on a Luria-
466  Bertani (LB) agar plate and incubated at 37°C for 48 hours. Individual colonies were inoculated in 10
467 mL of morpholinepropanesulfonic acid (MOPS)-buffered medium supplemented with glucose and
468  grown aerobically at 37°C for 24-36 hours (depending on growth rate). The total composition of the
469  MOPS minimal medium was 40 mM MOPS, 9.5 mM NH,Cl, 0.28 mM K;SO,4, 1.3 mM KH,PO,, 10
470  mM glucose and vitamins (0.4 uM biotin, 10 uM pyroxidal-HCI, 2.3 uM folic acid, 2.6 uM riboflavin, 8
471 uM niacinamide, 3 uM thiamine-HCI and 2 uM pantotheneate) (42).
472 DK2-WT and PAO1 were streaked on LB agar plates and incubated at 37°C for 24 hours. Individual
473 colonies were inoculated in 10 mL of MOPS minimal medium supplemented with glucose and grown
474 aerobically at 37°C for 16 hours. After initial incubation cells were transferred to a 250 mL baffled flask
475 with 50 mL MOPS minimal medium supplemented with 10 mM of defined carbon source to an optical
476 density (ODggo) of 0.01 measured at 600 nm.
477 Cell growth was determined by measuring ODg during growth. Cells were harvested for GC-MS and
478  DNA microarray analyses at ODgoo = 0.4 during the exponential growth phase. Supernatant was
479 collected for a glucose determination assay during growth in order to make biomass yield calculations.
480
481

482
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483  Biomass yield calculations
484  Glucose concentrations were determined enzymatically using a glucose reagent (catalogue no. 7200-
485  017A, from Thermo Electron, Australia). The dry weight biomass concentration was estimated using a
486 correlation factor of 0.360 g cellular dry weight per OD unit. This correlation factor was determined for
4387  an Escherichia coli strain (43) and is assumed to be valid for P. aeruginosa. The biomass yield on
488  glucose was determined using the concentration data for biomass and glucose, respectively.
489
490  Labelling experiments
491  The experimental protocol for labelling determination was modified from (44). Cells were grown in
492 MOPS minimal medium to an ODgyy of 0.4. 10 mM [1-13C]—glucose (D-glucose—BC, 99% 13C, from
493 Isotec, Miamisburg, Ohio, USA, CAS no. 297046) was used as a carbon source. For some experiments,
494 a mixture of 44 mol-% [1-">C]-glucose and 56 mol-% *Cs glucose (D-glucose-"Cs, 99 % "*C, from
495  Isotec, Miamisburg, Ohio, USA, CAS no. 110187-42-3) were used to give a final glucose concentration
496  of 10 mM.
497 30 ml culture was harvested and the samples were spun down for 10 minutes at 5,000 rpm at 4°C. The
498  pellet was resuspended in 2 mL 0.9 % NaCl and the volume was divided into two Eppendorf tubes. The
499  Eppendorf tubes were further spun down for two minutes at 10,000 rpm at 4°C and the pellets were
500  finally stored at -80°C until hydrolysis and subsequent derivatization and amino acid analysis by GC-
501  MS. The supernatant was stored in 4 individual Eppendorf tubes of 1 mL at -80°C for later GC-MS
502 analysis of extracellular metabolites. Proteinogenic amino acid analysis from "*C-labeled biomass and
503  GC-MS analysis for extracellular are fully described in Supplemental Text S1.
504
505  Testing for CO; incorporation into glycine
506 PAOIl and DK2-91 were grown in MOPS minimal medium supplemented with 10 mM unlabelled

507  glucose. At ODgp=0.01 20 mM of NaH'*CO; was added. Cells were harvested at ODgy=0.2 and
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508  ODgpp=0.4 and labelling patterns of amino acids were determined as described above. We chose PAO1
509  instead of DK2-WT to find out if the potential of carbon fixation into glycine is general for P.
510  aeruginosa or just a feature of the DK2 lineage. We chose DK2-91 to represent the late-stage clinical
511  isolates, since the growth rate of DK2-91 was higher than that for DK2-07 (slow growth of the cells
512 would allow more bicarbonate to vaporize before cell harvest). We used a high concentration of
513  Dbicarbonate (20 mM) to make sure that some bicarbonate would remain in the medium at the time of
514  harvesting despite dilution with unlabelled bicarbonate/carbon dioxide and vaporization. Ideally, the
515  experiment would be carried out with concentrations of bicarbonate and carbon dioxide corresponding
516  to the initial experiments. However, the labelled bicarbonate and carbon dioxide would be diluted out
517  from unlabelled carbon dioxide produced under glycolysis in the growing culture. Therefore this
518  experimental setup only addresses the question whether carbon dioxide is fixated in glycine synthesis
519  and the results cannot be used quantitatively.
520
521  DNA microarray analysis
522 Cells were grown in MOPS minimal medium supplemented with 10 mM glucose to an ODggy of 0.4
523 prior to Affymetrix P. aeruginosa GeneChip microarray analysis. Microarray data were generated using
524  Affymetrix protocols as previously described (4). Data processing was carried out according to
525  Thegersen et al, 2013 (46). The raw cel-files were extracted in R by use of the package affy (47)
526  followed by gspline normalization (48) and calculation of gene expression index values using robust
527  multiarray average expression measure (49). Differentially expressed genes for DK2-91 and DK2-07
528  compared to DK2-WT were determined with Bonferroni adjusted p-values (significance level p=0.05)
529  using the R package "limma" (50). Enriched gene ontology classes among differentially expressed genes
530  were identified by the Hypergeometric distribution test with significance level p = 0.01.
531

532
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533 Sorting Intolerant from Tolerant (SIFT) Analysis of SNPs
534  The SNP data were obtained from previous studies of the DK2-WT, DK2-91 and DK2-07 strains (4,
535 13). Strain specific SNPs are listed in Dataset S1 including our SIFT (Sorting Intolerant From Tolerant
536 (26)) analysis of missense mutations in metabolic genes. The SIFT analysis is used to predict if a
537  missense mutation would affect protein function of the given gene product, providing numeric scores
538 that indicate the degree to which a missense SNP is tolerated or affects protein function.
539
540  Isolate-specific genome-scale metabolic models
541  The genome scale metabolic reconstruction for P. aeruginosa PAO1, iPA1139, was used as the base for
542 all computational modelling in this study. This model accounts for the function of 1139 genes, 1491
543 reactions, and 1280 metabolites involved in the metabolism of P. aeruginosa. Isolate-specific genome-
544  scale metabolic models were created by a semi-automated approach in order to incorporate both SNP
545  and gene expression-based constraints using the TIGER Toolbox 1.2.0 (51, 52). Further details on
546 construction of the isolate specific models are included in Supplemental text S1, the resulting isolate
547  specific models are included in Dataset S4, and base model iPA1139 and SBML versions of the isolate-
548  specific models are available at http://bme.virginia.edu/csbl/downloads-pseudomonas-v3.php.
549
550  The isolate specific models were then used to evaluate metabolic activity using several methods of
551  constraint-based modelling. Flux balance analysis (FBA) was used to predict the ability of each isolate
552 model to grow (produce biomass) in ‘wild type’ conditions as well as with single genes deleted to
553 identify in silico genes essential for growth. Flux variability analysis (FVA) was used to predict changes
554 in potential reaction activity by calculating the minimum and maximum flux of a given reaction when
555  the model was required to produce maximum biomass. We calculated the flux range from the maximum
556  and minimum flux values for each reaction, and then determined whether the range increased or

557  decreased compared to unconstrained iPA1139, sorting results into 5 categories: decreased range in
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558  mDK2-07 compared to mDK2-WT, increased range in mDK2-07 compared to mDK2-WT, or
559  comparable changes in the ranges in both strains that are increased, the same, or decreased compared to
560  iPA1139. To identify subsystems with high concentrations of changes in activity that we interpret here
561  as potential adaptive processes, we counted the number of reactions in these altered activity categories
562 within each subsystem and then normalized by the number of active subsystem reactions in iPA1139 as
563  shown in Dataset S2.

564

565  The redox cofactor production analysis presented in Fig. 3 was performed by optimizing for the
566  maximum production capacity of NAD+ and NADH separately while constraining the maximum uptake
567  rates of O, and CO; to 0.2, 2, 5, and 20 mmol/gDW/hr (low to high uptake rates) and fixing the
568  production rate of biomass at 0 to 100% of optimum production when only growth is maximized. The

569  command-line implementation of Metdraw (also available at www.metdraw.com) was used to build a

570  full-sized map of the base model on which FVA results were overlaid automatically (53).

571
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754

755  FIGURE LEGENDS

756

757  Figure 1 - Glucose metabolism in Pseudomonas aeruginosa.

758  Glucose can enter the cell through the phosphorylative or the oxidative route. The oxidative route
759  involves conversion of glucose into gluconate or 2-ketogluconate. In the cytoplasm, further degradation
760  of pyruvate may occur through three alternate pathways. The blue arrows indicate alternative convergent
761  pathways and their respective names (17-19, 55-58). Fig. S3 shows an expanded version of Fig. 1
762 including gene locus names assigned to each reaction. Abbreviations: ED (Entner-Doudoroff), PP
763 (pentose phosphate), EMP (Embden-Meyerhof-Parnas), TCA (Tricarboxylic acid), P (phosphate).

764

765  Figure 2 - Carbon dioxide fixation into glycine through the glycine cleavage system.

766 A Labelling of glycine derived from cultivation in glucose minimal medium (56% "*Cy-glucose and 44%
767 [1-°C]-glucose). The amount of background labelling from "“Cg-glucose (56%) is indicated as a
768  separate column.

769 B Labelling of glycine derived from cultivation in unlabelled glucose and labelled bicarbonate

770 (HCO3).

771 C Labelling of serine derived from cultivation in unlabelled glucose and labelled bicarbonate (H*CO»).
772 D The glycine cleavage system in reverse. Two molecules of carbon dioxide are fixated into glycine -
773 one of them via formate formation. Figure adapted from (21). Abbreviations: Reduced electron donor
774 (AH,), oxidized electron donor (A), tetrahydrofolate (THF), lipoyl protein (LP).

775

776  In A-C the (m+1)-columns indicate the percentages of compounds with one labelled C-atom, whereas

777 the (m+2)-columns indicate the percentages of compound with both carbon atoms labelled. The control
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778  is a measure of the naturally occurring 13C—isotope in bovine serum albumin (BSA). In A, (*) denotes
779  where the labelling percentages of (m+2)-labelling are significantly lower (Student's #-test, two-sided,
780  significance level, p = 0.05) than the background level from labelled glucose in the medium. In B-C, (*)
781  denotes where the percentages of (m+1)-labelling of strains are significantly higher (Student's #-test,
782  significance level, two-sided, p = 0.05) than the level of the naturally occurring isotope (control). Note
783  that panels A-C have different scales.
784
785  Figure 3 - Redox cofactor production differences between mDK2-WT and mDK2-07 due to SNP in
786  purine metabolism.
787 A An evaluation of the effects of altered O, and CO, uptake on the ratio of NADH production to NAD"
788  production under a range of biomass production constraints for mDK2-WT (blue), mDK2-07 (red), and
789  mDK2-07 with reduced purL activity constraints (shades of purple).
790 B Pathway illustration of the connection between glycine metabolism and purine metabolism,
791  specifically highlighting purL, a gene that contains a SNP in DK2-07 that the model predicts is
792 connected to differential redox metabolism activity between strains. Abbreviations: Glycinamide
793 ribonucleotide (GAR), 5'-phosphoribosylformylglycinamidine (FGAM), lipoyl protein (LP).
794
795  Figure 4 - Isolate-specific gene essentiality and associated functions.
796 A Stacked histogram of reactions associated with DK2-specific essential genes, as shown by %
797  associated reactions within a particular KEGG subsystem. Total reactions assigned in the KEGG
798  subsystem are included in parentheses in each subsystem label. Results for the essential reaction
799  distribution across the base model and three isolate-specific models are shown in each subsystem
800  category as indicated by colours corresponding to the categories of the Venn diagram in panel B. Bolded
801  histogram labels highlight subsystems that show variation in reaction distributions between isolate

802  models.
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803 B Venn diagram of the distribution of in silico essential gene predictions, highlighting the differences in
804  unique versus shared essential genes between mDK2-WT, mDK2-91, mDK2-07 and the base model
805  (iPA1139).
806
807  Figure 5 - Flux variability analysis displayed on global metabolic map.
808  Differential reaction activity ranges between mDK2-WT and mDK2-07 predicted by flux variability
809  analysis under 100% biomass demands. Increase/decrease in flexibility was identified through
810  comparison of mDK2-WT and mDK2-07 reaction predictions with base model iPA1139 reaction
811  predictions. Dashed lines indicate SNPs present in DK2-WT and DK2-07. The map provides an
812 overview of metabolic changes between DK2-WT and DK2-07, with enlarged panels of purine
813  metabolism and glycine, serine and threonine metabolism presented to highlight the important changes
814  identified in these subsystems. Users can zoom in to identify specific compounds and reactions
815  connected to highlighted areas of differential activity. Associated implementation of the compounds and
816  reactions can be found in the genome-scale models in Dataset S4.
817
818
819

820
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821  SUPPLEMENTAL LEGENDS
822
823 Supplemental Text S1 - Expanded materials and methods.
824
825  Figure S1 - Growth data.
826 A Growth of the P. aeruginosa strains PAO1, DK2-WT, DK2-91 and DK2-07 in
827  morpholinepropanesulfonic acid (MOPS)-buffered minimal medium supplemented with 10 mM [1-"*C]-
828  glucose. The curves show optical density measured at 600 nm.
829 B Specific growth rates for P. aeruginosa strains used in this study. All of the growth rates are
830  significantly different from each other (Student’s #-test, two-sided, significance level p = 0.05).
831  C Biomass yields determined for P. aeruginosa strains used in this study.
832  For panels B-C the values are based on biological triplicates and error bars indicate standard deviations.
833  Abbreviations: Dry weight (DW).
834
835  Figure S2 - GC-MS analysis of extracellular metabolites.
836  Comparison of GC-MS profiles (derivatised by methoximation and silylation) of lyophilized broth,
837  showing a shift towards 2-ketogluconate and gluconate production in DK2-91 and DK2-07. Reference
838  standards of all glucose, gluconate, as well as 2- and 5-ketogluconate were co-analysed in the sequence.
839  Two chromatographic peaks are formed per sugar due to the derivatization process.
840
841  Figure S3 - Expanded figure of glucose metabolism in Pseudomonas aeruginosa.
842  Glucose can enter the cell through the phosphorylative or the oxidative route. The oxidative route
843  involves conversion of glucose into gluconate or 2-ketogluconate..In the cytoplasm, further degradation
844  to pyruvate can happen through three alternate pathways. The blue arrows indicate alternative

845  convergent pathways and their respective names. Gene locus names according to P. aeruginosa PAO1
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(59) are assigned to each reaction. Abbreviations: ED (Entner-Doudoroff), PP (pentose phosphate),

EMP (Embden-Meyerhof-Parnas), TCA (Tricarboxylic acid), P (phosphate).

Figure S4 - Labelling patterns of pyruvate from the [1-13C]-gluc0se experiment.

Summed fractional labelings (%) for derivatised amino acids (the number indicates the mass of the
amino acid fragment for the lowest mass isotopomer). The shown amino acids are all derived from
pyruvate and the corresponding carbon positions in pyruvate (PYR) are indicated in brackets. The values
are based on biological triplicates and the error bars show the standard deviations.

The data from Valine144 show low standard deviations from triplicate analyses. We can therefore
conclude with high degree of certainty that position 2 and 3 have average labelling degrees of around 1.1
% (corresponding to natural prevalence of *C).

There are some uncertainties in determining the labelling patterns of Alanine158 and Valine186. The
labelling degree of the carbon atom at position 1 in Pyruvate can be calculated by subtracting the value
of Alaninel16 from Alanine158 or Valine144 from Valinel86. This calculation gives a rough estimate

on the labelling degree of the Pyruvate position 1 being around 50%.

Figure S5 - Converting ‘omics’ data to isolate-specific model constraints.

Counts of genes and SNPs binned into their respective functional categories (shown in top two tables)
are manually evaluated for combined expression-SNP functional impact and then provided to the
TIGER implementation of iMAT for constraint development. Resulting iMAT predictions of ‘off” genes
that should be inactivated and ‘on’ genes that should result in associated reactions carrying at least a
minimum level of flux during growth are shown. After enforcing the requirement that all models must
be able to produce biomass (grow), the resulting number of reactions with constrained flux activity in

each isolate-specific model is presented in the last table.

Page 36 of 37

Technical University of Denmark Page 80 of 121



871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

Chapter 6 | Paper 2

Metabolic rewiring in adapting human pathogen
Dataset S1. Gene expression data.
Differentially expressed genes in glucose minimal media for DK2-91 (sheet 2) and DK2-07 (sheet 3)
compared to DK2-WT. Sheet 1 includes a hypergeometric distribution test of enriched gene ontology

classes among differentially expressed genes for DK2-91 and DK2-07 compared to DK2-WT.

Dataset S2. SNP and expression constraints.

Data supporting the conversion of identified SNP and expression levels into constraints applied to
genome scale models to create isolate-specific models. Includes SIFT predictions for each SNP
(categorized by affected strain), comparison of SIFT predicted impact and gene expression constraints as
implemented through gene-protein-reaction relationships, and final inactivated gene sets for each strain

model. Further details are included in S8 and legends within sub-sheets of the file.

Dataset S3. In silico essential gene analysis and flux variability analysis.

Included are essential genes predicted by iPA1139 and each isolate specific model, all reactions
associated with these essential genes, flux variability analysis for all reactions under 100% biomass
production constraints, subsystem-based FVA analysis, and FVA-based comparison of redox
metabolism activity to global activity. Further details are included in Dataset S4 and legends within sub-

sheets of the file.

Dataset S4. Genome scale metabolic models.

File contains each isolate-specific model in spreadsheet form with all applied gene and reaction

constraints (and their corresponding reaction bounds as interpreted via gene-to-protein relationships).
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Paper 2: Supplemental Text S1

Thoegersen et al: Systems-based analysis of metabolic evolution during pathogen adaptation to
the human host, Supplemental text S1

Supplemental text S1: Expanded materials and methods

GC-MS analysis for extracellular metabolites

The experimental procedure of labelling determination was modified from Kind ez al. 2010 (1).
Supernatants were centrifuged at 15000 g and 100uL supernatant lyophilized in 2-ml silanized
glass vials, and then derivatised by 20 pL. O-methylhydroxylamine in pyridine for 2 hrs, before
adding 180 pL of N-methyl-N-trimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane
(Thermo Fischer) heating in an oven at 40 °C for 30 min. The samples were analysed by GC-MS
on a Thermo Electron DSQII GCMS systems using the same parameters as described in (1) for
their Agilent GC-MS, and peaks matched in the Fiehn Lib (Agilent technologies) using the
AMDIS 2.71 (http://chemdata.nist.gov/mass-spc/amdis/downloads/). Reference standards of
glucose, gluconate, 5-ketogluconate and 2-ketogluconate were co-analysed in the sequence with

real samples for verification.

Proteinogenic amino acid analysis from *C-labeled biomass

Hydrolysis:

The pellet was resuspended in 600 pL of 6 M hydrochloric acid and the volume was transferred
to a 2 mL glass vial. The vial was capped with an aluminium cap (able to withstand high
temperatures) and kept at 105°C for hydrolysis overnight. After overnight hydrolysis the content
of the vial was transferred to an Eppendorf tube and centrifuged at 15000 rpm for two minutes.
Supernatant was transferred to two clean glass vials (280 uL each). The vials were dried for three

hours at 105°C without caps. After drying one of the vials was capped and stored at -80°C for
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backup. The other vial was added 200 pL of milliQ water and vortexed for 30 seconds. Another
800 pL of milliQ water was added followed by vortexing. A control sample containing bovine

serum albumin (BSA) was included to test if the hydrolysis step was completed successfully.

Purification:

The biomass hydrolysate was loaded on a cat-ion exchange solid phase extraction column
packed in a 1-ml syringe (200 mg Dowex 50W X8, 200- 400 mesh, H -form, Sigma-Aldrich,
St. Louis, MO), that had been conditioned by 1 ml methanol and 1 ml water, and the sample was
passed through by gravity. Waste was discarded. The sample was washed with 1 mL of ethanol
in water (1:1). 0.2 mL of 1 M NaOH was added to increase the pH of the column and waste was
discarded. A 2 mL glass vial was placed under the column to collect the purified amino acids. 1
mL of a mixture of 1% (wt/v) NaOH in saline, ethanol and pyridine in a 9:5:1 proportion was
added and the eluate was collected. The content was divided into two parts, 500 pL in an
Eppendorf tube for ethylchloroformate (ECF) derivatization and 500 pL in a glass vial for N-
dimethyl-amino-methylene-methyl-esters (DMFDMA) derivatization respectively. The samples
were kept at -20°C until derivatization. A control sample containing a mixture of amino acids

was included to test if the purification step was completed successfully.

ECF Derivatization:

50 uL of ethylchloroformate was added to the 500 uL SPE column eluate. Pipetting in and out
using a 1 mL pipette followed by a gentle vortexing gently mixed the content. The Eppendorf
tube was uncapped to release the pressure. This step was repeated until no CO, was observed. 5

additional pL of ECF was added followed by vortexing and release of pressure. 200 pL of propyl
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acetate was added, the tube was vortexed for 30 seconds and pressure was released. 50 puL of 1
M HCI was added followed by vortexing and release of pressure. The fluid was allowed to
separate for 1 minute. Thereafter 175 uL of the upper organic layer was transferred to a new
Eppendorf tube. A small amount of anhydrous NaSO4 or MgSO4 was added followed by
vortexing. The supernatant was transferred to a 2 mL glass vial and kept at -20°C until GC-MS

analysis.

DMFDMA Derivatization:

200 uL 1 M HCI was added to the 500 pL SPE column eluate and mixed well. The vial was kept
for drying for 2 to 4 hours at 105°C without cap. The vial was allowed to cool down for ten
minutes. 200 uL DMFDMA and 200 pL acetonitrile was added to the vial. The vial was capped
with a screw cap and kept for derivatization at 100°C for 20 minutes. After derivatization the vial
was placed at -20°C for 10 min. The supernatant was transferred to an Eppendorf tube and
centrifuged at 15.000 rpm for 2 min. The supernatant was transferred to a new glass vial with a

screw cap and kept at -20°C until GC-MS.

GC-MS analysis of proteinogenic amino acids

Sample were analysed by GC-MS one an Agilent 6890 gas chromatograph (Agilent
Technologies, Waldbronn, Germany) coupled to an Agilent 5973 quadruple MS run in electron
impact ionization (EI") mode using an electron energy of 70 eV. The GC was equipped with a
4.0 mm i.d. Siltek gooseneck splitless deactivated liner (Restek, Bellefonte, PA, USA), and a
Supelco (Bellefonte, PA, .US) Equity®-1701 (15 m, 0.25 mm i.d., 0.25 pum film) column.

Helium was used as carrier gas at a constant linear gas velocity of 38 cm/s. Transfer line

PhD Thesis by Juliane C. Thggersen Page 91 of 121



Chapter 6 | Paper 2 - Supplemental Material

Thoegersen et al: Systems-based analysis of metabolic evolution during pathogen adaptation to
the human host, Supplemental text S1

temperature was 280°C, quadruple temperature 150 °C and MS source 230 °C. The GC-MS
system was controlled from Agilent MSD Chemstation v. D.01.02.16, and auto tuned for prior to
every sequence. Samples of 1 uL was injected using a Combi PAL autosampler (CTC Analytics

AG, Zwingen, Switzerland).

Analysis of amino acid-ECF derivatives was done at an injection temperature of 220°C, and oven
temperature was initially held at 75 °C for one min. Hereafter the temperature was raised 40 °C
min” until 165 °C, then 4 °C min™ until 190 °C and then 40 °C min" to 240 °C. At the end,
temperature was increased to 260 °C at 4 °C min™' and held constant for 4 minutes.

Analysis of the amino acid-DMFDMA derivatives was done at an injection temperature of
230°C, and oven temperature was initially held at 60 °C for one min. Hereafter the temperature
was raised at 20 °C min™' until 130 °C, then 4 °C min™ until 150 °C and 40 °C min™' to 260 °C

and held constant for 4.25 minutes.

Construction of isolate-specific genome-scale metabolic models

Raw expression levels from microarrays were used to develop proposed ‘off” and ‘on’ gene
activity levels using 25" and 75" percentile cutoffs of the expression data similar to methods
described by Machado and Herrgard (2014) (2) These gene levels were converted into tri-valued
logic levels (‘off’ — 0, ‘unconstrained’ — 1, and ‘on’ — 2) as the input for the TIGER
implementation of iMAT. Different levels of SNP constraints were also used, ranging from
minor impact (silent and SIFT-predicted tolerated missense SNPs), moderate impact (missense
SNPs with SIFT-predicted functional impact), and maximum impact (nonsense SNPs). In order
to integrate these datasets before iMAT was used to create strain-specific models, any Boolean

gene-to-protein-to-reaction (GPR) relationship that incorporated a gene associated with a SNP
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was manually evaluated in the context of the gene expression levels. If only the SNP-affected
gene was associated with the reaction, the activity of the connected reaction was limited by
modifying the reaction bounds. If the GPR was a more complex Boolean statement involving
multiple genes (gene duplications, isozymes, or multiple subunits of an enzyme), the GPR was
evaluated to see whether any genes were present that could compensate for the affected function
of the SNP-associated gene. If these compensatory genes also had ‘off” expression levels, the
SNP-based constraint was applied. If the compensatory genes were unconstrained or ‘on’, the
SNP-based constraint was not applied. Instead of reducing the potential activity of SNP-targeted
reactions by their base model bounds (usually -1000 to 1000 for reversible reactions and 0 to
1000 for irreversible reactions), we conducted flux variability analysis of the base model at
100% biomass production to calculate the normal range of activity of each reaction in glucose
minimal medium conditions. Any minor impact SNP being implemented resulted in a 10%
reduction of the FVA-predicted base activity range enforced via reaction bounds while a
moderate impact SNP resulted in a 50% reduction applied in the same manner. SNPs
implemented with maximum impact resulted in associated reactions being turned entirely off via
modification of reaction bounds. This GPR-based evaluation of SNP and expression levels is

available in Dataset S2.

The above SNP integration method was applied to each strain-specific model prior to the use of
the TIGER implementation of iMAT. Using an objective function threshold of 10% of the
maximum and Gurobi 5.6.2 as the solver, IMAT predicted new sets of genes that could feasibly
be turned ‘off” or ‘on’ while maintaining production of biomass at 10% in each SNP-constrained

isolate-specific model. The ‘off” genes were inactivated in the model. The predicted ‘on’ genes
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were implemented by applying a lower bound constraint of 0.001 or -0.001 to ensure a minimum
level of activity in the appropriate direction of reaction activity. Reaction direction was evaluated
via FVA, and if there was not a clear preference for direction of activity (for example, the FVA
max and min indicated the reaction was fully reversible (a range of -0.001 to 0.001 or larger)),
then the ‘on” minimum constraint was not applied to avoid inappropriate/unsupported bias in
reaction directionality. This evaluation meant that it was not feasible to apply all constraints
predicted by iMAT, and a summary of the gene constraints and the difference between predicted

and applied isolate-specific model constraints is presented in Figure S5.

1. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O. 2010. FiehnLib — mass
spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight
gaschromatography/mass spectrometry. Anal. Chem. 81:10038—-10048.

2. Machado D, Herrgéird M. 2014. Systematic evaluation of methods for integration of transcriptomic data
into constraint-based models of metabolism. PLoS Comput. Biol. 10:¢1003580.
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Available online at (until the paper is published):
https://www.dropbox.com/sh/645k1g7hji2eaan/AAAtkE6AWJ0soZoyGOB1SFLwa?dI=0
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Chapter 7

Discussion

The main objective of this PhD project was to gain more knowledge of the adaptation process of

human pathogens during chronic infections through a systems biology approach.

In Paper 1 we use archetypal analysis to extract phenotypes of adapted P. aeruginosa isolates from
global gene expression data sets derived from five diverse studies of P. aeruginosa. We are able to
group P. aeruginosa isolates based on adaptation level and to represent the diverse data points as
representative archetypes. The characterization of archetypes reveals that one archetype represents
the mucoid phenotype and another archetype represents the hypermutator phenotype, both of
which are frequently observed phenotypes isolated from chronic infections. Further characterization
of the archetypes uncovers typical differential gene expression between isolates from early and

chronic infections respectively.

In Paper 2 we use long-term chronic infections of cystic fibrosis airways by P. aeruginosa as a model
system for systematic analysis of how evolution shapes the metabolism of infecting bacteria. The
study sheds light on specific metabolic pathways that have not previously been considered im-
portant for pathogen adaptation and persistence. We show that our approach of integrating high-
throughput data into genome scale models can deliver novel insight into within-host evolution of

bacterial pathogens.

The key contributions from Paper 2 are:

* We provide direct evidence for metabolic activity towards fixation of carbon dioxide into
glycine - a new discovered adaptive phenotype of the opportunistic pathogen P. aeruginosa.

* We present a novel methodological framework of integrating multiple data sets into ge-
nome scale metabolic models facilitating a systems level characterization of metabolism dur-
ing adaptation.

* Through our combined experimental and computational approach, we can (i) connect the
observed changes in metabolism to altered redox balance during adaptation (ii) predict

which single nucleotide polymorphism is contributing to this change, (ii) develop specific lists
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of predicted essential genes for the host-adapted isolates, which can serve as alternative

therapeutic targets and (iv) prioritize impacted subsystems for future investigation.

The finding of the metabolic shift through the glycine cleavage system in Paper 2 is a new discovery,
which is made possible through our approach with labeling experiments and computational model-
ing. If we consider the genomic data or transcriptomic data alone, we do not find any SNPs or any
differential gene expression in the genes coupled to the glycine cleavage system. We do identify a
SNP in a neighboring system (purine metabolism), but connecting this SNP to the glycine cleavage
system is unique to this study. We have identified a potential important pathway through the study
of metabolism in P. aeruginosa, where no clear identification was possible through investigation of
genomic or transcriptomic data alone. | think this is a great example of a successful outcome of data
integration and metabolic modeling, where new discoveries appear from data sets that were not

made by analyzing the data sets individually.

Is the glycine cleavage system also affected in other studies of P. aeruginosa adaptation?

The use of the P. aeruginosa DK2 lineage to represent general P. aeruginosa adaptation or even
general pathogen adaptation may be argued. The results from Paper 1 show that the DK2 lineage
has adaptive traits common to other adapted lineages of P. aeruginosa. In addition to that, the DK2
lineage has undergone parallel evolution in multiple patients where it has outcompeted other P. ae-
ruginosa strains (Jelsbak et al, 2007; Yang et al, 2011). | think that these examples are justifying the
choice of DK2 to represent at least a common path of P. aeruginosa adaptation. Of course, it is al-
ways desired to confirm whether the specific adaptive changes found for the DK2 lineage (e.g. the
altered glycine cleavage system) are observed for other lineages of P. aeruginosa. Interestingly,
adaptive mutations have recently been discovered in a gene of the glycine cleavage system (gcvP1)
among other clinical isolates of P. aeruginosa (Feliziani et al, 2014) indicating that this system is also
altered in other P. aeruginosa lineages where it is even a direct target of genetic adaptation. The
altered glycine cleavage system is therefore not unique to the DK2 lineage. Whether the identified
adaptive mechanisms for within-host persistence are valid for other pathogens requires further in-

vestigation.

In the introduction | mentioned a comprehensive study of P. aeruginosa adaptation focusing on ge-
nomics (Marvig et al, 2015). With our gained attention to the glycine cleavage system and surround-
ing metabolic pathways, it could be interesting to evaluate whether an increased frequency of muta-
tions within the defined set of metabolic pathways is present in the collection of 474 whole-genome

sequences of P. aeruginosa clinical CF isolates from Marvig et al. The analysis is available in Appendix
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A. In order to evaluate this we need to define which genes belong to the metabolic subsystem of
interest. We chose to use Figure 5 as the delimiter of the subsystem and hence focus on the 19
genes that are involved in the reactions included in Figure 5. None of the 19 genes that appear in
Figure 5 were identified as pathoadaptive in the study by Marvig et al (Marvig et al, 2015). However,
if we count the number of mutations (including missense mutations, silent mutations and indels)
that appear in the 19 genes we find that the system is significantly enriched for mutations compared
to the average mutation frequency of all genes in the 36 lineages (Poisson distribution test, p =0.05).
This means that the metabolic subsystem in Figure 5 is a target of genomic adaptation although not
identified by the genomic study alone. | think this example is a step forward in moving from the gen-
otype to the phenotype. Our modeling approach allows us to identify a subsystem of metabolic reac-
tions that should be considered together and this now enable us to predict a new phenotype (al-

tered glycine cleavage system) from the genomic data.

| wish to emphasize that the identification of the metabolic shift through the glycine cleavage system
in itself is a major result of this PhD project. The finding of course gives rise to new project pro-
posals, where the direct role of the glycine cleavage system connected to P. aeruginosa persistence

could be investigated.

Is the metabolic shift through the glycine cleavage system relevant for other organisms?

Our increasing interest for the glycine cleavage system also inspired us to look for other disease cas-
es, where the glycine cleavage system has shown to be important. As also mentioned in Paper 2, the
enzyme glycine decarboxylase (part of the glycine cleavage system) was previously identified as a
promoter of cellular transformation in cancer cells and the activity of this enzyme was correlated
with poorer survival of patients with lung cancer (Zhang et al, 2012). A very interesting link between
our study and these previously published observations is that in both cases (i) the lung environment

has a high partial pressure
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of CO,, (ii) changes in metabolism indicate decreased oxidative phosphorylation, and (iii) changes
are observed in glycine metabolism and the glycine cleavage system. A key difference is that we
propose that the mechanism of the glycine cleavage system is to regenerate reducing equivalents
through glycine synthesis, whereas in the study by Zhang et al. (Zhang et al, 2012), the glycine cleav-
age system is considered irreversible in the direction of glycine cleavage. However, the system is bi-
directional (Bar-Even et al, 2012) and we suggest that the function of the glycine cleavage system in
cancer cells could be similar to the mechanisms found in P. aeruginosa where it is operating in the

direction of glycine synthesis. Carbon fixation through the glycine cleavage system in cancer cells
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could be a way to fuel glycolysis with redox compounds thereby achieving the Warburg effect, a
well-known phenomenon in cancer cells characterized by high glycolytic activity and low (or normal)
level of oxidative phosphorylation (Chen et al, 2015). Future studies could examine the potential
reversal of the glycine cleavage system by evaluating growth of malignant cancer cells provided with
labeled carbon dioxide or bicarbonate to evaluate whether a similar redox-related driving mecha-

nism is associated with lung cancer metabolism.

Can we derive what the driving force of selection is in the CF lung environment?

The often observed slow-growth phenotype among the P. aeruginosa isolates from chronic patients
indicate that optimization of biomass yield may not be the strongest selective pressure in the lung
environment, although it is contrary to the general assumption that bacteria have been optimized
evolutionarily for growth (Oberhardt et al, 2008; Schuetz et al, 2007). As described by Shoval et al
(2012), a bacterial phenotype cannot be optimal, at the same time, for two different tasks such as
rapid growth and survival, but the bacteria will meet a tradeoff between the two objectives (Shoval
et al, 2012). The question is if we can identify the important tasks that contribute to the fitness of

the bacteria in the CF lung environment.

When the first genome-scale metabolic model of P. aeruginosa was published in 2008, it was stated
that some future application of that model could be to model different hypothesis about selective
pressures in the lung and to analyze the causes of these selective pressures (Oberhardt et al/, 2008). |
think that our work presented in Paper 2 is an example of this. In Paper 2 we simulate an effect of
carbon dioxide and oxygen levels on redox potential between two isolates where we find that for
the adapted isolate, the redox potential stays balanced despite fluctuating carbon dioxide and oxy-
gen levels, which could mean decreased sensitivity to surrounding conditions including oxidative

stress. The work therefore has led to the hypothesis:

Hypothesis:
Pseudomonas aeruginosa is able to resist oxidative stress in the cystic fibrosis lung environment due

to metabolic reprogramming of the glycine cleavage system.

It is possible that balancing redox potential in the cells is one of the driving forces of selection in the
CF lung environment. Future work could include measurements of redox potential under various
stress conditions (including oxidative stress) and comparisons between a wild type P. aeruginosa and

an isogenic purl mutant (the mutation that we predict is causing the metabolic shift). In Paper 2, we
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also show that the purl mutation causes an in silico growth defect and therefore the potential ad-

vantage of resisting oxidative stress through redox balancing seems to pay a price on growth.

Can we extract in vivo phenotypes from in vitro data?

One often argued question is how we can relate laboratory experiments to reality. One advantage
with our model system is that the evolutionary process of P. aeruginosa that we investigate has tak-
en place in vivo that means in the natural host environment within the CF lung. The bacterial isolates
collected from the CF patients should represent a snapshot of the stage of adaptation at the time of
isolation. However, when we characterize the bacterial isolates, we make a transition from in vivo
(the host) to in vitro (the laboratory). When we evaluate in vitro phenotypes between bacterial
strains we need to consider that these phenotypes might be affected by the laboratory setup and
one challenge is how we mimic the authentic environmental conditions in the laboratory. The nutri-
ent composition of CF sputum has been characterized in order to make a synthetic medium that
should represent CF sputum (Palmer et al, 2007) but many parameters of the CF lung ecology re-
mains unknown. Also, these conditions are not always applicable to the experimental investigations.
One example is isotope-labeling experiments where you want to avoid presence of unlabeled carbon
sources and for our study in Paper 2 this is accomplished by growing cells in glucose minimal medi-
um, which is different from the nutrient rich sputum medium. Another aspect is the mode of growth
and whether the bacteria grow as static cells, planktonic cells or maybe as biofilm structures, which

can also affect other in vitro measured phenotypes.

In our experiment with labeled glucose we aim at investigating central metabolism. Central metabo-
lism is definitely affected by which nutrients are present and measured activities of pathways
through central metabolism are most likely different from the actual metabolism in vivo. However,
our focus is on the metabolic differences between bacterial isolates representing different stages of
adaptation. Our main interest is not the actual reaction activities, which are subject to the bias by
the dissimilar in vitro environment, but rather the pathways that have differential activities between
bacterial isolates. The results connected to these differential activities should more likely be due to
genetic differences in the bacteria rather than regulatory effects of the surrounding environment.

We thereby attempt to cancel out the in vitro bias through our comparative analysis.

In Paper 1 we also deal with the issue of laboratory conditions. Again, our focus is on adaptation and
we merge data from five distinct studies with varied laboratory conditions applied. We identify two
distinctive phenotypes (the mucoid phenotype and the hypermutator phenotype) in our tran-

scriptomic data analysis across experimental conditions. The conditions in which the bacteria are
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cultivated will affect the transcriptome, but we show that through appropriate choice of analytical
method, we can extract the relevant phenotypes from the data set and neglect the bias from the
experimental setup. The results from Paper 1 also show that other methods including PCA fail to
identify these patterns. This can be caused by the fact that PCA is an algorithm that directs our at-
tention to most variance in data and this method can therefore be very sensitive to variations
caused by diverse experimental conditions. It is therefore important to take these issues into con-

sideration in design of experiments and connected analytical frameworks.

Our finding of the shared gene expression pattern among hypermutators in Paper 1 suggests that
the hypermutators have similar adaptive phenotypes. One interesting observation from Paper 1 is
that the transcriptome profiles of the hypermutators compared to their non-hypermutator relatives
are less different from the average transcription profile for all samples included in the study. | sug-
gest that this could be caused by decreased sensitivity to the change in environmental conditions.
Mutations in global regulators have previously been associated with adaptation of P. aeruginosa
(Yang et al, 2011; Damkiaer et al, 2013; Smith et al, 2006) and maybe one selective advantage is to

diminish the regulatory response to environmental changes.

Concluding discussion and future perspectives

We have successfully applied system biology approaches to the study of P. aeruginosa adaptation.
We have developed isolate-specific genome-scale metabolic models that were able to identify par-
ticular metabolic subsystems that are subject to changes during adaptation of P. aeruginosa in the
CF lung environment. In addition to that the analysis has identified genes that most likely become
essential during adaption. Both results can be valuable as targets for future intervention. Multiple
studies have reported parallel evolution of different P. aeruginosa lineages inside the CF lung (Huse
et al, 2010; Weigand & Sundin, 2012; Yang et al, 2011; Marvig et al, 2013) and therefore | think that
it is most likely that the observed metabolic changes and essential genes are valid for other P. aeru-
ginosa strains. Our focus on the glycine cleavage system revealed that this particular metabolic sub-

system was also a target of adaptive mutations in other lineages of P. aeruginosa.

For future studies it could be interesting to model a core and pan metabolic capacity for multiple
diverse P. aeruginosa strains similar to the study of core and pan metabolism of multiple E. coli
strains by (Monk et al, 2013). The core metabolism would account for metabolic reactions that are
present in all isolates, whereas the pan metabolism would be the overall metabolic capacity of P.
aeruginosa accounting for all metabolic genes present in any P. aeruginosa strain. From such a

study, it is possible that activities in some parts of metabolism can be related to successful estab-
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lishment of chronic P. aeruginosa infections in CF patients. Another possible expansion on the mod-
eling work could be to build multi-species metabolic models, where the interactions between for

example S. aureus and P. aeruginosa are investigated.

One issue that remains a challenge to our use of systems biology is the trust in the metabolic mod-
els. When do we think the models are perfect enough to trust the predictions without experimental
validation? Or will we ever reach a state where we can circumvent the need for experimental vali-
dation? And are our synthetic laboratory setups even more precise than our modeling results?
Sometimes it can be difficult or technically infeasible to set up adequate validation experiments for
model predictions. | think these model predictions are very interesting because they allow us to get
insight into some parts of metabolism that we have so far not been able to characterize in the labor-

atory.

The genome-scale metabolic models will represent a simplification of cellular function, since the
combination of metabolism, regulation and signaling that are network components of a living cell is
much more complicated than we can model (Oberhardt et al, 2009). | think we should remember
that creating perfect models of metabolism is not the ultimate aim. As described by Heinemann and
Sauer (2010), the aim in systems biology is a global system understanding where the core interest is
the general principles underlying a particular system rather than exact molecular mechanisms
(Heinemann & Sauer, 2010). The aim is therefore to be able to provide new biological understanding
through the applications of these models and | think that both correct and incorrect predictions can
contribute to that. Incorrect predictions will assist in identifying parts of metabolism that we need to
investigate further. Correct predictions of unknown cellular function will most likely help us reaching
a knowledge level faster than if we only employed an experimental approach. | don't think we will or
should pursue to reach a stage where experimental validation becomes negligible for genome-wide
analyses. However, | do think that we will be able to validate subsets of metabolism so that we are

able to trust future predictions within the same subsystem without experimental confirmation.

| started out this thesis with a quote: “All models are wrong. Some are useful” (Box, 1979). In an es-
say from 1993, Daniel Hillis elaborates on this: “Those [models] that are most useful will probably not
predict any particular experimental data, but instead they will give some surprising ideas about how
something might work” (Hillis, 1993). | think this is exactly what we should remember when we deal

with modeling in systems biology.
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Appendix A

Appendix A

The analysis of genome-scale metabolism in P. aeruginosa presented in Paper 2 revealed a metabolic shift
through the glycine cleavage system and surrounding reactions (Figure 5). We wanted to test if the metabolic

subsystem depicted in Figure 5 was also subject to changes in other lineages of Pseudomonas aeruginosa.

We decided to look for mutations (missense, nonsense and indels) within the listed genes from Figure 5 among
the recently published genome-sequences of 474 clinical P. aeruginosa isolates representing 36 different line-
ages (Marvig et al, 2015). A mutation was counted for each unique mutation that was found for at least one
isolate within each lineage. The total number of unique mutations within the dataset was 6738 distributed on
5677 genes (Marvig et al, 2015). From the same dataset we found 32 mutations among the 19 genes from Fig-
ure 5. To test if 32 mutations among 19 genes were statistically different from what we would expect based on
the frequency of 6738 mutations in 5677, we used a Poisson distribution test, where x is the number of counts

and the mean number of counts is A (Johnson, 2005):

x _-A

Fosay=2¢

forx=0,1,2,... A>0
x!

From the total data set we can calculate the frequency of mutations per gene, a:

total number of mutations B 6738 _119

Mutations per gene: o = = =
total number of genes 5677

We can estimate A for T genes (in this case 19 genes):
Mean mutation frequency in 19 genes: A=T-a=19-1.19= 22.6
Now we can use the Poisson distribution for calculating the probability of 32 mutations in 19 genes:
P(X=32)=1-F(31,22.6)= 0.035
The probability of finding at least 32 mutations in 19 genes is therefore below 5% (p<0.05).
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