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We provide a tool for data-driven modeling of motility, data being time-lapse recorded trajectories. Several
mathematical properties of a model to be found can be gleaned from appropriate model-independent experimental
statistics, if one understands how such statistics are distorted by the finite sampling frequency of time-lapse
recording, by experimental errors on recorded positions, and by conditional averaging. We give exact analytical
expressions for these effects in the simplest possible model for persistent random motion, the Ornstein-Uhlenbeck
process. Then we describe those aspects of these effects that are valid for any reasonable model for persistent
random motion. Our findings are illustrated with experimental data and Monte Carlo simulations.
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I. INTRODUCTION

The molecular mechanochemistry of migration has been
studied and modeled in great detail [1–5]. This understanding
of the molecular mechanisms of cell motility does not
explain observed migratory patterns, however—not yet. They
are studied phenomenologically [6–12], with a few motility
models for bacteria as sophisticated exceptions [13–15].

For many years, Fürth’s simple formula [16] for the mean-
square displacement was the standard formula with which
experimental trajectory data were analyzed phenomenolog-
ically [17–21]. More recently, interest in new models and
methods has surged [7,10,22–35], in some cases [7,27,28]
using conditional averaging [36,37] to determine model
features directly from experimental data.

This article has three main points. First, fitted model
parameters obviously should not depend on details of the
experimental protocol. Specifically, when one fits a motility
model that is formulated in continuous time to experimental
trajectory data that were time-lapse recorded, the fitted values
of the model’s parameters should not depend on the duration
of the time lapse [38,39], on localization errors, or on the
duration of the recorded trajectory or trajectories. So it is not
a viable strategy to fit a continuous-time model directly to
data. One must know how to connect discrete-time data with
continuous-time models. Anything less may lead to wrong
conclusions [40].

The second point of this article is that several different
models have identical expressions for simple statistics such
as the much-used mean-square displacement and the too-
little-used power spectrum. Consequently, agreement between
model and experiment as regards these statistics is a necessary
but insufficient demonstration of agreement in the process of
finding the correct motility model for an organism. Additional
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properties of the model must be checked as well in order to
show that data are consistent with a model or to select a can-
didate model among several. Specifically, if one’s model is a
stochastic differential equation, one can check with conditional
averaging that each term in this equation is consistent with
data. Conversely, if one is searching for a stochastic differential
equation that will describe given trajectory data, conditional
averaging of data will reveal which terms are needed.

As third point we stress the importance of reporting
reliable error bars on fitted model parameters in order to
facilitate comparison of results from different experiments.
Reliable error bars are most easily obtained by fitting the
model to uncorrelated representations of data, if available.
For models that are linear stochastic differential equations
with constant coefficients, the power spectrum of time-lapse
recorded displacements is a highly relevant example of an
uncorrelated representation of data. A theory should be fitted
to this statistics instead of highly correlated representations
of data such as the the mean-square displacement and the
velocity autocovariance. We use cell motility data to illustrate
our findings, but our results are relevant also for other types of
tracking experiments and models, such as models in ecology
for animal movement or foraging processes (see, e.g., [41,42]),
and for studies of systems showing anomalous diffusion [43].

The rest of this article is organized as follows. Section II
presents a seven-step protocol for how to analyze cell motil-
ity data in a data-driven manner. Section III explains and
demonstrates this protocol by applying it to experimental
data. Section IV describes the trade-off between low and
high sampling rates (large and small time lapses). Section V
presents the simplest possible model for persistent random
motion, the Ornstein-Uhlenbeck (OU) process. The physical
meaning of its terms is explained using conditional averaging.
Section VI explains known results for the OU process. Sec-
tion VII describes how these results must be amended in order
to agree with time-lapse recorded data. We give algorithms for
how to Monte Carlo simulate time-lapse recorded positions,
true velocities, and secant velocities, by which we mean
the approximation to the true velocity based on the finite
difference between two consecutive positions in a time-lapse
recorded trajectory. Section VIII further amends known results

2470-0045/2016/94(6)/062401(29) 062401-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevE.94.062401


JONAS N. PEDERSEN et al. PHYSICAL REVIEW E 94, 062401 (2016)

to account for the effect of localization errors, and we describe
how to fit the power spectrum of the secant-approximated
velocities with maximum-likelihood estimation. Section IX
discusses the effects of a finite measurement time. Section X
concludes and discusses results.

Some known results that our results build on are repeated
in order to make the text reasonably self-contained and
because they are benchmarks. Details of calculations have been
relegated to the Appendixes. Supplemental Material (Tables I
and II) summarizes our notation [44].

II. STEP-BY-STEP DATA ANALYSIS

We recommend that the seven steps listed below are
followed in order to compare a candidate theory with experi-
mental cell trajectories. We illustrate each step in Fig. 1, using
experimental data. The remainder of this article motivates
our recommendations in detail with mathematical analysis.
This analysis can be skipped. Its results can still be explored
through Monte Carlo simulation. We illustrate that. This is
of practical importance in the laboratory: Consequences of
various assumptions about data and noise are easily explored
by numerical simulations.

The experimental data explored in Fig. 1 are time-lapse
recorded trajectories of individual mouse fibroblasts from cell
line NIH3T3 on an isotropic silicon surface [45]. We choose
the OU process as the candidate model for the continuous-
time process that produced the continuous cell trajectory from
which these data were sampled. The OU process is explained
in detail in Sec. V.

Here we present a seven-step protocol for how to analyze
cell motility data in a data-driven manner.

(1) Plot the time-lapse recorded trajectory [Fig. 1(a)] and
derive its secant-approximated velocities. Check that these
velocity data are consistent with the assumption (if made) that
velocities are isotropic in distribution [Fig. 1(b)]. They are in
the OU model. The velocity data should be consistent with
an isotropic distribution, if the cell environment is isotropic.
When data are isotropic, only rotation-invariant quantities are
of interest and their statistics is much improved by averaging
over directions, as illustrated in Fig. 1(c).

(2) If many trajectories are recorded across a surface, check
also that velocities do not depend on positions, if independence
of positions is assumed; it is in the OU model. It should be
assumed for data, if the surface and the environment were
prepared to be translation invariant (Fig. 3 in [7]; Figs. S4 and
S5 in Ref. [28]).

(3) Compute and plot both the mean-square displacement
and the velocity autocovariance; there is nothing wrong in
doing that, it is conventional and useful [Figs. 2(a)–2(d)].
Just do not fit a theory to these quantities, because both are
correlated in time, and the fitting routine probably does not
take that into account. So it will return unreliable results. This
is vividly demonstrated for the simpler, less correlated case
of free diffusion in Refs. [46,47]. We recommend fitting to
the power spectrum of the secant-approximated velocities
[Figs. 2(e) and 2(f)].

(4) Make a goodness-of-fit test to ensure that the fit to
this power spectrum is indeed consistent with data [Fig. 2(e),

(a)

(b)

(c)

FIG. 1. First of seven steps comparing theory with experimental
motility data. (a) Trajectory starting at the origin and sampled with
time lapses �t = 4 min [alternating black and red (light gray) dots].
The number of time lapses is N + 1 = 257. (b) Scatter plot of secant-
approximated velocities (ux,uy) [see Eq. (1)] from (a) for sample
time �t = 8 min [red (light gray) dots in (a)]. (c) Distribution of
the squared secant-approximated velocities u2 = u2

x + u2
y for sample

time �t = 8 min. The inset shows the same histogram with lin-log
axes. The red (light gray) straight line is the graph of the exponential
distribution given in Eq. (63), with parameters resulting from the fit to
the power spectrum shown in Fig. 2(e). Pearson’s χ 2 goodness-of-fit
test gives a p value of 0.20 for this exponential distribution. So
this aspect of these trajectory data is consistent with an exponential
distribution and hence with the OU theory.
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. Comparison of experimental data and three model simulations done with parameter values determined from experimental data.
N + 1 = 129 consecutive positions were recorded with time lapse �t = 8 min. (a), (c), and (e) Experimental data compared to theory.
Theoretical curves have parameter values obtained from a fit to the power spectrum in (e). The fitted parameters are persistence time
P = 17.8 min, diffusion constant D = 1.1 (μm)2/min, and localization error σpos = 1.1 μm. (b), (d), and (f) Data from three Monte Carlo
simulations of the OU model. The model parameters used in simulations were those estimated from the experimental data in (e). Data of same
color are generated from the same simulated trajectory. Blue (solid) curves are the theoretical curves, while dashed lines connect simulated
points. (a) and (b) Mean-square displacements calculated with Eq. (A1) and the theoretical curves from Fürth’s formula [Eq. (81)]. (c) and (d)
Autocovariance of the secant-approximated velocities calculated with Eq. (A2) and with theoretical curves from Eqs. (78)–(80). The simulated
data in (b) and (d) are correlated between panels for pairs of the same color (gray scale), because they were obtained from the same trajectory
and because the mean-square displacement essentially is a double integral of the velocity autocovariance. (e) and (f) Power spectrum Pu(fk)
of the secant-approximated velocities and the fit using Eq. (73) and maximum-likelihood estimation (see Sec. VIII C). The inset in (e) shows
that the power spectral data are uncorrelated by construction for the OU process. That makes a goodness-of-fit test straightforward when the
distribution of the power spectral values around the expected value is known [Eqs. (74) and (76)]. Red (light gray) points indicate the expected
number of counts in each bin. A χ 2-goodness-of-fit test gives a p value equal to 0.91, which, by being larger than 5%, shows that theory and
data are consistent with each other according to the highest level of significance in common use.

inset]. If that is not the case, the model is rejected, unless
an explanation can be found and a new test demonstrates
consistency between theory and data.

(5) Test statistical properties of the model that go beyond the
properties of the second moment (mean-square displacement,
velocity autocovariance, and velocity power spectrum are all
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(a) (b)

(c) (d)

(e)

FIG. 3. Test of the OU model using the statistics of the acceleration of secant-approximated velocities. (a) and (b) Black dots show the
acceleration of secant-approximated velocities in the directions (a) parallel a‖ and (b) orthogonal a⊥ to the velocity for the experimental
trajectory shown in Fig. 1(a) sampled with �t = 8 min. [Red (light gray) dots in Fig. 1(a) show the N + 1 = 129 sampled positions.] The
blue (solid) lines show the theoretical expected values [Eq. (66)] for parameter values obtained by fitting to the power spectrum in Fig. 2(e),
resulting in persistence time P = 17.8 min, diffusion constant D = 1.1 (μm)2/min, and localization error σpos = 1.1 μm. (c)–(e) Elements of
the variance-covariance matrix with the expected values obtained from Eq. (70). Red (light gray) data points with error bars were obtained by
binning data shown as black data points in bins on the u axis of secant speeds.

second moments; they are all bilinear in the velocity). Test
statistics should take into account the finite sampling time and
the influence of localization errors (Fig. 3).

(6) Ensure that the values extracted for the parameters of
the continuum model are independent of the sampling time
(Fig. 4).

(7) Calculate error bars on fitted parameters from simulated
data with fitted parameters as input (Fig. 4).

The results in Figs. 2–4 illustrate our recommendations and
our main results. Below, we give details.

III. SIMPLE PLOTS OF EXPERIMENTAL DATA

The experimental data are presented in Fig. 1. Figure 1(a)
shows the cell trajectory as alternating black and red (light
gray) points. The trajectory was recorded with time lapse �t =
4 min. The red (light gray) points mark the subset of points
that time-lapse recording with �t = 8 min would result in, if
started at the same time. Figure 1(b) shows a scatter plot of the
secant-approximated velocities

�uj = (�ri − �ri−1)/�t (1)
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(a) (b)

(c) (d)

FIG. 4. Goodness-of-fit and fitted values for model parameters
for experimental trajectory in Fig. 1(a) recorded with three different
values of the time lapse �t . (a) Resulting p values from χ2-goodness-
of-fit tests of the ratio of experimental and fitted power spectral
values 2| �̂uk|2/Pu(fk)tmsr (see Sec. VIII D). Also shown are the mean
and standard deviation of the fitted parameters for (b) the diffusion
coefficient D, (c) the persistence time P , and (d) the localization
error σpos versus time lapse �t . The values shown for the standard
deviations were obtained from fits to power spectra generated from
trajectories simulated with Eq. (32) plus a localization error with
standard deviation σpos. The numbers of point in the trajectories
are N + 1 = 257, 129, and 65, respectively. Notice how the fitted
parameter values do depend significantly on the duration �t of the
time lapse for �t � 8 min, but also that the values obtained for
different values of N are not independent, as they stem from the same
experimental trajectory sampled with different values for �t .

for the trajectory with time lapse �t = 8 min and illustrates the
isotropy of the motion. Here �rj = �r(tj ) is the experimentally
recorded position at time tj . Finally, Fig. 1(c) shows a
histogram of the squared secant speed u2 = |�uj |2. If the data
are consistent with an OU process then u2 is exponentially
distributed (see Sec. VIII A). The red (light gray) straight
line in the inset shows the exponential distribution defined
in Eq. (63) with parameters from the fit to the power spectrum
in Fig. 2(e). A Pearson’s χ2 goodness-of-fit test gives a p

value equal to 0.20. That is, the data are consistent with an
exponentially distributed squared speed.

Below, the trajectory of red (light gray) points, recorded
with �t = 8 min, is analyzed. As we go through the rest of
the steps outlined above, we argue that the data are indeed
consistent with an OU process. We demonstrate that this
validation requires that we model the effects of finite sampling
time and localization errors. Finally, we demonstrate that better
time resolution in the same experiment, �t = 4 min, reveals

structure in the trajectory that is not captured well by the OU
process, while sampling with �t = 16 min is, and with the
same result for fitted parameter values. This illustrates that
the agreement between the continuous-time model and the
time-lapse recorded data is independent of the duration of the
time lapse down to a lower limit.

This independence above the lower limit is necessary for
the modeling to be meaningful, while the lower limit reminds
us that all modeling is approximate: More information requires
more detailed models and will result in a nested hierarchy of
models in which the OU process is just the first model after
the simplest possible, which is simple diffusion.

A. Simple initial tests of data and goodness-of-fit test

As an initial test we analyze the data with three different
methods: (i) the mean-square displacement 〈[�r(t) − �r(0)]2〉
using Fürth’s formula [Eq. (81)], (ii) the autocovariance of the
secant-approximated velocities [Eq. (78)], and (iii) the power
spectrum of the secant-approximated velocities [Eq. (73)].
These quantities are shown in Figs. 2(a), 2(c), and 2(e).
The parameters of the OU model [see Eq. (9)] are obtained
from a fit to the power spectrum in Fig. 2(e) and give
the persistence time P = 17.8 min, the diffusion coefficient
D = 1

2σ 2P 2 = 1.1 (μm)2/s, and the standard deviation of the
localization error σpos = 1.1 μm. Here σ is the amplitude of
the random component of the acceleration. The curves in
Figs. 2(a) and 2(c) are the theoretical curves obtained from
these values. They are not fits to the experimental values for the
mean-square displacement or to the autocovariance function
of the secant-approximated velocities.

At first glance all three properties look reasonable, but
the mean-square displacements and the autocovariance of the
secant-approximated velocities are problematic. First, fits to
these quantities are highly sensitive to the chosen range of
times in which one fits to these quantities. No rigorous criterion
exists for how to choose this range [47]. This introduces an
arbitrary component into results of such fits. Second, the data
are correlated. This is clearly seen in Figs. 2(b) and 2(d).
They show simulated data with parameter values for P and D

taken from the fit to the power spectrum in Fig. 2(e). The blue
(solid) lines are the theoretically expected values for the same
parameters. The simulated data of a given color (grayscale),
i.e., from a given simulation, fall mainly on the same side of
the theoretical curve, which represents their expected value,
i.e., the simulated data are highly correlated. This has the
consequence that the error bars on fitted parameters are
unreliable for fits done as if the data were uncorrelated. Finally,
the distributions of the scatter of the data points around their
theoretical expected values are unknown, which makes a fit to
the theory nontrivial [48] and obscures a goodness-of-fit test.
A fit to the power spectrum does not have these problems.
The power spectral values are uncorrelated by construction for
any linear stochastic differential equation driven by additive
noise and hence for the OU process. That is illustrated in
Fig. 2(f). Here the data points for the three different simulations
fluctuate around the theoretical curve. For the OU process,
the distribution of the scatter around the theoretical expected
values is known (see Sec. VIII D). These two properties allow
for a straightforward goodness-of-fit test [see the inset in
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Fig. 2(e)]. The goodness-of-fit test is important as fitted values
for the model parameters only can be trusted if the data are
consistent with the theory.

B. Additional model properties and associated tests

One of the main points of this article is that even if a fit to
the power spectrum is consistent with data, it does not prove
that the data are consistent with the model. As discussed below,
several theories can give rise to the same power spectrum. A
rigorous test examines the extent to which the model itself,
term by term, is consistent with data. For the OU process in
Eq. (9), e.g., the expected value of the acceleration �av is, for
given velocity �v,

〈�av〉�v =
〈
d �v
dt

〉
�v
= −P −1�v, (2)

i.e., the acceleration is proportional to the velocity. Also, the
autocovariance matrix of the acceleration, given a velocity �v,
is

〈[�av(t1) − 〈�av〉�v] ⊗ [�av(t2) − 〈�av〉�v]〉

= σ 2

(
1 0

0 1

)
δ(t1 − t2), (3)

where δ(t) is Dirac delta function and ⊗ denotes the outer
product. Naively, one might expect that the equivalent relations
for the acceleration calculated from the secant-approximated
velocities �uj = (�ri − �ri−1)/�t would be similar. That is not the
case, not even in the limit of vanishing time lapse �t/P → 0,
as demonstrated in Secs. VII C and VIII B. In Fig. 3 we plot
the measured secant acceleration, specifically, its components
parallel and orthogonal to the measured secant velocity �uj

[Figs. 3(a) and 3(b)], as well as the elements of the equal-time
variance-covariance matrix for these components [Figs. 3(c)
and 3(d)]. The blue (solid) straight lines shown were not fitted
to the data shown. Instead, the parameter values obtained from
the fit of the theory to the power spectrum [Fig. 2(e)] were
used as input parameters to the theoretical expressions for the
expected values for the quantities shown [Eqs. (66) and (70)].
Figure 3 shows that the experimental data are indeed consistent
with the OU model when, as here, the effects of finite sampling
time and localization errors are accounted for. This point is also
illustrated with simulations in Figs. 7 and 9.

C. Values of model parameters should not depend
on sampling frequency

Another main point of this article is that when fitting the
data to a given model formulated in continuous time, the
model should fit the data within a range of sampling times
�t and the fitted values for the continuum parameters should
be independent of �t . In Fig. 4 we show the p values and
the fitted parameters for the fit to the power spectra for the
trajectory shown in Fig. 1(a) at three different sampling times
�t = 4, 8, and 12 min, respectively. Figure 4(a) shows p

values from the goodness-of-fit tests (see Sec. VIII D). The
p values are larger than 0.05 for all three sampling times,
i.e., for all three sampling times the data are consistent with
the OU model. Figures 4(b)–4(d) show the values for the
fitted parameters, i.e., the persistence time P , the diffusion

constant D, and the standard deviation of the localization
error σpos, respectively. The error bars on the fitted parameters
are the standard deviations estimated from 10 000 simulated
trajectories calculated with the parameters from the fits [49].
This demonstrates that the extracted continuum parameters are
consistent within error bars, at least for �t � 8 min. That is,
they do not depend critically on the sampling time.

In the remainder of this article we elaborate on the
conclusions presented in this paragraph. After discussing the
implication of localization vs discretization errors, we further
describe the OU model. Then we present results for the
continuous model and in subsequent sections we add the effects
of discretization, localization errors, and finally the effect of
finite sampling time. Although we strongly recommend fitting
to the power spectrum of the secant-approximated velocities,
we include for completeness the results for the mean-square
displacement and the velocity autocovariance function.

IV. RECORDING TRAJECTORIES BETWEEN TWO
UNDESIRABLE SITUATIONS: LOCALIZATION ERRORS

VS DISCRETIZATION ERRORS

There is a trade-off between low and high sampling rates:
Lower sampling rates cause larger discretization effects, while
higher sampling rates result in smaller displacements per time
lapse. For localization errors of a given size, the relative errors
on single-time-lapse displacements consequently increase
with the sampling rate. This section details the math needed to
handle this trade-off.

A cell that propagates itself on a surface moves smoothly
in continuous time, so the point on such a cell that we track
does the same: Its (true) position �r (true)(t) is a differentiable
function of time t , we imagine, with continuous velocity [50]

�v(t) = d�r (true)

dt
(t). (4)

It is the dynamics of this velocity that we want to model
in data-driven modeling. We specifically choose to model
the velocity, and not the position, because all positions
look the same to a cell in a homogeneous environment and
consequently the dynamics of the cell cannot depend on its
position. Moreover, there is a decisive statistical advantage
in working with a bounded process such as the velocity, as
opposed to an unbounded process such as the position: Time
averages converge with increasing duration of measurement,
if the motile cell is in a steady state. This one typically can
assume for a while; for how long depends on the organism and
circumstances.

We cannot record �r (true)(t) continuously in time, however.
Experimental data necessarily consist of a time series of
discrete positions (�r (true)

j )j=0,1,2,...,N , recorded at consecutive
times tj , typically with constant time lapse �t so tj = j�t .

With �r (true)
j = �r (true)(tj ) and a small value for �t , we can

in principle get close to continuous recording of velocity by
using

�u(true)
j = �r (true)

j − �r (true)
j−1

�t
(5)

062401-6



HOW TO CONNECT TIME-LAPSE RECORDED . . . PHYSICAL REVIEW E 94, 062401 (2016)

as an approximation to �v(t). This secant approximation to the
real, tangential velocity �v(t) can also be written

�u(true)
j = 1

�t

∫ tj

tj−1

�v(t ′)dt ′, (6)

i.e., �u(true)
j is the time average of �v(t) in the interval [tj−1,tj ].

With a sufficiently small value for �t , �v(t ′) is essentially
constant in this integral and hence essentially equal to �u(true)

j ,
and vice versa.

In practice, however, localization errors place a lower
limit on meaningful values for �t . Experimentally recorded
positions �rj will typically contain a noise component due to
localization error, e.g. due to finite pixel size,

�rj = �r (true)
j + �ξj , (7)

so if the cell does not move much in a time lapse �t , as
compared to typical values of �ξ , then the numerator �rj − �rj−1

in Eq. (5) consists mainly of �ξj − �ξj−1. That makes the
experimental velocity �uj unrelated to the true velocity

�v(t) = d�r (true)

dt
(tj ). (8)

This interferes with our desire to model �v(t) based on our
record of �uj .

The solution is, obviously, to choose a larger value for �t

(the larger, the better), except �uj is only a good approximation
for �v if the latter is nearly constant for the duration �t of
the interval [tj−1,tj ], and this is more likely to be the case
for smaller values of �t . Thus we must navigate between
the two undesirable situations of localization errors and
discretization errors, respectively. This is the usual issue of
navigating between stochastic and systematic errors. It is
done by modeling discretization effects and localization errors
for a given motility model and by testing these extra model
components against data. We illustrate how here, using the
simplest possible motility model for the purpose.

V. SIMPLEST POSSIBLE MODEL FOR PERSISTENT
RANDOM MOTION

Cell trajectories are continuous functions of time, so we
want to model them that way. Even if our experimental in-
formation were noise-free, continuously recorded trajectories,
this information would probably not suffice to predict future
motion from past motion in a deterministic manner. This is
obvious, if the cell responds to texture in the surface it moves
on: Then the future trajectory is unknown to the extent that it
is defined by this response, no matter how well we record the
past.

Even without such a response, however, we believe that
the biochemistry and physics of cell locomotion are way too
complex to be revealed in a cell’s trajectory to the point of
making that trajectory fully predictable. Our ambition is to
model a trajectory as somewhat predictable based on its past,
with a stochastic component on top. That is, we model a
trajectory as the solution to a stochastic differential equation.

Such models are advanced math. One can cover most of
our needs by discussing them as if they were not, however. A
knowledge of the simplest ordinary differential equations is

sufficient, when it is supplemented with a working knowledge
of random variables. This is a common approach and ours too.

At a pertinent point, this approach invites cheating, how-
ever: Front and center, one encounters a generalized Gaussian
white noise. In the literature, it is commonly referred to simply
as a Gaussian white noise (which it definitely is not) and its
only properties given are Eq. (11). It takes more to define this
object, but since Eq. (11) commonly is its only property needed
and it is simple to apply, one needs no deeper understanding
of this object. The present article also does not require a deep
understanding of this object.

We nevertheless spell out its definition in Appendix B,
because ignorance of its true nature will cause confusion, if
one manipulates this object confidently for a while and only
then realizes that what one thought of as a stochastic variable
has neither a probability distribution nor a probability density
function. Apart from Appendix B, we use no advanced math
and calculations have been relegated to the Appendixes.

A. Definition of the Ornstein-Uhlenbeck process

As a mathematical model of persistent random motion,
the OU process is the simplest possible of its kind, like the
harmonic oscillator in mechanics, the hydrogen atom in atomic
theory, and the Ising model in magnetism [51]. So we use it
in that manner for illustrations here and mention how results
may change if a different model is used.

We write the OU process as the Langevin equation

d �v
dt

= −P −1�v + σ �η, (9)

where P is the so-called persistence time, σ parametrizes the
amplitude of the random component of the acceleration σ �η,
and P −1 is the rate of deceleration in the absence of the last
term on the right-hand side: For σ = 0,

�v(t) = e−t/P �v(0). (10)

Thus, P −1 is the rate with which a velocity is forgotten by the
motile cell or, equivalently, P is the characteristic time that a
given velocity is “remembered.” Since Eq. (9) is linear, this
remains true also in the presence of its last, random term, as
seen explicitly in Eq. (16) below.

That last term σ �η is a two-component generalized Gaussian
white noise; see Appendix B for definition. For most purposes,
one only needs to know that each component of �η is
uncorrelated with the other component and its autocovariance
is a delta function,

〈�η(t)〉 = �0, 〈�η(t ′) ⊗ �η(t ′′)〉 =
(

1 0
0 1

)
δ(t ′ − t ′′). (11)

Here ⊗ denotes the outer, or exterior, vector product. It
is a convenient notation, if one is at ease with it. If not,
written out it states that 〈ηa(t ′)ηb(t ′′)〉 = δa,bδ(t ′ − t ′′), where
δa,b is Kronecker’s delta function and δ(t) is Dirac’s delta
function. The generalized white-noise process �η(t) is assumed
uncorrelated with �v(t ′) for t � t ′. This is one of the defining
properties of the model and is called Itô calculus. Other
formulations are possible, notably Stratonovich calculus, but
will not be used here.
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Note that the dimension of Dirac’s δ(t) is (time)−1, since
its integral over time equals 1. Consequently, the dimension
of �η is (time)−1/2. It follows then from the dimension of the
terms in Eq. (9) that the dimension of the parameter σ is
(length) × (time)−3/2. In Sec. VI B we will see that the OU
model’s diffusion coefficient is

D = 1
2σ 2P 2 (12)

and we will be back among integer dimensions. For now,
we tolerate the fractional dimensions of �η and σ , as an
unavoidable part of an otherwise attractive package deal: �η
is a mathematically convenient entity and σ , which inherits its
fractional dimension from �η, is convenient notation, handier
than its substitute

√
2D/P [52].

Note also that there is only one OU process, essentially:
If time is measured in units of P and distance in units
of

√
2DP = σP 3/2, P and σ do not occur explicitly in

Eq. (9) anymore. So there is only one process, with no
adjustable parameters, and all other OU processes can be
mapped onto this one process. We do this in the rest of this
article when we simulate data. Consequently, velocities are
measured in units of

√
2D/P = σ

√
P and acceleration in

σ/
√

P . As the fit to the power spectrum in Fig. 2(e) gave
a persistence time P = 17.8 min, a diffusion constant D =
1.1 (μm)2/min, and a localization error σpos = 1.1 μm for the
sampling time �t = 8 min, it corresponds to �t/P = 0.45
and σpos/

√
2DP = σpos/σP 3/2 = 0.18. Consequently, in the

Monte Carlo simulations of the OU process we use �t = P/2
and σpos = 0.2σP 3/2 (see Figs. 7–10).

B. Physical meaning of each term in the equation
defining the OU process

Equation (9) states that the acceleration is a linear combi-
nation of the velocity and �η. The acceleration is consequently
also not a proper stochastic variable, but an advanced-math
object similar to �η. On the other hand, we will soon see that
�v(t) is an ordinary Gaussian random variable for any value of
t , so for any given value of the velocity �v(t), we can refer to
the expected value of the acceleration

�av(t) ≡ d �v
dt

(t) (13)

in the same generalized sense that we used in Eq. (11) for
the expected value of �η(t). Then we find that the conditional
average is

〈�av(t)〉�v(t) = −�v(t)/P (14)

at any time t , i.e., “on average” the OU process decelerates
at a rate proportional to its instantaneous speed. For motile
microorganisms described by this model the speed can increase
due to the noise term only. This is okay. The noise term does
not describe an external influence, but is as much a part of the
organism’s active motile behavior, as the expected value of its
acceleration is. It is just the part that we cannot predict and
consequently model as uncorrelated noise.

One should not confuse the interpretation of terms here with
the interpretation that the same terms have in the same model,
when it is used to model Brownian motion of inert matter. In
the latter case, the random noise term models random thermal

forces from the environment acting on a colloidal particle.
Here the same term models the manner that the organism’s
acceleration differs from its average acceleration at a given
velocity. Equation (9) states that these fluctuations in the
acceleration are modeled as a generalized Gaussian white
noise with the same speed-independent amplitude σ in both
directions, parallel and orthogonal to the velocity,

�av − 〈�av〉�v = d �v
dt

+ �v/P = σ �η, (15)

i.e., these fluctuations are uncorrelated with themselves on any
time scale. This is necessarily wrong from a biological point of
view, because the biological processes causing motility must
have finite correlation times. However, if we cannot observe
any effects of such correlation times in the time-lapse recorded
data that we are about to model, then it is the correct model
from a modeling point of view: Occam’s razor states that the
correct model is the simplest model that is consistent with
the data and the simplest such model has no autocorrelations
whatsoever in the fluctuations of the acceleration, when such
correlations are absent in the data.

Even without such correlations, the amplitude of the
fluctuations could depend on the velocity, both its speed and its
direction. This was indeed found to be the case for HaCaT cells
(speed dependence) and NHDF cells (velocity dependence) in
Ref. [7]. Here, however, we consider the simplest possible
model, hence the simplest possible noise term: with constant
and isotropic amplitude.

VI. ANALYTICAL RESULTS FOR THE OU PROCESS

This section gives analytic results for the autocovariance,
the mean-square displacement, and the power spectrum for
the continuous OU model. These are known results [53],
but included for completeness. In the sections below these
quantities are compared with the same statistics in the
presence of discrete sampling (Sec. VII) and localization errors
(Sec. VIII).

A. Autocovariance of the OU process

Despite the mathematical peculiarity of the noise term
in Eq. (9), we can treat this equation as just another linear
differential equation with constant coefficients and an inho-
mogeneous term, so undergraduate calculus gives its solution
in terms of the noise,

�v(t) = σ

∫ t

−∞
e−(t−t ′)/P �η(t ′)dt ′. (16)

Here one may think of σ �η(t ′)dt ′ as an increment to the velocity,
which was added at time t ′ and then reduced by a factor
exp[−(t − t ′)/P ] (which equals forgotten at rate 1/P ) in the
intervening time interval of duration t − t ′. Equation (16) then
states that the velocity at time t is the sum (integral) over all
such increments.

Since the real function g(t ′) = θ (t − t ′)e−(t−t ′)/P , where
θ (t) is Heaviside’s θ function [54], has (g,g) = P/2, the
two components of �v(t) are independent Gaussian random
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FIG. 5. Velocity autocovariance function with and without dis-
cretization effects for the OU process: open red (light gray) circles,
φ

(true)
j = 〈�u(true)

j · �u(true)
0 〉 [Eqs. (61) and (62)]; solid line, φ(t) for the OU

process [Eq. (20)]; closed black circles, φ(tj ) for velocities �vj = �v(tj )
recorded instantaneously with time lapse �t/P = 0.5. The closed
black circles fall exactly on the solid line by definition of what they
represent.

variables with zero mean and variance σ 2P/2. Consequently,

〈�v2(t)〉 = σ 2P = 2D

P
, (17)

with the diffusion coefficient D from Eq. (12).
Solved with an initial condition �v = �v(t0) at t = t0, Eq. (9)

gives

�v(t) = e−(t−t0)/P �v(t0) + σ

∫ t

t0

e−(t−t ′)/P �η(t ′)dt ′, (18)

from which follows the autocovariance matrix

〈�v(t) ⊗ �v(t ′)〉 =
(

1 0
0 1

)
φ(t − t ′)/2, (19)

with trace

φ(t1 − t2) = 〈�v(t1) · �v(t2)〉
= e−|t1−t2|/P 〈�v2〉 = 2D

P
e−|t1−t2|/P . (20)

This result for the continuous model is shown in Fig. 5 (solid
line) and compared with the velocity autocovariance function
with discretization effects derived in Sec. VII G.

B. Mean-square displacement and Fürth’s formula

Since

�r (true)(t) − �r (true)(0) =
∫ t

0
�v(t ′)dt ′, (21)

the mean-square displacement is (Fürth’s formula)

〈[�r (true)(t) − �r (true)(0)]2〉 =
∫ t

0

∫ t

0
φ(t ′ − t ′′)dt ′dt ′′

= 4D[t − P (1 − e−t/P )]. (22)

Note that this mean-square displacement approaches 4D(t −
P ) exponentially fast for t → ∞. This asymptote differs
from the asymptote 4Dt of Einstein’s model of Brownian

FIG. 6. Fürth’s formula for the mean-square displacement of
persistent random motion described by the OU process: solid line,
mean-square displacement in Eq. (22); dotted line, asymptotic
behavior of Fürth’s formula, the function t → 4D(t − P ). The dotted
line intersects the time axis at t = P .

motion. Einstein’s model is the OU process for P = 0. The
relative difference between the two asymptotes is P/t , so it is
negligible much later than exp(−t/P ) is (see Fig. 6). It is this
ultimate asymptotic proportionality with time that defines D

and establishes Eq. (12). For t → 0, on the other hand, Eq. (22)
describes ballistic motion: The mean-square displacement is
proportional to t2 for t → 0 (see Fig. 6).

Equation (22) is not unique to the OU process, but shared by
all processes that have a simple exponential as autocovariance.
The Kratky-Porod wormlike chain model is another such
process. For the purpose of motility modeling, Eq. (22)
was first derived by Fürth, who modeled motility data for
infusoria [16].

The mean-square displacement has the appealing feature
that it it as fairly smooth function of time even for rather
noisy data. So graphically it looks like one has a reliable
result, even when this is dubious. This is because the mean-
square displacement is an integrated quantity, so stochastic
fluctuations tend to cancel each other in it.

The nice looks come at a steep price: The values of the
mean-square displacement are highly correlated in time [see
Fig. 2(b)]. So a least-squares fit of Fürth’s formula to such data
does not return reliable estimates of errors on fitted values,
if the fitting routine assumes statistically independent data
points, as practically all software implementations of the least-
squares method do [55].

C. Power spectrum of the OU process

As we have just seen, the information that is contained
in the mean-square displacement is also contained in the
autocovariance φ(t): The mean square displacement is just
φ(t − t ′) integrated with respect to t and t ′ [Eq. (22)].
Consequently, a fit of φ(t) given in Eq. (20) to experimental
values for the velocity autocovariance would be less correlated
and a more direct test of the theory. Experimental values for
φ(t) are also correlated, however, if P > 0. Consequently, a fit
of Eq. (20) will also not return reliable error bars on the values
it returns for P and σ , if the fitting routine assumes that the fit
is done to statistically uncorrelated experimental values.

062401-9



JONAS N. PEDERSEN et al. PHYSICAL REVIEW E 94, 062401 (2016)

Because of the simple specific form of φ(t) in Eq. (20),
ln φ(t) depends linearly on its effective parameters ln(2D/P )
and 1/P . Consequently, the generalized least-squares method
will fit this particular theoretical function ln φ(t) correctly (i.e.,
without bias, effectively, and efficiently) to correlated data for
ln φ(t), provided the covariance matrix for the data is known.
We prefer to use a method that works for any dynamic theory
that is linear in the dynamic variable and driven by a white
noise, as Eq. (9) is, while the theory’s dependence on its
parameters is allowed to be nonlinear, which is the case for
most theories.

Correlations between experimental values of φ at different
times are due to correlations in experimental values for �v at
different times and the latter are due to the very fact that
we have a dynamic equation, Eq. (9), which will correlate
the future with the present, thereby making predictions of the
future based on the present. This equation’s coupling of �v’s
values at different times can be removed by a simple change
of variable. Fourier transformation, from a dependence on time
to frequency, does this.

Suppose we could measure �v(t) continuously in time and
had done so for a time span tmsr. Then we could rewrite the
OU process in Eq. (9) in terms of Fourier transforms on the
interval [0,tmsr]. Define

�̃v(fk) ≡
∫ tmsr

0
ei2πfkt �v(t)dt (23)

and similarly for �̃η(fk), with the frequency fk belonging to
the discrete set of values fk = k�f , k an integer, and �f =
1/tmsr. Application of this Fourier transformation on both sides
of Eq. (9), followed by partial integration with respect to time
on the left-hand side, gives

[�v(tmsr) − �v(0)] − i2πfk �̃v(fk) = −�̃v(fk)/P + σ �̃η(fk), (24)

hence

�̃v(fk) = σ �̃η(fk) − [�v(tmsr) + �v(0)]

1/P − i2πfk

. (25)

Here �̃η(fk) = O(
√

tmsr), while �v(tmsr) − �v(0) = O(
√

P ), so
for tmsr � P , the second and third terms in the numerator
can be ignored compared to the first term (see Sec. IX for
details). In this approximation we then have a Lorentzian
velocity power spectrum

Pv(fk) = 〈|�̃v(fk)|2〉/tmsr = 4D

1 + (2πPfk)2
, (26)

where neglected terms are of order (P/tmsr)2 with coefficient
numerically smaller than one.

If we could record �v(t) continuously in time, this formula
could be fitted to the experimental result for |�̃v(fk)|2/tmsr and
the model parameters σ and P could be determined in that
manner. This fit would have a huge advantage over a fit of
Eq. (20) to the experimental result for the autocovariance,
because, according to our theory, the experimental result for
|�̃v(fk)|2/tmsr is distributed according to the statistics of the
right-hand side in

|�̃v(fk)|2/tmsr = 2D| �̃η(fk)|2/tmsr

1 + (2πPfk)2
. (27)

Here |η̃x(fk)|2/tmsr and |η̃y(fk)|2/tmsr both are exponentially
distributed positive random numbers with expected value one.
They are statistically independent of each other and of the same
expressions for different frequencies fk′ �= fk [56]. Because
of this absence of correlations between experimental spectral
values, a fit to this spectrum yields reliable error bars on fitted
parameter values.

We cannot measure �v(t), however, but only �uj . In the
following sections we will account for how the finite sam-
pling rate and finite localization error modify the theoretical
spectrum to one that actually can be fitted to real data. For now,
we point out that the velocity power spectrum defined above
is essentially the Fourier transform of φ(t) (Wiener-Khinchin
theorem). Since several different dynamical models have the
same autocovariance φ(t), the same is true for the power
spectrum: The fact that a model fits the experimental power
spectrum does not mean that it is the only theory possible. A
good fit is a necessary but insufficient condition on a candidate
model.

Specific classes of candidate models can be suggested
by the power spectrum, however: Consider the asymptotic
frequency dependence of the Lorentzian spectrum in Eq. (26).
It goes like 2σ 2/(2πfk)2 at large frequencies. Any linear
first-order integro-differential equation driven by a white noise
will have this characteristic 1/f 2

k behavior at large frequencies.
Similarly, a second-order integro-differential equation driven
by a white noise has a power spectrum with 1/f 4

k behavior
at large frequencies. So classes of theories are suggested
by the asymptotic behavior. They are not proven, however:
1/f 2

k behavior would also result from a second-order integro-
differential equation driven by appropriately chosen colored
noise, though it takes a strange noise spectrum. With physical
and biological reasoning, symmetry arguments, and use of
Occam’s razor, the simplest plausible class of candidate
theories is unambiguously singled out. Their details must
subsequently be determined by using also other statistics,
such as the average acceleration for given velocity, and the
properties of fluctuations in the acceleration, as suggested in
Sec. V B and done in Refs. [7,28].

VII. CONSEQUENCES OF BEING DISCRETE

The previous sections stated results for the autocovariance
of the velocity, the mean-square displacement, and the power
spectrum for the continuous OU model. In this section we
approach the heart of the matter: how these statistics are altered
by the finite sampling time. Especially Sec. VII C demonstrates
the price of being naive, as fitting the continuous-time model
to discrete data can lead to wrong interpretations of the fitted
parameters.

A cell trajectory is the result of a stochastic process, as we
model it, and we demonstrate how to Monte Carlo simulate
time-lapse recorded trajectories. Simulation is a very practical
tool: It is a quick way to validate analytic predictions and it
is a quick way to repeat a motility experiment many times
in silico, once it has been modeled, in order to illustrate the
stochastic nature of the process, e.g., in order to calculate
correct stochastic errors on various statistics, such as the mean-
square displacement as a function of time and the velocity
autocovariance function. Below, we also present results for the
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statistics of the acceleration of secant-approximated velocities
and the power spectrum of the secant-approximated velocities.

A. Monte Carlo simulation of time-lapse recordings

1. Tangent velocity and position

One can Monte Carlo simulate time-lapse recorded trajec-
tories of the true positions (�r (true)

j )j=0,1,2,...,N with the exact
algorithm derived as follows: From Eq. (18) we have

�vj+1 = c�vj + ��vj , (28)

where we have introduced the constant

c ≡ exp(−�t/P ) (29)

and a series of pairs of statistically independent random
Gaussian variables with origin in the generalized Gaussian
noise �η(t),

��vj ≡ σ

∫ tj+1

tj

e−(tj+1−t)/P �η(t)dt. (30)

These Gaussian random variables have zero mean and their
variance-covariance matrix is

〈��vi ⊗ ��vj 〉 = (1 − c2)
D

P
δi,j

(
1 0
0 1

)
. (31)

Equation (28) is easily iterated numerically to produce a time
series (�vj )j=0,1,2,...,N , by starting, e.g., with �v0 = �0.

In parallel, we iterate the following dependent series for
(�r (true)

j )j=0,1,2,...,N :

�r (true)
j+1 = �r (true)

j + σ

∫ tj+1

tj

�v(t)dt

= �r (true)
j + (1 − c)P �vj + ��rj . (32)

Here we have introduced another series of pairs of statistically
independent random Gaussian variables with origin in the
generalized Gaussian noise �η(t),

��rj ≡ (2D)1/2
∫ tj+1

tj

(1 − e−(tj+1−t)/P )�η(t)dt, (33)

which has zero mean as well, and the variance-covariance
matrix

〈��ri ⊗ ��rj 〉 = [2�t − (3 − c)(1 − c)P ]Dδi,j

(
1 0
0 1

)
,

(34)
but is correlated with ��vj , since both are defined in terms of
the same generalized noise �η(t) on the same interval [tj ,tj+1],

〈��ri ⊗ ��vj 〉 = (1 − c)2Dδi,j

(
1 0
0 1

)
. (35)

We consequently generate (��vj ,��rj ) by first generating ��vj

and then generating ��rj as

��rj = 1 − c

1 + c
P��vj + ��r (2)

j , (36)

where ��r (2)
j are pairs of random Gaussian variables of zero

mean and the variance-covariance matrix〈
��r (2)

i ⊗ ��r (2)
j

〉 = 2D

(
�t − 2

1 − c

1 + c
P

)
δi,j

(
1 0
0 1

)
, (37)

which are independent of ��vj . By construction, the compo-
nents of this random variable ��rj are Gaussian distributed,
have zero mean, the variance-covariance matrix given in
Eq. (34), and the covariance with ��vj demanded by Eq. (35).

2. Secant velocity

If only the time series for secant-approximated velocity
�u(true)

j is needed, it can be generated by iterating the stochastic
recursion relation that results from reading Eq. (32) as

�u(true)
j+1 = (1 − c)P/�t �vj + ��rj /�t (38)

and subtraction from this equation c times the same equation
with j − 1 replacing j . In the result, �u(true)

j+1 − c�u(true)
j = (1 −

c)P/�t(�vj − c�vj−1) + (��rj − c��rj−1)/�t , one can elimi-
nate �vj − c�vj−1 by using Eq. (28), which gives a stochastic
recursion relation for �u(true)

j ,

�u(true)
j+1 = c�u(true)

j + 1 − c

1 + c

P

�t
(��vj + ��vj−1)

+ ��r (2)
j − c��r (2)

j−1

�t
. (39)

The four independent Gaussian vector variables that occur
on the right-hand side of this relation cannot be combined
into fewer independent Gaussian variables, because two of
them are used again, but in a different linear combination, to
generate �u(true)

j+2 from �u(true)
j+1 . Thus, in Monte Carlo simulations

it is as easy just to simulate the pairs (�u(true)
j ,�vj ). The real value

of Eq. (39) is the ease with which it allows us to find the power
spectrum of �u(true)

j below.

B. Distribution of squared secant-approximated velocities

For later use, we here observe that the squared modulus of
the secant velocity |�u(true)

j |2 is exponentially distributed. This

exponential distribution results from both components of �u(true)
j

being Gaussian random variables with zero mean and identical
standard deviations. The latter follows from �u(true)

j = (�r (true)
j −

�r (true)
j−1 )/�t and each component of �r (true)

j being a Gaussian
random variable in consequence of Eq. (32). Thus, the square
of each component of �u(true)

j is � distributed with shape
parameter k = 1/2 and the � distributions of each squared
component have identical scale parameters. This implies that
the sum of the squared components |�u(true)

j |2 is exponentially

distributed. The expected value 〈|�u(true)
j |2〉 is given in Eq. (62).

The distribution of the squared secant-approximated velocities
including localization errors is derived in Sec. VIII A and
compared with experimental data in Fig. 1(c).

C. Statistics of the acceleration of secant velocities

The Langevin equation (9) states that, on average, the
instantaneous acceleration is opposite and proportional to the

062401-11



JONAS N. PEDERSEN et al. PHYSICAL REVIEW E 94, 062401 (2016)

instantaneous velocity [see Eq. (14)]. The closest we can
get to checking whether this statement is satisfied by our
experimental data is to plot the two components of the secant
acceleration [57]

�a(true)
j ≡ �u(true)

j+1 − �u(true)
j

�t
(40)

against the secant speed |�u(true)
j |, one plot for the component of

�a(true)
j along �u(true)

j ,

a
(true),‖
j = �a(true)

j · �u(true)
j∣∣�u(true)
j

∣∣ , (41)

and another plot for its orthogonal component,

a
(true),⊥
j = z⊥

∣∣∣∣∣�a(true)
j − a

(true),‖
j

�u(true)
j∣∣�u(true)
j

∣∣
∣∣∣∣∣. (42)

Here z⊥ = 1 (−1) if �a(true)
j points to the right (left) of �u(true)

j .
Such plots are shown in Figs. 7(b) and 7(c).

In order to compare these plots with the theoretical
relationship in Eq. (14), we must know the effect of the finite
time lapse on this relationship. It is found by calculating
the discrete equivalent to Eq. (14) (details are given in
Appendix D). Equations (D3) and (D4) lead directly to the
result [58]

�a(true)
j = −1 − γ

�t
�u(true)

j + �ζj /�t, (43)

〈�a(true)
j

〉
�u(true)
j

= −1 − γ

�t
�u(true)

j (44)

∼ − 2

3P
�u(true)

j for �t/P → 0, (45)

with the definitions

�ζj = �u(true)
j+1 − γ �u(true)

j , (46)

γ = (1 − c)2

2(c − 1 + �t/P )
∼ 1 − 2�t

3P
for �t/P → 0. (47)

This is an important result: Since �u(true)
j → �v(tj ) and �a(true)

j →
�av(tj ) for �t/P → 0, one might naively believe that expected
values of the accelerations for given velocities also approach
their continuum value in that limit, contrary to what we
now know [compare −1/P in Eq. (14) with −2/3P in
Eq. (45)].

The result in Eq. (44) is illustrated by Monte Carlo
simulated data in Figs. 7(b) and 7(c). Solid lines are calculated
from Eq. (44), while the dotted lines are the same statistical
measures calculated from the continuum theory [Eq. (2)].
Dashed lines are the results for infinitesimal sampling time
�t/P → 0 [Eq. (45)]. The difference between the dashed and
dotted lines emphasize the need to account for discretization
when comparing discretely sampled experimental data with
theory: Some discretization effects remain finite irrespective
of how small one chooses �t .

Similarly, for the fluctuations in the acceleration about
its expected value at a given velocity, we find the variance-
covariance matrix for the parallel and orthogonal components

of the acceleration
〈(�a(true)

j − 〈�a(true)
j

〉
�u(true)
j

)
⊗(�a(true)

j − 〈�a(true)
j

〉
�u(true)
j

)〉
�u(true)
j

= 〈�ζj ⊗ �ζj 〉/(�t)2

=
(

1 0
0 1

)
4(c − 1 + �t/P )2 − (1 − c)4

4P (c − 1 + �t/P )(�t/P )2

(
σP

�t

)2

(48)

∼
(

1 0
0 1

)
2σ 2

3�t
for �t/P → 0. (49)

In Eq. (48) one might naively expect that for �t/P → 0
the variance-covariance matrix of the secant acceleration
approaches the variance-covariance matrix of the tangent
velocity’s acceleration, which is Iσ 2δ(0). However, it does not,
and when we compare the ill-defined “infinite” quantity δ(0)
in the last expression with the divergence as �t−1 of the result
in Eq. (49), we are warned that the limits we compare here are
singular. Figures 7(d)–7(f) illustrate the results of Eqs. (48)
and (49) with the same symbols as in Figs. 7(b) and 7(c).

The method of conditional averaging [36] has been used
also in contexts other than cell motility, for example, for
analyzing electronic and physiological data [37] and for
modeling molecular dynamics simulation data of biomolecules
with both first- [59] and second-order [60] Langevin equations.
Corrections for finite time lapse in parameter estimation were
also discussed for the case of the Langevin equation describing
the observed quantity (see [61] as well as [62,63]). In these
cases, no spurious scale factor persisting for �t → 0 was
observed.

However, the results in Eqs. (44), (48), and (49) demonstrate
that caution is required when conditional averaging is used.
To this end, the exact analytical treatment that we gave the
OU model here is not possible for more complicated models.
However, an approximate treatment to leading order in �t

may be sufficient in such cases and much less is needed for
a health test of one’s protocol: If a dynamical model, say, a
Langevin equation, has been proposed and one’s estimators for
this model’s parameters cannot recover the correct parameter
values from data taken from a Monte Carlo simulation of
this model, one’s estimators are not healthy. An approximate
treatment to leading order in �t of discretization effects may
restore their health. If not, discretization effects can always
be handled with the computationally laborious fitting of one’s
Monte Carlo simulated model [7,28].

D. Power spectrum of time-lapse-sampled tangent
velocity including aliasing

We cannot time-lapse sample the tangent velocity of motile
cells because of noise on positions, as discussed below.
However, its power spectrum is a useful benchmark in the
following, easily derived, and a good place to explain aliasing.
So we do that now, and return to the power spectrum of the
secant-approximated velocities in Sec. VII E.

We define the discrete Fourier transform as

�̂vk = �t

N∑
j=1

ei2πfktj �vj = �t

N∑
j=1

ei2πkj/N �vj , (50)
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. Statistics of the two components of the secant acceleration defined in Eq. (40), parallel and orthogonal to �uj , respectively.
(a) Simulated trajectory, generated by iterating Eqs. (28) and (32) using Eq. (38) with �t/P = 0.5 and the number of points N = 10 000. The
inset shows the first 129 points of the trajectory, corresponding to the length of the experimental trajectory in Fig. 1(a). Red (light gray) dots
mark the sampled positions. Also shown is the acceleration of secant-approximated velocities for the (b) parallel and (c) orthogonal directions
relative to the velocity, respectively. (d)–(f) Elements of the variance-covariance matrix of the accelerations in (b) and (c). The solid lines in
(b)–(f) are the exact expressions for the expected values for the two directions given in Eqs. (44) and (48). Dashed lines in (b), (d), and (e)
are the results for infinitesimal sampling time �t/P → 0 from Eqs. (45) and (49) and dotted lines are the expected value for the continuous
model [Eqs. (2) and (3)]. The error bars are standard errors on the mean calculated as if all values falling in a given bin on the first axis are
uncorrelated. Thus the error bars shown underestimate the true error bars, not by much, however, judging from the scatter around the fitted
curves.
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where fk = k�f , �f = 1/tmsr, and tmsr = N�t . Then
the dynamics described by Eq. (28) Fourier transforms
to

ei2πk/N �̂vk = c �̂vk + �̂�vk, (51)

where we have assumed N large enough that we can neglect
contributions from the ends of the sum over j on the left-hand
side in Eq. (50). By solving this equation for �̂vk , we determine
the power spectrum of the time series �vj to be

P (aliased)
v (fk) ≡ 〈|�̂vk|2〉

tmsr

= P�v

1 + c2 − 2c cos(πfk/fNyq)

= (1 − c2)2D�t/P

1 + c2 − 2c cos(πfk/fNyq)
. (52)

The last identity follows from P�v being a white-noise
spectrum, a constant functions of frequency,

P�v = 〈|�̂�vk|2〉
tmsr

= (1 − c2)
2D�t

P
, (53)

in consequence of Eq. (31), and we have introduced
the Nyquist frequency, defined as half the sampling
frequency

fNyq ≡ 1

2�t
, (54)

which is the highest frequency that we can measure for a given
sampling frequency.

This power spectrum is normalized such that it has a
finite limit for N → ∞. It is well known from optical
trapping [64], where it appears as the power spectrum of
positions, when these are recorded with a quadrant photo
diode, hence very fast compared to the duration �t of the time
lapse.

If the limit N → ∞ is taken with fixed �t , we have
an infinitely long time series recorded with fixed sampling
frequency. Since the power spectrum is defined on all integer
multiples of �f = 1/tmsr and this measure of discreteness
vanishes compared to fNyq = 1/2�t , which defines the range
of frequencies the spectrum is defined on (up to periodic
repetition and mirror symmetry), P (aliased)

v is defined for all
real values of f in the limit tmsr → ∞.

The reason P (aliased)
v (f ) is referred to as aliased is be-

cause it is the sum of the distribution Pv(f ), the power
spectrum of the OU process given in Eq. (26), and all
those copies or aliases of it that can be made by shifting
it an integer multiple of fsample = 1/�t along the frequency
axis [64],

P (aliased)
v (f ) =

∞∑
n=−∞

Pv(f + nfsample). (55)

At finite sampling frequency fsample, Fourier components in the
trajectory, which differ by integer multiples of fsample, cannot
be distinguished, hence appear under alias as additional power
at the frequencies low enough to be resolved [65]. This is the
reason for having the sum on the right-hand side in Eq. (55).
In the limit �t → 0 with fk kept fixed, fNyq → ∞, meaning

fk/fNyq = 2�tfk → 0, and the Lorentzian Pv(f ) in Eq. (26)
is recovered from Eq. (52). A more formal way of seeing this
is by observing that fsample → ∞ for �t → 0, so for fixed f ,
only the term with n = 0 contributes in Eq. (55).

E. Power spectrum of secant-approximated velocity

To derive the power spectrum of secant-approximated
velocities �u(true)

j , we Fourier transform both sides of Eq. (39)
using Eq. (50), which gives

(e−i2πk/N − c) �̂u(true)
k = 1 − c

1 + c

P

�t
(1 + ei2πk/N )�̂�vk

+ (1 − cei2πk/N )
�̂�r (2)

k

�t
, (56)

where �̂�vk and �̂�r (2)
� are independent stochastic variables for

all k,�, because ��vi and ��r (2)
j are for all i,j . Here it is again

implicitly assumed that the contributions from the ends of the
sum in the Fourier transformation are negligible (see Sec. IX B
for details).

With the power spectrum defined as

P (true)
u (fk) = 〈∣∣ �̂u(true)

k

∣∣2〉/tmsr (57)

and similarly for P�v and P�r (2) , the statistical independence

of �̂�vk and �̂�r (2)
� simplifies calculations such that

|e−i2πk/N − c|2P (true)
u (fk)

=
(

1 − c

1 + c

P

�t

)2

|1 + ei2πk/N |2P�v + |1−cei2πk/N |2 P�r (2)

�t2
.

(58)

Here P�v and P�r (2) are white-noise spectra, constant functions
of frequency, with P�v given in Eq. (53) and

P�r (2) = 4D�t

(
�t − 2

1 − c

1 + c
P

)
, (59)

so we have

P (true)
u (fk) = (1 − c)2

c

(
P

�t

)2
P�v

1 + c2 − 2c cos(πfk/fNyq)

+ P�r (2)

(�t)2
− 1

c

(
1 − c

1 + c

P

�t

)2

P�v

= (1 − c)2

c

(
P

�t

)2

P (aliased)
v (fk)

+ 4D

(
1 − 1 − c2

2c

P

�t

)
. (60)

Here the coefficient to P (aliased)
v (fk) approaches 1 for vanishing

�t/P , while the second and last term, an additive constant,
is positive, but vanishes for vanishing �t/P . Figure 8 shows
a comparison of P (aliased)

v (fk) and P (true)
u (fk) for �t = P/2

and the number of sample points N = 10 000. Note that the
time averaging done in Eq. (6) makes �u(true) a low-pass-filtered
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FIG. 8. Comparison of power spectra of secant-approximated-
velocity P (true)

u (fk) (solid line) and tangent velocity P (aliased)
v (fk)

(dashed line) for the the OU process. Data points are power spectral
values from a trajectory consisting of N = 10 000 positions generated
by iterating Eqs. (28) and (32) using Eq. (38). The sampling
time is �t/P = 0.5. The frequency axis is discrete because the
measurement time is finite, �f = 1/tmsr with tmsr = N�t , making
�f/fsample = 1/10 000. Note that the time averaging done in Eq. (6)
makes �u(true) a low-pass-filtered version of �v, as borne out by this
figure’s comparison of their power spectra.

version of �v, as borne out by this figure’s comparison of their
power spectra.

F. Mean-square displacement: Fürth’s formula

The fact that positions are not recorded continuously
does not affect Fürth’s formula in any way, except that the
experimental data with which we compare it are available
only at points in time that are integer multiples of �t . Thus
the mean-square displacement is a statistics that is without
discretization errors. This is a clear advantage of the mean-
square displacement, but comes with the cost that values of the
mean-square displacement are highly correlated in time, when
calculated from a single trajectory [46,47]. So if discretization
effects can be modeled as we do here, then one can do better
than using the mean-square displacement.

G. Autocovariance of secant-approximated velocities

Finally, we show how the autocovariance of secant-
approximated velocities is changed due to the discrete sam-
pling of position data. Direct calculation using Eqs. (6)
and (20) gives

φ
(true)
j−k ≡ 〈�u(true)

j · �u(true)
k

〉
= 2P 2(cosh(�t/P ) − 1)

(�t)2
φ(tj − tk) for j �= k, (61)

φ
(true)
0 ≡ 〈(�u(true)

j

)2〉 = 2P 2(e−�t/P − 1 + �t/P )

(�t)2
φ(0). (62)

Note how discretization only causes a constant prefactor
2P 2[cosh(�t/P ) − 1]/(�t)2 = 1 + O((�t/P )2) for j �= k,

but a different, smaller prefactor 2P 2[exp(−�t/P ) − 1 +
�t/P ]/(�t)2 = 1 − O(�t/P ) for j = k. On a lin-log plot
(see Fig. 5) the values of the autocovariance function φ

(true)
j−k

fall on a straight line with slope −1/P , as they do for φ(t),
and the only signature consequence of discretization is the
value φ

(true)
0 at j − k = 0, which falls below the straight line

defined by the other values, by a factor [exp(−�t/P ) − 1 +
�t/P ]/[cosh(�t/P ) − 1] = 1 − �t/3P + O((�t/P )2). For
how to handle models more complicated than the OU model,
see Appendix C.

VIII. CONSEQUENCES OF LOCALIZATION ERRORS

In this section we finally make contact with reality inasmuch
as we assume that each experimentally recorded position �rj ,
j = 0,1, . . . ,N , is related to an underlying true position �r (true)

j

as described in Eq. (7), i.e., by an additive random noise �ξj with
zero mean, time-independent variance σ 2

pos for each of its two

components, and independent of �r (true)
j as well as �ξk with k �= j .

Here we demonstrate how the statistics derived in the previous
section, the mean-square displacement, the autocovariance of
the secant-approximated velocity, and the power spectrum,
are affected by localization errors. The resulting formulas
are for direct use: They can be compared directly to the
corresponding experimental statistics, once their parameters
have been determined by fitting the formula given for the
power spectrum to data.

A. Distribution of squared secant velocities in the presence
of localization errors

When adding a Gaussian distributed localization error �ξj to
each component of the true position �r (true)

j , both components

of �uj = �u(true)
j + (�ξj − �ξj−1)/�t are still Gaussian distributed

random numbers with expected values equal to zero and
identical standard deviations. As outlined in Sec. VII B, then
�u2

j is exponentially distributed with expected value σ 2
u = 〈�u2

j 〉,

p
(�u2

j = u2) = 1〈�u2
j

〉 exp

[
− u2

σ 2
u

]
, (63)

with σ 2
u defined in Eq. (69). In Fig. 1(c) this property was used

as an initial test to check if the data were consistent with the
OU model.

B. Statistics of the acceleration of secant velocities
including localization errors

In Sec. VII C we analyzed the discrete acceleration of the
secant velocity in the absence of localization errors. Here we
show how the noise on the position changes the expressions
in Eqs. (44) and (48). The details of the calculations are rather
lengthy and are given in Appendix E 2.

In the presence of localization errors, the measured secant
acceleration �uj is [see Eqs. (5) and (7)]

�uj = �u(true)
j +

�ξj − �ξj−1

�t
= �u(true)

j + ��uj , (64)
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with �u(true)
j being the true underlying secant velocity and

��uj ≡
�ξj − �ξj−1

�t
. (65)

The task is to calculate the expected value and variance-
covariance matrix for the measured secant acceleration �aj =
(�uj+1 − �uj )/�t , given a measured secant velocity �uj . As
shown in Appendix E, the result for the expected value for
the acceleration of the secant velocity including localization
errors is

〈�aj 〉�uj
= −1 − ε

�t
�uj , (66)

with

ε = γ σ 2
�u(true) − 2σ 2

pos/(�t)2

σ 2
�u(true) + 4σ 2

pos/(�t)2
= γ σ 2

�u(true) − 2σ 2
pos/�t2

σ 2
u

. (67)

Here

σ 2
�u(true) ≡ 〈(�u(true)

j

)2〉
= 4DP

exp(−�t/P ) − 1 + �t/P

�t2
for all j, (68)

which follows from Eqs. (20) and (62), and we introduced

σ 2
u = σ 2

�u(true) + 4σ 2
pos/�t2 (69)

as the variance of �uj [see Eq. (64)]. Notice that in the
limit where localization errors are negligible, i.e., γ σ 2

�u(true) �
σ 2

pos/�t2, we recover ε ≈ γ and, consequently, Eq. (44),
as expected. In the opposite limit, where the localiza-
tion errors dominate, ε ≈ − 1

2 , which implies that 〈�aj 〉�uj
=

− 3�t
2 �uj .
The variance-covariance matrix for the acceleration of the

discrete secant velocity in the presence of localization errors
is found in a similar manner. The result is (see Appendix E 2)

〈(�aj − 〈�aj 〉�uj
) ⊗ (�aj − 〈�aj 〉�uj

)〉�uj

=
(

1 0
0 1

){
4(c − 1 + �t/P )2 − (1 − c)4

4P (c − 1 + �t/P )(�t/P )2

(
σP

�t

)2

+ 2

(�t)4

σ 2
pos

σ 2
u

[
3σ 2

pos/(�t)2 + σ 2
�u(true) (1 + γ + γ 2)

]}
.

(70)

We notice that the first term is identical to Eq. (48), the
expression for the variance-covariance matrix in the absence
of localization errors, and that the last term vanishes in the
limit σ 2

pos → 0.
The value of σ 2

�u(true) vanishes to lowest order in �t/P , so in
the limit �t/P → 0, Eq. (70) becomes

〈(�aj − 〈�aj 〉�uj
) ⊗ (�aj − 〈�aj 〉�uj

)〉�uj

→
(

1 0
0 1

){
2σ 2

3�t
+ 3σ 2

pos

2(�t)4

}
for �t/P → 0. (71)

Notice again that the factor in the first term differs from
unity even in the limit �t/P → 0 (see the discussion in
Sec. VII C).

An example with Monte Carlo simulated data is shown
in Fig. 9. Solid lines are the full analytic results, while the
dashed and dotted lines are the results for the limiting cases of
no localization and dominant localization error, respectively.
The figures clearly demonstrate how the statistics of the
acceleration of the secant-approximated velocity is distorted
by localization errors.

C. Power spectrum of secant-approximated velocities
in the presence of localization errors

A discrete Fourier transformation of Eq. (64) gives

�̂uk = �̂u(true)
k + 1

�t
(1 − ei2πk/N )�̂ξk, (72)

where we have simplified the expression by once again
neglecting contributions from the ends of the time interval
on which Fourier transformation is done; Sec. IX B gives the

result with these end contributions included. As 〈�̂ξ ∗
k ⊗ �̂ξk′ 〉 =

2σ 2
pos(�t)2Iδk,k′ and the localization error is uncorrelated

with the true secant velocity, the power spectrum defined in
Sec. VII E becomes

Pu(fk) = P (true)
u (fk) + 4σ 2

pos

�t
[1 − cos(πfk/fNyq)], (73)

with P (true)
u (fk) equal to the power spectrum in Eq. (60). The

localization errors give rise to an additive frequency-dependent
term that contributes the most, relatively, at high frequencies,
where the spectrum otherwise would vanish, as shown in
Fig. 10(a).

D. Distribution of power spectral values and parameter
estimation with maximum likelihood

In Sec. III A we mentioned two distinct advantages of fitting
experimental data to the power spectrum rather than to the
mean-square displacement or to the velocity autocovariance
function: The power spectral values are statistically indepen-
dent for any linear dynamic theory driven by an additive
noise and the statistical distribution of power spectral values
is known for any frequency in the spectrum. We now derive
this distribution for the OU model and explain how it can be
used for maximum-likelihood estimation of the parameters of
the model and for a goodness-of-fit test.

Equation (72) shows that the Fourier transformed secant
velocity �̂uk is the sum of Fourier transformed Gaussian
variables. Consequently, each component in �̂uk is also a
Gaussian variable because of the definition of the Fourier
transform in Eq. (50). When taking the modulus square of
each component of �̂uk , both are exponentially distributed with
the same expected value. Consequently, the power spectral
values | �̂uk|2/tmsr are � distributed with shape parameter 2 and
their expected values are 〈|�̂uk|2〉/tmsr = Pu(fk). So the power
spectral values are � distributed with shape parameter 2 and
scale parameter Pu(fk)/2, i.e.,

p

(
| �̂uk|2
tmsr

= y

)
=
(

2

Pu(fk)

)2

y exp

[
− 2y

Pu(fk)

]
. (74)
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(a) (b)

(c) (d)

(e) (f)

FIG. 9. The two components of the measured secant acceleration, i.e., parallel and orthogonal to the measured secant velocity �uj ,
including localization error. (a) Same trajectory as in Fig. 7(a), except a Gaussian distributed localization error with standard deviation
σpos = 0.2σP 3/2 was added to each position. The time increment is �t/P = 0.5 and the number of data points is 10 000. Also shown is the
acceleration of secant-approximated velocities for the (b) parallel and (c) orthogonal directions relative to the velocity. (d)–(f) Elements of the
variance-covariance matrix for the accelerations in (b) and (c). The solid lines are the exact expressions for the expected values for the two
directions found in Eq. (66). The dashed line in (b) is the expression in Eq. (44), valid in the absence of localization errors, while the dotted line
is the limiting case in which localization errors dominate and ε in Eqs. (66) and (67) tends to − 1

2 . Error bars are standard errors on the mean.

A standard procedure is to bin average the power spectral
values along the frequency axis and fit the theory to these
averaged data points with (weighted) least-squares fitting. The
problem is that these averages are not Gaussian distributed,

while this is assumed in least-squares fitting [66]. This is not
optimal, and we can do better, as we know the distribution
of the power spectral values, Eq. (74). The solution is
maximum-likelihood estimation: Given a set of power spectral
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(a)

(b)

FIG. 10. Comparison of Pu(fk) (solid line) with P (true)
u (fk)

(dashed line) for the OU process. Data points in (a) are power
spectral values from a trajectory consisting of N = 10 000 positions
generated by iterating Eqs. (28) and (32) using Eq. (38) and adding
a Gaussian distributed localization error with standard deviation
σpos = 0.2σP 3/2 to each position. The frequency axis is discrete
because the measurement time is finite, �f = 1/tmsr with tmsr =
N�t , making �f/fsample = 1/10 000. Here Pu(fk) is shifted up
compared to P (true)

u (fk) by an amount growing from 0 at f = 0 to
its maximum at f = fNyq; see Eq. (73). (b) Histogram of the ratios
2| �̂uk|2/Pu(fk)tmsr, which is supposed to be � distributed with shape
parameter 2 and scale parameter 1 [Eq. (76)]. The red (light gray)
dots show the expected number of counts in each bin. Error bars are
the square roots of the expected number of counts.

values {|�̂uk|2/tmsr}k=0,N−1 the log-likelihood function for the
distribution in Eq. (74) is

�(θ |{| �̂uk|2/tmsr}k=1,N )

= 2
N∑

k=1

ln

(
2

Pu(fk)

)
+

N∑
k=1

ln

(
| �̂uk|2
tmsr

)

−
N∑

i=1

2| �̂uk|2
Pu(fk)tmsr

, (75)

where Pu(fk) depends on the parameters of the OU model,
θ = {D,P,σpos} (the diffusion coefficient D, the persistent
time P , and the localization error σpos). This log-likelihood is
now maximized with respect to these parameters taking the

experimental power spectral values | �̂uk|2/tmsr as input. A fit to
the power spectral values of our experimental data is shown in
Fig. 2(e).

It is not sufficient to fit the power spectral values to their
expected values Pu(fk). We also have to check if the data are
consistent with the theory. Again, we take advantage of our
knowledge of the distribution of the power spectral values
[Eq. (74)]: After a fit to the power spectrum, we get for
each frequency fk a fitted expected value Pu(fk). Dividing
for each frequency the experimental power spectral value
| �̂uk|2/tmsr with the scale parameter Pu(fk)/2 of the distribution
in Eq. (74), the ratio 2| �̂uk|2/Pu(fk)tmsr is � distributed with
shape parameter 2 and scale parameter 1 for all frequencies,
i.e.,

p

(
2| �̂uk|2

Pu(fk)tmsr
= z

)
= ze−z for all k = 0,1,2, . . . ,N − 1.

(76)
This provides a diagnostic test of the fit to the power
spectrum. If the theory is correct, the distribution of the ratios
2| �̂uk|2/Pu(fk)tmsr is given by the probability distribution in
Eq. (76). This can be tested using, e.g., a χ2-goodness-of-fit
test. The inset in Fig. 2(e) and Fig. 10(b) both show examples of
the distributions of these ratios for experimental and simulated
data, respectively.

E. Autocovariance of secant-approximated velocities
in the presence of localization errors

We now return to the autocovariance of secant-
approximated velocities introduces in Sec. VII G and we
show how they are distorted by localization errors. With
�uj = �u(true)

j + (�ξj − �ξj−1)/�t being the secant-approximated
velocity defined in Eq. (64), the autocovariance function
φj−k = 〈�uj · �uk〉 consists of two terms

φj−k = φ
(true)
j−k + 〈(�ξj − �ξj−1)(�ξk − �ξk−1)〉

(�t)2
, (77)

where φ
(true)
j−k = 〈�u(true)

j · �u(true)
k 〉 is given in Eqs. (61) and (62).

Consequently,

φj = φ
(true)
j for |j | � 2, (78)

φ±1 = φ
(true)
1 − 2σ 2

pos/(�t)2, (79)

φ0 = φ
(true)
0 + 4σ 2

pos/(�t)2, (80)

which shows that the localization errors change the correlation
function only at times t0 = 0 and t±1 = ±�t . The finding is
illustrated in Fig. 11 and the implications are discussed in the
next section.

F. How to eyeball the magnitude of the localization error

Note that φ
(true)
0 has a lower value than φ(0) due to

discretization and localization error raises this lowered value.
Fortunately, we know from our theory by how much φ

(true)
0

is lower than φ(0), so the experimental localization error can
be determined by including σ 2

pos as a parameter in a fit of a
theoretical φ(t) to experimental data for φj .
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FIG. 11. Velocity autocovariance function with discretization
effects and effects of localization errors. The solid line, closed circles,
and open circles are the same as in Fig. 5. In particular, with the
present section’s notation, open circles show φ

(true)
j = 〈�u(true)

j · �u(true)
0 〉

for �t = P/2. Triangles show φj = 〈�uj · �u0〉, which equals φ
(true)
j

except for j = 0,±1, where φj is shifted up by 4σ 2
pos and down by

2σ 2
pos, respectively, relatively to the values of φ(true). The magnitude

of the localization error is σpos = 0.2σP 3/2.

Note also that the presence or absence of noise to be
accounted for can be seen directly from the manner φ1 falls
below the backward extrapolation of φj from its values for
j � 2 (see Fig. 11). This observation is valid beyond the OU
process and can be used if we have chosen �t � P , with P

denoting the shortest correlation time in case there is more than
one. In that case the initial decrease in the correlation function
φ(t) is plotted as an essentially straight line for time lags t up to
several times �t and because �t/P � 1, φ

(true)
j = φ(tj ) to a

very good approximation, especially for j � 2. Consequently,
the experimental values for φj also are plotted on top of the
straight line representing φ(t), except for j = 0,±1, and 2σ 2

pos
can be read off the plot as the amount by which φ1 falls below
the straight line passing through φj ’s values for j � 2. This
quick eyeball estimation of the noise level can include and
find confirmation in the value of φ0, which, in the absence
of discretization effects, must fall twice as much above the
straight line through φj with j � 2, as φ1 falls below it, and
never more than this, since discretization effects lower this
value.

G. Mean-square displacement as a function of time
in the presence of localization error

Finally, Fürth’s formula [Eq. (22)] is slightly modified due
to the localization error, as

〈[�r(t) − �r(0)]2〉
= 〈[�r (true)(t) − �r (true)(0) + �ξ (t) − �ξ (0)]2〉
= 〈[�r (true)(t) − �r (true)(0)]2〉 + 4σ 2

pos

= 4D[t − P (1 − e−t/P )] + 4σ 2
pos. (81)

The value of the root-mean-square displacement is shifted
upward by a constant value 4σ 2

pos. This is illustrated in Fig. 12
and provides an alternative way to determine σpos.

FIG. 12. Mean-square displacement according to Fürth’s formula
(solid line), with the effect of localization error included. Here σpos =
0.2σP 3/2. The localization error shifts the graph shown in Fig. 6 up
by a constant value 4σ 2

pos.

IX. CONSEQUENCES OF FINITE MEASUREMENT TIME

Cell trajectories are only recorded for a finite time [67].
In Sec. VI C the power spectrum for the tangent velocity
was derived under the assumption that the measurement time
tmsr was much longer than the persistence time P and in
Sec. VII E the contributions from the ends of the sum in
the Fourier transformation were neglected. In the present
section we account for the finite measurement time and
derive the power spectra for both the tangent velocity and
the secant-approximated velocity.

A. Effect of finite measurement time on tangent-velocity
power spectrum

Recall from Eq. (25) and the definition of the power
spectrum in Eq. (26) that if all terms are kept, the power
spectrum for continuous measurements is

Pv(fk) = 〈|�̃v(fk)|2〉/tmsr

= 1

P −2 + (2πfk)2
{σ 2〈| �̃η(fk)|2〉 + 〈[�v(tmsr) − �v(0)]2〉

− 2σ 〈Re[ �̃η(fk)] · [�v(tmsr) − �v(0)]〉}/tmsr. (82)

A straightforward calculation shows that the real and imagi-
nary parts of the components of �̃η(fk) are independent random
Gaussian variables with identical variances and

〈η̃∗
a(fk)η̃b(fk′)〉 = δa,bδk,k′ tmsr, (83)

which gives

〈�̃η∗(fk) · �̃η(fk′)〉 = 2tmsrδk,k′ . (84)

The second term in Eq. (82) is

〈[�v(tmsr) − �v(0)]2〉 = 2〈�v2〉 − 2φ(tmsr) = 2σ 2P (1 − e−tmsr/P ),

(85)

where we have used Eqs. (17) and (20). Direct calculations
give the last term in Eq. (82),

〈Re{�̃η(fk)} · �v(tmsr)〉 = 2σP
1 − e−tmsr/P

1 + (2πPfk)2
(86)
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and

〈Re{�̃η(fk)} · �v(0)〉 = 0, (87)

as �η(t) is independent of �v(0) for t � 0.
Finally, we have the velocity power spectrum for a finite

measurement time

Pv(fk) = 〈|�̃v(fk)|2〉/tmsr

= 4D

1 + (2πPfk)2

[
1 + P

tmsr
(1 − e−tmsr/P )

×
(

1 − 2

1 + (2πPfk)2

)]
. (88)

Compared with the expression for the infinite measurement
time in Eq. (26), the finite measurement time gives a correction

of order (P/tmsr)(1 − e−tmsr/P ) → P/tmsr for tmsr/P → ∞
with a coefficient that numerically is less than one. So the
contributions from the ends of the time interval vanish when
the measurement time tmsr is much longer than the persistence
time P .

B. Effect of finite measurement time on secant-approximated
velocity power spectrum

When introducing the discrete Fourier transformation of
the secant-approximated velocities in Eq. (56), contributions
from the ends of the sum in the Fourier transformation were
neglected. In Appendix F these end point contributions are kept
and the resulting power spectrum for the secant-approximated
velocities becomes

P (finite)
u (fk) = Pu(fk) + 4σ 2

pos

tmsr
cos(2πk/N ) + 1

tmsr

[
4DP

(1 − c)3

1 + c

{
(1 − cN − cN−1) cos(2πk/N ) − cN−1

− 2 cos2(πk/N )[2 − cN−1(1 + c)2 + 2{cN (1 + c) − c} cos(2πk/N )]

1 + c2 − 2c cos(2πk/N )

}
− 8D�t

(
1 − 2

1 − c

1 + c

P

�t

)
(1 − cN ) + 2(�t)2(1 − cN )σ 2

�u(true)

]
[1 + c2 − 2c cos(2πk/N )]−1. (89)

Here Pu(fk) is the power spectrum for the secant-approximated
velocity in presence of localization errors from Eq. (73) and
σ 2

�u(true) is defined in Eq. (68). Notice that contributions from the
end points in the sums of the Fourier transforms decay with
the length of the time series as 1/N as the measurement time
is tmsr = N�t .

Figure 13 shows a comparison between the power spectrum
for the tangent velocity, the secant-approximated velocity,
and the secant-approximated velocity with localization errors

FIG. 13. Power spectra including the effects of finite measure-
ment time. Power spectra for the tangent velocity, the secant-
approximated velocity, and the secant-approximated velocity with
localization error, respectively. Closed circles are the results including
the ends of the sum in the Fourier transforms [see Eqs. (88) and (89)],
while open circles are without these end points [see Eqs. (25), (60),
and (73)]. The parameters are the sample time �t = P/2, the
localization error σpos = 0.2σP 3/2, and the length of the trajectory
N = 32.

including the contributions from the ends of the Fourier
transform (closed circles) and without them (open circles) for
a trajectory with N = 32 points. Notice how the inclusion of
the ends increases the expected power spectral values for all
frequencies, except at the lowest frequencies.

X. DISCUSSION AND CONCLUSION

Given that space and time both are continuous and given that
it is not possible to measure continuously in time, empirical
data from a continuous dynamical process are a time series of
values separated in time by a finite time lapse. The time lapse
is an experimental artifact, not part of the dynamical process,
and hence should not occur in a model describing this process
in continuous time.

So how do we construct such a continuous model from time-
lapse recorded data? How do we do this when experimental
errors occur on recorded coordinates? Alternatively, if a model
already exists, how do we connect it with time-lapse recorded
data, which typically contain experimental errors?

Conditional averaging will characterize the individual terms
in an unknown stochastic differential equation, if such an
equation will model the process in continuous space-time.
However, a naive approach can lead to highly incorrect
parameter estimates, as we have demonstrated. A feasible
path to correct parameter extraction via conditional averaging
simulates the model in effectively continuous time and takes
data from the simulated model exactly as they were taken in
the experiment. Models are then fitted to data by simulating
the model several times in each iteration [7]. This procedure is
computationally expensive and generates no analytical under-
standing of how recorded data are affected by discretization
effects and localization errors.
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In the present paper we recommended several steps de-
scribing how to plot and analyze experimental data and how
to compare data with a theoretical model for the underlying
dynamics. The model comparison must account for how
test statistics, such as the mean-square displacement and the
velocity power spectrum, are distorted by discretization, local-
ization errors, and finite measurement times. In Sec. VII C we
demonstrated how a naive direct comparison of a theoretical
model formulated in continuous time with discretely sampled
data can lead to gross misinterpretation of the fitted model
parameters.

Then we used the Ornstein-Uhlenbeck model as an example
of persistent random motion. We derived analytically how
test statistics were influenced by experimental conditions, but
we also used Monte Carlo simulations for illustrations. More
realistic and complex models for cell motility might not be
analytically solvable. In this case we recommend Monte Carlo
simulations as an easier route to investigate the effects of
discretization and localization errors. Monte Carlo simulation
also provides errors estimates for fitted parameter values.

Finally, we stressed the importance of fitting to uncorrelated
data, specifically, the power spectrum, instead of correlated
data, such as the mean-square displacements. Otherwise, it
is difficult to obtain reliable error estimates on the resulting
estimates for parameter values from standard fitting routines.
Consequently, one also cannot do the goodness-of-fit tests
necessary to validate that data are consistent with a given
candidate model.

Conditional averaging, as discussed here, works for motility
that is described by a stochastic differential equation, as, e.g.,
the OU process. The method applies also to motility that
is described by a stochastic integro-differential equation, at
least when an exact mathematical transformation will recast
this stochastic integro-differential equation as a small set of
coupled stochastic differential equations. This is demonstrated
in Refs. [7,28], in which motility models of this kind are
deduced from experimental data.

Such a transformation may be possible only for integro-
differential equations with particularly simple memory ker-
nels. The kernels in Refs. [7,28] decrease exponentially in
time, i.e., they “forget” at a constant rate. More complicated
memory kernels can result in an infinity of coupled differential
equations when the dynamics they describe is sought modeled
with ordinary stochastic differential equations without time
lag. For example, a dynamics as “simple” as Brownian motion
of a microsphere in an incompressible fluid such as water
does not seem to admit such a transformation when modeled
hydrodynamically correctly (see [68] and references therein).
Its (time lag)−1/2 power-law memory kernel describes the
backflow effect from the surrounding fluid, which has infinitely
many degrees of freedom. It thus stands to reason that its
dynamics cannot be described by a few variables that are local
in time.

All dynamics with power-law-decreasing velocity auto-
covariance may have the same problem, which includes
fractional Brownian motion. Then it is of little help that effects
of localization errors and motion blur already are known for
this problem [69]. Motility models in the same vein, i.e., with
long-term memory effects showing as anomalous diffusive
behavior, may thus be too much of a challenge for the approach

suggested here or the approach must somehow be recast in the
frequency domain.

On the other hand, the empirical evidence for such
anomalous behavior in motile cells is weak. So its observation
may be due to artifacts, such as localization errors and effects
of finite sampling rate going unaccounted for in data sets of
limited statistics. Also, we find it difficult to imagine the
mechanism inside a motile cell that will provide it with the
long-term memory needed for the cell to display a velocity-
autocovariance function with a fat power-law tail. So maybe
it is not there. Maybe proper accounting for measurement
artifacts combined with modeling, along the lines described
here, will eliminate the observed power laws.
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APPENDIX A: MEAN-SQUARE DISPLACEMENT AND
AUTOCORRELATION FROM DATA

Given a trajectory of measured positions �ri for i =
0, . . . ,N , the mean-square displacement for this specific
trajectory is estimated with

〈
d2

n

〉 = 1

N − n + 1

N−n∑
i=0

(�ri+n − �ri)
2. (A1)

Notice that the estimates obtained in this manner for different
values of n are highly correlated, as they are generated from
the same time series of positions (see, e.g., the discussion in
Sec. 3.2 in Ref. [47]). We estimate the autocovariance of the
secant-approximated velocities with the expression [28]

φj = 〈�ui �ui+j 〉

= 1

N − j − 1

N−j∑
k=1

(
�uk − 1

N − j

N−j∑
�=1

�u�

)

×
⎛⎝�uk+j − 1

N − j

N∑
�=j+1

�u�

⎞⎠ . (A2)

APPENDIX B: DEFINITION OF GENERALIZED
GAUSSIAN WHITE NOISE

Note that the components of �η have infinite variance, if one
reads Eq. (11) naively as the autocovariance of an ordinary
stochastic process, since for t ′ = t ′′ it states that

〈ηa(t ′)2〉 = δ(0) = ∞. (B1)
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The components of �η are not ordinary Gaussian random
variables, however, but advanced-math quantities: Each com-
ponent is the first derivative of a Wiener process [70].

In tune with this, ηa does not really have an expected value,
or an autocovariance, though it may seem that we gave those
quantities in Eq. (11). The Dirac δ function in Eq. (11) is a
reminder that we actually are doing something more abstract
in Eq. (11). The equation uses well-known notation beyond
its conventional range of application. It does this because
it is very convenient: The rules for how to calculate with
expected values hold also when the expected-value symbol is
used more abstractly in advanced math, so one can essentially
do advanced-math calculations effortlessly, if one knows basic
math of expected values. This is very slick and convenient for
fast calculation of results in any context in which �η occurs in
an integral of the bilinear form

(f,ηa) ≡
∫

f (t)ηa(t)dt, (B2)

and expected values and variances of such forms are to be
evaluated. For example,

〈(f,ηa)(g,ηb)〉 = (f,g)δa,b (B3)

is an essentially trivial consequence of Eq. (11), but very useful
in the following. It is (f,ηa), where f is any real function with
(f,f ) < 0, i.e., f is square integrable, which is a Gaussian
random variable. This is what is meant by a generalized
Gaussian random variable, in analogy with other so-called
generalized functions, such as Dirac’s δ function. Note that the
Gaussian random variable (f,ηa) has zero mean and variance
(f,f ) in consequence of Eq. (11). An important special case is
the Gaussian random variable

∫ t2
t1

ηa(t ′)dt ′, which has variance
t2 − t1.

APPENDIX C: AUTOCOVARIANCE OF
SECANT-APPROXIMATED VELOCITIES

BEYOND THE OU MODEL

For motility models that are more complicated than the
OU process, we may not be able to derive an equivalent exact
analytical formula for φ corrected for discretization effects (see
Sec. VII G). In that situation, the following considerations can
be applied: If φ(t) can be Taylor approximated (with proper
handling of t = 0 where its first derivative is discontinuous)
then it remains true that

φ
(true)
j−k = φ(tj − tk) + 1

12 (�t)2φ′′(tj − tk)

+O((�t)4) for j �= k, (C1)

φ
(true)
0 = φ(0) − 1

3�t |φ′(0)|
+ 1

12 (�t)2φ′′(0) + O((�t)3). (C2)

Thus, to O(�t) one has

φ
(true)
j−k = φ(tj − tk) for j �= k, (C3)

φ
(true)
0 =

(
1 − �t |φ′(0)|

3φ(0)

)
φ(0). (C4)

So in this approximation, discretization affects only the data
point at zero time separation in φj , by lowering it an amount
proportional to �t . In the better approximation of Eq. (C1),
the dominant effect of discretization remains a lowering of
the first data point in φj , at j = 0, while other data points are
raised where the function is convex and lowered where it is
concave.

APPENDIX D: EFFECTIVE DISCRETE PROCESS

By inserting Eq. (16) in Eq. (6), we find that we can write

�u(true)
j = (gj ,�η) (D1)

with

gj (t) = σP

�t
×
⎧⎨⎩

(1 − c)e−(tj−1−t)/P for t � tj−1

1 − e−(tj −t)/P for tj−1 � t � tj

0 for tj � t.

(D2)
Here gj is a square-integrable function of time. The set of such
functions form an abstract vector space with a scalar product
(·,·) defined in Eq. (B2). In quantum mechanics it is used as the
space of wave functions. Here we just think of the functions
gj and gj+1 as two vectors and split gj+1 into its component
after gj , call it γgj , and its component orthogonal to gj , which
then is gj+1 − γgj . Orthogonality, i.e., (gj ,gj+1 − γgj ) = 0,
determines γ = (gj+1,gj )/(gj ,gj ).

Using this in Eq. (D1), we find the useful relationship

�u(true)
j+1 = γ �u(true)

j + �ζj , (D3)

where

�ζj ≡ (gj+1 − γgj ,�η) (D4)

by construction is uncorrelated with �u(true)
j ,

〈�ζj ⊗ �uj 〉 =
(

1 0
0 1

)
(gj+1 − γgj ,gj ) = 0. (D5)

Equation (D2) inserted in the definition of (·,·) in Eq. (B2)
gives

(gj ,gj ) = σ 2P 3

(�t)2
(c − 1 + �t/P ), (D6)

(gj ,gj+k) = 1

2

σ 2P 3

(�t)2
(1 − c)2ck−1 for k = 1,2, . . . , (D7)

where we recall that c = exp(−�t/P ). This show that the
left-hand sides are j -independent constants. Hence so is γ ,

γ = (1 − c)2

2(c − 1 + �t/P )
∼ 1 − 2�t

3P
for �t/P → 0. (D8)

While �ζj is an ordinary Gaussian noise, it is not white
because each component of �ζj is correlated with its values
at other times: 〈�ζi ⊗ �ζj 〉 �= 0 for all i,j . The fact that �ζj

is correlated with �ζi for all values of i makes Eq. (D3)
unpractical for numerical iteration. It is not a good way to
Monte Carlo simulate a time series of secant velocities �u(true)

j .
Equation (D3) is also impractical as the starting point for a
calculation of the power spectrum of �u(true)

j . Equation (D3) is
maximally convenient for derivation of the results presented in
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Appendix E. An alternative, complementary recursion relation
for �u(true)

j was given in Sec. VII A 1.

APPENDIX E: EXPECTED VALUE AND COVARIANCE
MATRIX FOR THE SECANT-APPROXIMATED VELOCITY

IN THE PRESENCE OF LOCALIZATION ERROR

1. Expected value

To derive Eqs. (66) and (67), we consider the expected value
of the acceleration of the secant velocities, given a measured
secant velocity �uj ,

〈�aj 〉�uj
= 〈�uj+1〉�uj

�t
− �uj

�t
. (E1)

Recalling the dynamics of �u(true)
j given in Eq. (D3), the expected

value 〈�uj+1〉�uj
can be expressed as

〈�uj+1〉�uj
=
〈
γ �u(true)

j + �ζj +
�ξj+1 − �ξj

�t

〉
�uj

. (E2)

The vector �uj is given by the independent variables on the
right-hand side of Eq. (64). For given �uj , Eq. (64) thus gives
�u(true)

j in terms of the known value for �uj and the stochastic

variable ��uj defined in Eq. (65). The localization error �ξj+1 at
time tj+1 and the vector �ζj defined in Eq. (D4) are independent
of these variables, so

〈�ζj 〉�uj
= 〈�ξj+1〉�uj

= 0 (E3)

and hence

〈�uj+1〉�uj
= γ

〈�u(true)
j

〉
�uj

− 〈�ξj 〉�uj

�t
. (E4)

So the task is to calculate the expected values on the right-hand
side of Eq. (E4). We show in detail how to find 〈�u(true)

j 〉�uj
and

state the result for the other terms.
Recall that the localization error �ξj is defined as a Gaussian

variable with independent components with zero mean and
variance σ 2

pos for all j . That is, 〈�ξ 2
j 〉 = 2σ 2

pos for all j .

This implies that ��uj ≡ (�ξj − �ξj−1)/�t has zero mean and
variance σ 2

�u = 4σ 2
pos/�t2 for all j . Similarly, we denote the

variance of the measured secant velocity �uj by σ 2
u for all j and

from Eq. (64) we get σ 2
u = σ 2

�u(true) + σ 2
�u = σ 2

�u(true) + 4σ 2
pos/�t2

[see Eqs. (68) and (69)].
With this notation, the probabilities for observing the

vectors �u(true)
j , �ξj , ��uj , and �uj become

p�u(true)

(�u(true)
j

) = 1

2πσ 2
�u(true)

exp

(
−
[�u(true)

j

]2
2σ 2

�u(true)

)
, (E5)

ppos(�ξj ) = 1

2πσ 2
pos

exp

(
− [�ξj ]2

2σ 2
pos

)
, (E6)

p�u(��uj ) = 1

2πσ 2
�u

exp

(
− [��uj ]2

2σ 2
�u

)
, (E7)

pu(�uj ) = 1

2πσ 2
u

exp

(
− [�uj ]2

2σ 2
u

)
, (E8)

since all four vectors have their two-component normal
distributed with zero mean and identical variances. With the
same notation, the conditional probability that the true secant
velocity is �u(true)

j given a measured vector �uj is

p
(�u(true)

j

∣∣�uj

) = p�u(true)

(�u(true)
j

)
p�u

(�uj − �u(true)
j

)∫∫
d �u(true)

j p�u(true)

(�u(true)
j

)
p�u

(�u − �u(true)
j

)
= p�u(true)

(�u(true)
j

)
p�u

(�uj − �u(true)
j

)
pu(�uj )

, (E9)

where the last equality can be found by direct calculation or
by applying Bayes’s theorem. Thus,

〈�u(true)
j

〉
�uj

=
∫∫

d �u(true)
j �u(true)

j p�u(true)

(�u(true)
j

)
p�u

(�uj − �u(true)
j

)
pu(�uj )

=
�uj + σ 2

�u
∂

∂ �uj

pu(�uj )

∫∫
d �u(true)

j p�u(true)

(�u(true)
j

)
p�u

× (�uj − �u(true)
j

)
=
[�uj + σ 2

�u
∂

∂ �uj

]
pu(�uj )

pu(�uj )
,

where Eq. (E9) has been used in the last step. Continuing gives
the final result〈�u(true)

j

〉
�uj

= �uj + σ 2
�u

∂

∂ �uj

ln pu(�uj ) =
(

1 − σ 2
�u

σ 2
u

)
�uj

= σ 2
�u(true)

σ 2
�u(true) + 4σ 2

pos/�t2
�uj = σ 2

�u(true)

σ 2
u

�uj . (E10)

An analogous derivation gives that

〈�ξj 〉�uj

�t
= 2σ 2

pos/�t2

σ 2
�u(true) + 4σ 2

pos/�t2
�uj = 2σ 2

pos

(�t)2σ 2
u

�uj . (E11)

Inserting Eqs. (E10) and (E11) in Eq. (E4) and substituting
the resulting expression for 〈�uj+1〉�uj

in Eq. (E1) gives the final
result, Eq. (66).

2. Covariance matrix

The covariance matrix of the secant approximated velocity
in the presence of localization errors is derived in a way similar
to its expected value, but the calculations are slightly more
involved. The starting point is Eq. (64), which is rewritten
using Eq. (D3),

�uj+1 = �u(true)
j+1 + ��uj+1 = γ �u(true)

j + �ζj + ��uj+1

= γ [�uj − ��uj ] + �ζj + ��uj+1

= γ �uj + �ζj + 1

�t
[�ξj+1 − (1 + γ )�ξj + γ �ξj−1].

(E12)

The secant approximated acceleration is then

�aj ≡ �uj+1 − �uj

�t
= −1 − γ

�t
�uj

+ 1

�t
�ζj + 1

(�t)2
[�ξj+1 − (1 + γ )�ξj + γ �ξj−1], (E13)
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and with Eqs. (66) and (67),

�aj − 〈�aj 〉�uj
= γ − ε

�t
�uj + 1

�t
�ζj + 1

(�t)2
[�ξj+1 − (1 + γ )�ξj + γ �ξj−1]. (E14)

Here �uj is the measured secant-approximated velocity, i.e., constant, and �ζj , �ξj+1, �ξj , and �ξj−1 are four random variables.
For a given measured secant velocity �uj , the vectors �ζj and �ξj+1 are independent of �uj , as they are related to the motion and

localization error at time tj+1, respectively. Furthermore, they are uncorrelated with each other and the vectors �ξj and �ξj−1. So
the components of the vectors �ζj and �ξj+1 satisfy

〈ζj,q〉�uj
= 0, (E15)

〈ζj,qζj,q ′ 〉�uj

(�t)2
= 〈ζj,qζj,q ′ 〉

(�t)2
= 4(c − 1 + �t/P )2 − (1 − c)4

4P (c − 1 + �t/P )(�t/P )2

(
σP

�t

)2

δq,q ′ , (E16)

〈ξj+1,q〉�uj
= 0, (E17)

〈ξj+1,qξj+1,q ′ 〉�uj
= 〈ξj,qξj,q ′ 〉 = δq,q ′σ 2

pos, (E18)

where Eq. (48) was used together with the definition of the localization error.
The random variables �ξj and �ξj−1 are correlated with each other and �uj due to the bond �uj = �u(true)

j + 1
�t

[�ξj − �ξj−1].
However, they are drawn from identical distributions, which are symmetric around zero. That is, for the different components
pξq

(ξj,q) = pξq
(−ξj,q) = pξq

(ξj−1,q) = pξq
(−ξj−1,q) holds.

Thus, Eq. (E14) can be written out componentwise as

〈(aj,q − 〈aj,q〉�uj
)(aj,q ′ − 〈aj,q ′ 〉�uj

)〉�uj
= δq,q ′

{[
γ − ε

�t

]2

u2
j,q + 1

(�t)2

〈
ζ 2
j,q

〉
�uj

− 2
γ − ε

(�t)3
[(1 + γ )〈ξj,q〉 − γ 〈ξj−1,q〉]uj,q

+ 1

(�t)4

[〈
ξ 2
j+1,q

〉
�uj

+ (1 + γ )2
〈
ξ 2
j,q

〉
�uj

+ γ 2
〈
ξ 2
j−1,q

〉
�uj

− 2γ (1 + γ )〈ξj,qξj−1,q〉�uj

]}

= δq,q ′

{[
γ − ε

�t

]2

u2
j,q + 1

(�t)2

〈
ζ 2
j,q

〉
�uj

− 2
γ − ε

(�t)3
(1 + 2γ )〈ξj,q〉uj,q

+ 1

(�t)4

[
σ 2

pos + 〈ξ 2
j,q

〉
�uj

+ 2γ (1 + γ )
{〈

ξ 2
j,q

〉
�uj

− 〈ξj,qξj−1,q〉�uj

}]}
, (E19)

as there are no correlations between the different components. The value of 〈ξj,q〉 is stated in Eq. (E11), so the task is to calculate
〈ξ 2

j,q〉�uj
and 〈ξ 2

j,q〉�uj
− 〈ξj,qξj−1,q〉�uj

.
We start with 〈ξ 2

j,q〉�uj
and write

〈
ξ 2
j,q

〉
�uj

=
∫

dξj,qξ
2
j,qp(ξj,q |uj,q)∫

dξj,qp(ξj,q |uj,q)
=
∫

dξj,qξ
2
j,qpξq

(ξj,q)pδuq
(uj,q − ξj,q/�t)∫

dξj,qpξq
(ξj,q)pδuq

(uj,q − ξj,q/�t)
=
∫

dξj,qξ
2
j,qpξq

(ξj,q)pδuq
(uj,q − ξj,q/�t)

puq
(uj,q)

,

(E20)

where we have introduced δuj,q ≡ u
(true)
j,q − ξj−1,q/�t and once again used Bayes’s theorem. As u

(true)
j,q and ξj−1,q are independent

Gaussian random variables with zero mean, then δuj,q is also a random Gaussian variable with zero mean and variance
σ 2

δuq
= 1

2σ 2
�u(true) + σ 2

pos/�t2.

We will need the following identity: Let p(x,a) = 1√
2πσ 2

exp[− (a−x)2

2σ 2 ]; then

x2p(x,a) = σ 4 ∂2

∂a2
p(x,a) + 2aσ 2 ∂

∂a
p(x,a) + [a2 + σ 2]p(x,a) (E21)

holds. Using Eq. (E21) we obtain〈
ξ 2
j,q

〉
�uj

(�t)2
=
{
σ 4

δuq

∂2

∂u2
j,q

+ 2uj,qσ
2
δuq

∂
∂uj,q

+ [u2
j,q + σ 2

δuq

]} ∫
dξj,qpξq

(ξj,q)pδuq
(uj,q − ξj,q/�t)

puq
(uj,q)

=
{
σ 4

δuq

∂2

∂u2
j,q

+ 2uj,qσ
2
δuq

∂
∂uj,q

+ [u2
j,q + σ 2

δuq

]}
puq

(uj,q)

puq
(uj,q)

= [u2
j,q + σ 2

δuq

]+
{
σ 4

δuq

∂2

∂u2
j,q

+ 2uj,qσ
2
δuq

∂
∂uj,q

}
puq

(uj,q)

puq
(uj,q)

,

(E22)
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and with
∂2

∂x2 p(x)

p(x)
= ∂2

∂x2
ln p(x) +

[
∂

∂x
ln p(x)

]2

(E23)

and ∂
∂x

ln p(x) = ∂
∂x

p(x)
p(x) Eq. (E22) becomes〈

ξ 2
j,q

〉
�uj

(�t)2
= [

u2
j,q + σ 2

δuq

]+ 2uj,qσ
2
δuq

∂

∂uj,q

ln puq
(uj,q) + σ 4

δuq

{
∂2

∂u2
j,q

ln puq
(uj,q) +

[
∂

∂uj,q

ln puq
(uj,q)

]2}
. (E24)

As uj,q [see also Eq. (E8)] is a normal distributed random variable with zero mean and variance 1
2σ 2

u , it follows that
∂

∂uj,q
ln puq

(uj,q) = − 2uj,q

σ 2
u

and ∂2

∂u2
j,q

ln puq
(uj,q) = − 2

σ 2
u

, so〈
ξ 2
j,q

〉
�uj

(�t)2
= [

u2
j,q + σ 2

δuq

]+ 2uj,qσ
2
δuq

(
−2uj,q

σ 2
u

)
+ σ 4

δuq

(
− 2

σ 2
u

+ 4u2
j,q

σ 4
u

)

= σ 2
δuq

(
1 − 2

σ 2
δuq

σ 2
u

)
+
(

1 − 4
σ 2

δuq

σ 2
u

[
1 −

σ 2
δuq

σ 2
u

])
u2

j,q

=
(

σ 2
u − 2σ 2

pos

(�t)2

)
σ 2

pos

(�t)2σ 2
u

+
[

2σ 2
pos

(�t)2σ 2
u

uj,q

]2

.

The next step is to find 〈ξ 2
j,q〉 − 〈ξj,qξj−1,q〉�uj

. It can be obtained from the expression for 〈ξj,qξj−1,q〉�uj
, which can be rewritten

as

〈ξj,qξj−1,q〉�uj
=
∫

dξj,q

∫
dξj−1,qξj,qξj−1,qp(ξj,q ∩ ξj−1,q |�uj )∫

dξj,q

∫
dξj−1,qp(ξj,q ∩ ξj−1,q |�uj )

=
∫

dξj,q

∫
dξj−1,qξj,qξj−1,qpξq

(ξj,q)pξq
(ξj−1,q)p

u
(true)
q

(uj,q − [ξj,q − ξj−1,q]/�t)

puq
(uj,q)

, (E25)

where we have used Bayes’s theorem, that ξj,q and ξj−1,q

are independent variables and the definition of marginal
probability distributions.

Applying Eq. (E21) once again and following the same
line of calculation as above gives an expression for 〈ξ 2

j,q〉�uj
−

〈ξj,qξj−1,q〉�uj
, which is

2

[〈
ξ 2
j,q

〉
�uj

− 〈ξj,qξj−1,q〉�uj

(�t)2

]

= 1

2
σ 2

�u(true)

(
2σpos

�tσu

)2

+
(

2σpos

�tσu

)4

. (E26)

The final expression, Eq. (70), for the covariance matrix
〈(aj,q − 〈aj,q〉�uj

)(aj,q ′ − 〈aj,q ′ 〉�uj
)〉�uj

for the secant approx-
imated accelerations, given �uj , is obtained by inserting
Eqs. (E11), (E16), (E25), and (E26) in Eq. (E19).

APPENDIX F: DISCRETE POWER SPECTRUM FOR THE
SECANT-APPROXIMATED VELOCITIES FOR FINITE

MEASUREMENT TIMES INCLUDING LOCALIZATION
ERROR

Here we demonstrate how to calculate the expected values
of the power spectral values taking into account the finite
length of the time series. The staring point is Eq. (64), which
after a discrete Fourier transformation [see Eq. (50)] and

keeping the ends of the sums in the Fourier transforms becomes

�̂uk = �̂u(true)
k + 1 − e2πik/N

�t
�̂ξk + e2πik/N (�ξN − �ξ0). (F1)

Notice that the localization errors are independent of the
true secant-approximated velocities. First we calculate �̂u(true)

k

while keeping the ends in the sums of the Fourier transforms
and then we find the contribution from the localization error.

1. Power spectrum for �̂u(true)
k for finite measurement time

The starting point for calculating the power spectrum is
Eq. (39), but here we keep the contributions from the end of
the sums in the Fourier transformation and find

(e−i2πk/N − c) �̂u(true)
k

= 1 − c

1 + c

P

�t
(1 + ei2πk/N )�̂�vk + (1 − cei2πk/N )

�̂�r (2)
k

�t

−�t
(�u(true)

N+1 − �u(true)
1

)− 1 − c

1 + c
P ei2πk/N (��vN − ��v0)

+ cei2πk/N
(
��r (2)

N − ��r (2)
0

)
. (F2)

Below we list a number of useful relations. First, Eq. (39)
states that secant-approximated velocity is determined by the
recursion relation

�u(true)
j+1 = c�u(true)

j + �fj , (F3)
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with the noise term

�fj = 1 − c

1 + c

P

�t
(��vj + ��vj−1) + ��r (2)

j − c��r (2)
j−1

�t
. (F4)

Iterating Eq. (F3) gives that the difference �u(true)
N+1 − �u(true)

1 can
be expressed as

�u(true)
N+1 − �u(true)

1 = [cN − 1]�u(true)
1 +

N∑
j=1

cN−j �fj . (F5)

In addition, Eqs. (31) and (37) give that

〈 �fi ⊗ ��vj 〉 = D

�t
(1 − c)2[δi,j + δi−1,j ]

(
1 0
0 1

)
, (F6)

〈 �fi ⊗ ��r (2)
j

〉 = 2D

(
1 − 2

1 − c

1 + c

P

�t

)
[δi,j − cδi−1,j ]

(
1 0
0 1

)
.

(F7)

Second, from Eqs. (31), (37), and (39) we get

〈�u(true)
1 ⊗ ��v0

〉 = D

�t
(1 − c)2

(
1 0
0 1

)
, (F8)

〈�u(true)
1 ⊗ ��r (2)

0

〉 = 2D

(
1 − 2

1 − c

1 + c

P

�t

)(
1 0
0 1

)
, (F9)

With these relations we can derive that〈(�u(true)
N+1 − �u(true)

1

) · (��vN − ��v0)
〉

= 2D

�t
(1 − c)2(2 − cN − cN−1), (F10)〈(�u(true)

N+1 − �u(true)
1

) · (��r (2)
N − ��r (2)

0

)〉
= 8D

(
1 − 2

1 − c

1 + c

P

�t

)
. (F11)

We also need the relations involving the discrete Fourier
transformations of the noise terms. That is,〈(�u(true)

N+1 − �u(true)
1

)
�̂�r (2)

k

〉
= �t

N∑
j ′=1

∑
j=1

cN−j ′ 〈 �fj ′��r (2)
j

〉
e(2πi/N)jk

= 4D�t

(
1 − 2

1 − c

1 + c

P

�t

)

×
N∑

j ′=1

N∑
j=1

cN−j ′
e(2πi/N)jk[δj ′,j − cδj ′−1,j ]

= 4D�t

(
1 − 2

1 − c

1 + c

P

�t

)
, (F12)

where we have used that 〈�u(true)
1 ��r (2)

i 〉 = 0 for i = 1, . . . ,N ,
and

N∑
j ′=1

N∑
j=1

cN−j ′
e(2π/iN)jkδj ′,j = 1 − cN

1 − ce−(2π/iN)k
, (F13)

N∑
j ′=1

N∑
j=1

cN−j ′
e(2π/iN)jkδj ′−1,j = e(−2πi/N)k − cN−1

1 − ce(−2πi/N)k
(F14)

and, consequently,

N∑
j ′=1

N∑
j=1

cN−j ′
e(2π/iN)jk[δj ′,j − cδj ′−1,j ] = 1. (F15)

Similarly,

〈(�u(true)
N+1 − �u(true)

1

)
�̂�vk

〉
= �t

N∑
j ′=1

∑
j=1

cN−j ′ 〈 �fj ′��vj 〉e(2πi/N)jk

= 2D(1 − c)2
N∑

j ′=1

N∑
j=1

cN−j ′
e(2πi/N)jk[δj ′,j + δj ′−1,j ]

= 2D(1 − c)2 1 − cN − cN−1 + e(−2π/iN)k

1 − ce(−2πi/N)k
. (F16)

We also need an expression for 〈(�u(true)
N+1 − �u(true)

1 )2〉 and first
notice that

〈 �f1 �f0〉 =
(

1 − c

1 + c

P

�t

)2

〈��v0��v0〉 − c

(
1

�t

)2〈
��r (2)

0 ��r (2)
0

〉
= 2

(1 − c)3

1 + c

DP

(�t)2
− 4

Dc

�t

(
1 − 2

1 − c

1 + c

P

�t

)
.

(F17)

This leads to

〈�u(true)
N+1 �u(true)

1

〉 = cN
〈(�u(true)

1

)2〉+ N∑
j=1

cN−j
〈 �fj �u(true)

1

〉

= cNσ 2
�u(true) +

N∑
j=1

cN−j
〈 �fj

(
c�u(true)

0 + f0
)〉

= cNσ 2
�u(true) + 2cN−1 (1 − c)3

1 + c

DP

(�t)2

− 4
DcN

�t

(
1 − 2

1 − c

1 + c

P

�t

)
, (F18)

where σ 2
�u(true) = 〈�u(true)

i 〉 is defined in Eq. (69), and finally

〈(�u(true)
N+1 − �u(true)

1

)2〉 = 2(1 − cN )σ 2
�u(true) − 4cN−1 (1 − c)3

1 + c

DP

(�t)2

+ 8
DcN

�t

(
1 − 2

1 − c

1 + c

P

�t

)
. (F19)
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Returning to Eq. (F2), multiplying both sides with its complex conjugated, and taking the expected value on both sides gives
the nonvanishing terms

|e−i2πk/N − c|2〈∣∣ �̂u(true)
k

∣∣2〉 = (
1 − c

1 + c

P

�t

)2

|1 + ei2πk/N |2〈|�̂�vk|2〉 + |1 − cei2πk/N |2
(�t)2

〈∣∣�̂�r (2)
k

∣∣2〉
−
{

1 − c

1 + c
P (1 + ei2πk/N )

〈(�u(true)
N+1 − �u(true)

1

)
�̂�vk

〉+ c.c.

}

−
{(

1 − c

1 + c

)2
P 2

�t
(1 + ei2πk/N )e−i2πk/N 〈(��vN − ��v0)�̂�vk〉 + c.c.

}

− {(1 − cei2πk/N )
〈(�u(true)

N+1 − �u(true)
1

)
�̂�r (2)

k

〉+ c.c.
}

+
{

(1 − cei2πk/N )
ce−i2πk/N

�t

〈(
��r (2)

N − ��r (2)
0

)
�̂�r (2)

k

〉+ c.c.

}
+ (�t)2

〈(�u(true)
N+1 − �u(true)

1

)2〉
+
{
�t

1 − c

1 + c
P e−i2πk/N

〈(�u(true)
N+1 − �u(true)

1

)
(��vN − ��v0)

〉+ c.c.

}
− {�tce−i2πk/N

〈(�u(true)
N+1 − �u(true)

1

)(
��r (2)

N − ��r (2)
0

)〉+ c.c.
}

+
(

1 − c

1 + c

)2

P 2〈(��vN − ��v0)2〉 + c2
〈(
��r (2)

N − ��r (2)
0

)2〉
. (F20)

Gathering the terms according to prefactors gives

|e−i2πk/N − c|2〈∣∣ �̂u(true)
k

∣∣2〉 = (
1 − c

1 + c

P

�t

)2

|1 + ei2πk/N |2〈|�̂�vk|2〉 + |1 − cei2πk/N |2
(�t)2

〈∣∣�̂�r (2)
k

∣∣2〉
+ 4DP

(1 − c)3

1 + c

{
(1 − cN − cN−1) cos(2πk/N ) − cN−1

− 2 cos2(πk/N )[2 − cN−1(1 + c)2 + 2{cN (1 + c) − c} cos(2πk/N )]

1 + c2 − 2c cos(2πk/N )

}
+ 8D�t

(
1 − 2

1 − c

1 + c

P

�t

)
[cN − 1] + 2(�t)2(1 − cN )σ 2

�u(true) . (F21)

Dividing both sides with |e−i2πk/N − c|2tmsr and then identifying the first two terms on the right-hand side with the power
spectrum P (true)

u (fk) defined in Eq. (60) leads to Eq. (89) after adding the contribution from the localization error calculated
below.

2. Influence of localization error on the power spectrum for finite measurement time

Returning to Eq. (F1), calculating the modulus square of the two terms from the localization error, and taking the expected
value gives〈∣∣∣∣1 − e2πik/N

�t
�̂ξk + e2πik/N (�ξN − �ξ0)

∣∣∣∣2〉 =
〈∣∣∣∣1 − e2πik/N

�t
�̂ξk

∣∣∣∣2〉+ 〈�ξ 2
N

〉+ 〈�ξ 2
0

〉+ {〈 (1 − e2πik/N )e−2πik/N

�t
�̂ξk(�ξN − �ξ0)

〉
+ c.c.

}
= 4σ 2

postmsr

�t
[1 − cos(2πk/N )] + 4σ 2

pos −
{

1 − e−2πik/N

�t
〈�̂ξk

�ξN 〉 + c.c.

}
. (F22)

In the last line, the term in the curly brackets is 4σ 2
pos[1 − cos(2πk/N )], which leads to〈∣∣∣∣1 − e2πik/N

�t
�̂ξk + e2πik/N (�ξN − �ξ0)

∣∣∣∣2〉 = 4σ 2
postmsr

�t
[1 − cos(2πk/N )] + 4σ 2

pos cos(2πk/N ). (F23)
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