
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Aeromonas salmonicida - Epidemiology, whole genome sequencing, detection and in
vivo imaging

Bartkova, Simona; Dalsgaard, Inger; Kokotovic, Branko

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bartkova, S., Dalsgaard, I., & Kokotovic, B. (2016). Aeromonas salmonicida - Epidemiology, whole genome
sequencing, detection and in vivo imaging. Frederiksberg C:  National Veterinary Institute, Technical University
of Denmark.

http://orbit.dtu.dk/en/publications/aeromonas-salmonicida--epidemiology-whole-genome-sequencing-detection-and-in-vivo-imaging(de7c2e9f-0bd5-4425-b2ba-01ba0549d416).html


 
 

 

 

Aeromonas salmonicida 
 

Epidemiology, whole genome sequencing, detection and in vivo imaging 

 

 

 

 

 

 

Simona Bartkova 

PhD Thesis 

2016 

 

 

 

 

 

 

 

 

 

 

 

National Veterinary Institute 

Section for Bacteriology and Pathology 

Technical University of Denmark, Frederiksberg C 

 

 

 
 



 

Supervisors: 

 

Associate professor Inger Dalsgaard 

   Technical University of Denmark 

 

Senior researcher Branko Kokotovic 

   Technical University of Denmark 

 

 

 

 

 

 

 

Assessment committee: 

 

Professor Karl Pedersen 

   Technical University of Denmark 

 

Professor Anders Miki Bojesen 

   University of Copenhagen 

 

Senior researcher Duncan John Colquhoun 

   Norwegian Veterinary Institute  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

 

Table of contents 
 

Acknowledgements      3 

List of manuscripts      4 

List of Abbreviations      5 

Summary       6 

Sammendrag (summary in Danish)     8 

Introduction       10 

Chapter 1: Aeromonas  salmonicida subsp. salmonicida   12 

1.1 Background and taxonomy     12 

1.2 Biochemical and morphological characteristics   12 

1.3 Cultivation      14 

1.4 Virulence      14 

Chapter 2: Furunculosis      18 

2.1 Historical background     18 

2.2 Clinical signs of disease     18 

2.3 Antibiotic treatment     19 

 2.4 Vaccination      20 

2.5 Transmission      21 

2.6 Route of entry and colonization site(s)    23 

2.7 Susceptibility in fish species     24 

2.8 In vivo imaging      25 

2.9 Manuscript I      26 

Chapter 3: Detection      28 

 3.1 Detection of carrier fish     28 

3.2 PCR       29 

3.3 Real-time PCR      30 

3.4 Manuscript II      31 

Chapter 4: Epidemiology      33 

4.1 Epidemiology and genetic variation    33 

 4.2 MLST-v      34 

 4.3 Whole genome sequencing     37 

 4.4 Manuscript III      39 

Chapter 5: Methodological considerations    40 

 5.1 Materials and methods for MLST-v    40 

 5.2 In vivo imaging (Manuscript I)     41 

 5.3 Real-time PCR (Manuscript II)     42 

 5.4 Whole genome sequencing (Manuscript III)    43 

Chapter 6: Discussion and future perspectives    44 

 6.1 Discussion      44 

 6.2 Conclusion and future perspective    46 

References       48 

Accompanying manuscripts     68 



3 

 

Acknowledgements 

 

This research was financed by the Danish Council for Strategic Research under the ProFish project 

(Grant no. DSF: 11-116252) and the National Veterinary Institute (DTU). I would like to 

acknowledge all the ProFish project partners for their work and commitment to the ProFish project 

and for all the informative discussions we have had. It has been a pleasure collaborating with all of 

you. 

 

First and foremost, I am truly thankful for all the guidance I have received throughout my PhD from 

my main supervisor Inger Dalsgaard and co-supervisor Branko Kokotovic. Over the last three years 

(or a little more to be correct) I have gained a lot of valuable knowledge from you both, which I will 

take with me wherever my future career takes me. I know it has not always been easy with me as a 

student, but you have somehow managed to keep me grounded and helped me whenever needed. 

Although especially the last couple of months were intense and stressful for all of us (not to mention 

full of unexpected events), in the end we managed to put it all together. Finally, I would like to say 

that I will always be grateful to you Inger Dalsgaard for giving me the opportunity to do a PhD at the 

National Veterinary Institute with you as my supervisor and supporting me all the way to the end.   

 

I would also like to give a special thank you to the laboratory technicians Lisbeth Schade Hansen, 

Lene Gertman, Katja Ann Kristensen and Margrethe Carlsen as well as other technicians that have 

helped me in the laboratory along the way. This project would not have been possible without you. 

Especially Lene Gertman who patiently introduced me to the laboratory world at the National 

Veterinary Institute and Lisbeth Schade Hansen who took over the difficult task of keeping an eye on 

me and helping me with the project.  

 

This thesis would also have not been accomplished without the help of all the manuscript co-authors 

and especially without the whole genome sequencing analysis and guidance of “Shinny” Pimlapas 

Leekitcharoenphon. 

 

Through my time as a PhD student there have also been several other PhD students at this section, 

whom I have had the pleasure of getting to know. We have all had our ups and downs during our 

PhDs, though luckily we always had each other for support and most importantly entertainment. 

Some of you have already finished your PhD and have moved on in the science world, while others 

still have some time before finishing and I wish everyone all the best!   

 

Finally, I wish to express my gratitude to my family, friends and basketball teammates and coaches. 

You have supported me the whole way and especially during the last couple of stressful months 

when I needed it the most; particularly my parents who I could always turn to for extra guidance, 

inspiration, support and of course comfort and homemade food.  

 

 

 

 



4 

 

List of manuscripts 

 

This thesis includes the following original manuscripts that have either been submitted, accepted or 

are published online. 

 

 

 

 

Manuscript I (accepted in Journal of Fish Diseases) 

 

Title: Infection routes of Aeromonas salmonicida in rainbow trout monitored in vivo by real-time 

bioluminescence imaging 

 

Authors: Simona Bartkova, Branko Kokotovic, Inger Dalsgaard 

 

 

 

 

Manuscript II (published online in Journal of Fish Diseases) 

 

Title: Detection and quantification of Aeromonas salmonicida in fish tissue by real-time PCR 

 

Authors: Simona Bartkova, Branko Kokotovic, Helle Frank Skall, Niels Lorenzen, Inger Dalsgaard 

 

 

 

 

Manuscript III (submitted  to Frontiers in Microbiology) 

 

Title: Epidemiology and genetics of Aeromonas salmonicida using whole genome sequencing 

 

Authors: Simona Bartkova, Pimlapas Leekitcharoenphon, Frank Møller Aarestrup, Inger Dalsgaard 

 

 

 

 

 

 

 

 

 

 



5 

 

List of Abbreviations 

 

AFLP  Amplified fragment length polymorphism 

A-layer  Virulence associated surface protein array 

ARGs  Antibiotic resistance genes 

A. salmonicida Aeromonas salmonicida subsp. salmonicida 

BHI  Brain heart infusion 

BLI  Bioluminescence imaging  

bp   Base pairs 

β   Beta 

CBB  Coomassie brilliant blue 

CC   Clonal complex 

CFU  Colony-forming units 

ECPs   Extracellular products 

ELISA  Enzyme-linked immunosorbent assay 

FMNH2  Reduced riboflavin phosphate 

GCAT  Glycerophospholipid:cholesterol acyltransferase 

GFP  Green fluorescence protein 

IROMPs  Iron-regulated outer membrane proteins 

LB   Luria Bertani  

LPS  Lipopolysaccharide  

LUX  Light upon eXtension 

M-CGH  Microarray-based comparative genomic hybridization 

MLST  Multilocus sequence typing 

MLST-v  MLST with housekeeping genes and virulence associated genes  

NGS  Next-generation sequencing 

PCR  Polymerase chain reaction 

PFGE   Pulsed-field gel electrophoresis  

RAPD   Randomly amplified DNA polymorphism fingerprinting analysis 

Real-time PCR Quantitative real-time polymerase chain reaction 

R plasmids  Plasmids carrying antibiotic resistance genes 

SIF  Stress-inducible furunculosis  

SLVs  Single-locus variants 

SNP  Single nucleotide polymorphism  

ST  Sequence type 

TSA  Tryptic soy agar 

T2SS  Type II secretion system 

T3SS  Type III secretion system 

T6SS  Type VI secretion system 

VBNC  Viable but non-culturable cells  

VIB  Veal infusion broth  

WGS  Whole genome sequencing 

 



6 

 

Summary 

 

Aeromonas salmonicida subsp. salmonicida is a bacterial fish pathogen that is the causative agent of 

furunculosis, a septicemic infection responsible for great losses in aquaculture around the world. In 

Denmark furunculosis was first seen in freshwater in the 1950s, though currently the infection causes 

problems in sea reared rainbow trout (Oncorhynchus mykiss) production. Outbreaks occur repeatedly 

during stressful conditions such as elevated temperatures, in spite of commercial vaccines being 

applied. Besides seemingly lacking adequate protection, the vaccines also produce undesirable side 

effects. Antibiotics are therefore used as treatment, which due to the possibility of developing 

resistance is neither a favorable nor sustainable solution. To complicate things further, it is possible 

that fish can be carriers of A. salmonicida and transfer the bacterium from freshwater to the sea 

where they develop septicemia when exposed to stressful sea-rearing conditions and high 

temperatures. By use of traditional bacteriological methods, continuous investigation of bacterial 

diagnostics on samples from different rainbow trout farms in Denmark was done, while studying the 

following three aspects of the concerns regarding A. salmonicida.  

 

First, we focused on investigation of the route of entry and initial dissemination of A. salmonicida in 

fish. This was done by tracing the bacterium using in vivo bioluminescence imaging. A Danish strain 

was transformed with a plasmid vector containing a green fluorescence protein gene and bacterial 

luciferase genes that served as fluorescent and bioluminescent reporters respectively. The 

transformed A. salmonicida was used in a series of immersion experiments where fish were followed 

over a 24-hour period. Results showed that probable main colonization sites of A. salmonicida were 

the gills and the dorsal and pectoral fins. This was followed by dissemination through internal 

organs. Although optimization and further immersion experiments are needed, our results indicated 

that this tool could be a valuable approach for visualizing A. salmonicida in fish. 

 

Focus was subsequently turned to finding a sensitive method for detecting A. salmonicida in infected 

and possible carrier fish. For this, a previously developed quantitative real-time polymerase chain 

reaction (real-time PCR) targeting the aopP gene located on A. salmonicida plasmid pAsal1 was 

assessed. The real-time PCR and bacterial culturing were employed for preliminary screening of A. 

salmonicida in 40 fish from Danish fresh- and seawater farms. A. salmonicida was detected by real-

time PCR in freshwater farm fish showing no sign of disease, indicating possible presence of carrier 

fish. Out of five examined organs: spleen, kidney, intestine, gills and brain in each fish, A. 

salmonicida was most frequently detected in the spleen, brain and intestine, indicating that these 

three organs could play an important role in A. salmonicida infection. The real-time PCR exhibited 

highly sensitive detection of A. salmonicida as well as a high reproducibility and efficiency, though 

due to the fact that not all A. salmonicida seem to possess the target plasmid pAsal1, another 

sensitive detection method with a different and/or complementary target would need to be employed 

to be certain of avoiding false negatives. 

 

The final focal point of this thesis revolved around obtaining knowledge on genetic and virulence 

variation as well as epidemiology of the disease causing Danish A. salmonicida. Due to high 

homogeneity among the A. salmonicida subspecies population, standard molecular methods for 
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bacterial typing cannot distinguish among A. salmonicida isolates. Whole genome sequencing was 

therefore applied on 99 Danish A. salmonicida isolated between years 1980 and 2014 from different 

geographical regions, one Scottish strain and the type strain NCIMB 1102. Sequences of the A. 

salmonicida were de novo assembled and then examined for presence of plasmids, virulence and iron 

acquisition proteins, and antibiotic resistance genes. The chromosome was also examined for single 

nucleotide polymorphisms that were aligned and subjected to Bayesian temporal tree reconstruction 

using the published genome of A. salmonicida A449 as reference. Main results revealed that there 

have been four major introductions of A. salmonicida into Denmark, A. salmonicida are highly 

homogenous with the exception of certain plasmids and virulence factors encoded on these plasmids, 

and nine A. salmonicida harbored several worldwide known genes encoding resistance against 

antibiotics. This study provided valuable information regarding the Danish disease causing A. 

salmonicida.  
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Sammendrag (summary in Danish) 

 

Aeromonas salmonicida subsp. salmonicida er en fiskepatogen bakterie, som forårsager sygdommen 

furunkulose, der medfører store tab i akvakultur over hele verden. I Danmark blev furunkulose første 

gang beskrevet i ferskvand i 1950'erne, men i øjeblikket forårsager sygdommen problemer i 

regnbueørred (Oncorhynchus mykiss) produceret i havbrug. Udbrud forekommer gentagne gange 

under stressende forhold, såsom forhøjede vandtemperaturer, på trods af at kommercielle vacciner 

anvendes. Udover tilsyneladende at mangle tilstrækkelig beskyttelse, medfører vaccinerne også 

uønskede bivirkninger. Antibiotika anvendes derfor som behandling, men på grund af muligheden 

for udvikling af resistens er dette hverken en positiv eller holdbar løsning. For at komplicere tingene 

yderligere, kan fisk være såkaldte skjulte bærere af A. salmonicida og overføre bakterien fra 

ferskvand til havet, hvor sygdom udvikles når fiskene udsættes for stressende forhold. Ved brug af 

traditionelle bakteriologiske metoder, blev der udført kontinuerlig undersøgelse på fisk fra 

forskellige dam- og havbrug i Danmark, samtidig blev det forsøgt at klarlægge nogle af de 

ovennævnte problemer vedrørende A. salmonicida.  

 

Først har vi fokuseret på at undersøge, hvordan A. salmonicida kommer ind i fiskene, samt 

bakteriens indledende udbredelse inde i fiskene. Dette blev gjort ved at spore bakterien med in vivo 

bioluminescens imaging. En dansk A. salmonicida stamme blev transformeret med en plasmid 

vektor, der indeholder et gen kodende for et grønt fluorescerende protein og bakterielle luciferase 

gener kodende for bioluminescence. Den transformerede A. salmonicida blev brugt i et foreløbigt 

bad eksperiment, hvor fiskene blev fulgt over en 24-timers periode. Resultaterne viste, at sandsynlige 

fasthæftnings steder af A. salmonicida var gællerne og ryg- og brystfinner. Dette blev efterfulgt af 

udbredelse til de indre organer. Selvom der er behov for optimering og yderligere bad eksperimenter, 

viste foreløbige resultater, at denne metode kunne være et værdifuldt redskab til at visualisere A. 

salmonicida i fisk. 

 

Fokus blev derefter vendt imod at finde en følsom metode til påvisning af A. salmonicida i inficerede 

og mulige bærerfisk. Til dette blev en tidligere udviklet kvantitativ real-time 

polymerasekædereaktion (real-time PCR) rettet mod aopP genet, der er lokaliseret på A. salmonicida 

plasmidet pAsal1 vurderet. Real-time PCR og dyrkning af bakterien blev brugt til en foreløbig 

undersøgelse af A. salmonicida i 40 fisk fra danske dam- og havbrug. A. salmonicida blev påvist med 

real-time PCR i dambrugs fisk uden tegn på sygdom, hvilket tyder på tilstedeværelse af bærerfisk. 

Følgende fem organer: milt, nyre, tarm, gæller og hjerne fra hver fisk blev undersøgt, hvorfra A. 

salmonicida hyppigst blev påvist i milten, hjernen og tarmen, hvilket viser at disse tre organer kan 

spille en vigtig rolle i A. salmonicida infektionen. Real-time PCR udviste høj følsomhed for 

påvisning af A. salmonicida samt en høj reproducerbarhed og effektivitet, men på grund af at ikke 

alle A. salmonicida har plasmidet pAsal1, er det nødvendigt at anvende en anden følsom påvisnings 

metode rettet imod et andet gen, for at være sikker på at undgå falske negative resultater. 

 

Det sidste omdrejningspunkt for denne afhandling drejer sig om at skaffe viden om den genetiske 

variation, samt oprindelse og spredning af danske A. salmonicida som forårsager sygdom. På grund 

af høj homogenitet i A. salmonicida bakterierne kan standard molekylære metoder til bakteriel 
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typning ikke skelne mellem forskellige A. salmonicida isolater. Helgenomsekventering blev derfor 

anvendt på 99 danske A. salmonicida stammer der blev isoleret i perioden 1980 til 2014 fra 

forskellige geografiske områder. Yderligere blev en skotsk bakterie og type bakterien NCIMB 1102 

undersøgt. Sekvenser af bakterierne blev de novo samlet og derefter undersøgt for tilstedeværelse af 

plasmider, virulens og jern protein sekvenser og gener for antibiotika resistens. Kromosomet blev 

også undersøgt for nukleotid polymorfenheder (SNPs), der blev brugt til konstruktion af et Bayesian 

fylogenetisk træ ved hjælp af det publicerede genom af A. salmonicida A449 som reference. De 

vigtigste resultater viste, at der har været fire store introduktioner af A. salmonicida i Danmark, at A. 

salmonicida er meget homogene med undtagelse af visse plasmider og virulensfaktorer kodet på 

disse plasmider, og at ni A. salmonicida havde flere globalt kendte gener, der koder for antibiotika 

resistens. Studiet resulterede i værdifuld viden om A. salmonicida bakterier, der forårsager sygdom i 

akvakultur i Danmark. 
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Introduction  

 

Development in aquaculture  

 

According to the Food and Agriculture Organization of the United Nations (2016), aquaculture is the 

fastest growing food-producing sector. This intensified fish-farming combined with elevated water 

temperature due to global warming, creates epidemiological opportunities for pathogens and thereby 

causing problems in aquaculture (Tan et al., 2002; Ganusov and Antia, 2003; De Silva and Soto, 

2009; Pulkkinen et al., 2010). One of the problems is that the fish immune system becomes adversely 

affected by physiological stress arising during high stocking density and abnormal climate conditions 

such as prolonged rise in temperature (Harvell et al., 1999; Vargas-Chacoffa et al., 2014). The above 

mentioned conditions also create a favorable environment for activity of pathogens that otherwise 

would typically remain dormant (Lafferty, 2009) and general increase of virulence and/or 

transmission rate of pathogens (Marcogliese, 2008; Marcos-López et al., 2010).  

 

In contrast to the rest of the world’s aquaculture industry, the Danish industry has in the recent years 

remained stagnant. However, fish consumption in Denmark has increased during the last few years 

(Miljø- og Fødevareministeriet, 2015), leading to the Danish authorities’ proposal for expanding 

aquaculture in order to increase production (Miljø- og Fødevareministeriet, 2014). Use of antibiotics 

in aquaculture has decreased due to implementation of vaccines. However, in comparison with other 

animal productions in Denmark, marine aquaculture lies at the top in use of antibiotics along with 

pig production when calculated in DAPD (Defined animal daily dose per 1,000 animals per day), 

which includes changes in live biomass and thus enables comparison of different animals 

(DANMAP, 2012). An increase in production and a possible rise in water temperature will not 

alleviate this problem. On the contrary, it will increase the potential threat of highly virulent 

pathogens emerging. 

 

Problem of furunculosis 

 

Furunculosis is a septicemic infection caused by the highly homogenous Gram-negative bacterium 

Aeromonas salmonicida subsp. salmonicida (Bernoth et al., 1997; Garcia et al., 2000). Though A. 

salmonicida can be present in fish without inducing signs of disease where the infection is said to be 

in a ‘covert’ stage (Hiney et al., 1997). It is believed that these carrier fish transfer the bacterium 

from freshwater farms out to seawater farms, where the fish develop septicemia when exposed to 

stressful sea-rearing conditions and high temperatures (Dalsgaard and Madsen, 2000; Pedersen et al., 

2008). A. salmonicida can be diagnosed via traditional bacteriological methods (Dalsgaard et al., 

1994; Austin and Austin, 2007), however, detection of the bacterium in carrier fish based on these 

methods has thus far been unsuccessful (Dalsgaard and Madsen, 2000). New and more sensitive 

methods need to be developed in order to detect A. salmonicida in carrier fish. 

 

Furunculosis was first described from freshwater farms in Denmark in the 1950s (Rasmussen, 1964) 

and now causes great problems in seawater rainbow trout farms. There is only one vaccine against A. 

salmonicida that is licensed for Danish rainbow trout, which is the Norwegian commercial vaccine 
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AlphaJect 3000, initially developed for Atlantic salmon (Salmo salar) against vibriosis and 

furunculosis (Pharmaq, 2016). Although the vaccine is being implemented, outbreaks of furunculosis 

still occur (Dalsgaard and Madsen, 2000; Pedersen et al., 2008), causing substantial economic losses 

in aquaculture. Side effects, likely caused by oil adjuvants, have also been reported (Haugarvoll et 

al., 2010; Mutoloki et al., 2010). In order to develop an effective strategy for preventing 

furunculosis, a more effective vaccine against Danish A. salmonicida needs to be developed and 

knowledge about the epidemiology, genetic and virulence variation of the Danish disease causing A. 

salmonicida isolates needs to be obtained. 

 

Objective of this thesis 

 

The objective of this PhD project was to contribute to ongoing research on resolving the current 

concerns of furunculosis in Danish rainbow trout production by: 1) investigating route of entry and 

dissemination of A. salmonicida in fish in order to study the host-pathogen relationship that could 

provide new knowledge for improvement of detection and sampling strategies of the bacterium, 2) 

developing a highly sensitive method for detection of A. salmonicida in possible carriers and fish 

showing signs of disease, and 3) determining the epidemiology, genetic and virulence variability of 

the Danish A. salmonicida isolates that could aid in the development of an effective strategy for 

preventing furunculosis.  
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Chapter 1: Aeromonas salmonicida subsp. salmonicida  

 

1.1 Background and taxonomy 

 

Aeromonas salmonicida subsp. salmonicida is an important bacterial fish pathogen, which was 

originally isolated at a German freshwater farm by Emmerich and Weibel (1894) and was given the 

name Bacterium salmonicida. Subsequently it was proposed by Griffin et al. (1953) to place the 

bacterium in the genus Aeromonas and re-classify the name of the species as Aeromonas salmonicida 

(Snieszko, 1957). The genus of Aeromonas has also gone through many taxonomic re-classifications 

and was eventually placed in the family Aeromonadaceae  by Colwell et al. (1986). Although the 

species of Aeromonas salmonicida was first thought to be homogenous, by use of biochemical and 

molecular methods it has thus far been divided into five subspecies: salmonicida, masoucida, 

achromogenes, smithia, and pectinolytica (Austin, 1993; Wiklund and Dalsgaard, 1998; Kozinska et 

al., 2002; Beaz-Hidalgo et al., 2008; Studer et al., 2013). The four latter subspecies all belong to the 

so called “atypical” group, while subspecies salmonicida is the only Aeromonas salmonicida known 

as “typical” and is the causative agent of furunculosis. Subspecies salmonicida is also the focal point 

of this PhD project and is in this thesis referred to as A. salmonicida. 

 

1.2 Biochemical and morphological characteristics 

 

The bacterium A. salmonicida is Gram-negative, facultative anaerobic, non-motile, psychrophilic  

and consists of coccoide cells with the measurement of 0.5-6.0 x 1-2 µm (Marsh, 1902; Griffin et al., 

1953; Cipriano and Austin, 2011). One of the most basic characteristics of the subspecies is that 

colonies produce a brown water-soluble pigment after growth on agar in the presence of  0.1% 

tyrosine or phenylalanine for two to four days (Fig. 1) (Marsh, 1902; Griffin et al., 1953; Boone et 

al., 2001; Cipriano and Austin, 2011). The subspecies must, however, not be identified solely based 

on this characteristic, since some A. salmonicida strains do not produce this pigment (Wiklund et al., 

1993; Koppang et al., 2000) while some other bacteria like A. hydrophila also produce diffusible 

brown pigment (Austin and Austin, 2012). There are also numerous well-known biochemical 

characteristics, which are frequently used for identification. This includes production of catalase and 

cytochrome oxidase and gelatin liquefaction, although exceptions have been found (Böhm et al., 

1986; Wichardt et al., 1989; Chapman et al., 1991). Generally the bacterium has also been reported 

of being positive for the following carbohydrates and glycosides: glycerol, glucose, fructose, 

galactose, mannitol, mannose, maltose, dextrin, glycogen, starch, aesculin and salicin, as well as 

being positive in L-arabinose but negative in D-arabinose and not being able to convert tryptophan 

into indole (Dalsgaard et al., 1994).  Though, gas production by A. salmonicida from fermented 

glucose might be weak in some strains or as seen with a strain from Canada, gas might not be 

produced (Dalsgaard et al., 1994). A. salmonicida negative for acid production from mannitol and 

hydrolysis in aesculin have, however, also been found (Austin et al., 1989). 
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Figure 1. A. salmonicida colonies grown on tryptic soy agar (left) and on Coomassie brilliant blue agar (right, from 
Austin and Austin, 2012) 

 

After incubation on nutrient agar for about 24 hours at 18 - 20
o
C, A. salmonicida colonies are flat 

and punctiform with a diameter of less than 1 mm (Griffin et al., 1953; Boone et al., 2001). It is not 

until three to four days of growth (Griffin et al., 1953; Boone et al., 2001) that the colonies become 

circular, convex and entire with a diameter of 1 - 2 mm, which is the characteristic morphology of A. 

salmonicida colonies on solid media. Colonies also become friable at this point, such that if pushed, 

they can slide on the agar surface without being damaged (Duff and Stewart, 1933; Munro and 

Hastings, 1993; Boone et al., 2001). When the bacterium is grown on blood agar for 2 - 4 days the 

colonies also become grayish in color and form a zone of haemolysis around them due to production 

of β-haemolysis (Griffin et al., 1953; Dalsgaard et al., 1994).  

 

Additionally, A. salmonicida has the ability to autoagglutinate in static liquid media and form 

“smooth” and “rough” colonies on solid media (Arkwright, 1912; Williamson, 1928; Udey, 1978; 

Kay and Trust, 1997). These characteristics are generally based on the presence or absence of the 

virulence associated surface protein array called the A-layer, with A-layer positive A. salmonicida 

strains autoagglutinating and forming “rough” colonies (Johnson et al., 1985; Dalsgaard et al., 1994; 

Kay and Trust, 1997; Austin and Austin, 2012). A-layer negative strains that autoagglutinate have, 

however, also been found (Johnson et al., 1985) and single bacterial isolates can form 

morphologically different colonies on solid media (Anderson, 1972; Dalsgaard et al., 1994; Austin 

and Austin, 2012). This is supported by our findings, where all except one of 101 sequenced A. 

salmonicida possessed the A-layer protein sequence (Manuscript III), though only 76 of the isolates 

seemed to autoagglutinate in static liquid media (unpublished results).  

 

Another property of A. salmonicida that has been used in order to distinguish A-layer positive from 

A-layer negative strains is the ability to bind the dyes Coomassie brilliant blue (CBB) (Wilson and 

Horne, 1986; Cipriano and Bertolini, 1988; Dalsgaard et al., 1994; Austin and Austin, 2012) and 
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Congo red (Ishiguro et al., 1985; Dalsgaard et al., 1994). The A-layer positive A. salmonicida bind 

the dye and grow as dark blue and red colonies on tryptic soy agar (TSA) with added CBB and 

Congo red respectively, while the A-layer negative colonies grow as whitish colonies. Markwardt et 

al. (1989) also reported that CBB agar could be used to distinguish A-layer positive A. salmonicida 

from other bacteria in mixed populations isolated from clinical samples. However, Teska and 

Cipriano (1993) reported that bacteria such as Aeromonas hydrophila, Pasteurella multocida and 

various Pseudomonas species can also grow with dark blue colonies on CBB agar and dark blue 

colonies must therefore be subcultivated and tested for other characteristics before any confirmations 

can be made regarding their identification.   

 

1.3 Cultivation  

 

The recommended medium for isolation and cultivation of A. salmonicida by diagnostic manuals has 

usually been brain heart infusion (BHI) agar or TSA and both have been used in several studies (e.g. 

Beaz-Hidalgo et al., 2008b; Beaz-Hidalgo et al., 2013; Austin and Austin, 2012). TSA has the 

advantage of the possibility of supplementation with CBB or Congo red for selection of A-layer 

positive A. salmonicida as mentioned in the previous section, however, selection using this medium 

is not consistent and Austin and Austin (2012) reported that A. salmonicida  “rough” colonies that 

are associated with A-layer and virulence are recovered better on BHI agar than TSA. A. salmonicida 

can also grow on common laboratory media such as Luria Bertani (LB) and blood agar and the latter 

has especially been used frequently (e.g. Böhm et al., 1986; Dalsgaard et al., 1994; Pedersen et al., 

2008) due to the usual A. salmonicida production of β-haemolysis on this medium. The choice of 

liquid medium for cultivation of A. salmonicida, which enables the possibility for observing 

autoagglutination of A-layer positive isolates, has also varied between studies e.g. veal infusion 

(VIB) broth (Dalsgaard et al., 1994), Trypticase soy broth (Ishiguro et al., 1981) and BHI broth 

(Johnson et al., 1985). All A. salmonicida used in the present thesis were always cultivated in VIB 

broth and isolated on blood agar, with the exception of one study (Manuscript I) where LB agar with 

added ampicillin and BHI broth were also employed due to special circumstances.  

 

Ideal growth conditions for A. salmonicida include aerobic conditions and pH from 5.3 to 9.0, 

although this can vary depending on the composition of the culture medium (Griffin et al., 1953). For 

many years the optimal growth temperature for A. salmonicida has been reported as being 22 - 25°C 

(Griffin et al., 1953; Brenner et al., 2005) and the maximum growth temperature 34.5°C (Griffin et 

al., 1953). However, it has now been reported by several studies that when A. salmonicida is grown 

at 25
o
C, or in some studies even 22

o
C, some of the plasmid encoded virulence genes can become 

inactivated or lost due to plasmid rearrangement or loss of the plasmids (Ishiguro et al., 1981; Stuber 

et al., 2003; Daher et al., 2011). This has led to Daher et al. (2011) suggesting that A. salmonicida 

should be grown at a maximal temperature of 20
o
C. All A. salmonicida used in this thesis were 

grown at 20
o
C. 

 

1.4 Virulence  

 

There are many virulence factors that A. salmonicida possesses, which can be used against the 

defense mechanisms of the host in order to establish an infection (Reith et al., 2008; Beaz-Hidalgo 
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and Figueras, 2013; Dallaire-Dufresne et al., 2014). Though, not all virulence factors are equally 

important and some are even non-functional (Reith et al., 2008). In fact, the virulence mechanism of 

A. salmonicida has proven to be a complex and intertwined system  (Reith et al., 2008; Beaz-Hidalgo 

and Figueras, 2013; Dallaire-Dufresne et al., 2014). 

 

One of the known virulence components of A. salmonicida that are important for attachment of host 

cells and entry into the host are adhesins e.g. the surface layer and pili (Austin and Austin, 2007; 

Reith et al., 2008). Though, it is only the A-layer, a tetragonal protein array that is associated with 

lipopolysaccharides (LPSs) on the cell surface, which has been described as being a major virulence 

factor of A. salmonicida (Udey and Fryer, 1978; Ishiguro et al., 1981; Phipps et al., 1983; Trust et al., 

1983; Chart et al., 1984). This protein, encoded by the vapA gene (Chart et al., 1984), also displayed 

high sequence homogeneity in 101 sequenced A. salmonicida, of which 99 isolates were from 

Denmark and only one Danish isolate did not harbor the protein (Manuscript III). The A-layer also 

has a high proportion of hydrophobic amino acids; a property that increases hydrophobicity of the 

bacterial surface (Phipps et al., 1983). In agreement, Dalsgaard et al. (1994) reported that the “rough” 

colony forming strains of A. salmonicida belived to be A-layer positive had a more hydrophobic 

outer cell surface than the strains forming “smooth” colonies. When studying in vitro cultured 

macrophages Trust et al. (1983) found that A-layer positive A. salmonicida had an enhanced ability 

to associate with the macrophages, which was also enabled by the increase in hydrophobicity. The 

increased hydrophobicity is also responsible for A-layer positive A. salmonicida strains’ ability to 

autoagglutinate and to adhere to host tissue, while the A-layer negative strains have been reported to 

be avirulent (Udey and Fryer, 1978). The association of hydrophobicity with aggregation and 

sedimentation is also supported by Enger and Thorsen (1992), who added that the property could 

also play a role in the ecology of the bacterium outside its host, since A. salmonicida was detected by 

use of  immunofluorescence in sediment beneath net pens, seawater, and surface film from samples 

at fish farms with furunculosis outbreaks. Nevertheless, A-layer negative virulent as well as A-layer 

positive non-virulent A. salmonicida have been observed, exemplifying that in vitro tests do not 

necessarily give an accurate result when assessing virulence of A. salmonicida (Johnson et al., 1985; 

Ellis, 1997), which as suggested by Olivier (1990) should be assessed through in vivo challenges 

instead. 

 

Other virulence factors that have been reported as being important for virulence of A. salmonicida 

are extracellular products (ECPs) such as haemolysins, aerolysins, lipopolysaccharides, proteases 

and various toxins, which have been the subject of many A. salmonicida studies over the years (Ellis 

et al., 1981; Ellis et al., 1988; Ellis, 1997; Austin and Austin, 2007; Beaz-Hidalgo and Figueras, 

2013). Already in 1953, Griffin et al. believed that the observed β-haemolysis and gelatin 

liquefaction on blood and gelatin plates respectively could be related to the characteristic tissue 

lesions of furunculosis and thus caused by production of protease enzymes. Years later in a study by 

Ellis et al. (1981), it was possible to reproduce the furunculosis associated lesions when ECPs were 

injected into rainbow trout. In another study, Ellis et al. (1988) found that protease and haemolysin 

activity promoted the development of lesions in fish, though there was another yet uncharacterized 

factor of the ECPs that was lethal for the fish. One ECP that has been proven to be lethal for fish is 

the toxin glycerophospholipid:cholesterol acyltransferase (GCAT) (Lee and Ellis, 1990). The GCAT 

protein sequence was present in all 101 sequenced A. salmonicida and displayed similar sequence 
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homogeneity as the A-layer (Manuscript III). This toxin can also aggregate with LPSs, creating a 

GCAT/LPS complex which is even more toxic than GCAT by itself (Lee and Ellis, 1990). 

Surprisingly, when the encoding genes of either GCAT or another reportedly important toxin (serine 

protease AspA) were mutated, virulence of the A. salmonicida mutant was not altered (Vipond et al., 

1998).  

 

Iron-regulated outer membrane proteins (IROMPs) are responsible for uptake of siderophore-iron 

complexes and heme (Hirst et al., 1994; Najimi et al., 2008, 2009). They are thus believed to play a 

significant role in virulence of A. salmonicida, since iron is an essential nutrient and acquisition of 

iron is necessary for survival within the host and maybe also the aquatic environments (Hirst et al., 

1994; Najimi et al., 2008, 2009; Reith et al., 2008; Ebanks et al., 2013). Iron acquisition by A. 

salmonicida can be siderophore dependent, by which the siderophores remove iron from proteins of 

the host and enable entrance of the iron into the bacterial cell through IROMPs (Najimi et al., 2008; 

2009). Though, iron can also be obtained by a siderophore independent system that functions as a 

way to remove iron from host hemoglobin (Ebanks et al., 2004; Najimi et al., 2008; 2009). With 

regard to A. salmonicida, IROMPs have also shown to have an inhibitory effect on host transferrin 

thereby improving the bacterial resistance against the host’s phagocytes (Magnadottir, 2010). 

Investigation of genes involved in siderophore biosynthesis and IROMPs indicated that both systems 

seem to be conserved among the homogenous A. salmonicida (Fernandez et al., 1998; Najimi et al., 

2009), as supported by the findings of Manuscript III, while other iron mechanism proteins 

sequences are not present in all A. salmonicida (Najimi et al., 2009).  

 

Secretion systems have also been known for their significance for virulence and three have been 

described in A. salmonicida, which includes type II (T2SS), III (T3SS), and VI (T6SS) (Reith et al., 

2008). T2SS is in charge of enzyme degradation and toxin secretion, while T6SS enables injection of 

effector proteins into the cytoplasm of the host cells (Reith et al., 2008). Much like T6SS, the main 

function of T3SS is also injection of effector proteins and toxins into the cytosol of host cells, but has 

also other functions including prevention of phagocytosis by leukocytes and establishing a systemic 

infection in the host (Burr et al., 2003; Stuber et al., 2003; Burr et al., 2005; Mota and Cornelis, 

2005; Dacanay et al., 2006; Ebanks et al., 2006; Rasch et al., 2007; Fast et al., 2009; Dallaire-

Dufresne et al., 2014). Interestingly, both T3SS and T6SS associated genes are moreover situated in 

the chromosome as well as plasmids (Reith et al., 2008; Fehr et al., 2006). Though, notably T3SS is 

the only virulence factor proven to be essential for virulence and toxicity of A. salmonicida, since 

inactivation of the T3SS structural proteins in A. salmonicida has always rendered the A. salmonicida 

mutants non-virulent in both in vitro and in vivo studies (Burr et al., 2002; Burr et al., 2003; Stuber et 

al., 2003; Burr et al., 2005; Dacanay et al., 2006; Froquet et al., 2007; Fast et al., 2009). Thus far 

there have been described five T3SS effector proteins in A. salmonicida: AexT (an ADP-ribosylating 

toxin encoded on the chromosome), AopH (a tyrosine phosphatase encoded on the plasmid pAsa5 

along with its chaperone SycH), AopO (a serine/threonine kinase encoded on the plasmid pAsa5 

along with its chaperone SycO), Ati2 (an inositol polyphosphate 5-phosphatase encoded on the 

plasmid pAsa5 along with its chaperone Ati1) and AopP (this toxin is involved in inhibition of IkB 

protein kinase activation and is encoded on plasmid pAsal1) (Dacanay et al., 2006; Fehr et al., 2006; 

Reith et al., 2008; Dallaire-Dufresne et al., 2013). Both the effector proteins and structural proteins 

of T3SS are thought to play a role in A. salmonicida survival within the host cell, though when 
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compared only the structural proteins proved to be vital for virulence (Dacanay et al., 2006; Fast et 

al., 2009). An additional factor supporting the important implication of T3SS in virulence is that the 

secretion system is widely spread among pathogenic Gram-negative bacteria, such as other 

Aeromonas spp., Yersinia spp., Salmonella spp., and Pseudomonas spp., where it has also been 

confirmed to be vital for virulence of the pathogens (Chacón et al., 2004; Vilches et al., 2004; Mota 

and Cornelis, 2005; Vilches et al., 2009). Interestingly, both certain T3SS effector protein and 

structural protein sequences e.g. the highly studied AscV, were absent in 24% of the 101 sequenced 

A. salmonicida; all of which were isolated from furunculosis outbreaks and were thus assumed to be 

virulent (Manuscript III). 
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Chapter 2: Furunculosis 

 

2.1 Historical background 

 

Furunculosis is now spread worldwide, though the first time furunculosis was observed and 

documented among fish was in 1894 by Emmerich and Weibel. They observed swellings resembling 

boils as well as ulcerative lesions in brown trout (Salmo trutta) at a German freshwater hatchery. 

Another observation of Emmerich and Weibel was that the brown trout were held in low-quality 

water before being transported to a farm where other fish also became infected. Through experiments 

Emmerich and Weibel also discovered that by either intramuscularly injecting fish or adding culture 

to the water tank, the fish could become infected. Cohabitation experiments gave the same results, 

however, when examining healthy fish from these experiments, the bacterium was not found.  

 

After the initial description by Emmerich and Weibel (1894), furunculosis was believed to be a 

hatchery associated infection until the studies of Plehn (1911) showed that furunculosis was also 

present among wild trout in Germany and others also observed the infection in several countries all 

over the world, including Great Britain who suffered great losses (Fuhrman, 1909; Pittet, 1910; 

Surbeck, 1911; Arkwright, 1912; Mettam, 1915; Christensen, 1980). In the United States, 

furunculosis was first described by Marsh (1902) at hatcheries in Michigan. Shortly thereafter, the 

infection was found in numerous salmon and trout hatcheries throughout the United States (Fish, 

1937; Smith, 1942). The origin of furunculosis in the United States is uncertain, though the general 

theory is that either it was brought along with brown trout from Germany or it spread from rainbow 

trout farmed in the Western part of the United States (Fish, 1937). Signs of furunculosis were also 

seen in several fish species in Canada by Duff and Stewart (1933) and various trout farms in Japan 

(Furunculosis comittee, 1933).  

 

In Denmark furunculosis was first described in the 1950s at freshwater rainbow trout farms by 

Rasmussen (1964). In parallel with this discovery, a massive expansion in rainbow trout production 

started that continued its growth even further as production became established in seawater in the 

1970s (Christensen, 1980). Moreover, a Bayesian temporal tree based on SNP analysis of 101 

sequenced A. salmonicida showed that there have been four main introductions of A. salmonicida in 

Denmark, two of which occurred approximately the same time as the first expansion in rainbow trout 

production (~ 1950) and the other two during the second expansion in seawater (~ 1970) (Manuscript 

III). At present, it is in the seawater production during elevated temperatures that furunculosis is of 

great concern and causes huge financial losses (Larsen and Mellergaard, 1981; Dalsgaard and 

Madsen, 2000; Pedersen et al., 2008). 

 

2.2 Clinical signs of disease 

 

Fish infected with A. salmonicida do not necessarily show any clinical signs of disease; however, 

when fish become stressed or are compromised in some way, such that their immune system is 

lowered and a favorable condition within the fish is created for the pathogen, the infection can spread 

throughout the body and clinical signs can become visible (Cipriano et al. 1997; Hiney et al., 1997; 
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Hiney and Olivier, 1999; Austin and Austin, 2007; Noga, 2010). Typical clinical signs of the 

infection can include lethargy, lack of appetite, skin hyperpigmentation, boils and/or ulcers on the 

skin, lesions, internal hemorrhaging, enlargement of the spleen, septicemia and anemia (Fig. 2) 

(McCarthy, 1977;  Ferguson and McCarthy, 1978; McCarthy and Roberts, 1980; Hiney et al., 1997; 

Hiney and Olivier, 1999; Austin and Austin, 2007; Noga, 2010). 

 

 

 
 

Figure 2. Rainbow trout with signs of furunculosis. At the top: Boil and ulcer on the skin (photo by Morten Sichlau 

Bruun). To the left: Ulcer on the skin (Christensen, 1980). To the right: Enlargement of the spleen and hemorrhaging 

from internal organs (photo by Morten Sichlau Bruun). 

 

2.3 Antibiotic treatment 

 

In Denmark the antibiotics used in aquaculture have been sulfadiazine, trimethoprim, oxytetracycline 

and furazolidone (Dalsgaard et al., 1994) and since 1986, the only antibiotics licensed for use in 

aquaculture have been sulfadiazine/trimethoprim and oxolinic acid. The prevalence of antibiotic 

resistance genes (ARGs) among A. salmonicida in Denmark has been low, 5% in the study by 

Dalsgaard et al. (1994) and 9% in Manuscript III. Nevertheless, repeated treatment with antibiotics 

has proven to have many drawbacks, including induction of drug resistance in microorganisms, 

suppression of the immune system in fish, accumulation of residues in the fish, sediment and 

surrounding environment of the fish farms (Rijkers et al., 1981; Jacobsen and Berglind, 1988;  

Björklund et al., 1990; Aoki, 1997; Sørum, 1998; Sørum, 1999; Muziasari et al., 2014). One major 

threat posed regarding antibiotic treatment is the ability of various genetic elements such as ARG 
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carrying plasmids (R plasmids) and integrons to disseminate multiple transferable ARGs (Aoki, 

1997; L’Abée-Lund and Sørum, 2001; Berglund, 2015).  

 

In the study by L’Abée-Lund and Sørum (2001), A. salmonicida and other bacteria originating from 

different locations around the world were investigated for the presence of a class 1 integron. Along 

with the integron, several ARGs were found: aadA2, dfr16, aadA1, dfrIIc, qacG, orfD, tetA and tetE, 

indicating that not only do class 1 integrons facilitate antibiotic resistance in marine environments, 

but also that ARGs can be transmitted between bacteria in various environments, since the found 

ARGs cassettes have also been associated with humans (L’Abée-Lund and Sørum, 2001). In 

agreement, Muziasari et al. (2014) found class 1 integrons and ARGs sul1, sul2 and dfrA1 in the 

sediment from farms located in the northern Baltic Sea and these same three ARGs, along with 

aadA2 and aadA1, were also found in Danish A. salmonicida isolated from furunculosis outbreaks 

(Manuscript III). Kadlec et al. (2011) moreover found both class 1 integrons and ARGs against 

sulfonamide, trimethoprim and other antibiotics among Aeromonas species from Germany, where 

the only antibiotic therapy of fish is a combination of the two mentioned antibiotics.  

 

The greatest concern with broad host range conjugative plasmids is that they can transfer ARGs 

across different bacterial genera and similar R plasmids have been isolated from separate ecological 

niches and across different environments (Sørum, 1998; L’Abée-Lund and Sørum, 2000; Sørum et 

al., 2003; Smillie et al., 2010). Sørum (1998) reported that after only 24 hours of mating between a 

fish pathogenic atypical Aeromonas carrying an R plasmid and Escherichia coli, the plasmid was 

directly transferred to every second E. coli cell. Direct transfer of the R plasmid from the atypical 

Aeromonas to human pathogens like Salmonella enteritidis and Salmonella typhimurium was also 

possible (Sørum, 1998). The atypical Aeromonas was also believed to be the origin of an R plasmid 

in A. salmonicida from a furunculosis outbreak (Sørum, 1998). Direct transfer of ARGs from 

pathogenic A. salmonicida to E. coli cells was also reported in the study by (Aoki et al., 1971). In the 

whole genome sequencing (WGS) study, none of the 101 A. salmonicida that were sequenced 

harbored any of the five investigated R plasmids (Manuscript III). However, eight A. salmonicida 

that also harbored multiple ARGs did show coverage (< 60%) of at least one of the R plasmids, 

indicating they could have acquired ARGs from the plasmids in the past through horizontal gene 

transfer and then subsequently lost the plasmid.  

 

2.4 Vaccination  

 

Unlike treatment with antibiotics, one does not have to worry about the bacterial pathogens 

developing resistance against vaccinations (Vinitnantharat et al., 1999), who provide a better 

alternative for future control of furunculosis. Immunization of fish against furunculosis by vaccine 

administration was already introduced experimentally in 1937, however, not until the early 1990’s 

successful implementation of oil-adjuvanted vaccines in salmon aquaculture has there been made 

great advances in this field of research (Midtlyng, 1997). Fish can be immunized orally or by 

immersion or injection, though oral and immersion vaccines are less stressful for the fish than 

injection and would be preferred if their protection level would equal the one produced by injection 

(Vinitnantharat et al., 1999). Unfortunately, although many attempts have been made to produce an 

oral vaccine against furunculosis, thus far all have exhibited inconsistent antibody response and 
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protection (e.g. Krantz et al., 1964; Spence et al., 1965; Midtlyng et al., 1996), which in part could be 

caused by the fact that the vaccine components are poorly retained when administered orally (Press 

et al., 1996). Despite initially showing promising results (Cipriano et al., 1983; Johnson and Amend, 

1984; Rodgers, 1990), immersion vaccines have also proved to be inadequate for use in aquaculture 

due to lack of long-term protection (Midtlyng et al., 1996; Midtlyng, 1997). 

 

Over time, handling techniques improved for injection vaccines and automatic equipment, manuals 

and instruction videos for training became available, making it possible for injection vaccines to be 

administered on a large scale (Eithum, 1993; Midtlyng, 1997). Intraperitoneal injection of vaccines 

with oil adjuvant such as mineral oil, moreover induced much greater and longer protection 

compared to oral and immersion vaccines, making this vaccine administration superior to the others 

(Midtlyng, 1996; Midtlyng et al., 1996; Midtlyng, 1997). Even though numerous side effects for oil 

adjuvants have been observed, including lesions, pigmentation, granulomatous inflammation in the 

liver, autoimmune reactions and intra-abdominal adherences, it is still recommended to use this 

administrative method to minimalize loss of fish due to disease (Midtlyng, 1996; Midtlyng et al., 

1996;  Midtlyng, 1997; Håstein et al., 2005; Koppang et al., 2008; Satoh et al., 2011). The  results of 

Mutoloki et al. (2006) using Atlantic salmon moreover showed that the combination of antigen and 

oil adjuvant is crucial and that it is their combined effect that is responsible for induction of a strong 

inflammatory reaction in the fish, thus highlighting the importance of choosing the correct antigen in 

order to develop an effective vaccine. Several antigen candidates have been suggested for stimulating 

early inflammatory reactions against A. salmonicida, which among others includes the A-layer, 

LPSs, IROMPs and ECPs (Midtlyng, 1997; Mutoloki et al., 2006).  

 

The subspecies A. salmonicida is known to be very homogenous and this includes its virulence 

related A-layer proteins and LPSs located on the surface of the bacterium (Bjørnsdottir et al., 1992; 

Arnesen et al., 2010), which was also observed in Manuscript III. The combination of high similarity 

and location makes them very good antigen candidates and a positive correlation between 

vaccinating with A-layer proteins and protection by the immune system has been observed (Lund et 

al., 2003a; Arnesen et al., 2010). Research involving A. salmonicida IROMPs has shown that they 

also could have a potential as antigens included in vaccines, due to their in vitro bactericidal effect 

on both A-layer negative and positive A. salmonicida strains and in vivo protection of Atlantic 

salmon (Bricknell et al., 1999; O'Dowd et al., 1999).  ECPs of A. salmonicida are already part of oil 

adjuvant vaccines against furunculosis, however, their contribution to the vaccine protection remains 

uncertain as studies using ECPs or their extracts as antigen showed varying results (Cipriano, 1982; 

Cipriano and Pyle, 1985; Prost, 2001). In fact, ECPs might not be important for inducing a protective 

immune responses (Lund et al., 2003a). There are even studies indicating that inclusion of ECPs in 

vaccines could have an adverse effect (Hirst and Ellis, 1994; Midtlyng et al., 1996; Lund et al., 

2003a).  

 

2.5 Transmission  

 

Furunculosis and its causative agent A. salmonicida have been investigated ever since the first 

discovery of furunculosis in 1894 by Emmerich and Weibel. Nevertheless the topic of transmission 

of A. salmonicida remains to be resolved. The primary focus and problem regarding transmission has 
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been carrier fish, whose existence was already indicated by several studies shortly after the discovery 

of furunculosis itself, by illustrating that the presence of A. salmonicida in fish does not necessarily 

lead to the development of furunculosis (e.g. Plehn, 1911; Mettam, 1915; Horne, 1928). Fish are 

thought to be capable of being infected with A. salmonicida for up to several months without 

showing any clinical signs of disease, in which time the infection is often said to be in a latent or 

covert phase and the fish are said to be “carriers” of the bacterium (Hiney et al., 1997).  

 

Carrier fish have been recognized to play a significant role in the transmission of A. salmonicida, due 

to the ability of fish being able to shed bacteria in their surroundings and A. salmonicida being able 

to survive in water without a host (McCarthy, 1980; Rose et al., 1989b; Rose et al., 1990; Hastein 

and Lindstad, 1991; Nomura et al., 1992; Smith, 1992; Morgan et al., 1993; Nomura et al., 1993; 

Ogut and Reno, 2005). In a cohabitation study where Chinook salmon (Oncorhynchus tshawytscha) 

were injected with A. salmonicida and placed together with uninfected fish for ten days, prevalence 

of the bacterium among the initially healthy recipient fish was as high as 75% (Ogut and Reno, 

2005). Mortality related to disease of the recipient fish moreover surpassed 50% and both bacterial 

concentrations in the water number of infected fish increased with time (Ogut and Reno, 2005). Rose 

et al. (1989b) studied Atlantic salmon experimentally infected with A. salmonicida in seawater and 

found bacteria were shed from dead and moribund fish at a high rate of 10
5
 - 10

8
 colony-forming 

units (CFU) per fish per hour.  

 

Even though A. salmonicida initially has been thought of as an obligate pathogen not being able to 

survive in water without presence of fish (Popoff, 1984), others such as McCarthy (1980) found that 

the bacterium could survive up to 8 days. This was supported by the study of Nomura et al. (1992), 

where A. salmonicida was monitored in various type of water. In sterilized fresh water the bacterium 

could survive for sixty days while in non-sterile water, only around four days (Nomura et al., 1992). 

Survival in sea water was moreover shorter than in fresh water, though Nomura et al. (1992) 

concluded that A. salmonicida survival time in water was enough to infect other fish via this route. In 

a 21-day study of A. salmonicida in untreated lake water, Morgan et al. (1993) detected the 

bacterium in water samples by cultivation on TSA plates and with polymerase chain reaction (PCR) 

DNA amplification. Another interesting finding regarding survival of A. salmonicida in water is 

related to the increased hydrophobicity caused by the possession of the A-layer (Enger, 1997), 

whereby the A-layer positive A. salmonicida would become concentrated at the water surface and 

thus especially be a concern for the farms that use spray aeration. Nevertheless, even though no 

water samples were investigated, no gills were found positive from 20 fish showing no signs of 

disease that were sampled from three freshwater farms and one seawater farm in Denmark 

(Manuscript II).  

 

Usually carrier fish start showing clinical manifestations of furunculosis when they become stressed, 

such as during rise in water temperature (Plehn, 1911; Bullock and Stuckey, 1975; McCarthy, 1977; 

Bernoth et al., 1997; Noga, 2010). This scenario is believed to be the key for transmission of A. 

salmonicida and cause of the furunculosis outbreaks among Danish fish farms. Initially, furunculosis 

was first observed by Rasmussen (1964) in freshwater, however, today outbreaks occur in seawater 

during periods of high temperature and especially causes great losses in sea reared rainbow trout 

production (Dalsgaard and Madsen, 2000; Pedersen et al., 2008). The theory is that fish at Danish 
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freshwater farms could be carriers of A. salmonicida and transfer the bacterium with them to the 

seawater farms, where the fish become stressed and develop the disease (Larsen and Mellergaard, 

1981; Dalsgaard and Madsen, 2000; Pedersen et al., 2008). This theory is in agreement with results 

from Manuscript II, where most of the investigated fish were from a batch that was followed from 

freshwater to seawater. Some of these fish that showed no signs of disease at the freshwater farms 

were positive for A. salmonicida with quantitative real-time PCR (real-time PCR) and when 

transferred to a seawater farm, two furunculosis outbreaks occurred at the farm later on during high 

temperatures. 

 

A different suggestion of A. salmonicida transmission has been that the bacterium is transmitted 

vertically (Wichardt et al., 1989). However, this was disputed through an extended study carried out 

by Bullock and Stuckey (1975), who followed carrier and artificially infected brood fish without 

finding any signs of vertical transmission. This notion was supported by McCarthy (1977), instead it 

was proposed that transmission is related to both contaminated equipment and infected fish. 

McCarthy (1977) and Rose et al. (1989b) also investigated transmission by feed through the 

gastrointestinal track, though without yielding any convincing results. Further proposed routes of 

transmission includes e.g. ciliated protozoans, who seemingly enhanced survival of A. salmonicida 

when the bacterium was co-cultured with it (King and Shotts, 1988). 

 

2.6 Route of entry and colonization site(s) 

 

Although several suggestions have been made, there is currently still a great deal of uncertainty 

regarding both the route of entry and primary colonization site(s) of A. salmonicida and especially in 

carrier fish. The fins, gills, mucus layer as well as openings such as wounds have been proposed as 

possible entry sites for A. salmonicida  (Hiney et al., 1997). In agreement, in an experimental study, 

artificially wounded Atlantic salmon infected with A. salmonicida showed higher mortality than 

salmon without the wounds (Svendsen and Bøgwald, 1997). Svendsen and Bøgwald (1997) further 

concluded that A. salmonicida can also adhere and most likely penetrate the mucous and skin of 

Atlantic salmon. The fins were suggested as a possible entry site for A. salmonicida by Hiney et al. 

(1994), who detected A. salmonicida in fins of pre-smolt Atlantic salmon. In another study with 

Atlantic salmon, the gills were indicated as a possible portal of entry into the fish (Svendsen et al., 

1999). These findings are in congruence with Tatner et al. (1984) who investigated A. salmonicida 

infection in rainbow trout as well with results of Manuscript I, where the suggested main attachment 

sites for A. salmonicida after an experimental immersion were the dorsal and pectoral fins and gills.  

 

In regards to possible colonization sites, there are several possible organs that have been investigated 

and proposed as the most probable site for A. salmonicida colonization. The first organ to be called 

the primary colonization site was the kidney (McCarthy, 1977; Popoff, 1984; Hiney et al., 1997). 

Though, A. salmonicida was also found in the gut as early as 1911 by Plehn. The gut was even the 

sole organ where A. salmonicida was found in naturally infected fish without showing clinical signs 

of disease by Willumsen (1990). By use of enzyme-linked immunosorbent assay (ELISA) A. 

salmonicida was also found in the gut by Rose et al. (1989b) and by use of PCR in the study of 

Gustafson et al. (1992). The bacterium was also found in the gut of experimentally infected rainbow 

trout in Manuscript I. Other organs such as the liver, heart, spleen or blood have also been used in 
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many studies as sampling sites for A. salmonicida (e.g. Daly and Stevenson, 1985; Cipriano, 1997; 

Hiney et al., 1997; Svendsen et al. 1999; Beaz-Hidalgo and Figueras, 2012). The spleen, along with 

the kidney, were also both positive for A. salmonicida by bacterial culturing in all experimentally 

infected fish in Manuscript I.  

 

2.7 Susceptibility of fish species  
 

Initially furunculosis was believed to be an exclusive disease of salmonids. Since then it has become 

known that A. salmonicida can also infect other fish species and other aquatic animals in freshwater 

and seawater e.g. catfish, carp, turbot, American eel, goby and wrasse (Bernoth et al., 1997). It has 

also become apparent that susceptibility to furunculosis varies among the host species (e.g. Plehn, 

1911; Fish, 1937; McCarthy, 1977; Ellis and Stapleton, 1988; Perez et al., 1996). The first to 

document that species have different susceptibilities to A. salmonicida was Plehn (1911), who 

conducted experiments with infected rainbow trout and brown trout. The key result was that infected 

rainbow trout could remain unaffected and when placed in the same tank with brown trout and 

temperature was raised, brown trout developed disease and died, while the rainbow trout still 

remained unaffected (Plehn, 1911).  

 

In general, fish belonging to the family Salmonidae are thought to be the most susceptible to 

furunculosis (McCarthy, 1977). Especially brown trout, brook trout (Salvelinus fontinalis) and 

Atlantic salmon have shown to be highly susceptible, while rainbow trout seemed to be more 

resistant as they needed to be wounded in a bath experiment before showing any signs of disease 

(McCarthy, 1977). The high degree of resistance which rainbow trout seem to possess against 

furunculosis compared to other farmed fish species was also illustrated by Cipriano et al. (1994a). 

Though it has to be mentioned that in their study, McCarthy and Roberts (1980) have argued that the 

presumed high susceptibility of salmonids to furunculosis might simply be related to the high degree 

of research that has been done on this family of fish due to their value as farmed fish.  

 

Difference in susceptibility to furunculosis has been related to their immune system activity and 

especially their varying mucosal activity that is one of the main physical barriers and contains 

bioactive molecules such as lysosomes and other bacteriolytic enzymes (e.g. Cipriano and Heartwell, 

1986; Cipriano et al., 1992; Cipriano et al., 1994a; Svendsen and Bøgwald, 1997). Teleost (bony) 

fish in general do exhibit a variation in their immune system wherein mucosal activity against 

pathogens is included (Dickerson, 2009). In agreement, a study by Cipriano and Heartwell (1986) 

showed that the fish species’ mucus antibacterial activity directly correlated with their resistance 

towards furunculosis. This is further supported by results from Manuscript I, where the skin was not 

among the suggested primary attachment sites of A. salmonicida of rainbow trout that are known for 

their high resistance against A. salmonicida. Svendsen and Bøgwald (1997) also showed that 

mortality was higher for Atlantic salmon with an impaired skin mucous layer versus salmon with an 

intact mucous whereby it is indicated that skin mucous likely plays a role in the defense against A. 

salmonicida. Moreover, Cipriano et al. (1992) argued that it appears that several fish species actually 

lack an effective mucous protection layer against furunculosis.  
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2.8 In vivo imaging  

 

One approach that could help elucidating the uncertainties about transmission, route of entry and 

colonization of A. salmonicida,  as well as shed more light on the variation of species susceptibility 

to A. salmonicida, is tracking A. salmonicida in vivo in living fish. Tracking of A. salmonicida has 

been previously done by labeling the bacterium with radioactive isotopes (Svendsen et al., 1999). 

This resulted in findings such as a higher mortality in fish with artificial wounds and reduced 

epidermal mucus and also highlighted the importance of sampling time and the location of the 

bacterium. As an example, A. salmonicida was found in the blood after two hours, but not after 24 

hours (Svendsen et al., 1999) . 

 

In recent years much progress has been made regarding in vivo imaging and the two types that are 

most commonly used are bioluminescent and fluorescent reporters (Troy et al., 2004). Fluorescent 

proteins include the green fluorescent protein (GFP) (Chishima et al., 1997; Bouvet et al., 2002; 

Winnard et al., 2006) and DsRed (Baird et al., 2000; Dietrich and Maiss, 2002; Troy et al., 2004), 

however, there are numerous colors and near-infra red fluorescent dyes to choose from (Weissleder 

et al., 1999; Olenych et al., 2007; Day and Davidson, 2009; Filonov et al., 2011). Genes used in 

Bioluminescence imaging (BLI) originate from various luciferase proteins in bacteria, firefly, click 

beetles, and Renilla and the following components are involved in the light emission reaction: 

luciferase, luciferin, oxygen, and ATP (Troy et al., 2004). Although firefly and red click beetle 

luciferases are preferred in some studies due to their longer wavelength emission, bacterial luciferase 

is the only luciferase that does not require an injection of luciferin, which is a compound consisting 

of a long-chain aldehyde and a reduced riboflavin phosphate (FMNH2), in order to initiate the light-

producing reaction (Troy et al., 2004).  This is because the bacterial lux operon (luxCDABE) consists 

of five genes that encode both the luciferase enzyme and the aldehyde substrate (Fig. 3), while 

FMNH2 is provided from the electron transport chain present in all bacteria (Troy et al., 2004; Lin 

and Meighen, 2009). 

 

 

                  
 

Figure 3. To the left: An illustration of genes of the bacterial lux operon. Genes luxC, luxD, and luxE code for a fatty 

acid reductase, a multicomplex enzyme that continuously supplies and regenerates the aldehyde substrate, while the 

genes luxA and luxB code for luciferase (Lin and Meighen, 2009). To the right: Bioluminescent Photorhabdus 

luminescens bacteria inside a nematode worm (Byrne, 2011). 
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When comparing the advantages and disadvantages of BLI versus fluorescence imaging, one has to 

take into consideration the type of imaging experiment one wants to execute. Luciferase proteins are 

also short lived, while fluorescence proteins are able to reside in the cell for hours  (Burns et al. 

2001; Troy et al. 2004), making fluorescence proteins more advantageous reporters for long term 

studies. Though, fluorescence proteins can take hours to become functional, while luciferase proteins 

mature rapidly following expression, making luciferase proteins more suited for shorter studies  

(Burns et al. 2001; Troy et al. 2004). Fluorescence imaging also has high “background noise”, 

meaning the animal itself emits fluorescence that interferes with the actual signal one is trying to 

visualize, while this kind of background noise is scarce in BLI (Burns et al. 2001; Troy et al. 2004). 

The background noise emitted by rainbow trout tissue in the immersion experiment conducted in 

Manuscript I was also scarce and could not be visualized. Luciferase proteins also have higher 

sensitivity and lower toxicity than fluorescence proteins (Burns et al. 2001; Troy et al. 2004). 

Bacterial luciferase is also an excellent choice for non-invasive studies, due to its ability of emitting 

light continuously without the need of adding any other substrate by e.g. an injection (Troy et al., 

2004). However, although BLI three-dimensional techniques are available commercially (Virostko et 

al., 2008), BLI is usually used as a two-dimensional imaging technique and the spatial resolution is 

low compared to fluorescence imaging, making it difficult to separate photons produced by infected 

cells in two adjacent sites (Hutchens and Luker, 2007). 

 

BLI has also been applied for monitoring A. salmonicida in Atlantic salmon by Ferguson et al. 

(1998). However, in these experiments an exogenous addition of the aldehyde substrate was needed 

in order to catalyze the light reaction and thereby visualize the bacterium. The incorporation of the 

luciferase genes into A. salmonicida moreover significantly lowered the virulence of the bacterium 

(Ferguson et al., 1998). Nevertheless, the experiment showed that A. salmonicida was shed from 

moribund and dead fish in the water column and were able to infect cohabitant fish, where the 

bacteria were mostly found in the gills and skin mucous. In recent studies of the fish pathogen 

Edwardsiella ictaluri by Karsi et al. (2006) and Menanteau-Ledouble et al. (2011), a bacterial 

luciferase lux operon from Photorhabdus luminescens (Fig. 3) that emits light continuously by itself 

was used, enabling them to follow fish over several time points without the need for euthanization 

until the end of the experiments. Méndez and Guijarro (2013) also used this lux operon to 

successfully trace dissemination of Yersinia ruckeri in rainbow trout.  

 

2.9 Manuscript I   

 

Due to the fact that our focus for this study lay on the initial stages of the infection by A. 

salmonicida, meaning the route of entry and initial dissemination of A. salmonicida in fish, we 

choose to employ the same bacterial luciferase lux operon as the above mentioned authors in order to 

track A. salmonicida by in vivo BLI. This was done by transforming a highly virulent Danish A. 

salmonicida with a plasmid vector containing both GFP genes and the bacterial luciferase lux 

operon, which was subsequently used in immersion experiments where fish were followed over a 24-

hour period. Although only luciferase was visualized in the immersion experiments, GFP enabled a 

practical way of visualizing the bacterial colonies through use of a fluorescence microscope.  Results 

of these experiments showed that probable colonization sites of A. salmonicida are the gills and the 

dorsal and pectoral fins. The bacteria then progressed through the internal organs and seem to exit 
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via the anal opening. Modifications of this method are needed in order to attain more comprehensive 

knowledge regarding the route of entry and dissemination of A. salmonicida, nevertheless, this 

method does provide a possible tool for visualizing colonization of A. salmonicida and other 

bacterial pathogens in fish, as well as study host-pathogen interactions.  
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Chapter 3: Detection  

 

3.1 Detection of carrier fish 

 

The main problem regarding identification of carrier fish has been the difficulty of detecting A. 

salmonicida within them (Bullock and Stuckey, 1975; Dalsgaard & Madsen 2000). Isolating A. 

salmonicida from fish showing signs of diseases has usually been done by bacterial culturing and the 

bacterium can also be detected in the fish by methods like histopathology, ELISA and PCR (Rose et 

al., 1989a; Gustafson et al., 1992; Dalsgaard and Madsen, 2000; Austin and Austin, 2007; Beaz-

Hidalgo et al., 2013). There are several explanations for the struggle with detection of A. salmonicida 

and especially with bacterial culturing, which has been the most frequently used method for A. 

salmonicida detection throughout the years (Hiney et al., 1997; Austin and Austin, 2007). One of the 

two main notions is that the amount of A. salmonicida within the carriers might be too low for 

colonies being able to grow (Hiney et al., 1994). Another possibility is that the bacterium within 

carrier fish can be present in a non-culturable state, i.e. they are viable but non-culturable cells 

(VBNC) (Morgan et al., 1993; Ferguson et al., 1995; Nǎşcuţiu, 2010). The presence of VBNC A. 

salmonicida has, however, been a controversial subject due to the scepticism towards being able to 

revive these cells after their non-culturable state. Presence of VBNC A. salmonicida in fish would, 

nevertheless, correlate with the scenario in Denmark, where it has not been possible to detect the 

bacterium by culturing in rainbow trout from freshwater farms, but furunculosis outbreaks still occur 

during elevated temperatures after these fish are transferred out to seawater farms (Dalsgaard & 

Madsen 2000; Pedersen et al. 2008). 

 

In order to improve detection of A. salmonicida in carrier fish, various methods have been applied 

including heat stress of fish, injection of corticosteroid into fish and pre-enrichment steps for 

bacterial culturing. The first to employ a stress test in order to discover carriers was Plehn (1911). In 

an experimental infection with A. salmonicida, fish infected with the bacterium were stressed by 

temperature increase, whereby some fish started showing signs of disease and soon thereafter died 

(Plehn, 1911). Though, Bullock and Stuckey (1975) reported that although heat stress by increase of 

temperature to 18
o
C did cause clinical signs of the disease and subsequently high mortality among 

carrier fish, detection from the fish still remained very low and the best way to increase detection in 

carriers was a combination of corticosteroid injection and heat stress, termed stress-inducible 

furunculosis (SIF) tests (Smith, 1991; Cipriano et al., 1997). The drawback of this method is that 

injected fish have to be held in heated tanks for about two weeks. Even though the method was 

modified in 1977 by McCarthy, the SIF tests are still time consuming and also require sacrifice of 

many fish for obtaining statistical significance (Hiney et al., 1994). Nevertheless, the high reliability 

of this method has consequently made it the primary examination method of salmonids in European 

aquaculture (Smith, 1991). In the study by Cipriano et al. (1997), performance of a SIF test was 

compared to another method suggested for usage of enabling detection of carriers, namely employing 

pre-enrichment steps before culturing (Daly and Stevenson, 1985; Cipriano et al., 1997). Though, 

statistical analysis revealed that the SIF test was more reliable than both pre-enrichment and direct 

culturing (Cipriano et al., 1997). One factor, however, needs to be considered when applying SIF 

tests to salmon, which is timing the test close to smoltification (Scallan and Smith, 1993).  
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3.2 PCR 

 

In order to avoid the SIF tests, yet maintain the possibility of detecting carriers, molecular methods 

such as PCR assays have been developed for detecting Aeromonas salmonicida subspecies 

(Gustafson et al., 1992; Hiney et al., 1992; O´Brien et al., 1994; Mooney et al., 1995; Byers et al., 

2002a, b; Altinok et al., 2008; Beaz-Hidalgo et al., 2008b). PCR has proven to be a powerful tool for 

amplification of nucleic acids, whereby a DNA sequence selected for amplification is exponentially 

increased in repeated cycles of synthesis by a thermostable DNA polymerase and two 

oligonucleotide primers that each hybridize to one strand of the double-stranded target DNA (Saiki et 

al., 1985; Saiki et al., 1988). This is usually followed by visualization of the amplified DNA by gel 

electrophoresis and a known DNA probe is used for determining size of the amplicon.    

 

One of the first Aeromonas salmonicida subspecies specific PCRs was developed by Hiney et al. 

(1992), based on a DNA fragment (GenBank accession number X64214) of  a 6.4 kb A. salmonicida 

cryptic plasmid. Sensitivity of detection for pure culture was two cells (Hiney et al., 1992) and no 

false positives were amplified when tested with numerous typed and clinical isolates of related 

aeromonads and other bacterial genera (Hiney et al., 1992). This target DNA was later used by 

multiple authors (e.g.  Morgan et al., 1993; O´Brien et al., 1994; Byers et al., 2002a, b; Altinok et al., 

2008) for detecting Aeromonas salmonicida subspecies from various fish tissues, feces and water. In 

all the studies no false positives were obtained by testing non-target bacterial DNA, however, not all 

Aeromonas salmonicida subspecies were identified. This is because the cryptic target plasmid that 

now has been identified as A. salmonicida plasmid pAsal1 sequenced by Fehr et al. (2006) (GenBank 

accession number AJ508382), is not universally present in all A. salmonicida (Nielsen et al., 1993; 

Attéré et al., 2015) and can be lost by culturing at above 22 - 25
o
C (Daher et al., 2011; Tanaka et al., 

2012; Attéré et al., 2015). Though, in the 99 sequenced A. salmonicida that were isolated from 

furunculosis outbreaks in Denmark in Manuscript III, only 52% seemed to harbor pAsal1 and all 

were grown at 20
o
C.  

 

Another target gene that has been used by more than one author is the vapA gene, which encodes the 

A-protein of the A-layer and was initially used as a PCR target by Gustafson et al. (1992). Sensitivity 

for detecting Aeromonas salmonicida subspecies in fish tissue was 10 CFU mg
-1

 and only 1 CFU  

ml
-1

 in pure culture. Nevertheless, it was concluded that enrichment steps were necessary for 

detecting potential carrier fish in order to avoid false negatives. As with the pAsal1 target, not all 

bacterial isolates were identified with use of the vapA target due to mutations in the vapA gene 

(Gustafson et al., 1992; Byers et al., 2002b). The pAsal1 target and vapA target were combined in the 

study by Byers et al. (2002b) and they correctly identified 93% and 94% of the Aeromonas 

salmonicida subspecies respectively. When used together, the two PCR assays identified 99% of the 

isolates (Byers et al., 2002b), though in another study conducted by the same authors, it was 

concluded that bacterial culturing was more reliable for detecting carrier fish than the PCR method 

and if PCR were to be used, pre-enrichment steps would be necessary (Byers et al., 2002a).  

 

The chromosome encoded fstA gene has also been used as a PCR target in the study of Beaz-Hidalgo 

et al. (2008b). What separated this PCR from the others, according to Beaz-Hidalgo et al. (2008b), 

was that blood and mucus were used as sampling sites, making the PCR assay a non-destructive 
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diagnostic tool. Detection limit for experimentally infected mucus and blood samples were 2.5 x 10
2
 

and 1.5 x 10
5
 CFU ml

-1
 respectively. It is thought that the low sensitivity in blood samples was 

caused by heparin or other blood component interference that are able to compete with bacterial 

DNA in the assay. Nevertheless, when tested on potential carriers, 31 wild salmon with no signs of 

disease, six salmon were detected by the PCR while the culture method only detected one fish (Beaz-

Hidalgo et al., 2008b). 

 

3.3 Real-time PCR  

 

The conventional method of PCR revolutionized molecular techniques in science, nevertheless, the 

fact remains that this method is laborious, difficult to automate, needs enrichment steps for enabling 

detection of carriers and is usually semi-quantitative at best (Kubista et al., 2006; Bustin et al., 2012). 

This is because conventional PCR is restrained by reagents and reaches a plateau where the product 

amount cannot be increased any longer (Bustin et al., 2012). This plateau varies from assay to assay 

and since the PCR is an endpoint assay analyzed after the reaction has reached its linear phase, the 

gel electrophoresis analysis shows roughly the same amount of DNA that was produced by the end 

of the PCR reaction regardless of what the initial amount of DNA was (Bustin et al., 2012). Although 

the same amplification principles apply to the real-time PCR method, as the name reveals, this 

method monitors the amplification process in “real time” and can be used for precise quantitative 

analysis by fluorescent reporter molecules (Higuchi et al., 1992; Kubista et al., 2006; Bustin et al., 

2012). For real-time PCR, there are also different detection chemistries to choose from and the two 

major ones are either an intercalating dye such as SYBR green (Morrison et al., 1998) or a hydrolysis 

probe such as Taqman (Gibson et al., 1996). Both chemistries have their advantages and 

disadvantages though they share the same design, which is to generate fluorescence during the PCR 

reaction that is monitored in “real time”. Apart from enabling quantitative application, real-time PCR 

is also convenient, robust, simple, fast, sensitive and adapted to high throughput analysis; as a 

consequence it has become the most widely used molecular technique (Kubista et al., 2006; Bustin et 

al., 2012) 

 

Real-time PCR has been used in several studies to detect Aeromonas salmonicida subspecies directly 

from fish tissue (e.g. Balcazar et al., 2007; Goodwin and Merry, 2009; Keeling et al., 2012; Gulla et 

al., 2015). In the study by Balcazar et al. (2007) a real-time PCR assay design was developed, which 

combined low costs with high sensitivity (Balcazar et al., 2007; Nazarenko et al., 2002a, 2002b). The 

assay was based on Light Upon eXtension (LUX) primer probes originally described by Nazarenko 

et al. (2002a, 2002b).  The primers targeted the same A. salmonicida DNA sequence (gene aopP) 

located on the pAsal1 plasmid as originally developed by Hiney et al. (1992) for conventional PCR. 

In agreement with all previous PCR studies that had implemented this target, Balcazar et al. (2007) 

did not find any false positives. Though, on the contrary to the bulk of the previous studies, Balcazar 

et al. (2007) did obtain 100% correct identification of 16 isolates of both typical and atypical 

Aeromonas salmonicida. Balcazar et al. (2007) stressed that the reason behind this result is that the 

isolates used in his study were all from various disease outbreaks indicating that the presence of 

pAsal1 in the bacterium could be related to virulence of the bacterium. This hypothesis is supported 

by research of  Goodwin and Merry (2009) who also used the same target for a real-time PCR assay 

to detect atypical Aeromonas salmonicida and also obtained 100% amplification of this species. In 
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our Manuscript II, all of the 20 tested A. salmonicida isolates from furunculosis outbreaks were also 

correctly identified by the real-time PCR originally developed by Balcazar et al. (2007). Nonetheless, 

the theory was later disputed by our research where 99 Danish A. salmonicida isolated from 

furunculosis outbreaks, were subjected to WGS and it was found that the AopP protein sequence 

encoded on pAsal1 was missing in 50% of the A. salmonicida isolates (Manuscript III).  

 

In the two real-time PCR assays developed by Keeling et al. (2012) and Gulla et al. (2015) the same 

target sequence (gene vapA) was used as originally applied for conventional PCR by Gustafson et al. 

(1992). The assay by Keeling et al. (2012) was based on a molecular beacon and the assay was found 

to have 100% analytical specificity and an analytical sensitivity of 5 ± 0 fg in pure culture and  2.2 x 

10
4
 ± 1 x 10

4
 CFU g

-1 
for kidney tissue. Though, with enrichment steps as used in earlier research, 

the sensitivity for tissue increased to 40 ± 10 CFU g
-1

. This assay was later modified by Gulla et al. 

(2015) for detecting atypical Aeromonas salmonicida from head kidney of cleaner fish in Norway, 

due to existence of multiple types of the A-layer caused by a single base variation resulting in a 

mismatch with the forward primer developed by Keeling et al. (2012). This variation in the A-layer 

was most likely responsible for why 6% of the Aeromonas salmonicida subspecies investigated in 

the study by Byers et al., (2002a) were not amplified by the vapA primers. After this modification, 

Gulla et al. (2015) obtained 100% analytical specificity of all presently recognized A-layer types of 

this species and a sensitivity of 7 - 8 bacterial genomes in pure culture and 1.1 x 10
3
 CFU mL

-1
 in 

tissue. 

 

3.4 Manuscript II 

 

In order to develop a molecular method that would enable specific and highly sensitive detection 

directly from multiple fish tissue (even potential carrier fish), the previously designed real-time PCR 

by Balcazar et al. (2007) was tested on spleen, kidney, intestine, gill and brain tissues from 40 

rainbow trout (n=200), sampled from three Danish freshwater farms and one seawater farm where no 

signs of disease were observed and one seawater farm after two furunculosis outbreaks. Prevalence 

of A. salmonicida obtained by the real-time PCR was compared to the one obtained by bacterial 

culturing. The real-time PCR was chosen primarily due to the bulk of available previous research 

that have used the target and the fact that the plasmid pAsal1 and its derivatives are ColE2-type 

replicons, meaning they are high copy number plasmids (Lilly and Camps, 2015) making the assay 

highly sensitive. Moreover, all 20 Danish A. salmonicida that were tested were amplified by the 

assay. The real-time PCR showed a better result than culturing (65% vs. 30% positive fish by real-

time PCR and culturing, respectively). The assay also indicated possible presence of carrier fish 

harbouring VBNC A. salmonicida in Danish fresh- and seawater rainbow trout farms and that the 

spleen, brain and intestine, where the bacterium was detected by real-time PCR and not culturing in 

fish showing no signs of disease, could play an important role in A. salmonicida infection and 

persistence of VBNC. This means that in order to detect possible carriers, one should strive for 

testing several tissues from fish instead of just one (usually the kidney). Moreover, sensitivity of the 

assay was 1 - 2 genomic units per reaction and the real-time PCR had a high reproducibility and an 

excellent efficiency, thus providing a sensitive tool for detection of A. salmonicida. However, the 

major drawback of the assay, which was exemplified by our later findings in Manuscript III by WGS 

of 99 A. salmonicida, is that the target plasmid is absent in some A. salmonicida and seemingly half 



32 

 

of the representative Danish A. salmonicida population and the absence does not necessarily have to 

be associated with lack of virulence nor culturing above 22 - 25
o
C as indicated in earlier studies. In 

order to be certain of avoiding false negatives, another sensitive detection method with a different 

target would therefore need to be employed.  
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Chapter 4: Epidemiology   

 

4.1 Epidemiology and genetic variation 

 

One major factor for establishing an effective prevention strategy, besides enabling effective 

treatment, is to determine the epidemiology and genetic variation of the Danish A. salmonicida. 

Numerous molecular techniques have been applied for deciphering the epidemiology and genetic 

variation of A. salmonicida and generally the results support the notion of A. salmonicida being a 

highly homogenous subspecies as previously indicated by its phenotypical characteristics (Toranzo 

et al., 1991; Dalsgaard et al., 1994; Nielsen et al., 1994a).  

 

One of the first studies using a molecular method for investigating genetic similarity of A. 

salmonicida was Belland and Trust (1988). Eleven A. salmonicida isolated from different species of 

fish and geographical places around the world were subjected to a DNA:DNA reassociation 

technique using a radiolabeled probe and the resulting mean DNA sequence similarity was 97 ± 

6.1% (Belland and Trust; 1988). Other molecular methods have included restriction endonuclease 

fingerprinting analysis (McCormick et al., 1990), randomly amplified DNA polymorphism 

fingerprinting analysis (RAPD) (Miyata et al., 1995; Inglis et al., 1996; O'hici et al., 2000), amplified 

fragment length polymorphism (AFLP) (Lund et al., 2003b), plasmid profiling (Nielsen et al., 1993; 

Sørum et al., 1993), and ribotyping (Nielsen et al., 1994b). Although Nielsen et al. (1994b) and 

O'hici et al. (2000) did find some clustering using ribotyping and RAPD respectively; it was not 

enough to enable use of these methods for epidemiological studies except for maybe certain local 

geographical areas.  

 

Pulsed-field gel electrophoresis (PFGE) has for a long time been the ‘gold standard’ for typing 

bacterial isolates, however, even this method did not have enough resolution for studying 

epidemiology of A. salmonicida (Garcia et al., 2000; O'hici et al., 2000; Cunningham and 

Colquhoun, 2002; Beaz-Hidalgo et al., 2008). Garcia et al. (2000) examined 132 isolates from 

Denmark, Norway, Scotland, Ireland, the Faroe Islands, France, Canada and the USA and although 

PFGE was reportedly more useful to differentiate A. salmonicida than ribotyping, only slight 

differences were found and overall results suggested that a single clone of A. salmonicida was 

responsible for most of the worldwide furunculosis outbreaks. This theory is supported by findings 

of Nash et al. (2006). In order to identify virulence genes and possible vaccine candidates, Nash et al. 

(2006) developed a microarray-based comparative genomic hybridization (M-CGH) technique based 

on virulence associated genes from the genome sequence of A. salmonicida strain A449 (Reith et al., 

2008). Nash et al. (2006) compared A. salmonicida and other Aeromonas species isolated from 

various fish species and geographic locations and found no correlation between host or geographic 

origin and the M-CGH patterns and a relatively low number of divergent genes in the A. 

salmonicida strains.  
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4.2 MLST-v 

 

Currently, one of the most widely used molecular methods for typing microbial isolates is multilocus 

sequence typing (MLST) due to its great sensitivity, specificity and ease of use and data exchange 

(Enright and Spratt, 1998; Maiden et al., 1998; Platonov et al., 2000; Maiden, 2006; Martino et al., 

2011; Martinez-Murcia et al., 2011). MLST is based on identifying polymorphic sites within DNA 

sequence fragments of multiple housekeeping genes. For each gene fragment, every sequence that 

differs is given its own unique allele no matter if they differ at one or several nucleotide sites. Each 

isolate is then characterized based on the combination of the alleles from all the gene fragments, 

whereby they can each be assigned a specific allelic profile or sequence type (ST) number (Maiden 

et al., 1998). 

 

In the present thesis a modified MLST based on eight housekeeping genes (dnaJ, rpoD, groL, gyrB, 

metG, ppsA, gltA and recA) in combination with four virulence associated genes (aexT, eno, vapA 

and fstB) (Table 1) was applied on a preliminary representative collection of 23 Danish A. 

salmonicida isolates, one Scottish strain and the A. salmonicida type strain NCIMB 1102 in order to 

study their genetic variation using the publicly available WGS A. salmonicida strain A449 as 

reference (Reith et al., 2008) (Table 2). This kind of modified MLST, usually called MLST-v, has 

been used in previous studies where the method has proven to have a higher discriminatory power 

than MLST and has revealed important genetic information regarding virulence associated genes 

(Zhang et al., 2004;Chen et al., 2007; Doijad et al., 2014; Tankouo-Sandjong et al., 2007). A detailed 

materials and methods section for the MLST-v used in this thesis is described in Chapter 5: 

Methodological considerations.  

 

The MLST-v scheme with allelic profiles for all A. salmonicida isolates was created, however, only 

five unique STs were identified (Table 2).  The pattern of evolutionary descent of A. salmonicida 

based on the STs was also analyzed using eBURST (http://eburst.mlst.net/3.asp). Analysis showed 

that all isolates belong to the same clonal complex (CC), since no isolate differed by more than a 

single allelic mismatch. Nineteen of the Danish isolates and the type strain NCIMB 1102 belonged to 

the primary founder ST (ST 1) (Fig. 4A), which is the ST with the most single-locus variants (SLVs) 

(http://eburst.mlst.net/3.asp). This was supported with a bootstrap confidence level of 88% 

(percentage based on 1000 replicates). A Bayesian phylogeny tree based on the concatenated 

sequences from A. salmonicida MLST-v was also constructed, displaying the high homogeneity of 

the A. salmonicida (Fig. 4B). In conclusion, all analysis showed that the MLST-v was not an 

adequate tool for studying the epidemiology and genetic variation of Danish A. salmonicida. The 

results support the high genetic homogeneity of A. salmonicida found in previous studies using other 

typing methods (e.g.  Belland and Trust; 1988; Beaz-Hidalgo et al., 2008; Nash et al., 2006). 
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Table 1. Information about primers used for PCR amplification and sequencing of housekeeping and 

virulence associated genes for development of a MLST-v scheme. The following is depicted in table form 

left to right: Primer names for each gene, nucleotide sequence for each primer, brief description of the protein 

product that the respective genes encode, length of the PCR amplicon of each gene fragment in base pairs 

(bp), length of the target sequence located within the PCR product of each gene fragment that is used for the 

MLST-v scheme, annealing temperature for the respective primer pairs used during PCR amplification, and 

reference article for each primer including this thesis as reference if primers were designed during the present 

thesis. 

 

Primer Sequence (5’-3’) Gene product Length of PCR 

amplicon (bp) 

Length of 

target 

sequence (bp) 

Annealing 

temperature 

Reference 

gyrB-F CATGTCTACGAGCA

GACCTA 

DNA gyrase (type II 

topoisomerase), subunit B 

926 682 54 0C (Martinez-Murcia 

et al., 2011) 

gyrB-R CTCCACGTTCAGGA

TCTTGCC 

 

 

    

rpoD-F GAAGGCGAAATCG

ACATCGC 

RNA polymerase, sigma 

70 (sigma D) factor 

700 649 55 0C (Martinez-Murcia 

et al., 2011) 

rpoD-R ATGCTCATGCGRCG

GTTGAT 

 

 

    

groL-F CAAGGAAGTTGCTT

CCAAGG 

Chaperonin GroEL 

 

782 604 57 0C (Martino et al., 

2011) 

groL-R CATCGATGATGGTG

GTGTTC 

 

 

    

dnaJ-F CGAGATCAAGAAG

GCGTACAAG 

Chaperone Hsp 40, co-

chaperone with DnaK 

934 814 54 0C (Martinez-Murcia 

et al., 2011) 

dnaJ-R CACCACCTTGCACA

TCAGATC 

 

 

    

recA-F GCTGGGTCAGATTG

AAAAGC 

Recombinase A 

 

640 635 57 0C (Martinez-Murcia 

et al., 2011) 

recA-R CTCGCCGTTATAGC

TGTACC 

 

 

    

gltA-F TTCCGTCTGCTCTC

CAAGAT 

Citrate synthase I 

 

626 373 57 0C (Martino et al., 

2011) 

gltA-R TTCATGATGATGCC

GGAGTA 

 

 

    

metG-F TGGCAACTGATCCT

CGTACA 

Methionyl-tRNA 

synthetase 

657 

 

539 57 0C (Martino et al., 

2011) 

metG-R TCTTGTTGGCCATC

TCTTCC 

 

 

    

ppsA-F AGTCCAACGAGTA

CGCCAA 

Phosphoenolpyruvate 

synthase 

619 502 61 0C (Martino et al., 

2011) 

ppsA-R CTCGGCCAGATAG

AGCCAGGT 

 

 

    

aexT-F TGCAGATTCAAGC

AAACACC 
ADP-ribosylating toxin 689 608 61 0C This thesis 

aexT-R GCCAGCAACTTCTG

CCTTTA 

 

 

    

eno-F CGCCGACAACAAC

GTCGACATC  

Enolase 598 518 56 0C (Martino et al., 

2011) 

eno-R CTTGATGGCAGCCA

GAGTTTCG  

 

 

    

vapA-F CAACGGTTTCATTG

TGTTGG 

A-layer  630 556 56.5  0C This thesis 

vapA-R TTGAAGGCAGAAA

CATCACC 

 

 

    

fstB-F GTTTCCCGCTTTTC

CTTGA 

Ferric siderophore 

receptor B  

594 512 58 0C This thesis 

fstB-R GAAGATGCTGCGTT

TGCTC 
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Table 2.Overview of A. salmonicida isolates used in the MLST-v and their respective sequence type (ST) 

and allelic profile. For A. salmonicida isolates that were also used for whole genome sequencing (WGS), the 

same name is used as in manuscript III: The Danish isolates have a black color (freshwater farms) or a 

blue color (seawater farms) and are labeled by region of origin followed by year of isolation, with 

abbreviations Nj = Northern Jutland, Mj = Central Jutland, Sd = Southern Denmark, Sj = Zealand. 

The two Danish isolates that were not included in WGS are named Denmark followed by their year of 

isolation. There are five STs. Alleles gltA, metG and vapA are the only three alleles that vary in their sequence 

composition in at least one base pair (bp) among the isolates. 

 

A. salmonicida isolate ST 

 

 

dnaJ 

 

gltA 

 

groL 

 

gyrB 

 

metG 

Alleles 

ppsA 

 

recA 

 

rpoD 

 

aexT 

 

eno 

 

vapA 

 

fstB 

Denmark 1985 1 1 1 1 1 1 1 1 1 1 1 1 1 

Mj13   1987 1 1 1 1 1 1 1 1 1 1 1 1 1 

Mj16   2008 1 1 1 1 1 1 1 1 1 1 1 1 1 

Sd3   1982 1 1 1 1 1 1 1 1 1 1 1 1 1 

Sd6 (a)   2013 1 1 1 1 1 1 1 1 1 1 1 1 1 

Mj21   1993 1 1 1 1 1 1 1 1 1 1 1 1 1 

Mj5   1986 1 1 1 1 1 1 1 1 1 1 1 1 1 

Sd1   2004 1 1 1 1 1 1 1 1 1 1 1 1 1 

Sd2   1982 1 1 1 1 1 1 1 1 1 1 1 1 1 

Sd2   1995 1 1 1 1 1 1 1 1 1 1 1 1 1 

Sj2 (a)   1993 1 1 1 1 1 1 1 1 1 1 1 1 1 

Sj2 (b)   1993 1 1 1 1 1 1 1 1 1 1 1 1 1 

Sj3 (b)   2009 1 1 1 1 1 1 1 1 1 1 1 1 1 

Sj5   1994 1 1 1 1 1 1 1 1 1 1 1 1 1 

Sj5   1995 1 1 1 1 1 1 1 1 1 1 1 1 1 

Sj6 (a)   1993 1 1 1 1 1 1 1 1 1 1 1 1 1 

Sj6 (a)   1996 1 1 1 1 1 1 1 1 1 1 1 1 1 

Sj6 (b)   1993 1 1 1 1 1 1 1 1 1 1 1 1 1 

Sj6 (b)   1996 1 1 1 1 1 1 1 1 1 1 1 1 1 

NCIMB 1102 (Type 

strain 1962) 
1 1 1 1 1 1 1 1 1 1 1 1 1 

Denmark 2009 2 1 1 1 1 1 1 1 1 1 1 2 1 

Mj18   1986 2 1 1 1 1 1 1 1 1 1 1 2 1 

Sj4   1982 2 1 1 1 1 1 1 1 1 1 1 2 1 

Sd6 (b)   2013 3 1 1 1 1 1 1 1 1 1 1 3 1 

Scotland 4 1 2 1 1 1 1 1 1 1 1 1 1 

Reference A449 (France 

1975) 
5 1 1 1 1 2 1 1 1 1 1 1 1 

 

 

 

 

 

 

 



37 

 

 
 

Figure 4. (A) Pattern of evolutionary descent of A. salmonicida STs from the MLST-v, as shown by 

eBURST. Nineteen of the Danish isolates along with the reference type NCIMB 1102 belong to ST 1. The 

three Danish isolates Denmark 2009, Mj18 1986 and Sj4 1982 belonged to ST 2, the Danish isolate Sd6 (b) 

2013 belongs to ST 3, the Scottish isolate belongs to ST 4 and A449 belongs to ST 5. Same isolate labels are 

used as in Table 2. (B) Bayesian phylogeny tree based on the concatenated sequences from A. salmonicida 

MLST-v. The A. salmonicida isolates have a clonal population structure. The three Danish isolates belonging 

to ST 2 form a monophyletic group with a bootstrap value of 57%. Same isolate labels are used as in Table 2. 

 

 

4.3 Whole genome sequencing  

 

Previous molecular methods such as RAPD, AFLP, PFGE, MLST and MLST-v focus on a small part 

of the genome, while WGS can avoid such bias and thus provides the best overview for studying a 

population (Foxman et al., 2005; Parkhill and Wren, 2011). Since the first time bacterial genomes 

were completely sequenced in 1995 (Fleischmann et al., 1995; Fraser et al., 1995), WGS has gone 

through immense progress. The most notable factor for this progression was development and 

implementation of next-generation sequencing (NGS) techniques, initially introduced by Roche 454  

Life Sciences in 2005 (Henson et al., 2012), which reduced the price and increased the speed of 

sequencing by reducing the average read length compared to sanger-sequencing  (Rothberg and 

Leamon, 2008; Metzker, 2010;  Land et al., 2015; Loman and Pallen, 2015). As a result, the number 

of sequenced genomes has skyrocketed in recent years (Land et al., 2015; Loman and Pallen, 2015). 

Although this has been accompanied by an increase in the recommended coverage needed for a 

genome assembly and number of contigs needing closure before a genome could be completed (Land 

et al., 2015), Illumina sequencing platform seems to be a cost-effective, since assemblies can be 

generated that are almost complete genomes (Mavromatis et al., 2012).  Due to the relatively low 

costs along with its high accuracy, yield of error-free reads and percentage base calls above Q30 
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(Henson et al., 2012; Ross et al., 2013), the Illumina sequencing platform is currently the most 

widely used WGS technique (Metzker, 2010; Land et al., 2015). 

 

NGS technology has also proved to be a powerful tool in microbiology for studying epidemiology of 

bacterial outbreaks (Hiller et al., 2007; Shendure and Ji, 2008; Pandya et al., 2009; Lewis et al., 

2010; Leekitcharoenphon et al., 2012;  Bertelli and Greub, 2013; Salipante et al., 2015;  Stucki et al., 

2015). The advantage with WGS lies with its high discriminatory power that enables deciphering the 

evolution of bacterial isolates belonging to the same clonal lineage, whereby highly robust 

phylogenies can be generated and the origin and routes of transmission of infections can be revealed 

(Parkhill and Wren, 2011). WGS even revealed the patient-to-patient pattern of transfer of a bacterial 

pathogen within a hospital (Harris et al., 2010). In the study by Salipante et al. (2015) PFGE was 

compared to WGS and although the result for relatedness of the bacteria by both methods correlated 

with each other, the resolution of WGS was highly superior. The same was concluded by 

Leekitcharoenphon et al. (2012) when investigating the epidemiology of Salmonella enterica using 

both PFGE and WGS. Leekitcharoenphon et al. (2012) moreover compared several WGS 

bioinformatics approaches for the same data and determined that nucleotide difference and single 

nucleotide polymorphism (SNP) tools were superior to the other bioinformatics methods. Indeed, the 

SNP approach has been frequently used for WGS based epidemiological studies (e.g. Pandya et al., 

2009; Lewis et al., 2010; Stucki et al., 2015). In agreement, WGS in combination with the SNP 

analysis was able to distinguish among 101 sequenced A. salmonicida, using the published genome 

of the French strain A449 (Reith et al., 2008) as reference (Manuscript III). 

 

Recently genome sequence information of numerous bacterial fish pathogens has also become 

available from genome sequencing projects, which is believed to become a vital part in finding new 

intervention strategies against bacterial infections in fish (Sudheesh et al., 2012). The genome of A. 

salmonicida isolate (A449) from a brown trout in the Eure river in France was sequenced by Reith et 

al. (2008). This has provided insight into the genomics of A. salmonicida that could prove to be vital 

for discerning the pathogen’s evolution and infection progress (Reith et al., 2008). The study 

provided basic genetic information regarding the strains chromosome size of 4,702,402 base pairs 

(bp) and its plasmid profile consisting of two large plasmids pAsa4 and pAsa5 and three small 

plasmids pAsa1, pAsa2 and pAsa3. All of these plasmids, except for pAsa4, were also present 

among the majority of the A. salmonicida isolates sequenced in Manuscript III, where plasmids 

pAsal1 and pAsa6 were also additionally present in many isolates. Though, one of the key findings 

by Reith et al. (2008) included identification of functional genes encoded on plasmid pAsa5 and the 

chromosome for T3SS that has been shown to be vital for virulence in A. salmonicida as described in 

detail in chapter 1. Most likely due to rearrangements in pAsa5, both T3SS effector proteins and 

structural proteins were, however, absent in 24% of the isolates in Manuscript III. T3SS genes are 

also absent in the genome sequenced A. hydrophila ATCC 7966T and are only present on the 

chromosome in other A. hydrophila (Sha et al., 2005). The genome of A449 moreover contains 

numerous of virulence associated genes including the A-layer, toxins, secreted enzymes, iron 

acquisition genes, quorum sensing genes and ARGs (Reith et al., 2008) that were also found among 

the sequenced A. salmonicida in Manuscript III. Comparisons with the genome of A. hydrophila 

ATCC 7966T (Seshadri et al., 2006) also highlighted their respective evolution associated with 

possible adaptation to their fish hosts (Reith et al., 2008). Nevertheless, two Danish isolates from 
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brown trout, the French strain A449 also isolated from brown trout, one Scottish strain and the type 

strain NCIMB 1102 isolated from Atlantic salmon all showed high SNP similarity with the 97 

Danish A. salmonicida isolated from rainbow trout in the WGS study of Manuscript III.  

 

4.4 Manuscript III 

 

Due to the lacking ability of MLST-v to distinguish among the homogeneous A. salmonicida isolates 

and the above mentioned advantages of WGS, we sequenced 99 Danish A. salmonicida isolated from 

different geographical regions and years (1980 - 2014), the Scottish strain MT004 and the type strain 

NCIMB 1102 from England. WGS was successfully able to distinguish among the A. salmonicida 

isolates, though it revealed that A. salmonicida is very homogenous, since only 667 SNPs were found 

among the isolates within the 4,702,402 bp long sequence of the chromosome. Bayesian temporal 

phylogenetic reconstruction showed that four major introductions of A. salmonicida into Denmark 

have occurred. The introductions correlate with the initial expansion of Danish rainbow trout 

production and the beginning of production in seawater. There is also a possibility that the bacterium 

might have initially been transmitted from seawater to freshwater. We moreover found some 

variation in plasmids and virulence factors, especially those encoded on plasmids and nine A. 

salmonicida harbored worldwide known ARGs against several antibiotics. Overall, our WGS 

analysis provided valuable information regarding epidemiology as well as genetic and virulence 

variations among the Danish disease causing A. salmonicida population.  
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Chapter 5: Methodological considerations 

 

5.1 Materials and methods for MLST-v  

 

Bacterial isolates 

 

The following A. salmonicida isolates were selected for development a MLST-v scheme: 23 Danish 

A. salmonicida isolated between year 1982 and 2013 from various fresh- and seawater rainbow trout 

farms, one Scottish A. salmonicida isolated from Atlantic salmon and the type strain NCIMB 1102 

isolated from Atlantic salmon (Table 2). The publicly available whole genome sequence of the 

French isolate A449 isolated from brown trout was used as a reference.  

 

Primers 

 

Primers for amplification of A. salmonicida gene fragments from eight housekeeping genes (dnaJ, 

rpoD, groL, gyrB, metG, ppsA, gltA and recA) and four virulence associated genes (aexT, eno, vapA 

and fstB) were either developed during the present thesis or obtained from previous publications 

(Martinez-Murcia et al., 2011; Martino et al., 2011). The list of housekeeping and virulence 

associated genes and all primers used for PCR amplifications and sequencing is listed in Table 1. 

 

DNA extraction  

 

All A. salmonicida were grown in VIB (Difco) for 48 h at 20°C. DNA was extracted using Qiagen 

QIAamp DNA mini kit (Qiagen) according to the manufacturer’s protocol and stored at -20°C until 

further PCR amplification. 

 

PCR reaction 

 

PCR reaction was carried out in T3000 Thermocycler (Biometra) using a final volume of 50 µL 

containing: 5 µL GeneAmp® 10X Gold Buffer (150 mM Tris-HCl, pH 8.0, 500 mM KCl), 5 µL 

25mM MgCl2, 1 µL 10µM deoxyribonucleotide (dNTP) mix, 1 µL of each forward and reverse 

primer (l0 µM), 0.3 µL of AmpliTaq Gold® DNA Polymerase (5U µL
-1

) (Applied Biosystems), 34.7 

µL of sterile water and 2 µL of 5ng DNA genomic DNA as the template. The reaction mixture was 

subjected to denaturation at 94◦C for 3 min, followed by 35 cycles of amplification as follows: 

denaturation at 94◦C for 1 min, annealing temperature depending on the primer (table 2 and 3) for 1 

min and extension at 72◦C for 1.30 min. At the end a final extension step at 72◦C was achieved for 3 

min.  

 

Sequencing  

 

PCR Amplified products were analyzed by electrophoresis on 2% agarose E-gels (Invitrogen) and 

visualized on a UV transilluminator. The products were then purified using the High Pure PCR 

Product Purification kit (Roche Applied Science, Germany), following the manufacturer’s 

instructions. Nucleotide sequences for the MLST-v analysis were determined by bidirectional 
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sequencing using the Big Dye Terminator V3.1 Ready Reaction Cycle Sequencing Kit in ABI 3130 

Genetic Analyzer (Applied Biosystems, USA), according to the manufacturer’s instructions. Each 

gene fragment was sequenced using the same forward and reverse primer pair as used for PCR 

amplification. 

 

Data processing and analysis  

 

Consensus sequences for twelve gene fragments from the A. salmonicida isolates used in the MLST 

were assembled via CLC Workbench software 6.5 (CLC Bio-Qiagen, Aarhus, Denmark). Alignment 

of all consensus sequences for each gene was done using the Clustal X program (Larkin et al., 2007). 

Trimming of alignments was done in Bioedit (Hall, 1999). All nucleotide variable positions and 

insertions/deletions found in the alignments were checked manually in raw sequence chromatograms 

by use of BioEdit (Hall, 1999) and CLC Workbench software 6.5. By use of nucleotide blast 

(Altschul et al., 1990), all gene fragments (alleles) were found for the published isolate A. 

salmonicida A449 (Reith et al., 2008). Trimmed and edited sequences, including the A. salmonicida 

A449 sequences, were used to create a new MLST-v scheme for A. salmonicida in MLST plugin 

application in CLC workbench software 6.5 according to the program guidelines. Allele sequences 

that differed from each other by one or more polymorphisms were attributed to a unique allele 

number. Each unique allelic profile, as defined by the allele numbers of the twelve loci, was assigned 

a ST number. The same ST was assigned to isolates that shared the same allelic profile.  

 

Analysis by eBURST  

 

Pattern of evolutionary descent of 25 A. salmonicida isolates and the reference strain A449 was 

analyzed using eBURST (http://eburst.mlst.net/default.asp). The program uses allelic profiles to 

identify potential CCs and founders by linking SLVs or double-locus variants (Feil et al., 2004). 

Parameters for the analysis were set to stringent default setting, meaning all STs had to be SLVs of 

some other ST in the population, which is illustrated as a diagram with a single CC i.e. a group 

where all STs are linked (http://eburst.mlst.net/3.asp). Here the parameter was eleven, since twelve 

alleles (gene fragments) were used in the MLST-v. 

 

Bayesian phylogenetic tree 

 

Concatenated MLST-v sequences for 26 A. salmonicida isolates, including the reference strain A449, 

were subjected to Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) 

methods in the software package MrBayes (Ronquist et al., 2012) available at: 

http://mrbayes.csit.fsu.edu/download.php. MCMC chains were simulated for one million generations 

with subsampling every 100 generations and an ‘invgamma’ molecular evolution model that allows a 

gamma distribution across positions of the alignment with invariable sites.  

 

5.2 In vivo imaging (Manuscript I) 

 

Before the experimental infection of rainbow trout of this study was carried out, the following was 

investigated: 1) the lowest possible immersion time of fish in the diluted A. salmonicida gfplux 
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culture that would enable attachment and thus visualization of the bacterium on the fish for the first 

time point and 2) the difference between luminescence emittance of infected and non-infected fish 

i.e. the fish autoluminescence. Eight rainbow trout were experimentally infected in three liters of 5 × 

10
7
 CFU ml

-1
 A. salmonicida gfplux culture in well-aerated 10 ± 1°C aquariums at our institute. Two 

fish were euthanized the following time points using an overdose of 3-aminobenzoic acid ethyl ester: 

30 min, 1 hour, 2 hours  and 3 hours post infection. All euthanized fish were washed twice in 

distilled water, dipped on a paper towel, and finally laid on a sterile Tissue Culture Dish (Greiner 

Bio-One, Germany). Fish were then transported to the Danish Cancer Institute in their respective 

culture dishes, where they were placed in the dark collection chamber of the IVIS spectrum imaging 

workstation (PerkinElmer) for bioluminescence image capture (30 s). One euthanized non-infected 

control fish was also scanned to compare autoluminescence emitted by non-infected fish with 

luminescence emitted from A. salmonicida gfplux infected fish. Luminescence emission from A. 

salmonicida gfplux was observed on all eight infected fish at each of the time points 30 min - 3 hours 

post challenge at one or several of the following sites: dorsal fin, pectoral fin, gills, oral and nasal 

cavity, and the eyes. While the attachment site patterns varied among individual fish, the most 

intensive luminescence emission was observed from fish infected for 2- and 3 hours respectively. 

Based upon this result, 2 hours of immersion time in A. salmonicida gfplux diluted culture was 

determined to be sufficient for the bacterium to attach to the fish and enable visualization of the 

bacterium in the IVIS. Measured autoluminescence from the non-infected control fish was scarce and 

could not be visualized, compared to the visualized intense luminescence emitted by the A. 

salmonicida gfplux from infected fish.  

 

It would be recommended for future studies that an experimental infection set-up, similar as to the 

one described in Manuscript I, would be carried out. The differences would include fish being 

immersed for only 30 min and in lower concentrations of A. salmonicida gfplux in order to better 

mimic natural infections and the fish would be followed for a shorter and longer duration than 24 

hours respectively, in order to allow visualization of the internal organs at various time points. 

Though, the details and optimal settings for the additional infection experiments would need to be 

investigated first. Only if the above mentioned experimental infections would be successfully 

employed, then one could also consider testing a co-habitation challenge using this method, which 

would be the most optimal way to mimic natural conditions of infection. The instability of the 

plasmid vector carrying the GFP and luciferase genes would also have been investigated more 

closely. One possibility would have been to do the transformation procedure of A. salmonicida over 

again in order to see if a more stable A. salmonicida transformant could be made. Another option 

could have been to try treating the fish with ampicillin before start of the experimental infection and 

thereby create a favorable environment inside the fish for A. salmonicida gfplux i.e. A. salmonicida 

carrying the plasmid vector with GFP, luciferase and ampicillin resistance. 

 

5.3 Real-time PCR (Manuscript II) 

 

Initially, several extraction methods for extracting A. salmonicida DNA from seeded tissue were 

tested, as well as different amounts of tissue in order to avoid inhibition of the real-time PCR assay.  

The three extraction methods that were tested extensively were Maxwell® 16 LEV Blood DNA 

Purification Kit (Promega), QIAamp DNA Mini Kit (Qiagen) and InstaGene Matrix (Bio-Rad). The 
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Maxwell and QIAmp kits are both standard kits at our institute and have been used for extraction 

from various tissues and fluids of fish and other animals with slightly modified versions of the 

manufacturers’ procedures. However, even after exhaustive testing with various modifications e.g. 

overnight lysis, different buffer and proteinase K combinations and lowering the amount of all 

tissues to 10 mg, there were still problems with the extractions and especially the spleen. The main 

issue with the QIAamp DNA Mini Kit was that the filters seemed to become clogged by the tissue 

even after extended lysis procedures. Difficulties extracting with the Maxwell® 16 LEV Blood DNA 

Purification Kit included carryover of particles during the extraction process, lower than expected 

DNA yield and inhibition of real-time PCR. Briefly the Maxwell® 16 Tissue DNA Purification Kit 

was also tested, though the same problems occurred as with the previous Maxwell kit. The InstaGene 

Matrix kit, which has been used for extracting DNA from fish tissues in a number of previous PCR 

and real-time PCR studies e.g. (Balcazar et al., 2007; Keeling et al., 2012; Beaz-Hidalgo et al., 

2013), gave the most optimal results and was thus used henceforth. 

 

Two other previously developed real-time PCR assay by Goodwin and Merry (2009) and  Keeling et 

al. (2012) respectively, were also tested before continuing with the assay developed by (Balcazar et 

al., 2007). The assay by Goodwin and Merry (2009) included three different PCR primers used for 

conventional PCR assays in the study by Byers et al. (2002b). One of the primers had the same target 

(plasmid pAsal1) as the real-time PCR primers of Balcazar et al. (2007), though the main difference 

was that Goodwin and Merry (2009) did not change the PCR primers even though they amplified 

long (421 - 512 bp) DNA sequences, which is a standard size for conventional PCR amplicons, 

though the recommended optimal amplicon size for real-time PCR is usually 50 - 200 bp. This might 

have contributed to the fact why we were not able to reproduce the results by Goodwin and Merry 

(2009), as the primers did not amplify pure cultures of various A. salmonicida strains. When testing 

the assay by Keeling et al. (2012) with primers targeting the vapA gene, similar results were obtained 

as with the assay by Goodwin and Merry (2009). The only assay that showed promising results was 

the one originally developed by Balcazar et al. (2007) and was thus pursued further.   

 

Given the current knowledge obtained by WGS of the 99 Danish A. salmonicida isolates in 

Manuscript III, a different target gene than aopP encoded on pAsal1 would have been used for the 

real-time PCR assay. Due to limited amount of time, developing and implementing new primers was 

not possible. Nevertheless, if new primers were to be developed in the future, it would be essential to 

obtain the same high sensitivity as the one obtained in this real-time PCR assay. 

 

5.4 Whole genome sequencing (Manuscript III) 

 

In retrospect, due to the inability of the developed MLST-v to distinguish among the Danish A. 

salmonicida, the best solution would have been to avoid this method and instead have moved straight 

to WGS. Plasmid profiling of the 101 sequenced A. salmonicida isolates would also be 

recommended in the future for enabling a better comparison with previous studies of A. salmonicida 

plasmids.  
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Chapter 6: Discussion and future perspectives  

 

6.1 Discussion  

 

From a broader perspective, research conducted within the framework of this PhD project aimed at 

contributing to ongoing efforts towards resolving the current concerns of furunculosis in Danish 

rainbow trout production. As discussed in the following paragraphs, investigations of three key 

matters regarding this grave fish disease, done throughout this thesis, have contributed novel insights 

into each of these subjects.  

 

The route of entry and dissemination of A. salmonicida was investigated by tracking the bacterium in 

vivo using BLI in Manuscript I. Although uncertainties regarding this topic remain, the in vivo study 

shed light on the initial host-pathogen relationship between rainbow trout and A. salmonicida. The 

key findings were that A. salmonicida mostly seemed to initially colonize the gills and the dorsal and 

pectoral fin and move on quite rapidly (within 24 hours) to internal organs such as the intestine, 

spleen and kidney. These findings, although more elaborate studies are needed to establish any firm 

conclusions, are in agreement with several previous studies regarding A. salmonicida (e.g. 

Willumsen, 1990; Hiney et al., 1997; Svendsen et al., 1999) and moreover highlight some key issues 

that need to be resolved in order to comprehend the initial stages of the A. salmonicida infections.  

 

One of the important issues, stressed by the fact that the skin was not one of the suggested primary 

colonization sites of A. salmonicida in this study, was that fish species seem to have different levels 

of resistance to A. salmonicida that are correlated with the immune system and especially the 

mucosal activity of the species (McCarthy, 1977; Cipriano et al., 1994a; Dickerson, 2009). More 

attention should be paid to this important topic, especially since some studies have argued that the 

mucus of skin could be the best sampling site for carrier fish (Svendsen and Bøgwald, 1997). This 

might be true for more susceptible fish species like Atlantic salmon (McCarthy, 1977), but does not 

necessarily apply to rainbow trout due to their high resistance and the indicated lack of skin 

colonization observed in Manuscript I. Granted, the results from the in vivo study cannot be 

compared to carrier infections due to the high amount of bacteria used (5 × 10
7 

CFU ml
-1

 A. 

salmonicida gfplux culture) for the immersion and non-natural infection conditions, nevertheless, it 

emphasizes that progression of A. salmonicida in fish is not uniform in all species, meaning one 

cannot rely on certain detection and prevention strategies for A. salmonicida being applicable for all 

farmed fish if only certain species have been investigated.  

 

Another notable result in Manuscript I was the fast dissemination of A. salmonicida into the internal 

organs of the fish. Again it is important to emphasize that the fish were immersed in a high 

concentration of the bacterium, which could have contributed to this rapid dissemination. 

Nonetheless, it is an intriguing observation supported by other studies concerning digestion of 

various feed (e.g. Windell et al. 1969) that one should bear in mind in future research regarding this 

bacterium. Returning to the subject of carrier fish, this rapid dissemination pattern might also provide 

insight into possible colonization sites of the bacterium in carrier fish. If the pathogen is only 

attached to the outer surface of the fish for a short period of time, at least concerning rainbow trout, 
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one could thus speculate whether the focus should be shifted towards sampling of internal organs. 

This suggestion is supported by the real-time PCR findings of Manuscripts II, where A. salmonicida 

in 20 rainbow trout without signs of disease was found only in internal organs (the brain, spleen and 

intestine) and not in the gills. These findings also highlight the importance of sampling from more 

than one organ in order to detect A. salmonicida, whereby we move on to the second key subject of 

this thesis, namely development of a highly sensitive method for detection of the bacterium. On one 

hand this was accomplished, since the real-time PCR enabled detection of 1 - 2 genomic units per 

reaction and showed more sensitive detection of A. salmonicida than the culturing method. The 

difference in sensitivity was even more profound in fish without signs of disease (possible carriers), 

where only one out of 20 fish was found positive by culturing, while six fish were positive with real-

time PCR. The major drawback of the real-time PCR, limiting the future applicability of this method 

for future field investigations in at least Denmark, is the fact that 50% of the representative A. 

salmonicida population in Denmark was missing the target sequence of the assay (Manuscript III). 

Previous studies have shown that the absence of the target (plasmid pAsal1) can be caused by 

culturing conditions above 22 - 25
o
C (Daher et al., 2011) and it has been argued that the absence 

could be related to lack of virulence of the bacterium (Balcazar et al., 2007). However, it was 

revealed by WGS in Manuscript III that these two conditions are not necessarily associated with the 

absence of pAsal1, since all the A. salmonicida isolates were cultured at 20
o
C and were isolated from 

furunculosis outbreaks.  

 

One should nevertheless, keep in mind the two key factors that were highlighted through the findings 

of Manuscript II, which were the importance of sampling from multiple organs when trying to detect 

A. salmonicida and the indication of possible carriers being present in Danish freshwater farms. The 

most noteworthy aspects regarding the topic of sampling sites for A. salmonicida, is that the intestine 

might be a colonization site for A. salmonicida as indicated by findings in Manuscript I and that the 

brain could also be a possible colonization site. Both organs, along with the spleen, were the only 

positive organs in potential carrier fish, while the intestine is rarely used for sampling and to the best 

of our knowledge the brain has never been investigated in any previous studies of A. salmonicida. 

The indication of possible presence of carrier fish in Danish freshwater farms supports the 

widespread theory of freshwater to seawater (via carrier fish) A. salmonicida transmission in 

Denmark. In congruence, this transmission pattern of A. salmonicida was seen in Manuscript III for 

isolates harboring ARGs. Nevertheless, the four major introductions of A. salmonicida into Denmark 

that correlate with the initial expansion of Danish rainbow trout production and the beginning of 

production in seawater, indicated the possibility of the bacterium initially being transmitted from 

seawater to freshwater (Manuscript III). This brings us to the last key investigation of this thesis, 

namely obtaining knowledge on the epidemiology and genetic and virulence variation of the Danish 

disease causing A. salmonicida. 
 

Although the Bayesian temporal phylogenetic reconstruction based on the SNPs obtained from WGS 

gave a general insight into the epidemiology of the Danish A. salmonicida population, it was difficult 

to find specific geographical correlations between the local fish farms, which might have been 

caused by a trade of fish for anglers and between individual farms. While WGS also proved to be a 

valuable tool for distinguishing among the homogenous Danish A. salmonicida isolates, overall it 

still supported the notion of high homogeneity, since only 667 SNPs were found among all 101 
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isolates (two from other countries). This finding also explained why almost all A. salmonicida used 

in the initially developed MLST-v had identical sequences.  

 

Variation of A. salmonicida seemed mainly to be related to the plasmid profiles and virulence factors 

encoded on these plasmids, of which T3SS related virulence proteins seemed to be the most variable 

ones. This was associated with the high instability of pAsal1 and pAsa5 on which most of the T3SS 

virulence proteins are encoded. Though, A. salmonicida can harbor plasmids that share the same 

virulence genes e.g. plasmid pAsa6 that was included in the study (Manuscript III) and that harbor 

insertion sequences that can cause rearrangements and enable possible transfer of genes between 

plasmids and the chromosome (Daher et al., 2011; Dallaire-Dufresne et al., 2014). This intertwined 

system of virulence-associated genes makes is difficult to state anything concrete regarding this 

topic, without a more comprehensive analysis of the T3SS proteins. What can be suggested from the 

findings of Manuscript III regarding T3SS and the previously shown significance of its structural 

genes for A. salmonicida virulence (Burr et al., 2002; Burr et al., 2003; Stuber et al., 2003; Burr et 

al., 2005; Dacanay et al., 2006; Froquet et al., 2007), is that this theory needs to be investigated more 

thoroughly because the sequences encoding some of the structural proteins (e.g. ascV) were absent in 

24% of the 101 sequenced A. salmonicida. The isolates that were missing these structural proteins 

have not been subjected to any in vivo studies that could provide information regarding their 

virulence or possible lack thereof, however, these A. salmonicida were isolated from furunculosis 

outbreaks. One can speculate whether this group of isolates could have lost these protein-coding 

sequences during culturing, since stressful culture conditions can cause rearrangements in plasmid 

pAsa5 whereby T3SS related genes can be lost (Stuber et al., 2003; Tanaka et al., 2012; Dallaire-

Dufresne et al., 2014). On the contrary to this theory, all the Danish A. salmonicida were cultured at 

20
o
C.  

 

Another significant finding was that nine A. salmonicida harbor worldwide known ARGs against 

several antibiotics, among these were ARGs against trimethoprim and sulphonamide that are 

licensed antibiotics for treatment in Danish aquaculture. The prevalence of these ARGs was low 

(9%), nevertheless, there is a clear transmission pattern of some of the isolates harboring the ARGs 

from a freshwater farm to several seawater farms. The ARGs found in the Danish isolates have also 

been found in Aeromonas species isolated from different environments around the world (L’Abée-

Lund and Sørum, 2001; Sørum et al., 2003; Kadlec et al., 2011; Muziasari et al., 2014), supporting 

the evidence of the widespread dissemination of ARGs. This also highlights the need for developing 

an effective vaccine. Based on the findings of Manuscript III, the A-layer protein and GCAT protein 

sequences seem to be highly homogeneous among the Danish A. salmonicida, which warrants further 

investigation into their potential use for a vaccine against A. salmonicida. On the other hand, further 

studies are needed to identify any specific isolate(s) and/or virulence factor(s) that could be 

recommended in implementation of a vaccine. 

 

6.2 Conclusion and future perspectives 

 

The bacterium A. salmonicida was discovered over 100 years ago, however, there are still many 

questions regarding this pathogen and the disease furunculosis that remain unanswered. The findings 
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of this project have provided some valuable information for research on A. salmonicida, however, 

there is much that could be improved and further elaborated.  

 

The best way to gain more knowledge on the host-pathogen relationship of A. salmonicida is through 

in vivo imaging, a valuable approach that is rapidly advancing. Although fluorescent and 

bioluminescent reporters are still the most frequently used reporters for imaging, their limitations of 

resolution and range of depth prevent the possibility of obtaining a detailed picture of the host-

pathogen relationship. Notably, one emerging method that promises to revolutionize imaging and 

surpasses both of the above methods in resolution and range of depth is photoacoustic imaging, 

which uses ultrasound waves for imaging (Xu and Wang, 2006). Thus far this technology has only 

been used for human biomedical research; however, in the near future this imaging method could 

become available in the veterinary field. 

 

Another detection method for A. salmonicida that would have the same high sensitivity as the real-

time PCR assay in Manuscript II, but would enable 100% detection of all A. salmonicida, could be 

developed by changing the target of the present assay. One possible target could be the high-copy 

number plasmid pAsa1 that thus far seems to be universally present and stable in all A. salmonicida 

(Attéré et al., 2015). 

 

Much data has been obtained by WGS of the 101 A. salmonicida isolates and only a fraction of this 

data has been utilized for analysis thus far. Indeed, much more valuable and in-depth knowledge 

could be found by applying some of the available bioinformatics tools, a promising goal for which 

the dataset created by our WGS analyses can provide a solid foundation.  

 

Taking all the obtained results throughout this thesis into consideration, this PhD project has 

contributed novel and insightful information further promoting the current research on Danish 

disease causing A. salmonicida as well as the bacterium in general. There still seems to be a 

challenging ‘road ahead’ when trying to prevent furunculosis in the Danish rainbow trout production. 

On the positive side, one can hope that the findings of this project will inspire future research on A. 

salmonicida and that eventually prevention of furunculosis will be successful before even greater 

losses are seen due to the constant increase in intensity of farming combined with the major disease-

promoting environmental stress factor – the overall raising global temperature. 
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Abstract 15 

 16 

Recent development of imaging tools has facilitated studies of pathogen infections in vivo in real 17 

time. This trend can be exemplified by advances in bioluminescence imaging (BLI), an approach 18 

that helps to visualize dissemination of pathogens within the same animal over several time points. 19 

Here we employ bacterial BLI for examining routes of entry and spread of Aeromonas salmonicida 20 

susbp. salmonicida in rainbow trout. A virulent Danish A. salmonicida strain was tagged with 21 

pAKgfplux1, a dual-labeled plasmid vector containing the mutated gfpmut3a gene from Aequorea 22 

victoria and the luxCDABE genes from the bacterium Photorhabdus luminescens. The resulting A. 23 

salmonicida transformant exhibited growth properties and virulence identical to the wild type A. 24 

salmonicida, which made it suitable for an experimental infection, mimicking natural conditions. 25 

Fish were infected with pAKgfplux1 tagged A. salmonicida via immersion bath. Colonization and 26 

subsequent tissue dissemination was followed over a 24-hour period using the IVIS Spectrum 27 

imaging workstation. Results suggest the pathogen’s colonization sites are the dorsal and pectoral 28 

fin and the gills, followed by a progression through the internal organs and an ensuing exit via the 29 

anal opening. The present work provides a tool for visualizing colonization of A. salmonicida and 30 

other bacterial pathogens in fish.  31 

 32 

Introduction 33 

 34 

Aeromonas salmonicida susbp. salmonicida, the causative agent of the disease furunculosis, is one 35 

of the major bacterial pathogens in aquaculture throughout the world. Furunculosis is a septicemic 36 

infection that was first described in Denmark in freshwater rainbow trout (Oncorhynchus mykiss) 37 

farms during the 1950s (Rasmussen 1964). Currently, furunculosis causes the greatest problems in 38 
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Danish rainbow trout production in sea water, where outbreaks occur during stress-associated 39 

periods with elevated temperatures around 20
o
C in July and August (Larsen & Mellergaard 1981; 40 

Dalsgaard & Madsen 2000; Pedersen, Skall, Lassen-Nielsen, Nielsen, Henriksen & Olesen 2008). 41 

This indicates a possibility of A. salmonicida being spread from freshwater into the sea via rainbow 42 

trout carriers (Dalsgaard & Madsen, 2000). However, attempts to isolate bacteria from these 43 

presumed carrier fish have not been successful so far (Dalsgaard & Madsen 2000). Consequently, 44 

discerning the sites of entry and dissemination pattern of A. salmonicida within fish could be an 45 

important factor for optimizing future sampling procedures and detection of the bacterium.  46 

 47 

Given the advances in the field of in vivo imaging in recent years, real-time monitoring of 48 

pathogens with various fluorescence and luciferase protein reporters has emerged as a promising 49 

strategy for following the pathogens’ dissemination within their hosts (Contag, Contag, Mullins, 50 

Spilman, Stevenson & Benaron 1995; Rocchetta, Boylan, Foley, Iversen, Letourneau, McMillian, 51 

Contag, Jenkins & Parr 2001; Karsi, Menanteau-Ledouble & Lawrence 2006; Karsi & Lawrence 52 

2007; Zinn, Chaudhuri, Szafran, O´Quinn, Weaver, Dugger, Lamar, Kesterson, Wang & Frank 53 

2008; Menanteau-Ledouble, Karsi & Lawrence 2011). In comparison to fluorescence reporters, 54 

luciferase proteins that exhibit bioluminescence (BLI) show higher sensitivity, lower toxicity and 55 

faster response to changing environments (Burns, Joh, Francis, Shortliffe, Gruber, Contag & Contag 56 

2001; Troy, Jekic-McMullen, Sambucetti & Rice 2004). Moreover, there is scarcely any 57 

autoluminescence (BLI background noise) emitted by animal tissues, as opposed to other light 58 

sources where the background disturbance emitted by tissues usually affects the light-emitting 59 

reporters’ sensitivity and overall applicability (Troy et al. 2004). 60 

 61 



 
 

4 
 

BLI has been applied for monitoring A. salmonicida in dead Atlantic salmon (Salmo salar)  62 

(Ferguson, Bricknell, Glover, MacGregor & Prosser 1998). However, requirement for an exogenous 63 

addition of aldehyde for BLI visualization and incorporation of luciferase genes into A. salmonicida 64 

significantly lowered the virulence of the bacterium (Ferguson et al. 1998). First application of BLI 65 

for real-time monitoring of bacteria in live fish was reported by Karsi et al. (2006) who used the 66 

method to investigate dissemination of Edwardsiella ictaluri inside channel catfish (Ictalurus 67 

punctatus). Recently, Méndez & Guijarro (2013) used BLI to trace dissemination of Yersinia 68 

ruckeri in rainbow trout. Both studies used a bacterial luciferase operon from Photorhabdus 69 

luminescens consisting of five genes (luxCDABE) encoding the luciferase and fatty acid reductase 70 

enzyme complex, enabling emission of luminescence without the addition of any cofactors or 71 

exogenous substrates (Meighen 1993; Burns et al. 2001; Troy et al. 2004). 72 

  73 

The aim of this study was to explore the routes of entry and subsequent tissue dissemination of A. 74 

salmonicida by using in vivo imaging and luciferase coding operon (Karsi et al. 2006; Méndez & 75 

Guijarro 2013). In short, a virulent A. salmonicida was tagged with a dual-labeled reporter plasmid 76 

containing a mutated green fluorescence protein (GFP) gene and the BLI coding genes (luxCDABE) 77 

under the same lacZ promoter that requires only oxygen for constitutive expression of both protein 78 

reporters (Karsi & Lawrence 2007). Expression of GFP provided a marker for verifying the 79 

presence of plasmid in the tagged bacterium and proper function of the lacZ promoter, while 80 

expression of BLI provided a marker for in vivo monitoring of a bacterium in the host after 81 

experimental infection.  82 

 83 

Materials and Methods 84 

 85 
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Bacterial strains and plasmid transfer 86 

 87 

Aeromonas salmonicida subsp. salmonicida 090710-1/23 (further referred to as A. salmonicida 88 

WT) is a virulent strain from a disease outbreak in Denmark. This strain has been used several times 89 

for various infection experiments in our and other Danish laboratories (e.g. Chettri, Skov, Jaafar, 90 

Krossøy, Kania, Dalsgaard & Buchmann 2015). Escherichia coli B/K 12 (Addgene, USA) is a 91 

donor strain that has an incorporated plasmid vector pAKgfplux1 consisting of the plasmid 92 

pBBR1MCS4 with an inserted: 1) gfpmut3a mutant gene from Aequorea Victoria, 2) luxCDABE 93 

operon from Photorhabdus luminescens, and 3) an ampicillin resistance gene. The pAKgfplux1 94 

plasmid was first isolated from the E. coli B/K 12 donor strain by QIAprep Spin Miniprep Kit 95 

(Qiagen, Valencia, CA), according to the manufactures instructions. The plasmid was then 96 

transformed into A. salmonicida WT by conjugal mating using a natural kanamycin resistant E. coli 97 

strain SM10 λpir (Biomedal, Spain) as described by Karsi et al. (2007). 98 

 99 

In details, natural kanamycin resistant SM10 λpir was transformed with pAKgfplux1 plasmid 100 

carrying ampicillin resistance by electroporation using a Gene Pulser instrument (Bio Rad) at 25 101 

µFD, 200 Ω, 1.8 kV and with a time constant (tau value) of 5 msec. SM10 pir ampicillin and 102 

kanamycin resistant colonies were grown overnight in 2 ml of Luria Bertani (LB) medium (Difco) 103 

at 37
o
C with shaking at 225 rpm. The recipient was grown separately for 48 h in Veal Infusion 104 

Broth (VIB) (Difco) at 20
o
C. Subsequently, 750 μl of the donor E. coli SM10 λpir and 1.5 ml of 105 

recipient culture were centrifuged separately at 8700 g for 2 minutes and the supernatant was 106 

removed. Collected bacteria were then washed by resuspending the pellets in 750 μl of Brain Heart 107 

Infusion (BHI) (Difco). Washing procedure was repeated three times in order to remove antibiotics 108 

used during broth culture. In 1.5 ml centrifuge tubes, 50 μl of donor and 100 μl of recipient washed 109 
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cells were mixed and bacteria were centrifuged as previously. Supernatant was poured off and 110 

donor and host mixture was suspended in 5-10 μl of BHI. Punched and sterilized 0.45 μM filters 111 

(Life GE Healthcare Life Sciences) were placed on blood agar plates (Columbia agar base (Oxoid) 112 

with 5% calf blood) without antibiotics and 5 μl of bacterial mixture was transferred on the filter as 113 

a spot. Plates were returned to incubator set to suitable temperature for the recipient (20
o
C) and 114 

conjugation continued for 48 h. At the end of the conjugation period, filters were dropped into 115 

sterile 1.5 ml Eppendorf tubes and bacteria were washed away by adding 750 μl of VIB with 100µg 116 

ml
-1

 ampicillin (Sigma-Aldrich). Ten microliters of bacterial suspension were mixed with 990 μl of 117 

ddH2O and 25 μl of the mixture was spread onto selective blood agar plates containing 100 µg ml
-1

 118 

ampicillin and incubated for 48 h at 20
o
C. Incubation temperature 20

o
C ensured optimal growth of 119 

A. salmonicida and ampicillin selected for A. salmonicida with incorporated pAKgfplux1 (further 120 

referred to as A. salmonicida gfplux). A. salmonicida gfplux colonies showing the strongest 121 

fluorescence under an Axio imager M1 (Zeiss, Germany), were transferred into 5 ml VIB and 122 

incubated for 48 h at 20
o
C.  The bacteria were subcultivated two times under these conditions and 123 

then two times using blood agar plates without ampicillin, from which a single A. salmonicida 124 

gfplux colony was selected for storage in glycerol stocks (600 µL of 50% glycerol with 900 µL of 125 

the 48 h grown bacterial culture in VIB) at -80
o
C until further use. 126 

 127 

Experimental fish 128 

 129 

Fertilized eggs of rainbow trout from Fousing Trout Farm (Jutland, Denmark) were brought to our 130 

institute, where disinfection, hatching and rearing were carried out under pathogen-free conditions. 131 

Fish were held at 10 ± 1°C in 180-liter tanks containing a flow-through system with non-chlorinated 132 

tap water and air supply. Fish were fed dry commercial feed (Inicio Plus; BioMar A/S, Denmark) at 133 
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1% of biomass per day. Average weight and length of rainbow trout used for all challenges was 8.8 134 

± 2.7 g and 9.3 ± 1.7 cm. Experimental infections were carried out in accordance with the accepted 135 

guidelines for the care and use of laboratory animals in research and with regulations set forward by 136 

the Danish Ministry of Justice and Animal Protection committees by Danish Animal Experiments 137 

Inspectorate permit number 2013-15-2934-00976.  138 

 139 

Sensitivity of IVIS for detecting A. salmonicida gfplux 140 

 141 

To determine the threshold detection limit for visualization of A. salmonicida gfplux using an IVIS 142 

spectrum imaging workstation (PerkinElmer) with an exposure time of 30 s, four separate two-fold 143 

serial dilutions in 0.9% saline solution ranging from 8 x 10
4 

- 2 x 10
2
 colony-forming-units (CFU) 144 

ml
-1

 of the bacterium grown in VIB for 48 h at 20
o
C, were made in a black 96-well microtiter plate 145 

(Thermo Scientific) using a volume of 0.1 ml per well. To measure background noise 146 

(autoluminescence), aliquots of 0.1 ml 0.9% saline solution were also added to four wells as 147 

controls. The plate was scanned for 30 s. Relative intensity of luminescence emission for each well 148 

was estimated by IVIS software and represented with a pseudo-colour scale of counts s
-1

. Each 149 

dilution series was then cultivated on blood agar plates to confirm CFU ml
-1

 and after 48 h growth 150 

at 20
o
C, all plates were visualized using an Axio imager M1 in order to observe fluorescence 151 

emitted from the bacterial colonies. Mean autoluminescence was subtracted from luminescence 152 

values of all A. salmonicida gfplux wells and correlation between CFU ml
-1

 and relative intensity of 153 

luminescence emission was determined.  154 

 155 

Plasmid stability and effect of transformation on bacterial growth in vitro 156 

 157 
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Plasmid stability was previously investigated by Karsi et al. (2006) and Karsi and Lawrence (2007). 158 

Results from these studies suggested that the broad host range vector employed in this study can be 159 

transferred and stably maintained in Gram-negative bacteria. 160 

 161 

In order to test whether the introduction of plasmid affected growth properties of the wild-type 162 

strain, bacterial growth of A. salmonicida WT and A. salmonicida gfplux were compared: 1) 163 

indirectly using procedure by Karsi et al. (2006) for measuring optical density of bacterial culture 164 

and 2) directly by plating serial dilutions onto blood agar to obtain CFU ml
-1

. Readings of OD625 165 

were analyzed by a Student's paired t test using the Microsoft Excel statistical package. After the 48 166 

h period, a serial dilution was made from each bacterial culture and plated on blood agar to 167 

determine CFU ml
-1

 and fluorescence emitted from the bacterial colonies was observed using an 168 

Axio imager M1. Determined CFU ml
-1

 was compared by a Student's t test analysis using Microsoft 169 

Excel. The experiment was repeated three times. 170 

 171 

Effect of transformation on in vivo virulence 172 

 173 

In vivo virulence of A. salmonicida WT and A. salmonicida gfplux was compared by determination 174 

of CFU required to infect 50% of the fish population. Bacteria were grown in VIB for 48 h at 20
o
C. 175 

Subsequently, ten-fold serial dilutions of bacteria, containing 10
8 

- 10
4
 CFU ml

-1
 were made in 0.9% 176 

saline solution. Each dilution was then used for inoculation of six fish. Each fish was inoculated 177 

intraperitoneally with 0.1 ml of the corresponding dilution, so the infection doses administrated 178 

ranged from 10
7 

- 10
3
 CFU. One control group with six fish was injected with 0.1ml sterile veal 179 

infusion broth, and one control group with six fish was left uninjected. Fish were held at 10 ± 1°C 180 

in 10-liter tanks containing a flow-through system with non-chlorinated tap water and air supply. 181 
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Fish were observed several times per day and moribund fish were euthanized by immersion in 250 182 

mg l
-1

 of 3-aminobenzoic acid ethyl ester (MS-222) (Sigma-Aldrich) until it was certain that 183 

swimming and gill movement had ceased. After two weeks the experiment was terminated. In order 184 

to confirm bacterial infection and to estimate plasmid stability during infection of the host, spleen, 185 

kidney and brain specimens were cultivated on blood agar and LB agar containing 100 µg ml
-1

 186 

ampicillin. Fluorescence emission in the isolated bacteria was observed by using an Axio imager 187 

M1. Calculation of ID50 was done according to Reed & Muench (1938) and Student’s t test in 188 

Microsoft Excel was used to assess significance. 189 

 190 

Experimental setup for real-time monitoring A. salmonicida gfplux in vivo 191 

 192 

Two fish were experimentally infected with A. salmonicida gfplux by separate immersion in two 193 

well-aerated 19 ± 1°C 10-liter tanks containing three liters of 5 × 10
7 

CFU ml
-1

 A. salmonicida 194 

gfplux for two hours. For visualization each fish was anesthetized with MS-222, immersed twice in 195 

distilled water and dipped on a paper towel before finally being laid on a Tissue Culture Dish 196 

(Greiner Bio-One, Germany) and scanned in the IVIS for 30 s to estimate relative intensity of 197 

luminescence emission (counts s
-1

). After scanning, each fish was placed in a new well-aerated 10-198 

liter tank containing three liters of distilled water for recovery. Visualization was performed at the 199 

following time points: 2, 4, 6 and 24 h after immersion in the infection bath. Fish were euthanized 200 

before the last visualization time-point (24 h). Scanning in the IVIS was done on the whole fish and 201 

for the last scanning also on fish that were cut open to expose internal organs. Finally, for 202 

bacteriology examination, kidney and spleen samples were taken from each fish and streaked on 203 

blood agar that was incubated for 48 h at 20
o
C. Subsequently all plates were examined in an Axio 204 

imager M1microscope for fluorescence emission. One non-infected (control) fish was also scanned 205 
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in the IVIS as whole and cut open for monitoring of autoluminescence (counts s
-1

)
 
emitted from 206 

different external as well as internal areas. Obtained autoluminescence was subtracted from all 207 

luminescence readings of infected fish in order to acquire the correct luminescence (counts s
-1

) for 208 

each scanning, which could then be correlated to a CFU count and be represented with a pseudo-209 

colour scale. The experiment was repeated three times using one fish per tank and two times using 210 

two fish per tank. A total of fourteen infected fish and five non-infected control fish were examined.  211 

 212 

Results 213 

 214 

Detection limit of A. salmonicida gfplux 215 

 216 

Visualization and measurement of the A. salmonicida gfplux two-fold dilutions showed that for the 217 

exposure time of 30 s, the threshold detection limit for visualization of A. salmonicida gfplux 218 

appears to be 4 x 10
4
 CFU ml

-1
. Correlation between CFU ml

-1
 and measured relative intensity of 219 

luminescence emissions was linear (R
2
 = 0.977) over the range of 8 x 10

4
 - 2 x 10

2
 CFU ml

-1
 (Fig. 220 

1), indicating luminescence emission should present the accurate CFU values for a given sample. 221 

Average percent of A. salmonicida gfplux colonies emitting fluorescence on a blood agar plate was 222 

95% (data not shown).  223 

 224 

[Figure 1] 225 

 226 

Effect of transformation on bacterial growth in vitro  227 

 228 
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No significant difference was observed between A. salmonicida WT and A. salmonicida gfplux 229 

growth as measured by the indirect method of OD625 when analysed with a Student’s paired t test (p 230 

> 0.05). Bacterial CFU ml
-1

 after 48 h of growth at 20
o
C for each experiment was analysed by a 231 

Student’s t test and showed no significant difference (p > 0.05) in all experimental repeats (Table 232 

1). Average percent of A. salmonicida gfplux colonies emitting fluorescence on a blood agar plate in 233 

all experimental repeats was 96%, while no fluorescence emission was observed in any A. 234 

salmonicida WT colonies (data not shown). 235 

 236 

[Table 1] 237 

 238 

Effect of transformation on in vivo virulence  239 

 240 

The ID50 value for A. salmonicida WT was 5 x 10
5
 CFU and for A. salmonicida gfplux 6 x 10

5
 241 

CFU. Insertion of pAKgfplux1 into A. salmonicida WT did not seem to affect in vivo virulence of 242 

the bacterium. A. salmonicida gfplux colonies were re-isolated from all three sampled organs i.e. 243 

kidney, spleen and brain in euthanized fish. The number of colonies emitting fluorescence on blood 244 

agar plates gradually decreased over the course of the experiment and after 10 days fluorescence 245 

emission could not be detected any longer (Table 2). Colonies grown on LB agar with ampicillin 246 

showed consistently strong fluorescence but their number rapidly decreased. From day 5 of the 247 

experiment only few colonies grew on LB agar and after the day 8 no growth was recorded (Table 248 

2).  249 

 250 

[Table 2] 251 

 252 
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Experimental infection for real-time monitoring A. salmonicida gfplux in vivo 253 

 254 

For the experimental infection, luminescence signal from A. salmonicida gfplux was observed in 255 

overall twelve of the fourteen examined fish following a two-hour immersion time (Table 3). At the 256 

2-hour time point, a luminescence signal was detected on eight of the twelve positive fish. Bacteria 257 

were visualized on the following sites: the dorsal, pectoral, caudal and anal fin, anal opening, gills, 258 

oral and nasal cavity and eyes (Table 3; Fig. 2).  259 

 260 

[Figure 2] 261 

 262 

For the 4- and 6-hour time points, luminescence emission could be seen in three fish (Table 3). In 263 

two fish, the gills where observed luminescence was found at the 2-hour time point were still 264 

emitting luminescence at the 4-hour time point. Luminescence was also observed in the body organ 265 

area in one fish at the 6-hour time point, which was presumed to be emitted from the inside of the 266 

fish.  267 

 268 

[Table 3] 269 

 270 

After 24 hours, luminescence was found in four of the total of twelve positive fish (Table 3). 271 

Among the ten fish where the luminescent bacteria were found, in three fish the luminescence 272 

signal was strong enough to be seen through the skin in whole fish (Table 3; Fig. 3). In one of the 273 

three fish, the luminescence signal was located around the anal opening and after being cut open; 274 

the signal was still located around that area and the lower intestine (Fig. 3). The seven remaining 275 

fish needed to be cut open in order to be able to detect a luminescence signal. In all ten positive fish 276 
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at the 24-hour time point, the signal was located in the intestine (Table 3). In one fish the signal was 277 

also located in the stomach (Table 3 and Fig. 3). In two fish the signal seemed to be located both in 278 

the intestine and spleen.  Bacteriological examination of kidney and spleen samples was positive for 279 

A. salmonicida gfplux in all fourteen fish. However, very faint or no fluorescence emission was 280 

observed from these colonies (data not shown). In all five non-infected control fish no bacteria were 281 

isolated and measured autoluminescence emission was scarce compared to measured luminescence 282 

emission from infected fish (negative data not shown).  283 

 284 

[Figure 3] 285 

 286 

Discussion 287 

 288 

Experimental infections with A. salmonicida gfplux provided an indication of potentially important 289 

colonization sites of A. salmonicida. However, colonization and dissemination of A. salmonicida 290 

gfplux in fish could only be visualized in twelve of the fourteen experimentally infected fish and 291 

after 24 hours bacteria were only visualized in the digestive system, while bacteria were re-isolated 292 

from the spleen and kidney in all fourteen fish after 24 hours. The lack of visualization in other 293 

organs could be due to the bacterial amount being below the threshold detection limit and/or a lack 294 

of plasmid stability.  The later scenario is supported by the fact that the re-isolated bacteria on blood 295 

agar plates either emitted very little or no luminescence at all. Previous studies using plasmids with 296 

the same luciferase coding operon as in this study did not report on any difficulties regarding 297 

plasmid stability within fish (Karsi et al. 2006; Menanteau-Ledouble et al. 2011; Méndez & 298 

Guijarro 2013). It is not possible to explain the reason(s) for the observed instability of the plasmid 299 

within fish in this study. 300 
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 301 

When comparing the threshold detection limit of BLI to previous studies, the limit of 4 x 10
4
 CFU 302 

ml
-1

 in this study is higher than the 10
3
 CFU ml

-1
 as reported by both Karsi et al. (2006) and 303 

Méndez & Guijarro (2013). The luminescence signal is proportional to exposure time i.e. the 304 

duration a sample is scanned for (Caliper Life Sciences). In this study fish were scanned for 30 s as 305 

oppose to 1 min in the previous studies (Karsi et al. 2006; Méndez & Guijarro 2013). We have 306 

chosen a shorter exposure time taking into the consideration: 1) uncertainty of the anaesthetic 307 

effectiveness over longer durations than 30 s, 2) minimizing chance of obtaining false positives and 308 

3) the overall well-being of the fish. 309 

 310 

In this study, fins were suggested as one of the key colonization sites of A. salmonicida. This results 311 

is in agreement with the findings by Hiney, Kilmartin & Smith (1994), who used ELISA to detect 312 

A. salmonicida in pre-smolt Atlantic salmon with stress-inducible furunculosis infections.  Fins 313 

were also found as major colonization sites in other fish pathogens (Martinez, Casado & Enriquez 314 

2004; Harmache, LeBerre, Droineau, Giovannini & Brémont 2006; Menanteau-Ledouble et al. 315 

2011). One reason why fins and especially the dorsal fin seem to be an important attachment site 316 

could be related to bite wounds (Jobling, Jørgensen & Christiansen 1993). Consistently Svendsen & 317 

Bøgwald (1997) found A. salmonicida infected salmon with artificial wounds exhibiting higher 318 

mortality than infected salmon with no wounds. In contrast, fish used in our study did not have any 319 

injuries around the fins during the experiment.   320 

 321 

No luminescence emission from the skin was observed in this study and the role of skin as possible 322 

colonization site of A. salmonicida found in previous studies by Svendsen & Bøgwald (1997), 323 

Ferguson et al. (1998), Cipriano, Ford, Teska & Hale (1992) and Cipriano, Ford, Schachte & Petrie 324 
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(1994) could not be confirmed. Still, given the relatively high threshold limit of luminescence 325 

detection, an attachment of a low number of bacteria to the skin cannot be ruled out. An alternative 326 

explanation is that teleost (bony) fish feature variation in their immune system (Svendsen, Dalmo & 327 

Bøgwald 1999), including varying mucosal activity against pathogens (Dickerson 2009). Rainbow 328 

trout could thus have a better mucosal protection against pathogens compared to many other farmed 329 

fish species. This hypothesis is supported by other studies where rainbow trout showed the highest 330 

degree of resistance against furunculosis compared to other farmed fish species (Cipriano & 331 

Heartwell 1986). 332 

 333 

A strong BLI signal was also seen around the gills, indicating that this might be an important 334 

colonization site as well. This finding is consistent with both Tatner, Johnson & Horne (1984) who 335 

investigated A. salmonicida infection in rainbow trout and with Svendsen et al. (1999) who studied 336 

A. salmonicida infection in Atlantic salmon. The gills also seem to be an important colonization site 337 

for other bacterial fish pathogens like Yersinia ruckeri, demonstrated by Ohtani, Villumsen, Strøm 338 

& Raida (2014) who observed infection of the gill epithelial cells as early as one minute post 339 

infection. 340 

 341 

Our study also indicates the oral and nasal cavity and the eyes might be colonization sites for A. 342 

salmonicida. These three sites are all ‘open’, i.e. lacking the primary barrier of the skin as a defense 343 

against pathogens (Roberts & Ellis 2012). The mouth has also been proposed as a possible entry 344 

route for A. salmonicida by Svendsen & Bøgwald (1997). Moreover all three sites were seen to be 345 

probable colonization sites for Novirhabdovirus in a bioluminescence experiment conducted on 346 

juvenile trout (Harmache et al. 2006). Finally, Karsi et al. (2006) reported that bioluminescent E. 347 

ictaluri became visible around the eye and mouth area during early disease progression. 348 
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 349 

At the 4- and 6-hour time points, luminescence was detected in only three of the infected fish, 350 

which could, at least in part, be due to the relatively low sensitivity of the method. In two fish, the 351 

gills that were found positive at the 2-hour time point were still positive. A luminescence emission 352 

signal was observed at the 6-hour time point at the location of the digestive system in one fish, 353 

which had not been detected at the 2- and 4-hour time point. Due to the limitation of only being able 354 

to acquire two-dimensional images by this method, it was not possible to ascertain whether the 355 

luminescence signal came from the inside or the outside of the fish. Though it is likely that the 356 

signal came from inside the fish, since the fish had been transferred to clean water after the 2-hour 357 

infection immersion time and it would be expected that the bacteria can progress into the fish after a 358 

few hours as seen in the study with Y. ruckeri (Méndez & Guijarro 2013). In support of this, the 359 

luminescence signal intensified at the same location from the 6-hour time point to the 24-hour time 360 

point and when the abdominal area was opened revealing the internal organs, a luminescence signal 361 

was observed in the intestine (Table 3). 362 

 363 

At the final 24-hour time point, bacteria were seen by imaging in the digestive system and in two 364 

fish, also in the spleen. Bacteria were re-isolated from spleen and kidney in all fourteen fish. The 365 

reason why bacteria in the kidney and spleen were not detected by imaging could be that the 366 

bacteria had lost the pAKgfplux1 plasmid, as supported by the lack of fluorescence emission by the 367 

re-isolated colonies on blood agar plates, or the bacterial amount was below the threshold detection 368 

limit. Dissemination of A. salmonicida in the two organs is in agreement with Svendsen et al. 369 

(1999) who found A. salmonicida in blood already after 2 hours post infection and thereafter in 370 

kidney and a strong correlation between bacterial amounts in blood and gill tissue samples 371 

(Svendsen et al. 1999). It is known that bacteria spread from gills to the blood (Dickerson 2009), 372 
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which is then filtered by the kidney and spleen (Tatner et al. 1984; Hadidi, Glenney, Welch, 373 

Silverstein & Wiens 2008).  374 

 375 

The imaging results at the 24-hour time point revealed consistently signal form organs after 376 

dissection, indicating dissemination of A. salmonicida in fish through the digestive system and that 377 

this can happen after 24 hours. This scenario is similar to the gut dissemination pattern seen in the 378 

study with Y. ruckeri (Méndez & Guijarro 2013). Radiolabelled A. salmonicida have also 379 

previously been found in tissue of the gut (Svendsen et al. 1999). In four fish we did not find any 380 

luminescent bacteria by 24 hours. Though, at the 2-hour time-point bacteria were seen in three of 381 

these fish, indicating that the initial bacteria that entered the digestive system could have passed 382 

through the fish in less than 24 hours. This is in agreement with research on digestive responses to 383 

feed pellets in rainbow trout, where gastric evacuation was seen after only 4 - 6 hours (Windell, 384 

Norris, Kitchell & Norris 1969). Further investigations are needed to shed more light on the role of 385 

digestive system in dissemination of A. salmonicida. 386 

 387 

In summary, our results indicate that the dorsal and pectoral fin and gills are important colonization 388 

sites for A. salmonicida in rainbow trout. Novel information regarding A. salmonicida tissue 389 

dissemination pattern was also revealed, including the possible significant role of the digestive 390 

system. The bioluminescence-based A. salmonicida gfplux model used in the present study provides 391 

a valuable tool for in vivo real-time imaging of A. salmonicida and studying host-pathogen 392 

interaction. 393 
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Tables  500 

 501 

Table 1. Bacterial CFU ml
-1

 comparison of wild type A. salmonicida WT and A. salmonicida gfplux 502 

after 48 h growth at 20
o
C, including p-values of a Student’s t test, for three experimental repeats.  503 

Experiment Strain log10 CFU ml
-1

 ± SD p-value 

1 
A. salmonicida WT  

A. salmonicida gfplux 

8.85 ± 0.08  

8.85 ± 0.10  
0.972 

2 
A. salmonicida WT  

A. salmonicida gfplux 

8.51 ± 0.12 

8.45 ± 0.06  
0.393 

 

3 
A. salmonicida WT  

A. salmonicida gfplux 

8.69 ± 0.06 

8.80 ± 0.10 
0.105 

 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

Table 2. Percent A. salmonicida gfplux colonies emitting fluorescence on blood agar plates and 511 

Luria Bertani (LB) plates with 100µg ml
-1

 ampicillin. Colonies were re-isolated on agar plates from 512 

the kidney, spleen, and brain in fish during the ID50 experiment where fish were injected with 513 

different dilutions of A. salmonicida gfplux culture.  514 

Blood agar plates 

 

Colonies emitting fluorescence
¤
          Period (day) 

LB plates with 100µg ml
-1

 ampicillin  

 

Colonies emitting fluorescence
¤
           Period (day) 

      30-60 %
 

3-4  100 % 3-4 

      10-30 %
 

5-8     100 % * 5-8 

    10 > %
 

  9-10 NA 
# 

  9-10 

0 %
 

   11-14 NA 
# 

   11-14 

¤ Average percent of fluorescence emitting colonies on a plate, isolated from each organ i.e. kidney, spleen and the brain 

* There were very few colonies on the LB plates compared to the number of colonies on the respective blood agar plates 
#  There was no growth on the plates
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Table 3. Overview of results from the experimental infection. A total of 14 fish infected with A. 515 

salmonicida gfplux were scanned for 30 s in an IVIS spectrum imaging workstation for detection of 516 

luminescence emission at four time points: 2 h, 4 h, 6 h, and 24 h post infection in five independent 517 

experiments. Fish from the same experiment are grouped together and given an identification 518 

number. All areas of the fish where luminescence was observed at least once are displayed on the 519 

left. Observed luminescence signal is presented with an ‘X’. No luminescence signal was observed 520 

from fish 1.1 and 2.3.  521 

Time 

point 

Area Fish #  

 

 1.1 

 

2.1 

 

1.2 

 

2.2 

 

1.3 

 

2.3 

 

1.4a 1.4b 2.4a 2.4b 1.5a 1.5b 2.5a 2.5b 

2 h 

Caudal fin 
 

X  
    

     
  

Anal fin 
  

 
    

   X  
  

Dorsal fin 
 

X  X 
  

X    X X X 
 

Pectoral fin 
 

X X X 
   

    X 
  

Anal opening 
  

 
   

X      
  

Gills  X  X   X X       

Nasal cavity  X          X   

Oral cavity  X          X   

Eyes  X             

4 h Gills    X    X       

6 h Inside of fish     X          

24 h 
uncut 

Anal opening 
  

 
   

X      
  

Inside of fish     X       X  X 

24 h 

organs 

Stomach     X          

Upper Intestine    X X    X   X X  

Middle Intestine   X X X    X X X X X X 

Lower Intestine   X  X  X  X   X  X 

Spleen     X*   X*           

* In a few fish, organ structure at the 24 h time point was deteriorated, making it difficult to distinguish which organ the luminescence signal was coming 

from, however, it was believed that in two fish the luminescence signal could be emitted from the spleen. 

 

 522 

 523 

 524 

 525 

 526 

 527 
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Figure legends 528 

 529 

Figure 1.  Correlation between measured relative intensity of luminescence emission (counts s
-1

) 530 

and CFU ml
-1

 for A. salmonicida gfplux serial dilutions ranging from 8 x 10
4 

- 2 x 10
2
 CFU ml

-1
 531 

after being scanned for 30 s in an IVIS spectrum imaging workstation. Correlation between CFU 532 

ml
-1

 and relative intensity of luminescence emission for A. salmonicida gfplux was determined to be 533 

linear (R
2
 = 0.977) over the range of 8 x 10

4
 - 2 x 10

2
 CFU ml

-1
. The correlation coefficient, slope 534 

and intercept of the linear regression curve are shown. 535 

 536 

Figure 2. Three bioluminescence imaging illustrations from the 2-hour time point of the 537 

experimental infection of rainbow trout with A. salmonicida gfplux. Illustrations show A. 538 

salmonicida gfplux colonization of the dorsal and pectoral fin and gills of the following three fish 539 

from Table 3: 1.4b, 2.2 and 2.5a. 540 

 541 

Figure 3.  Six bioluminescence imaging illustrations from the 24-hour time point of the 542 

experimental infection of rainbow trout with A. salmonicida gfplux. After 24 hours fish were 543 

euthanized and visualized in the IVIS as whole fish and were then cut open. In uncut fish 1.3, 544 

luminescence signal was observed in the body organ area and when cut open, the signal was 545 

observed in the stomach and upper, middle and lower intestine. In uncut fish 1.5b, luminescence 546 

signal was observed in the body organ area and when cut open, the signal was observed in the 547 

upper, middle and lower intestine. In uncut fish 1.4a, luminescence signal was observed around the 548 

anal opening and when cut open, the signal was observed around the anal opening and in the lower 549 

intestine. 550 
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Figure 1.  Correlation between measured relative intensity of luminescence emission (counts s
-1

) 

and CFU ml
-1

 for A. salmonicida gfplux serial dilutions ranging from 8 x 10
4 

- 2 x 10
2
 CFU ml

-1
 

after being scanned for 30 s in an IVIS spectrum imaging workstation. Correlation between CFU 

ml
-1

 and relative intensity of luminescence emission for A. salmonicida gfplux was determined to be 

linear (R
2
 = 0.977) over the range of 8 x 10

4
 - 2 x 10

2
 CFU ml

-1
. The correlation coefficient, slope 

and intercept of the linear regression curve are shown. 
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Figure 2. Three bioluminescence imaging illustrations from the 2-hour time point of the 

experimental infection of rainbow trout with A. salmonicida gfplux. Illustrations show A. 

salmonicida gfplux colonization of the dorsal and pectoral fin and gills of the following three fish 

from Table 3: 1.4b, 2.2 and 2.5a. 
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Figure 3.  Six bioluminescence imaging illustrations from the 24-hour time point of the 

experimental infection of rainbow trout with A. salmonicida gfplux. After 24 hours fish were 

euthanized and visualized in the IVIS as whole fish and were then cut open. In uncut fish 1.3, 

luminescence signal was observed in the body organ area and when cut open, the signal was 

observed in the stomach and upper, middle and lower intestine. In uncut fish 1.5b, luminescence 

signal was observed in the body organ area and when cut open, the signal was observed in the 

upper, middle and lower intestine. In uncut fish 1.4a, luminescence signal was observed around the 

anal opening and when cut open, the signal was observed around the anal opening and in the lower 

intestine. 
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Detection and quantification of Aeromonas salmonicida in
fish tissue by real-time PCR

S Bartkova1, B Kokotovic1, H F Skall2, N Lorenzen2 and I Dalsgaard1

1 National Veterinary Institute, Section for Bacteriology and Pathology, Technical University of Denmark,

Frederiksberg C, Denmark

2 Department of Animal Science, Aarhus University, Aarhus N, Denmark

Abstract

Furunculosis, a septicaemic infection caused by the
bacterium Aeromonas salmonicida subsp. salmoni-
cida, currently causes problems in Danish seawater
rainbow trout production. Detection has mainly
been achieved by bacterial culture, but more rapid
and sensitive methods are needed. A previously
developed real-time PCR assay targeting the plas-
mid encoded aopP gene of A. salmonicida was, in
parallel with culturing, used for the examination of
five organs of 40 fish from Danish freshwater and
seawater farms. Real-time PCR showed overall a
higher frequency of positives than culturing (65%
of positive fish by real-time PCR compared to 30%
by a culture approach). Also, no real-time PCR-
negative samples were found positive by culturing.
A. salmonicida was detected by real-time PCR,
though not by culturing, in freshwater fish showing
no signs of furunculosis, indicating possible pres-
ence of carrier fish. In seawater fish examined after
an outbreak and antibiotics treatment, real-time
PCR showed the presence of the bacterium in all
examined organs (1–482 genomic units mg�1).
With a limit of detection of 40 target copies (1–2
genomic units) per reaction, a high reproducibility
and an excellent efficiency, the present real-time
PCR assay provides a sensitive tool for the detection
of A. salmonicida.

Keywords: Aeromonas salmonicida, aopP, furunculo-
sis, pAsal1, rainbow trout, real-time PCR.

Introduction

Aeromonas salmonicida subsp. salmonicida is the
causative agent of furunculosis, a septicaemic
infection that over the years has caused worldwide
losses in aquaculture (O’Brien, Mooney, Ryan,
Powell, Hiney, Kilmartin & Smith 1994;
Beaz-Hidalgo & Figueras 2012). In Denmark, the
infection was first described in freshwater during
the 1950s by Rasmussen (1964). Today, problems
with furunculosis in Denmark occur mainly in
sea-reared rainbow trout (Oncorhynchus mykiss)
production under stressful conditions and high
temperatures (Dalsgaard & Madsen 2000; Peder-
sen et al. 2008). The presence of A. salmonicida
in fish does not necessarily lead to the develop-
ment of furunculosis, although some fish may be
carriers that transfer A. salmonicida from freshwa-
ter to the sea (Jarp et al. 1993; Dalsgaard &
Madsen 2000).
Detection of A. salmonicida has usually been

performed by the use of bacterial cultivation
(Dalsgaard & Madsen 2000; Austin & Austin
2007). However, the detection of the bacterium
from supposed carrier fish with use of this method
has not been successful so far (Dalsgaard & Mad-
sen 2000). Although employing pre-enrichment
steps or subjecting the fish to stress improves the
detection of A. salmonicida by culturing (Cipriano
et al. 1997), more sensitive methods are needed
for the evaluation of the presence of A. salmoni-
cida in carriers.
Real-time PCR has been used in several studies

to detect A. salmonicida in fish tissue (Balcazar
et al. 2007; Goodwin & Merry 2009; Keeling
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et al. 2012; Gulla et al. 2015). In the study by
Balcazar et al. (2007), an assay was developed
with 100% specificity and a sensitivity of 16 CFU
per reaction. The primers target an A. salmonicida
DNA probe sequence from a 6.4-kb A. salmoni-
cida plasmid named pAsal1 by Fehr et al. (2006),
which has been the most frequently used target
for species-specific A. salmonicida PCR and real-
time PCR assays to date (Hiney et al. 1992; Mor-
gan, Rhodes & Pickup 1993; O0Brien et al. 1994;
Mooney et al. 1995; Byers, Gudkovs & Crane
2002; Balcazar et al. 2007; Goodwin & Merry
2009).
The objective was to investigate whether the

real-time PCR assay developed by Balcazar et al.
(2007), employed on multiple organs, would pro-
vide a more sensitive tool than bacterial culturing
for determining A. salmonicida prevalence in rain-
bow trout from freshwater and seawater farms
showing no signs of disease and from one seawater
farm after a furunculosis outbreak. Samples
included spleen, kidney, intestine, gill and brain
tissues from 40 fish, sampled at five freshwater
and seawater farms over the course of 2 years.

Materials and methods

Bacterial strains

To examine distribution of the pAsal1 plasmid
and the target gene aopP in natural populations of
A. salmonicida in Denmark, 20 Danish strains,
isolated from outbreaks in fresh and seawater
farms at different geographical locations in the
period 1984–2014, were included in the study
(data not shown). The strains were grown in Veal
Infusion Broth (VIB) (Difco) for 48 h at 20°C.
DNA was extracted with Qiagen QIAamp DNA
mini kit (Qiagen) according to the manufacturer’s
protocol and immediately stored at �20°C until
further use.

Development of standard

An A. salmonicida DNA standard used for pro-
duction of the standard curve was made from
cloned PCR fragment of the target gene (aopP).
PCR primers 50 TAGCTGGTTCCATAAGAA
GC 30 and 50 TCCAAGAGGCAACTAAAGAAG
30 flanking the target sequence of the real-time
PCR LUX primers developed by Balcazar et al.
(2007), ensuring that both the real-time PCR

LUX target and primer sequences would be
included in the amplified fragment, were gener-
ated from A. salmonicida pAsal1 plasmid sequence
(GenBank accession no. AJ508382) and used to
amplify a 340-bp fragment of the aopP gene from
extracted DNA of A. salmonicida type strain
ATCC 33658. The PCR product was then puri-
fied using the High Pure PCR Product Purifica-
tion kit (Roche Applied Science) and cloned using
a pGEM�-T and pGEM�-T Easy Vector Systems
cloning kit (Promega) according to the manufac-
turer’s instructions. Subsequently, the vector plas-
mid was purified with Qiagen Plasmid Midi Kit
(Qiagen) and DNA concentration was determined
using a Qubit 2.0 fluorometer and Quant-iT
dsDNA BR kit (Invitrogen). Insertion of the 340-
bp aopP gene fragment into the plasmid vector
was verified by amplification with pUC/M13 uni-
versal primers (Promega) and sequencing of the
amplicon using an ABI 3130 Genetic Analyser
and Big Dye Terminator V 3.1 Cycle Sequencing
Kit (Applied Biosystems) according to manufac-
turer’s instruction.

Real-time PCR

Real-time PCR was carried out in a total of
25 lL volume, containing 12.5 lL of 2X JumpS-
tart Taq ReadyMix for quantitative PCR (Sigma-
Aldrich), 1.5 lL of 25 mM MgCl2, 0.5 lL of
10 lM solution of each LUX PCR primer
(Balcazar et al. 2007), 8 lL of nuclease-free water
and 2 lL of DNA template. The thermal cycling
conditions included an initial step at 95°C for
2 min, followed by 40 cycles consisting of 95°C
for 15 s, 55°C for 30 s and 72°C for 30 s.
Amplification and data analysis were performed
using a Rotor-Gene Q system (Qiagen) and soft-
ware version 2.0.2. All real-time PCR runs
included template-free negative controls and posi-
tive A. salmonicida DNA standards consisting of
selected dilutions. Samples were considered nega-
tive if no amplification signal was produced. Sam-
ples were considered positive if an amplification
signal was produced in at least one of the tripli-
cates and verified with melting point analysis.

Sensitivity, reproducibility and dynamic range
of real-time PCR

In order to create a standard curve, a solution of
plasmid vector containing 14.3 ng lL�1 of DNA
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was used to prepare nine 10-fold serial dilutions
in nuclease-free water down to 1.43 fg lL�1, cor-
responding to a dilution range of approximately
4 9 109 to four plasmid copies per lL. Two
microlitres of each dilution was used as template
in three independent real-time PCRs with three
replicates of each dilution.
To determine limit of detection (LOD) and

quantification limit (QL), 2 lL of plasmid vector
containing 80, 40, 20 and 10 copies of plasmid,
respectively, was amplified. The obtained data
were then used to graph the linear regression for
the standard curve plot with the LOD point using
RStudio (2015). The LOD was defined as the
lowest DNA concentration (target gene copies per
reaction) at which 95% of the positive samples
were detected. The QL was defined as the lowest
DNA concentration that remained within the lin-
ear region of the standard curve concentrations.
Given an average of 20–50 pAsal1 plasmid copies
per cell (Fehr et al. 2006; Att�er�e et al. 2015),
quantitative real-time PCR data were transformed
to express the results as genomic copies (genomic
units, GU).
Reproducibility of the real-time PCR was

assessed by calculating the interassay variance coef-
ficient (CV%) in MS Excel (Microsoft). Calcula-
tion was based on the mean log of DNA copies
per reaction, generated in three independent real-
time PCR runs on the eight 10-fold serial dilution
of plasmid vector DNA.

Analysis of tissue inhibition in real-time PCR

An effect of possible co-purified inhibitors from
the host tissues on sensitivity of the PCR assay
was examined by amplification of gill, intestine,
brain, kidney and spleen tissues seeded with
A. salmonicida ATCC 33658.
Rainbow trout fry originating from eggs from

Fousing Trout Farm that were disinfected and
hatched at AquaBaltic and brought to our insti-
tute for rearing were used for collection of tissue.
Six fish were killed in 5 g L�1 of Tricaine
Methanesulfonate MS-222 (Sigma-Aldrich) in
accordance with regulations set forward by the
Danish Ministry of Justice and Animal Protection
committees and under the Danish Animal Experi-
ments Inspectorate permit number 2012-15-2924-
00629. Spleen, gills, intestine, brain and kidney
were collected under aseptic conditions and imme-
diately stored at �20°C until further use.

Seeding of tissues was performed as follows:
A. salmonicida ATCC 33658 was grown in VIB at
20°C for 48 h. Serial 10-fold dilutions of bacterial
cells containing 5 9 108 to 5 9 102 CFU mL�1

were prepared in 0.9% sterile saline solutions
and counted on blood agar plates. In addition,
two extra dilutions containing 2.5 9 102 and
1.25 9 102 CFU mL�1 were prepared, making
up a total of nine different concentrations of
bacterial cells. Subsequently, 1 mL of each bacte-
rial cell concentration was mixed with 40 mg of
gill, intestine, brain or kidney tissue or 15 mg of
spleen tissue. All samples were then homogenized
at 30 Hz for 20 s in a TissueLyser II (Qiagen),
and DNA was prepared for amplification using
the InstaGene Matrix (Bio-Rad) according to the
manufacturer’s instruction. Dilutions of bacterial
cells without addition of any tissue and homo-
genized tissue with 0.9% saline solution were
also included as positive and negative controls,
respectively. The whole seeding experiment was
repeated three times.
The real-time PCR data were analysed using

Rotor-Gene Q Series Software (Qiagen) and used
to graph the linear regression for organ tissue dilu-
tion series using RStudio (2015). The LOD and
QL for each organ tissue were defined as for pure
bacterial culture. For each seeding experiment,
obtained log copies of seeded specimens and bac-
terial culture not mixed with any tissue were com-
pared by ANOVA using RStudio (2015).

Detection of A. salmonicida in fish

Rainbow trout (n = 40) with and without signs of
disease were collected for testing with bacterial
culturing and real-time PCR from November
2013 through November 2015 at three freshwater
and two seawater farms in Denmark. Twenty of
the 40 fish were collected from one of the seawa-
ter farms (no. 5) 5 days after an antibiotic treat-
ment of furunculosis and again at slaughtering
3 months after the first sampling. Between the
two samplings, antibiotic treatment of fish was
repeated. Sampling from farm no. 1, 2, 3 and 5
consisted of the same batch of fish that had been
followed throughout the 2 years.
The spleen, gills, intestine, brain and kidney

were removed from all fish and placed in individ-
ual Eppendorf tubes. Each sample was inoculated
onto a blood agar plate (Columbia agar base
[Oxoid] with 5% calf blood) by dipping an
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inoculation loop into the tissue and then plating
the content onto the blood agar, which was incu-
bated at 20°C for 48–72 h (Dalsgaard & Madsen
2000). The remaining organ tissues were immedi-
ately stored at �20°C until DNA extraction for
real-time PCR.
For DNA extraction, 20–40 mg specimens of the

gill, intestine, brain and kidney and 10–15 mg
from the spleen were homogenized with 1 mL of
nuclease-free water at 30 Hz for 20 s in a Tis-
sueLyser II (Qiagen). Extraction was performed
using the InstaGene Matrix (Bio-Rad) kit according
to the manufacturer’s protocol. Extracted DNA was
immediately stored at �20°C until further use. All
samples and positive and negative control samples
were run in triplicates with real-time PCR. Rotor-
Gene Q Series Software, version 2.0.2 (Qiagen),
was used for analysis of the data.

Results

Specificity, sensitivity and reproducibility of
real-time PCR

All examined Danish A. salmonicida strains
(n = 20) isolated from the outbreaks of furuncu-
losis over a 30-year period, tested positive with
real-time PCR (results not shown).
Amplification of standard DNA templates

showed a broad linear dynamic range, spanning
from 8 9 109 to 8 9 101 target copies, with a
slope of �3.28 (R2 = 0.994) and an efficiency of
102% (Fig. 1). The LOD was found to be 40 tar-
get copies per reaction with a quantification cycle
(Cq) of 38.32 � 0.73, which is equivalent to 1–2
A. salmonicida GU per reaction. The QL was
found to be 80 target copies per reaction (Cq

37.66 � 0.56) equivalent to 2–4 A. salmonicida
GU per reaction. The interassay CV for three
independent real-time PCR runs was 0.94%.

Analysis of tissue inhibition in real-time PCR

No evidence of inhibition was found for 40 mg
of organs (15 mg for spleen) over the broad range
of A. salmonicida ATCC 33658 concentrations.
Dilution series for all five organs showed a linear
trend from 5 9 108 to 2.5 9 102 CFU mL�1

(Fig. 2), and assay results corresponded well to
mean CFU mL�1 values (results not shown). No
significant difference was observed when compar-
ing log copies per reaction obtained by real-time

Figure 1 Standard curve created by plotting the mean quantifi-

cation cycle (Cq) values as a function of log target copies per

reaction of the plasmid vector dilutions. Ten-fold serial dilutions

ranging from 14.3 ng lL�1 to 1.43 fg lL�1 of the plasmid vec-

tor were analysed in three independent runs performed on the

Rotor-Gene Q with three replicates per dilution concentration.

The correlation coefficient, slope and intercept of the regression

curve are shown. Error bars represent standard deviations (SD)

of Aeromonas salmonicida standard log copies per reaction. The

limit of detection (LOD) with a mean Cq of 38.32 and

1.61 � 0.22 SD log target copies per reaction is plotted, but lies

outside of the linear region of the standard curve and is therefore

not connected to the linear regression line.

Figure 2 Regression curves for the Aeromonas salmonicida real-

time PCR assay for five seeded organ tissues, created by plot-

ting the mean quantification cycle (Cq) values as a function of

log target copies per reaction of the A. salmonicida ATCC con-

centrations added to the respective tissues. Serial dilutions rang-

ing from 5 9 108 to 2.5 9 102 CFU mL�1 of A. salmonicida

ATCC 33658 were added to five different tissues: intestine,

kidney, brain, spleen and the gills. DNA was extracted and

analysed in three independent runs performed on the Rotor-

Gene Q with three replicates per dilution concentration. The

combined mean of the correlation coefficients, slopes and inter-

cepts of the five regression curves is shown. Error bars represent

standard deviations (SD) of A. salmonicida ATCC 33658 log

target copies per reaction.
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PCR from dilutions of A. salmonicida ATCC
33658 broth culture vs. dilutions of ATCC 33658
culture added to tissue using ANOVA (P > 0.05).
All negative control tissue samples were found
negative by the real-time PCR.

Detection of A. salmonicida in fish

In fish from the three freshwater farms (no. 1–3),
no A. salmonicida were detected by the culture
method (Table 1). However, A. salmonicida was
detected in four of the 18 examined fish by real-
time PCR (Table 1). In two cases, A. salmonicida
was detected in both the brain and spleen and in
the two other cases the bacterium was detected in
either the brain or spleen. Plasmid copy number
was in the range of 103–402 mg�1 which equals
from 2 up to 20 GU mg�1.
At seawater farm no. 4, one of the two exam-

ined fish was positive for A. salmonicida in one
organ (the brain) by culturing (Table 1). The
real-time PCR detected A. salmonicida in both fish
and several organs: the spleen and intestine of one
fish and the spleen, intestine and brain of the
other fish with a plasmid copy number in the
range of 137–736 mg�1, which equals from 2 up
to 37 GU mg�1.
At fish farm no. 5 (Table 2) sampled 5 days after

antibiotics treatment, A. salmonicida was detected
in nine of 16 fish by culturing, but was detected in
all 16 fish and in 73 of 80 organ samples by real-
time PCR. Plasmid copy numbers were in the range
of 21–9638 mg�1, which equals from 1 up to
482 GU mg�1. At the second sampling, 3 months
after the first sampling, A. salmonicida was detected
in two of the four examined fish by culturing. All
fish and organ samples were, however, found posi-
tive by real-time PCR with a plasmid copy number
in the range of 77–2364 mg�1, which equals from
1 up to 118 GU mg�1.
Overall, culturing detected A. salmonicida in 12

of the 40 examined fish, while real-time PCR
detected A. salmonicida in 26 fish.

Discussion

Specificity for the assay target gene aopP located
on the plasmid pAsal1 was found to be 100% in
the studies by Balcazar et al. (2007), who exam-
ined 16 A. salmonicida and 26 non- A. salmoni-
cida bacterial strains, and by Goodwin & Merry
(2009) that tested six A. salmonicida strains. In

the present study, all 20 Danish A. salmonicida
strains that were examined with the assay were
amplified, thereby suggesting a 100% prevalence
of the aopP gene. Earlier studies have shown that
plasmid pAsal1 is absent from some A. salmoni-
cida strains (Morgan et al. 1993; Sørum, Kvello
& Hastein 1993; O0Brien et al. 1994; Mooney
et al. 1995; Byers et al. 2002), including 25% of
57 examined Danish strains (Nielsen, Olsen &
Larsen 1993). Some authors explain the missing
plasmid by stressful culturing conditions above
22–25°C, which was shown to activate an pAsal1
insertion sequence element ISAS11 that leads to
the loss of the plasmid (Daher et al. 2011; Tanaka
et al. 2012; Att�er�e et al. 2015). Others, such as
Balcazar et al. (2007), have argued that the pres-
ence of pAsal1 could be associated with virulence
of the bacterium and A. salmonicida lacking this
plasmid might thus be less virulent. However, nei-
ther stressful culturing nor lack of virulence is
necessarily associated with the absence of pAsal1
(Boyd et al. 2003; Fehr et al. 2006; Att�er�e et al.
2015), and one must keep this in mind when
using aopP as the target gene.
Plasmid pAsal1 is present in 20–50 copies per

bacterial cell (Fehr et al. 2006; Att�er�e et al. 2015),
and the high abundance of the target facilitates
detection by real-time PCR. We were able to reli-
ably detect 1–2 A. salmonicida GU per reaction.
Four positive samples had lower values than
1 GU per reaction (Table 2), but were still con-
sidered positive based on correct melting point of
the obtained PCR product, despite being slightly
below the 95% reliability. Although the plasmid
copy variation per cell presents an obstacle for
precise quantification of GU, it has little impor-
tance for practical application of the assay. The
drawback of pAsal1 is that the plasmid is not uni-
versally present in all isolates of A. salmonicida.
However, our results indicate that the pAsal1 plas-
mid is present in isolates causing new outbreaks
in Danish fish farms and the frequent application
of this target for A. salmonicida detection around
the world enables comparison of results with the
bulk of the published literature (Hiney et al.
1992; Morgan et al. 1993; O0Brien et al. 1994;
Mooney et al. 1995; Byers et al. 2002; Balcazar
et al. 2007; Goodwin & Merry 2009).
Compared to real-time PCR by Balcazar et al.

(2007), sensitivity obtained in the present study
was higher. Balcazar et al. (2007) achieved a
LOD/QL of 16 A. salmonicida CFU per reaction
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Table 1 Detection and quantification of Aeromonas salmonicida from 12 fish sampled from three freshwater (no. 1–3) and one sea-

water fish farm (no. 4) in Denmark during 2013–2015

Fish farm

Sampling date

(yyyy.mm.dd) Fish ID Tissue Bacteriology

Real-time PCR

Target

copies mg�1
Log target

copies mg�1 � SD Cq � SD

No. 1 2013.11.04 3 Gills � – – –
Spleen � – – –
Intestine � – – –
Kidney � – – –
Brain � – – –

4 Gills � – – –
Spleen � – – –
Intestine � – – –
Kidney � – – –
Brain � – – –

11 Gills � – – –
Spleen � – – –
Intestine � – – –
Kidney � – – –
Brain � – – –

15 Gills � – – –
Spleen � – – –
Intestine � – – –
Kidney � – – –
Brain � – – –

26 Gills � – – –
Spleen � – – –
Intestine � – – –
Kidney � – – –
Brain � – – –

35 Gills � – – –
Spleen � – – –
Intestine � – – –
Kidney � – – –
Brain � – – –

No. 2 2014.02.18 48 Gills � – – –
Spleen � – – –
Intestine � – – –
Kidney � – – –
Brain � – – –

76 Gills � – – –
Spleen � – – –
Intestine � – – –
Kidney � – – –
Brain � – – –

2014.05.14 83 Gills � – – –
Spleen � – – –
Intestine � – – –
Kidney � – – –
Brain � – – –

95 Gills � – – –
Spleen � 402 2.60 � 0.08 36.87 � 0.26

Intestine � – – –
Kidney � – – –
Brain � 107 2.03 � 0.22b 38.06 � 0.72b

105 Gills � – – –
Spleen � 198 2.30 � 0.13ab 38.06 � 0.41ab

Intestine � – – –
Kidney � – – –
Brain � 159 2.20 � 0.17 37.44 � 0.57b

113 Gills � – – –
Spleen � – – –
Intestine � – – –
Kidney � – – –
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in pure culture as well as inoculated tissue. In
comparison, the QL and LOD of the present
assay were 80 and 40 target genes copies per reac-
tion, respectively, equivalent to, respectively, 2–4
and 1–2 A. salmonicida GU per reaction. An
explanation for the difference in sensitivity
between the present study and Balcazar et al.
(2007), even though the same assay is applied in
both studies, could be that another real-time PCR
instrument and kit was used in this study and the
standard curve was generated from a cloned PCR
product, while Balcazar et al. (2007) used

extracted DNA from pure cultures of A. salmoni-
cida NCIMB 1102.
The most frequently examined organ for

A. salmonicida in previous real-time PCR studies
has been the kidney (Balcazar et al. 2007; Good-
win & Merry 2009; Keeling et al. 2012; Gulla
et al. 2015). In the present study, four additional
organs were included: spleen, intestine, gills and
the brain. Interestingly, in all four real-time PCR-
positive freshwater farm fish, the brain and/or the
spleen were found positive but not the kidney
(Table 1). In comparison, no A. salmonicida was

Table 1 Continued

Fish farm

Sampling date

(yyyy.mm.dd) Fish ID Tissue Bacteriology

Real-time PCR

Target

copies mg�1
Log target

copies mg�1 � SD Cq � SD

Brain � – – –
No. 3 2014.11.03 122 Gills � – – –

Spleen � – – –
Intestine � – – –
Kidney � – – –
Brain � 103 2.02 � 0.27b 37.95 � 0.89b

148 Gills � – – –
Spleen � – – –
Intestine � – – –
Kidney � – – –
Brain � – – –

2015.03.24 170 Gills � – – –
Spleen � 233 2.37 � 0.33b 38.26 � 1.08b

Intestine � – – –
Kidney � – – –
Brain � – – –
Gills � – – –
Spleen � – – –

184 Intestine � – – –
Kidney � – – –
Brain � – – –

185 Gills � – – –
Spleen � – – –
Intestine � – – –
Kidney � – – –
Brain � – – –

198 Gills � – – –
Spleen � – – –
Intestine � – – –
Kidney � – – –
Brain � – – –

No. 4 2015.11.04 1 Gills � – – –
Spleen � 443 2.65 � 0.26 37.11 � 0.86

Intestine � 137 2.14 � 0.21 37.54 � 0.69

Kidney � – – –
Brain � – – –

3 Gills � – – –
Spleen � 763 2.88 � 0.07 36.34 � 0.22

Intestine � 258 2.41 � 0.22 37.01 � 0.71

Kidney � – – –
Brain + 231 2.33 � 0.03 36.61 � 0.10

�, Examined with negative result.
aOnly two of three sample replicates produced an amplification signal.
bQuantification cycle (Cq) value below quantitation limit (QL). Reported quantification value of copies mg�1 could be imprecise.
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Table 2 Detection and quantification of Aeromonas salmonicida from 20 fish sampled 11th of August and 11th of November 2015

at seawater farm no. 5. These samples were taken 5 days and 3 months after antibiotic treatment of furunculosis

Fish

farm

Sampling date

(yyyy.mm.dd) Fish ID Tissue Bacteriology

Real-time PCR

Target

copies mg�1
Log target

copies mg�1 � SD Cq � SD

No. 5 2015.08.11 9 Gills � 171 2.23 � 0.55 36.32 � 1.80

Spleen � 220 2.34 � 0.13 37.44 � 0.43

Intestine � 510 2.71 � 0.20 34.61 � 0.65

Kidney � 473 2.67 � 0.18 35.17 � 0.58

Brain � 417 2.62 � 0.25 34.89 � 0.82

13 Gills + 3732 3.57 � 0.06 37.73 � 0.21

Spleen � 2276 3.36 � 0.02 33.57 � 0.06

Intestine � – – –
Kidney � 1577 3.20 � 0.27 32.95 � 0.87

Brain � 669 2.83 � 0.48 33.54 � 1.58

15 Gills � 92 1.96 � 0.11 37.15 � 1.00

Spleen � 2526 3.40 � 0.01 33.77 � 0.77

Intestine � 562 2.75 � 0.16 34.34 � 0.79

Kidney � 283 2.45 � 0.05 35.26 � 0.16

Brain � 54 1.73b 37.28b

17 Gills + 968 2.68 � 0.20 35.70 � 0.66

Spleen � 2050 3.31 � 0.12 33.29 � 0.38

Intestine � 14 1.15bd 39.23bd

Kidney � 825 2.92 � 0.09 33.74 � 0.30

Brain � 702 2.85b 33.68b

22 Gills � 38 1.51 � 0.35ac 37.99 � 1.15ac

Spleen � 1071 3.02 � 0.13a 34.58 � 0.42a

Intestine � 198 2.3b 35.34b

Kidney � – – –
Brain � 277 2.44 � 0.19 34.99 � 0.62

23 Gills + 146 2.17 � 0.44 36.44 � 1.45

Spleen � 766 2.88 � 0.21 35.42 � 0.70

Intestine � 473 2.67 � 0.23 34.97 � 0.76

Kidney � 7286 3.86 � 0.20 32.11 � 0.64

Brain � 432 2.64 � 0.32 34.83 � 1.06

25 Gills � – – –
Spleen � 722 2.86 � 0.12 36.03 � 0.39

Intestine � 34 1.53 � 0.21ad 39.03 � 0.67ad

Kidney � 227 2.36 � 0.34 37.02 � 1.11

Brain � 49 1.69 � 0.05ad 38.63 � 0.17ad

26 Gills � 44 1.63bd 38.69bd

Spleen � 203 2.31 � 0.17c 38 � 0.57c

Intestine � 21 1.32bd 39.99bd

Kidney � 122 2.09 � 0.26c 37.89 � 0.85c

Brain � – – –
28 Gills � – – –

Spleen � 933 2.97 � 0.18 35.51 � 0.58

Intestine � – – –
Kidney � 1189 3.08 � 0.13 34.46 � 0.41

Brain � 1344 3.13 � 0.12 33.63 � 0.40

29 Gills + 86 1.93 � 0.26 36.68 � 0.84

Spleen + 882 2.95 � 0.05 35.06 � 0.15

Intestine � 24 1.37 � 0.23ad 39.07 � 0.76ad

Kidney + 943 2.97 � 0.46 34.12 � 1.51

Brain � 591 2.77 � 0.21 34.35 � 0.68

30 Gills � 493 2.69 � 0.26 34.80 � 0.84

Spleen � 5106 3.71 � 0.35 32.54 � 1.13

Intestine � 134 2.13 � 0.43 36.58 � 1.42

Kidney � 1436 3.00 � 0.56a 34.21 � 1.82a

Brain + 1907 3.28 � 0.15 32.71 � 0.48

31 Gills + 173 2.24 � 0.06 36.59 � 0.21

Spleen � 9638 3.98 � 0.07 31.87 � 0.23

Intestine � 345 2.54 � 0.20 35.33 � 0.66

Kidney � 957 2.98 � 0.23 34.73 � 0.76
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isolated by bacterial culturing in any of the 18 fish
from freshwater farms as well as in none of the
additional 182 fish sampled from the same three
freshwater farms (data not shown). None of the
freshwater farm fish showed any signs of furuncu-
losis, indicating that the four fish found positive
by real-time PCR could be carriers of viable but
non-culturable cells (VBNC) (Morgan et al. 1993;
Ferguson et al. 1995; Nascutiu 2010). Due to the
high sensitivity of the present real-time PCR, one

could speculate whether the four fish could be
false positives by contamination of the surround-
ing water. However, in that case one would pre-
sume the gills would be the primarily infected
organs, while in the present study; the gills were
negative in all fish showing no signs of disease. In
addition, none of the previous studies that have
employed the pAsal1 target have detected other
bacterial DNA than that of A. salmonicida (Hiney
et al. 1992; Morgan et al. 1993; O0Brien et al.

Table 2 Continued

Fish

farm

Sampling date

(yyyy.mm.dd) Fish ID Tissue Bacteriology

Real-time PCR

Target

copies mg�1
Log target

copies mg�1 � SD Cq � SD

Brain � 755 2.88 � 0.17 34.25 � 0.57

32 Gills + 241 2.38 � 0.15 36.14 � 0.49

Spleen + 3611 3.56 � 0.18 33.59 � 0.60

Intestine � 1185 3.07 � 0.15 33.66 � 0.50

Kidney + 821 2.91 � 0.17 34.62 � 0.56

Brain + 3463 3.54 � 0.11 32.23 � 0.36

37 Gills � – – –
Spleen � 2565 3.41 � 0.21 34.30 � 0.70

Intestine � 288 2.46 � 0.20 36.29 � 0.67

Kidney � 110 2.04 � 0.16c 37.58 � 0.53c

Brain � 300 2.48 � 0.32 35.89 � 1.04

39 Gills + 65 1.81 � 0.62c 37.86 � 2.04c

Spleen � 7930 3.90 � 0.07 32.63 � 0.24

Intestine � 631 2.80 � 0.28 34.76 � 0.92

Kidney � 448 2.65 � 0.13 35.45 � 0.41

Brain � 299 2.48 � 0.30 35.69 � 0.98

42 Gills + 288 2.46 � 0.21 35.81 � 0.70

Spleen + 1336 3.13 � 0.33 34.82 � 1.09

Intestine � 168 2.23 � 0.14 36.52 � 0.47

Kidney + 1937 3.29 � 0.11 33.74 � 0.35

Brain � 338 2.53 � 0.07 35.51 � 0.23

2015.11.11 3 Gills � 185 2.27 � 0.24 37.16 � 0.85

Spleen � 1019 3.01 � 0.16 36.24 � 0.56

Intestine � 299 2.48 � 0.11 36.39 � 0.37

Kidney � 143 2.16 � 0.46 37.60 � 1.61

Brain � 216 2.33 � 0.20 37.13 � 0.69

8 Gills + 222 2.35 � 0.1 36.94 � 0.34

Spleen � 441 2.64b 36.69b

Intestine � 456 2.66 � 0.04 35.71 � 0.13

Kidney + 1322 3.12 � 0.15 34.87 � 0.52

Brain � 341 2.53 � 0.40 36.06 � 1.41

23 Gills � 183 2.26 � 0.53 37.49 � 1.85

Spleen � 2111 3.32 � 0.20 34.48 � 0.69

Intestine � 77 1.89 � 0.57ad 38.45 � 1.98ad

Kidney + 162 2.21 � 0.16c 38.06 � 0.56c

Brain � 190 2.28 � 0.34 36.95 � 1.18

27 Gills � 126 2.10 � 0.21ac 37.62 � 0.75ac

Spleen � 2364 3.37 � 0.08 34.22 � 0.28

Intestine � 670 2.83 � 0.11 35.90 � 0.38

Kidney � 481 2.68 � 0.15 36.14 � 0.51

Brain � 785 2.90 � 0.19 34.80 � 0.66

�, Examined with negative result.
aOnly two of three sample replicates produced an amplification signal.
bOnly one of three sample replicates produced an amplification signal.
cQuantification cycle (Cq) value below quantitation limit (QL). Reported quantification value of copies mg�1 could be imprecise.
dQuantification cycle (Cq) value below limit of detection (LOD). Reported quantification value of copies mg�1 has to be taken tentatively.
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1994; Mooney et al. 1995; Byers et al. 2002; Bal-
cazar et al. 2007; Goodwin & Merry 2009).
It was reported by Gustafson, Thomas & Trust

(1992) that in farmed brown trout (Salmo trutta)
up to 80% of the fish are thought to be carriers of
A. salmonicida and VBNC A. salmonicida have also
been revived (Austin, Austin & Colwell 1984). The
presence of VBNC A. salmonicida would also
explain why the bacterium has not been found by
culturing in the Danish rainbow trout freshwater
farms, although furunculosis outbreaks occur dur-
ing elevated temperatures after fish are transferred
to the sea (Dalsgaard & Madsen 2000; Pedersen
et al. 2008). Our results support this hypothesis, as
the fish sampled at three freshwater farms repre-
sented the same batch of fish. Initially, fish were
hatched at freshwater farm no. 1, then transferred
to freshwater farm no. 2 where A. salmonicida
became detectable by real-time PCR, then further
transferred to freshwater farm no. 3 still being
A. salmonicida positive by real-time PCR, and
finally transferred to seawater farm no. 5 at 2 years
age, where furunculosis outbreak occurred later that
year. Further studies are underway to shed a light
on possible transmission of the disease.
In fish reared in sea water, A. salmonicida was

detected by culturing in 12 of 22 fish and 20 of
110 organs, while the bacterium was detected in
all 22 fish and 98 organs by real-time PCR
(Table 1 and 2). This substantial difference in
detection between the culturing and real-time
PCR approach might be explained, at least in
part, by the fact that 20 fish accounting for 93 of
the positive organs were obtained from farm no.
5. At this farm, there had been a furunculosis out-
break, but unfortunately, it was not possible to do
the sampling until 5 days after the fish had been
treated with antibiotics. The treatment most likely
either reduced or killed A. salmonicida cells in the
fish, thereby reducing or eliminating the probabil-
ity of detecting the bacterium by culturing while
maintaining the chance for real-time PCR to
detect DNA from either dead or VBNC bacteria
still present within the fish. The possible presence
of both viable, dead and VBNC bacteria in vari-
able frequencies in these fish would also explain
the lack of direct correlation between culturing
and GU counts as quantified by real-time PCR
(Table 2).
The same seawater farm (no. 5) was sampled

again approximately 3 months after antibiotic treat-
ment, where A. salmonicida was detected in two of

the four sampled fish by culturing, while real-time
PCR detected A. salmonicida in all four fish and all
20 organs (Table 2). The question remains here
whether the real-time PCR mostly detected DNA
from dead bacteria or whether there were low
amounts of viable A. salmonicida present in all fish
and most of the organs, which were only detected
in two fish (three organs) by culturing.
In the other seawater farm (no. 4), one of the

two examined fish was found positive by cultur-
ing, while both fish were found positive by real-
time PCR (Table 1). The organs where
A. salmoncida was detected by real-time PCR were
the spleen and intestine in both fish, along with
the brain in one fish. Detection of A. salmonicida
in the spleen and brain correlates with the find-
ings of the bacterium by real-time PCR in fish
from freshwater farms. However, it is interesting
that the intestine was also found positive in both
fish; in accordance, Hiney et al. (1994) stated that
the intestine may be the primary location of
A. salmonicida in salmon. Results from this seawa-
ter farm and the freshwater farms also bring atten-
tion to the importance of sampling from more
than one or two organs in order to be sure of
avoiding false negatives regarding the detection of
A. salmonicida in fish.
In summary, our present findings indicate that

there may be carrier fish harbouring VBNC
A. salmonicida in Danish freshwater and seawater
rainbow trout farms and that the spleen, brain and
intestine could play an important role in
A. salmonicida infection and persistence of VBNC.
Further studies are needed for obtaining more
knowledge about VBNC and carrier fish. The real-
time PCR assay showed higher sensitivity for the
detection of A. salmonicida than the culture
method and exhibited a high reproducibility and
efficiency. The real-time PCR assay presents a profi-
cient tool for the detection of A. salmonicida in fish.
One must keep in mind though that not all
A. salmonicida seem to possess the target plasmid
pAsal1. In order to be certain of avoiding false neg-
atives, another sensitive detection method with a
different target would need to be employed.
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Abstract 15 

 16 

Sea-reared rainbow trout production in Denmark currently struggles with furunculosis, a septicemic 17 

infection caused by the bacterium Aeromonas salmonicida subsp. salmonicida. Developing an 18 

effective control strategy is vital for future production, but this requires having knowledge of the 19 

epidemiology, as well as the genetic and virulent variability of the Danish A. salmonicida isolates. 20 

In order to obtain this, the genomes of 101 A. salmonicida, including 99 Danish isolates, one 21 

Scottish strain and the type strain NCIMB 1102, were sequenced using the Illumina HiSeq 22 

platform. Isolates were de novo assembled, examined for presence of plasmids, virulence and iron 23 

acquisition proteins and antibiotic resistance genes. Single Nucleotide Polymorphisms were aligned 24 

and subjected to Bayesian temporal phylogenetic and maximum likelihood tree reconstruction using 25 

the published genome of A. salmonicida A449 as reference. Bayesian temporal phylogenetic 26 

reconstruction suggests that four major introductions of A. salmonicida into Denmark have 27 

occurred. The introductions correlate with the freshwater and subsequent seawater expansion of 28 

rainbow trout production. Initial transmission of the bacterium could have been from seawater to 29 

freshwater or vice versa, both scenarios are open and most minor clades include a mixture of strains 30 

from different fresh- and seawater farms. Genetic variation of A. salmonicida is mostly associated 31 

with their plasmids and plasmid encoded virulence factors. Nine A. salmonicida harbored 32 

worldwide known antibiotic resistance genes against several antibiotics. These findings provide 33 

novel information regarding the Danish A. salmonicida population and demonstrate that whole 34 

genome sequencing is a highly useful tool for studying homogenous bacteria such as A. 35 

salmonicida.  36 

 37 

Keywords: Aeromonas salmonicida, furunculosis, rainbow trout, whole genome sequencing, 38 

SNP analysis, BEAST, virulence factors 39 
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1. Introduction 40 

 41 

Aeromonas salmonicida subsp. salmonicida, the causative agent of a septicemic infection 42 

furunculosis, was first described by Emmerich and Weibel (1894) at a German freshwater brown 43 

trout hatchery. Although the first rainbow trout (Oncorhynchus mykiss) hatchery in Denmark was 44 

already established in 1858 (Christensen, 1980), signs of furunculosis among fish were first 45 

described in the 1950s at freshwater rainbow trout farms  (Rasmussen 1964). At this point the 46 

Danish freshwater rainbow trout production had begun its massive expansion. In the late 1970s, 47 

production was extended to seawater and dry pellet feed was introduced instead of the common wet 48 

feed consisting of herring, whiting, sand-eels and other marine fish not used for human 49 

consumption (Christensen, 1980). Both actions increased the growth of the Danish rainbow trout 50 

production even further. 51 

 52 

Currently, it is in the expanded Danish sea-reared rainbow trout production that A. salmonicida is 53 

responsible for great financial losses. Despite fish being vaccinated before transfer from freshwater 54 

to seawater farms, furunculosis has occurred repeatedly during situations with elevated water 55 

temperatures (Larsen and Mellergaard, 1981; Dalsgaard and Madsen, 2000; Pedersen et al., 2008). 56 

This situation, along with previous research, has led to the belief that A. salmonicida could be 57 

spread from freshwater to the sea by carrier fish that harbor the bacterium without showing any 58 

signs of disease (Larsen and Mellergaard, 1981; Dalsgaard and Madsen, 2000). Verifying this 59 

would be critical for developing an effective prevention strategy against furunculosis. 60 

 61 

Several methods exist for molecular typing of bacterial isolates. The ‘gold standard’ for typing has 62 

long been Pulsed-field gel electrophoresis (PFGE), however, this method is time-consuming and 63 

lacks resolution power to distinguish the highly homogenous A. salmonicida on the subspecies level 64 

(Cunningham and Colquhoun, 2002; Beaz-Hidalgo et al., 2008). Although other methods such as 65 

restriction fragment length polymorphism (RFLP) and multilocus sequence typing (MLST) analysis 66 

can match the resolution of PFGE and can often provide results faster (Cunningham and 67 

Colquhoun, 2002; van Belkum et al., 2007; Beaz-Hidalgo et al., 2008) most of the methods are 68 

laborious and expensive (van Belkum et al. 2007). Recently a MLST-V based on eight fragments of 69 

housekeeping genes and four fragments of virulence associated genes was applied on 25 Danish 70 

isolates, though it did not have enough discriminatory power for distinguishing A. salmonicida at 71 

the subspecies level (authors’ unpublished results).  72 

 73 

Whole-genome sequencing (WGS) using next generation sequencing technology has over the past 74 

few years drastically decreased in cost and increased in speed, enabling its usage for studying 75 

everything from specific genes and virulence factors to epidemiology and long term evolution of 76 

various bacteria on a regular basis (Parkhill and Wren, 2011). Moreover, WGS provides the best 77 

overview of a studied population, since it avoids bias present in other molecular methods such as  78 

MLST, which only investigate a small part of the genome (Foxman et al. 2005; Parkhill and Wren, 79 

2011).  80 

 81 



4 

 

In order to create an overview of the variation in genetics and virulence factors, as well as the 82 

epidemiology and evolution of Danish A. salmonicida isolates, a representative collection of 99 83 

Danish A. salmonicida isolates varying in isolation years 1980 - 2014 and geographical regions, a 84 

Scottish strain and the type strain NCIMB 1102 were sequenced using the Illumina HiSeq platform. 85 

Sequences of all isolates were de novo assembled and analyzed using the published  genome of A. 86 

salmonicida A449 (Reith et al., 2008) as reference.  87 

 88 

2. Methods 89 

 90 

2.1 Bacterial isolates 91 

 92 

Ninety-nine Danish A. salmonicida isolated from furunculosis outbreaks between1980 and 2014 93 

were selected. The collection consisted of 42 A. salmonicida isolated from various freshwater 94 

farms, of which 40 were from rainbow trout and two from brown trout (Salmo trutta). Fifty-seven 95 

of the A. salmonicida were isolated from rainbow trout at various seawater farms, of which 14 96 

isolates (isolated between 1981 - 2014) belonged to one large seawater farm and nine isolates 97 

(isolated between 1989 - 2010) to another large seawater farm named Sj4 and Sj3 respectively in 98 

this study. The Scottish A. salmonicida strain MT004 from Atlantic salmon (Salmo salar L.) is 99 

according to literature isolated around 1980. The A. salmonicida type strain NCIMB 1102 from 100 

England was isolated from an Atlantic salmon in year 1962. Extracted genomic DNA from all 101 101 

A. salmonicida was used for sequencing.  102 

 103 

2.2 Sample preparation  104 

 105 

All A. salmonicida were grown in Veal Infusion Broth (VIB) (Difco) at 20
o
C for 48 hours and then 106 

inoculated on blood agar plates (Colombia agar base (Oxoid) with 5% calf blood at 20
o
C for 48 - 72 107 

hours. Genomic DNA was extracted from bacterial colonies using a QIAGEN QIAamp DNA mini 108 

kit (QIAGEN, Valencia, CA, USA) according to the manufacturer’s protocol. DNA quality was 109 

determined by NanoDrop ND-1000 (Thermo Scientific, Waltham, MA, USA) and DNA 110 

concentration by Qubit 2.0 fluorometer and Quant-iT dsDNA BR kit (Invitrogen, Carlsbad, CA, 111 

USA). All DNA extractions were immediately stored at -20
0
C until further use.  112 

 113 

2.3 Whole genome sequencing, de novo assembly, and antibiotic resistance genes 114 

 115 

Genomic DNA was prepared for Illumina pair-end sequencing using the Illumina (Illumina, Inc., 116 

San Diego, CA) NexteraXT® Guide 150319425031942 following the protocol revision C 117 

(http://support.illumina.com/downloads/nextera_xt_sample_preparation_guide_15031942.html). A 118 

sample of the pooled NexteraXT Libraries was loaded onto an Illumina HiSeq reagent cartridge 119 

using HiSeq Reagent Kit v2 and 500 cycles with a Standard Flow Cell. The libraries were 120 

sequenced using an Illumina platform and HiSeq Control Software 2.3.0.3. All isolates were pair-121 

end sequenced.  Raw sequence data have been submitted to the European Nucleotide Archive 122 

(http://www.ebi.ac.uk/ena) under study accession no.: xxxxxxxx. The raw reads were de novo 123 
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assembled using the assemble pipeline (version 1.0) available from the Center for Genomic 124 

Epidemiology (CGE) https://cge.cbs.dtu.dk/services/Assembler/ which is based on the Velvet 125 

algorithms for de novo short reads assembly (Zerbino and Birney, 2008). Full genomic data can be 126 

retrieved from the supplementary information (SI) appendix, Table S1.   127 

 128 

Identification of acquired antibiotic resistance genes (ARGs) was performed through assembled 129 

genomes using the pipeline ResFinder (version 2.1) (Zankari et al., 2012) available from Center for 130 

Genomic Epidemiology (http://cge.cbs.dtu.dk/services/). Threshold for presence of an ARG in an 131 

isolate was set to 75% similarity expressed as percent sequence identity (ID) and 60% of alignment 132 

length (coverage) of resistance gene.  133 

 134 

2.4 Single Nucleotide Polymorphisms (SNPs) 135 

 136 

SNPs were determined using the pipeline; CSI phylogeny (Leekitcharoenphon et al., 2012; Kaas et 137 

al., 2014) available on the CGE (www.genomicepidemiology.org). In principle, the paired-end 138 

reads were mapped to the reference chromosome, the French A. salmonicida strain A449 isolated 139 

year 1975 from a brown trout (accession number CP000644, chromosome length 4,702,402 bp) 140 

using Burrows-Wheeler Aligner (BWA) version 0.7.2 (Li and Durbin, 2009). The ‘mpileup’ module 141 

in SAMTools version 0.1.18 (Li et al., 2009) was used to identify SNPs. Qualified SNPs were 142 

determined when fulfilling the following criteria: 1) a minimum distance of 10 bps between each 143 

SNP, 2) a minimum of 10% of the relative depth at SNP positions, 3) the mapping quality was more 144 

above 25, 4) the SNP quality was more than 30 and 5) all indels were excluded. The SNPs from 145 

each genome were concatenated to a single alignment corresponding to position of the reference 146 

genome. The concatenated sequences were subjected to maximum likelihood tree using Fastree 147 

(Price et al., 2009) 148 

 149 

2. 5 Temporal Bayesian Phylogenetic tree 150 

 151 

SNPs were subjected to Bayesian temporal phylogenetic reconstruction using BEAST (Bayesian 152 

Evolutionary Analysis Sampling Trees) version 1.7 (Drummond and Rambaut, 2007; Drummond et 153 

al., 2012) to estimate mutation rate and divergence time. Combinations of population size change 154 

and molecular clock were evaluated to identify the best-fit model (exponential clock and coalescent 155 

Bayesian skyline). The Bayesian temporal tree was constructed using the best-fit model. The 156 

BEAST MCMC chains were simulated for 300 million steps and subsampled every 10,000 steps. 157 

The final single maximum clade credibility (MCC) was examined using TreeAnnotator (Drummond 158 

et al., 2012) with 10% of the MCMC steps discarded as burn-in. Statistical confidence was 159 

represented by the 95% highest posterior density (HPD) interval.  160 

 161 

2.6 Virulence and iron acquisition proteins 162 

 163 

To compare presence of virulence and iron acquisition proteins among all A. salmonicida isolates, a 164 

blastp search (Altschul et al., 1990) was performed with 78 known virulence associated and iron 165 
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acquisition protein sequences (SI appendix, Table S2) found in the NCBI protein database against 166 

the assembled A. salmonicida genomes. Threshold limit for presence of protein in an isolate was set 167 

to 75% ID. 168 

2.7 Plasmid profiles 169 

 170 

The plasmid content of each A. salmonicida was analyzed by using blastn (Altschul et al., 1990) 171 

with 11 known A. salmonicida plasmid sequences found in the NCBI database (SI appendix, Table 172 

S3) against the assembled A. salmonicida genomes.  Threshold limit for presence of plasmid in an 173 

isolate was set to 75% ID and 60% coverage of plasmid due to the long length of plasmid 174 

sequences. Acquired ARGs present in the 11 plasmid sequences were determined using the pipeline 175 

ResFinder (version 2.1) (Zankari et al., 2012) with the above settings for threshold limit. 176 

 177 

3. Results 178 

 179 

3.1 Phylogeny 180 

 181 

A total of 667 SNPs were identified in the chromosome from the A. salmonicida isolates. The 182 

French reference strain A449 displayed an average SNP difference of 147 to the rest of the isolates. 183 

The Scottish isolate and the type culture NCIMB 1102 had an average SNP difference of 115 and 184 

41 respectively, while two Danish A. salmonicida isolated from brown trout (Mj2 1990 and Sd8 185 

1992) had an average difference of 50 and 42 respectively. The average SNP difference among the 186 

Danish isolates was 47 and 46 SNPs between Danish isolates from freshwater versus isolates from 187 

seawater. The three Danish isolates with the highest average SNP difference were Sj7 1980 with 92 188 

SNPs, Mj12 2014 with 67 SNPs and Mj4 2008 with 61 SNPs. Based on the alignment of the 667 189 

SNPs, two trees were constructed: a Bayesian temporal tree (Fig. 1) with a Baysian Skyline 190 

population size change and an exponential clock rate as the best fit combination model for the A. 191 

salmonicida population and a maximum likelihood tree (SI appendix, Fig. S1) for topology 192 

confirmation. The two trees showed similar topology and the Bayesian tree (Figure 1) was 193 

illustrated with obtained genetic information regarding acquired ARGs, virulence and iron 194 

acquisition proteins and plasmid profiles of each A. salmonicida isolate for further analysis.  195 

 196 

The mutation rate of A. salmonicida isolates was estimated to be 1.93 x 10
-7

 substitutions/site/year, 197 

which corresponds to 0.91 SNPs/genome/year. The most recent common ancestor of the A. 198 

salmonicida isolates was estimated to have emerged in ~1915 (95% HPD interval 1764 - 1947).  199 

There are two major clades originating back to ~1926 (95% HPD interval 1881 - 1950) that each 200 

branched out further into two more clades in ~1936 (95% HPD interval 1922 - 1958) and ~1970 201 

(95% HPD interval 1934 - 1974) respectively, resulting in roughly four main introductions of A. 202 

salmonicida in Denmark: ~1973 (95% HPD interval 1958 - 1979), ~1973 (95% HPD interval 1964 203 

- 1981), ~1948 (95% HPD interval 1934 - 1964) and ~ 1946 (95% HPD interval 1939 - 1961). From 204 

approximately 1975 - 1995 the Danish A. salmonicida population experienced a massive clonal 205 

expansion. There was a correlation of local geographical transmission among the Danish freshwater 206 
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isolates grouped together in the upper clade of the tree. There was another transmission link 207 

between isolates from a freshwater farm Mj10 and isolates from two seawater farms that had 208 

received fish from this farm.  209 

 210 

3.2 Antibiotic resistance  211 

 212 

All sequenced A. salmonicida isolates harbored three ARGs against beta-lactam antibiotics encoded 213 

on the chromosome (Table 1). Nine Danish A. salmonicida isolates also harbored several other 214 

plasmid encoded resistance genes against trimethoprim, sulphonamide and aminoglycoside 215 

antibiotics (Table 1). All three isolates from freshwater farm Mj10 sampled during different years 216 

harbored ARGs against several of the above mentioned antibiotics. The same ARGs against 217 

multiple antibiotics were found in isolates sampled from three seawater farms (Mj8 1997, Mj11 218 

2014 and Mj3 2014) located in the same bay that all received fish from the freshwater farm Mj10. 219 

The French reference strain A449 also harbored ARGs against beta-lactam, sulphonamide, 220 

aminoglycoside, phenicol and tetracycline antibiotics and more resistance genes are described by 221 

(Reith et al., 2008). 222 

 223 

3.3 Virulence and iron acquisition  224 

 225 

Out of 78 investigated protein sequences, 22 were considered as absent (<65% ID) in one or more 226 

isolates (Fig. 2). The Type Three Secretion System (T3SS) Effector protein AopP encoded on 227 

plasmid pAsal1 by the aopP gene was absent in 50% the A. salmonicida isolates, including the 228 

reference strain A449. A cluster of 15 T3SS related proteins were absent in 25 isolates. In nine of 229 

the 25 isolates, the T3SS putative tyrosine phosphatase AopH and its chaperone that are encoded on 230 

pAsa5 and have homologs encoded on pAsa6 were also absent. Three of the isolates were also 231 

missing the T3SS putative serine/threonine kinase AopO and its chaperone that are encoded on 232 

pAsa5, while isolate Mj12 2014 was missing the extracellular nuclease protein (48% ID) coded by 233 

the gene nucH on the chromosome. Isolate Sj4 1998, which is not included in above mentioned 234 

group of 25 isolates, did not possess the tetragonal surface virulence array protein VapA (A-layer) 235 

encoded on the chromosome. Lastly, the chromosome encoded ABC-type ferric siderophore 236 

transporter permease protein only showed 75% ID in all sequenced A. salmonicida as well as the 237 

reference strain A449. 238 

 239 

3.4 Plasmid profiles 240 

 241 

All examined A. salmonicida isolates displayed presence of multiple plasmids (SI appendix, Table 242 

S4). Seven plasmids were present in one or more isolates, while four plasmids: pAr-32, pRAS1, 243 

pRAS3.1 and pRAS3.2 were not present in any isolates. The only plasmid found in all isolates was 244 

pAsa1, although pAsa2 showed high stability with a presence of 99% among the isolates. Plasmids 245 

pAsa5 and pAsa6 were present in 90% and 85% respectively. The two plasmids pAsa3 and 246 

pAsal1were present in 76% and 52% of the isolates respectively, while pAsa4 was only present in 247 

the reference strain A449. Twelve different plasmid profiles were detected among the isolates, with 248 
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one profile consisting of pAsa1, pAsa2, pAsa3, pAsa5, pAsa6 and pAsal1 representing 44% of the 249 

isolates (Table 2).  250 

 251 

Five plasmids are known for harboring ARGs (R plasmids): pAsa4, pAr-32, pRAS1, pRAS3.1 and 252 

pRAS3.2 (SI appendix Table S3) and only plasmid pAsa4 was present in any of the investigated A. 253 

salmonicida (the reference strain A449).   254 

 255 

All 51 A. salmonicida isolates in which the AopP protein encoded on pAsal1 was absent (Fig. 2), 256 

were missing plasmid pAsal1 (SI appendix Table S4). Of the 25 A. salmonicida isolates that were 257 

missing a cluster of 15 T3SS proteins encoded on pAsa5, ten were also missing the plasmid pAsa5. 258 

The remaining 15 isolates all displayed <80% coverage of the pAsa5. All nine A. salmonicida 259 

isolates that lacked the protein AopH and its chaperone that are encoded on pAsa5 and have 260 

homologs on pAsa6 showed <80% coverage for pAsa5 and were missing pAsa6. 261 

 262 

4. Discussion 263 

 264 

4.1 Phylogeny 265 

  266 

A. salmonicida subspecies is known to be a highly homogenous group that is considered clonal 267 

(Wiklund and Dalsgaard, 1998; Garcia et al., 2000; Cunningham and Colquhoun, 2002; Beaz-268 

Hidalgo et al., 2008). The fact that only a total of 667 SNPs were found in the entire 4,702,402 bp 269 

long chromosome among the investigated A. salmonicida varying in year of isolation (span of 34 270 

years), geographical region, and host fish species only confirms this further. The highest average 271 

SNP difference was found between the French reference strain A449 and the rest of the A. 272 

salmonicida isolates (average of 147 SNPs), which is not a large difference when considering that 273 

A449 was isolated in France and from a brown trout, while almost all (97out of 99) of the Danish 274 

isolates were isolated from rainbow trout. When comparing the average SNP difference between the 275 

Scottish strain from Atlantic salmon and the rest of the isolates, the results were even lower 276 

(average of 115 SNPs).  The two Danish A. salmonicida isolated from brown trout (Mj2 1990 and 277 

Sd8 1992) and the type strain NCIMB 1102 from Atlantic salmon also grouped together with 278 

Danish A. salmonicida from rainbow trout in one of the four major clades (Fig. 1) and only have an 279 

average of 41, 50 and 52 SNP difference, which challenges the theory of A. salmonicida genome 280 

adapting to the environment of their specific hosts species (Reith et al., 2008). More A. salmonicida 281 

isolates from various fish species would, however, need to be sequenced in order to shed more light 282 

on this theory.  283 

 284 

Noticeably there appears to be four major A. salmonicida introductions to Denmark, giving rise to 285 

four major clades (Fig. 1). The two introductions that occurred in ~1973 (95% HPD interval 1958 - 286 

1979) and ~1973 (95% HPD interval 1964 - 1981) and gave rise to the two upper clades (Fig. 1), 287 

seemingly took place right before the massive clonal expansion during 1975 - 1995, which all four 288 

clades underwent.  The two introduction points in 1973 and the expansion period of all four clades 289 

correspond to the time period where rainbow trout farming in Denmark began expanding out to 290 



9 

 

seawater and intensifying their production. The two bottom clades were introduced further in the 291 

past ~1948 (95% HPD interval 1934 - 1964) and ~ 1946 (95% HPD interval 1939 - 1961) 292 

respectively and also contain A. salmonicida with older isolation years (average year of isolation 293 

1991), than the two upper clades that include A. salmonicida with an average isolation year of 2001 294 

(Fig. 1).  295 

 296 

The introduction of the two bottom clades correlate with the end of the Second World War and the 297 

beginning of an expansion of rainbow trout production in Danish freshwater. When examining the 298 

branches of each of the four major clades, there is a possibility that A. salmonicida might have been 299 

introduced into Denmark through seawater and was from thereon spread to freshwater. One 300 

explanation for this possible scenario is the fact that wet feed, comprised of marine fish including 301 

sand-eels, was used at all Danish fish farms until the late 1970s (Christensen, 1980). A. 302 

salmonicida, although the atypical type, has been isolated from sand-eels caught in the surrounding 303 

seawater of Denmark (Dalsgaard and Paulsen, 1986). It is also known that A. salmonicida can be 304 

harbored by various farmed and wild freshwater and seawater aquatic animals (Bernoth et al., 305 

1997). It could be thus be hypothesized that the wet feed could be the cause behind a possible initial 306 

transmission of the bacterium from seawater to freshwater. However, the bacterium could also have 307 

been transmitted from freshwater to seawater, which is the widespread theory i.e. that A. 308 

salmonicida is present in freshwater fish showing no signs of diseases (carriers) and are then 309 

transferred out to seawater with the fish, where outbreaks occur during high temperatures (Larsen 310 

and Mellergaard, 1981; Dalsgaard and Madsen, 2000; Pedersen et al., 2008).  311 

 312 

The local transmission pattern of A. salmonicida among the Danish farms also suggests that 313 

transmission of isolates from freshwater to seawater farms have occurred, as exemplified by a 314 

minor clade where ARGs were transmitted from a freshwater farm to seawater farms, though this 315 

will be discussed under the antibiotic resistance section. Isolates from different freshwater farms are 316 

moreover mixed with different isolates from seawater in most of the minor clades. Though, in 317 

general it is hard to find specific geographical correlations between the fish farms. One of the main 318 

causes for this could be the widespread trade of fingerlings for anglers in Denmark throughout the 319 

years as well as local trade among fish farmers. There is nonetheless a correlation among the group 320 

of freshwater farms isolates in the top clade. Mj13 is located upstream to Mj16 in a stream that runs 321 

out into a river named Guden Å. Two other farms (Mj12 and Mj2) are also located at streams that 322 

lead out to Guden Å and one of these (Mj12) produces brown trout. 323 

 324 

Finally, it was also found that isolates grouped in the two bottom clades were missing a higher 325 

amount of virulence associated proteins (average of 1.0 protein per isolate), compared to isolates 326 

grouped in the two upper clades where the average absence of virulence associated proteins was 0.6 327 

per isolate (Fig. 1). This indicates that the most recently common ancestor of the bottom two clades 328 

from ~1936 (95% HPD interval 1922 - 1958), presumably harbored itself and gave rise to two older 329 

lineages that harbored fewer virulence associated proteins than the more recently introduced two 330 

lineages (the two upper clades in the phylogeny tree). Considering these results, it could be 331 
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suggested that the upper two clades might consist of more virulent A. salmonicida that were 332 

introduced from a more recent and more virulent ancestor around 1970.  333 

 334 

4.2 Antibiotic resistance  335 

 336 

Interestingly, all investigated A. salmonicida isolates possessed three beta-lactam ARGs. Since the 337 

genes are encoded on the chromosome, it seems that either they have always been a part of the A. 338 

salmonicida genome repertoire, or they must have been acquired at least around 67 - 250 years ago. 339 

Nine Danish A. salmonicida also harbored resistance genes against trimethoprim, sulphonamide and 340 

aminoglycoside antibiotics, which are all plasmid encoded. Trimethoprim and sulphonamide are 341 

also two of the scarce number of antibiotics allowed to be used for treatment of bacterial diseases in 342 

Danish fish farms. All three A. salmonicida isolates from freshwater farm Mj10, isolated year 1982, 343 

2009 and 2010 harbored resistance genes against at least two of the above mentioned antibiotics 344 

(Table 1). Fish from farm Mj10 have always been transferred out to a bay, where several seawater 345 

farms are located. In A. salmonicida isolated during 2014 from two of these seawater farms, the 346 

same set of resistance genes were detected as those seen in A. salmonicida from the freshwater farm 347 

Mj10 during 2009 and 2010. Fittingly, the two freshwater isolates form a minor clade with the two 348 

seawater isolates in the Bayesian temporal tree, according to which the isolates spread from the 349 

freshwater to seawater (Fig. 1). In seawater farm Mj8, which is also located in the bay, an A. 350 

salmonicida isolate from 1997 did harbor ARGs against the mentioned antibiotics as well. 351 

However, these ARGs were slightly different than those seen in the Mj10 1982 isolate, where one 352 

otherwise would expect the resistance genes had originated (Table1).  This could be associated with 353 

the fact that trimethoprim was not licensed for use in Denmark until 1983 and the isolate from 1982 354 

had therefore not acquired ARGs against this antibiotic.  355 

 356 

None of the nine Danish isolates harbored any of the five investigated R plasmids, though eight did 357 

show coverage (< 60%) of at least one of the R plasmids (SI appendix, Table S4), indicating they 358 

could have acquired ARGs from the plasmids in the past through horizontal gene transfer and then 359 

lost the plasmid. Isolate Sj4 2014 that showed zero coverage of all R plasmids harbored ARGs strA 360 

and strB, which were present in R plasmid pRAS2 isolated from A. salmonicida in salmon from 361 

Norway (L’Abée-Lund and Sørum, 2000). This plasmid was not included in the analysis, since only 362 

a couple of gene sequences from this plasmid are available in Genbank. However, pRAS2 could be 363 

or have been present among the Danish A. salmonicida population. Noteworthy, the only other 364 

isolate harboring ARGs strA and strB was isolated in 2011 from farm Nj1, though there has not 365 

been any transfer of fish from this farm to Sj4, whereby the two occurrences of the ARGs strA and 366 

strB are incidental. When looking at the broader picture, there are many highly similar broad host R 367 

plasmids that have been isolated from Aeromonas species in various environments all over the 368 

world that harbor the same ARGs found in the Danish A. salmonicida (L’Abée-Lund and Sørum, 369 

2001; Sørum et al., 2003; Kadlec et al., 2011; Muziasari et al., 2014). Present findings only provide 370 

further evidence of this widespread dissemination of R plasmids and ARGs, although the 371 

prevalence of these ARGs seems to be similar (9%) to the low prevalence of 5% found by 372 

Dalsgaard et al., (1994). 373 
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 374 

4.3 Iron acquisition  375 

 376 

Iron acquisition has been proven to be an important factor for virulence in almost all bacterial 377 

pathogens, including A. salmonicida where it also seems to be linked to survival in aquatic 378 

environments (Reith et al., 2008). Iron is also thought to be linked to the innate immune response in 379 

the host, which in turn attempts limiting iron availability in order to lower virulence and access of 380 

the pathogen into the host (Ganz, 2009; Lee et al., 2014).  Due to the important nature of iron 381 

acquisition and the fact that all the investigated proteins related to iron acquisition were encoded on 382 

the chromosome, it was expected that all 102 A. salmonicida isolates possessed all the investigated 383 

iron acquisition proteins (SI appendix, Table S2). Though, it has to be noted that the ABC-type 384 

ferric siderophore transporter permease protein only showed 75% ID in all A. salmonicida isolates.  385 

 386 

4.4 Virulence  387 

 388 

In addition to iron acquisition proteins, numerous of potential virulence factors have been identified 389 

in A. salmonicida, including extracellular proteases, lipases, adhesins, and functional secretion 390 

systems (Burr et al., 2002; Rasch et al., 2007; Reith et al., 2008; Dallaire-Dufresne et al., 2014). 391 

The majority of potential virulence proteins investigated in this study was present in all sequenced 392 

A. salmonicida and the reference strain. Though, two proteins encoded on the chromosome and 20 393 

encoded on plasmids were missing in at least one isolate (SI appendix, Table S2). In agreement with 394 

the present results, DNA micro array study of virulence genes in Aeromonas species including 395 

several subspecies salmonicida isolates by (Nash et al., 2006) also showed high degree of 396 

variability among  genes associated with plasmids, whereas genes encoded on the chromosome did 397 

not vary significantly.  398 

 399 

All of the above mentioned 20 plasmid encoded proteins were related to the functional type three 400 

secretion system (T3SS). This secretion system is wide spread among Gram-negative bacteria and 401 

has several functions, including: disrupting host cells by translocating toxins (effector proteins) into 402 

their cytoplasm, preventing phagocytosis by leukocytes, and establishing systemic infection (Burr et 403 

al., 2003; Stuber et al., 2003; Burr et al., 2005; Dacanay et al., 2006; Rasch et al., 2007; Dallaire-404 

Dufresne et al., 2014). T3SS is also the only virulence factor proven to be essential for virulence of 405 

A. salmonicida, as all in vitro and in vivo studies involving inactivation of T3SS structural proteins 406 

in A. salmonicida strains have resulted in non-virulent A. salmonicida mutants (Burr et al., 2002; 407 

Burr et al., 2003; Stuber et al., 2003; Burr et al., 2005; Dacanay et al., 2006; Froquet et al., 2007). 408 

Nevertheless, among the 20 missing T3SS related proteins in this study were T3SS structural 409 

proteins, while all the A. salmonicida in this study are isolated from furunculosis outbreaks, 410 

whereby one would assume that all the A. salmonicida isolates are virulent.  411 

 412 

There are 36 T3SS encoding genes located on the large plasmid pAsa5 (Reith et al., 2008; Najimi et 413 

al., 2009: Tanaka et al., 2012; Vincent et al., 2016) and 19 of them that were investigated in this 414 

study were missing in at least three isolates (SI appendix, Table S2). Initially these 36 genes were 415 
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found to be located on a 140 kb plasmid named pASvirA (Stuber et al., 2003) and while pASvirA 416 

and pAsa5 are almost the same size, it remains unclear whether they are variants of the same 417 

plasmid (Najimi et al., 2009). Though, both plasmids become unstable under stressful conditions 418 

like being subjected to growth in temperature above 22 - 25
o
C (Stuber et al., 2003; Tanaka et al., 419 

2012; Dallaire-Dufresne et al., 2014). While pASvirA is seemingly lost by A. salmonicida during 420 

the stressful conditions (Stuber et al., 2003), pAsa5 is thought to undergo genetic rearrangement 421 

resulting in the loss of its T3SS region caused by activation of ISAS11insertion sequence (IS) 422 

elements (Tanaka et al., 2012). This could explain the fact that all the 25 A. salmonicida isolates 423 

missing the cluster of T3SS proteins, encoded on pAsa5 in our study still harbored the plasmid, but 424 

displayed <80% coverage. The only issue with this justification is that all A. salmonicida cultures in 425 

our laboratory are always grown at 20
o
C, meaning it is unlikely that growth at high temperature 426 

triggered the activation of ISAS11. It is unclear what other cause for the rearrangement of pAsa5 427 

could have been. 428 

 429 

Plasmid pAsa6 also shares most of its sequences, including sequences for AopH and its chaperone, 430 

with pAsa5 with a close to 100% nucleotide sequence similarity (Najimi et al., 2009). In agreement, 431 

all nine A. salmonicida isolates in our study that lacked AopH and its chaperone showed <80% 432 

coverage of pAsa5 and were missing pAsa6 (SI appendix, Table S4). Presence of AopH and 433 

chaperone homologs on pAsa6 would also explain why the sequences for these two proteins were 434 

not missing in all of the above mentioned 25 isolates i.e. the two protein sequences in all but nine 435 

isolates could still be present on pAsa6. Though, it remains unclear why only three of the 25 436 

isolates were also missing the AopO protein and its chaperone, since both proteins are only encoded 437 

on pAsa5. One reason could be that they were encoded in a different region and were thus not 438 

rearranged along with the other 15 T3SS protein sequences.  439 

 440 

Unlike most of the T3SS proteins, the AopP protein is encoded on plasmid pAsal1 and the protein 441 

was missing in 50% of the A. salmonicida isolates investigated in this study (Fig. 2). Interestingly, 442 

pAsal1 was present in isolate Sj 1981 and the Scottish isolate, both of which did not harbor the 443 

AopP protein. The isolates did possess the nucleotide sequence for the aopP gene; however, both 444 

sequences had an identical frameshift mutation caused by point deletions (data not showed) that 445 

presumably lead to an incorrect translation of the AopP protein sequence. Apart from the two 446 

mentioned isolates, all A. salmonicida that were missing the AopP protein sequence were also 447 

missing the plasmid pAsal1. Previous studies have shown that pAsal1 is lost due to activation of the 448 

same insertion sequence as in pAsa5 (Daher et al. 2011; Tanaka et al 2012; Attéré et al., 2015; 449 

Vincent et al., 2016), though there was no correlation between a lowered coverage of pAsa5 and 450 

absence of pAsal1. Though the plasticity of A. salmonicida pAsal1 is complex, as the precise 451 

mechanism responsible for loss of pAsal1 remains unknown  (Attéré et al., 2015) and at least three 452 

larger variants of the plasmid exist: pAsal1B, pAsal1C and pAsal1D (Trudel et al., 2013; Attéré et 453 

al., 2015). All the variants harbor another insertion sequence element called ISAS5 that in pAsal1C 454 

and pAsal1D disrupts the ISAS11, which hence cannot be activated leading to the prevention of loss 455 

of these two variants of pAsal1 during stressful conditions (Attéré et al., 2015). Although the ISAS5 456 
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does not disrupt ISAS11 in pAsal1B, according to Attéré et al., (2015) it could still prevent 457 

activation of ISAS11.  458 

 459 

The last two missing virulence associated proteins, the A-layer protein encoded by the vapA gene 460 

and the extracellular nuclease protein encoded by the gene nucH, were missing in isolate Sj4 1998 461 

and Mj12 2014 respectively. The absence of the extracellular protein in isolate Mj12 2014 462 

correlates with its unusually high average SNP difference of 67 compared to other Danish A. 463 

salmonicida. Isolate Sj4 1998 that is missing vapA does not have a higher SNP difference (47) 464 

compared to the other Danish A. salmonicida. Interestingly, isolate Sj7 1980 that has the highest 465 

average SNP difference of 92 SNPs among the Danish isolates, had an ID percentage of 87% for 466 

vapA and when the isolates’ vapA gene sequence was manually investigated with the program 467 

BioEdit (Hall, 1999), it was discovered that the first half of the nucleotide gene sequence differs 468 

significantly from the vapA nucleotide sequences of the other A. salmonicida isolates (data not 469 

shown). As illustrated on Fig. 2, there was otherwise an overall high similarity among all isolates 470 

regarding all the chromosome encoded virulence associated protein sequences. The high prevalence 471 

and similarity of the A-layer (VapA) in A. salmonicida discovered in this study, along with previous 472 

findings of A. salmonicida surface structures in contact with host defenses having a high antigenic 473 

conservation (Chart et al., 1984), could also provide valuable knowledge for future vaccine 474 

development. 475 

 476 

4.5 Plasmid profiles 477 

 478 

Out of the twelve plasmid profiles found in this study, the most abundant profile consisting of 479 

pAsa1, pAsa2, pAsa3, pAsa5, pAsa6 and pAsal1 represented 44% of the A. salmonicida isolates 480 

(Table 2). In the study by Nielsen et al. (1993) of A. salmonicida from various geographical 481 

locations using DNA restriction fragment plasmid profiling, a plasmid profile with the following 482 

five plasmids: pAsa1, pAsa2, pAsa3, pAsa5 and pAsal1was the most common profile among 483 

Danish A. salmonicida isolates, representing 32% of the 57 investigated Danish strains in that study. 484 

Nielsen et al. (1993) also investigated A. salmonicida NCIMB 1102, which belonged to the plasmid 485 

profile group mentioned above and was thus missing pAsa6. Seemingly  pAsa6 (molecular weight 486 

of 18.5 kb) was not found in any of the 124 A. salmonicida strains investigated by Nielsen et al. 487 

(1993). On the contrary, present results showed that pAsa6 was present in 87 A. salmonicida 488 

including NCIMB 1102. Possible explanations for the disagreeing results regarding pAsa6 could be 489 

that pAsa6 was not observed on gel by Nielsen et al. (1993) due being present in a low copy 490 

number, or pAsa6 could integrate into the A. salmonicida chromosome due to the abundance of IS 491 

elements within the plasmid (Najimi et al., 2009).  492 

 493 

Present findings support previous results by Nielsen et al. (1993),  Boyd et al. (2003) and Attéré et 494 

al. (2015) regarding high stability of plasmid pAsa1 and pAsa2 and instability of plasmid pAsa3 495 

and  pAsal1. Attéré et al. (2015) suggested an explanation for the stability of pAsa1 and instability 496 

of pAsal1 could be that pAsa1 and pAsa3 encode genes for a type II toxin-antitoxin (TA) system 497 

that kills all daughter cells that do not receive the plasmids (Boyd et al., 2003), while the TA system 498 
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has not been found in plasmids pAsa2 and pAsal1 (Shao et al., 2011). Though there is still the issue 499 

regarding stability of pAsa2 that does not encode a TA system and the instability of pAsa3 that does 500 

have a TA system (Attéré et al., 2015); an issue accentuated by the present findings. It might be 501 

possible that some clonal lineages do not acquire pAsa3 and pAsal1 (Attéré et al., 2015), which 502 

cannot be ruled out according to our results, where out of 24 A. salmonicida that did not harbor 503 

pAsa3 and pAsal1 (plasmid profiles nine and ten), 17 clustered together in four minor clades (Fig. 504 

1, four minor clades with a red ring).  505 

 506 

5. Conclusion 507 

 508 

The present findings have provided novel insight into the epidemiology of the disease causing 509 

Danish A. salmonicida, revealing four main introductions in consistency with the historical 510 

expansion of the Danish aquaculture production that could have been transmitted either from 511 

freshwater to seawater or vice versa. There was also transmission of isolates harboring ARGs from 512 

a freshwater farm to seawater farms, supporting the theory of A. salmonicida being spread from 513 

freshwater to seawater via carrier fish. The mixture of freshwater and seawater isolates from 514 

different farms in almost every minor clade and the lack of geographical connections among farms 515 

also indicates that the widespread trade of fingerlings and other fish could have played a role in the 516 

local dissemination of A. salmonicida in Denmark. The genome based analysis moreover showed 517 

genetic and virulence variability among the highly homogenous A. salmonicida population in 518 

Denmark, which consisted of isolates with varying plasmid profiles and plasmid encoded virulence 519 

proteins, especially those related to T3SS. Overall, WGS proved to be a highly useful tool for 520 

investigating Danish A. salmonicida and presented important new information about this bacterium. 521 

 522 
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8. Tables 733 

 734 
Table 1. Overview of acquired antibiotic resistance genes among the 101 A. salmonicida 735 
sequenced isolates and the reference A449. Threshold for presence of a resistance gene in an 736 
isolates was set to 75% similarity expressed as percent sequence identity (ID) and 60% of alignment 737 
length (coverage) of the resistance gene. Isolates are labeled according to region and year of 738 

isolation as in Figure 1. 739 

 740 
A. salmonicida 

isolate  

Beta-lactam Trimethoprim Sulphonamide Aminoglycoside Phenicol Tetracycline 

Reference A449 
(France 1975) 

blaFOX-2 ampS blaCEPH-A3 - - sul1 - - - aadA1 - cat tet(E) 

Sd5   2005 blaFOX-2 ampS blaCEPH-A3 - dfrA1 sul1 - - - aadA1 - - - 

Mj10   2009 blaFOX-2 ampS blaCEPH-A3 - dfrA1 sul1 - - - aadA1 - - - 

Mj10   2010 blaFOX-2 ampS blaCEPH-A3 - dfrA1 sul1 - - - aadA1 - - - 

Nj1   2011 blaFOX-2 ampS blaCEPH-A3 - dfrA1 sul1 - - strB aadA1 strA - - 

Mj11   2014 blaFOX-2 ampS blaCEPH-A3 - dfrA1 sul1 - - - aadA1 - - - 

Mj3   2014 blaFOX-2 ampS blaCEPH-A3 - dfrA1 sul1 - - - aadA1 - - - 

Sj4   2014 blaFOX-2 ampS blaCEPH-A3 dfrA14 - - sul2 - strB - strA - - 

Mj10   1982 blaFOX-2 ampS blaCEPH-A3 - - sul1 - aadA2 - - - - - 

Mj8   1997 blaFOX-2 ampS blaCEPH-A3 - dfrA1 sul1 - - - aadA1 - - - 

Nj2   2001 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj22   2002 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Nj4   2002 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj11   2003 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj3   2003 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sd1   2004 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sd4   2004 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj3   2004 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj7   2008 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj16   2008 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj4   2008 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj3   2008 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj4 (a)   2009 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj3 (a)   2009 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj3 (b)   2009 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj4 (b)   2009 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj3   2010 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj4 (a)   2010 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj4 (b)   2010 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj4   2011 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj9   2012 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj12   2014 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sd6 (a)   2013 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sd6 (b)   2013 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj14   2014 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sd4   2014 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sd10   2014 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj7   1980 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj24   1980 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj18   1981 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj7   1981 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj4   1981 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj16   1981 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sd3   1982 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj4   1982 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sd2   1982 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj4   1983 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj6   1983 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj15   1983 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sd2   1983 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj7   1984 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj15   1984 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Nj3   1984 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj16   1985 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj5   1986 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj18   1986 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj16   1986 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj11   1987 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj16   1987 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj13   1987 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj5   1988 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj4   1988 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 
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Sd9   1988 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj11   1988 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj1   1989 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj3   1989 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj2   1990 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj3   1990 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj20   1990 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj5   1990 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Scotland blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj3   1991 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Nj5   1991 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj5   1991 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj18   1991 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj4   1992 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj1   1992 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sd8   1992 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj6 (a)   1993 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj6 (b)   1993 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj2 (a)   1993 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj2 (b)   1993 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj21   1993 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj19   1994 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj5   1994 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Nj3   1995 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj12   1995 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj1   1995 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj4   1995 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj5   1995 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sd2   1995 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj23 (a)   1996 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj23 (b)   1996 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj6 (a)   1996 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj6 (b)   1996 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sd7   1997 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj20   1997 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj4   1998 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj4 (a)   1999 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Mj17   1999 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

Sj4 (b)   1999 blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

NCIMB 1102 (Type 
strain 1962) 

blaFOX-2 ampS blaCEPH-A3 - - - - - - - - - - 

 741 

 742 
Table 2. Overview of plasmid profiles among the 101 A. salmonicida sequenced isolates and 743 
the reference A449. Plasmid profile number is displayed to the right, as well as the number of A. 744 
salmonicida that have the respective profile. Presence and absence of a plasmid for the given profile 745 

is presented with a plus (present) and minus (absent) sign respectively, below each plasmid name.  746 
 747 
Profile 

No.  

No. of A. 

salmonicida isolates 

Plasmids 

  pAsa1 pAsa2 pAsa3 pAsa4 pAsa5 pAsa6 pAsal1 pAr_32 pRAS1 pRAS3.1 pRAS3.2 

1 45 + + + - + + + - - - - 

2 1 + - + - + + + - - - - 

3 2 + + + - - + + - - - - 

4 4 + + + - - - + - - - - 

5 1 + + + - + - + - - - - 

6 3 + + + - - - - - - - - 

7 1 + + + - - + - - - - - 

8 4 + + + - + - - - - - - 

9 2 + + - - + - - - - - - 

10 22 + + - - + + - - - - - 

11 16 + + + - + + - - - - - 

12 1 + + + + + - - - - - - 
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9. Figure legends 748 

 749 
Figure 1. Phylogeny of A. salmonicida. Bayesian temporal phylogenetic tree based on the 750 
alignment of 667 SNPs found among the 101 A. salmonicida sequenced isolates and the reference 751 
A449. The tree shows the most recent common ancestor of the A. salmonicida isolates dates back to 752 
~1915 (95% HPD interval 1764 - 1947) and that there have been four main introductions of A. 753 

salmonicida in Denmark: ~1973 (95% HPD interval 1958 -1979), ~1973 (95% HPD interval 1964 - 754 
1981), ~1948 (95% HPD interval 1934 - 1964) and ~ 1946 (95% HPD interval 1939 - 1961). The 755 
four main clades are each shaded with a color SNP differences between major clades are shown 756 
above the estimated year of emergence. The three non-Danish A. salmonicida each have their own 757 
color and have the following labels: Scotland, NCIMB 1102 (type strain 1962), Reference A449 758 

(France 1975). The Danish isolates either have a black color (freshwater farms) or a blue color 759 

(seawater farms) and they are labeled by region of origin followed by year of isolation. Following 760 
abbreviations are used for regions in Denmark: Nj = Northern Jutland, Mj = Central Jutland, Sd = 761 

Southern Denmark, Sj = Zealand. A heatmap illustration with information regarding acquired 762 
ARGs, virulence and iron acquisition proteins and plasmid profile numbers of each A. salmonicida 763 
isolate is shown to the right of the tree. Presence and absence of protein sequences are illustrated by 764 
presence and absence of a red square, respectively. Plasmid profile number is shown and isolates 765 

that harbor ARGs against multiple antibiotics are labeled with “res”. Four minor clades marked 766 
with a red ring consist solely of isolates without plasmid pAsa3 and pAsal1. 767 

 768 
Figure 2. Heatmap illustrating presence and absence of 78 virulence associated and iron 769 

acquisition protein sequences found in the NCBI protein database among the 101 A. 770 
salmonicida sequenced isolates and the reference A449. Isolates are displayed on the right and 771 

sequence protein names on the bottom. Threshold limit for presence of protein in an isolate was set 772 
to 75% similarity, expressed as percent sequence identity (ID). Red color represents > 95% ID, pink 773 
color > 85% ID, dark blue > 75% ID and light blue > 65% ID. 774 

 775 

 776 

 777 
 778 

 779 
 780 
 781 

 782 
 783 

 784 
 785 

 786 
 787 
 788 
 789 
 790 

 791 
 792 
 793 
 794 
 795 
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10. Supplementary information appendix  796 

 797 
Table S1. Full genomic data of the 101 sequenced A. salmonicida isolates. Isolates are labeled as 798 
stated in Figure 1. 799 

 800 
Table S2. Overview of 78 virulence associated and iron acquisition protein sequences found in 801 
the NCBI protein database. The following is shown in the table: name of protein sequence, short 802 
description, location of the protein coding gene, Genbank accession number and the number of A. 803 
salmonicida isolates harboring the given protein sequence. Isolates are labeled as stated in Figure 1. 804 

 805 
Table S3. Overview of 11 A. salmonicida plasmids found in the NCBI nucleotide database. The 806 

following is shown in the table: name of plasmid, short description, antibiotic resistance genes 807 

encoded on plasmid, length of plasmid (in base pairs), and Genbank accession number. Isolates are 808 
labeled as stated in Figure 1. 809 

 810 
Table S4. Plasmid content of the 101 A. salmonicida sequenced isolates and the reference 811 
A449. Numbers under each plasmid name represent percent coverage of that plasmid (in base pairs) 812 
for a given isolate. If percent coverage is higher than 60%, the plasmid is said to be present in the 813 

isolate and the color of the cell is green. Threshold limit for presence of plasmid in an isolate was 814 
set to 75% similarity expressed as percent sequence identity (ID) and 60% of alignment length 815 

(coverage) of the plasmid. Following abbreviations are used for percent coverage: 100 = 100% 816 
coverage, <100 = from 80% up to 99% coverage, <80 = from 60% up to 79% coverage, <60 = from 817 
10 up to 59% coverage, <10 = from 1% up to 9% coverage, 0 = 0% coverage. Isolates are labeled as 818 

stated in Figure 1.  819 

 820 
Figure S1. Phylogeny of A. salmonicida. Maximum likelihood tree based on the alignment of 667 821 
SNPs found among the 101 A. salmonicida sequenced isolates and the reference A449. Isolates are 822 

labeled as stated in Figure 1.  823 
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Figure 1. Phylogeny of A. salmonicida. Bayesian temporal phylogenetic tree based on the 

alignment of 667 SNPs found among the 101 A. salmonicida sequenced isolates and the reference 

A449. The tree shows the most recent common ancestor of the A. salmonicida isolates dates back to 

~1915 (95% HPD interval 1764 - 1947) and that there have been four main introductions of A. 

salmonicida in Denmark: ~1973 (95% HPD interval 1958 -1979), ~1973 (95% HPD interval 1964 - 

1981), ~1948 (95% HPD interval 1934 - 1964) and ~ 1946 (95% HPD interval 1939 - 1961). The 

four main clades are each shaded with a color SNP differences between major clades are shown 

above the estimated year of emergence. The three non-Danish A. salmonicida each have their own 

color and have the following labels: Scotland, NCIMB 1102 (type strain 1962), Reference A449 

(France 1975). The Danish isolates either have a black color (freshwater farms) or a blue color 

(seawater farms) and they are labeled by region of origin followed by year of isolation. Following 

abbreviations are used for regions in Denmark: Nj = Northern Jutland, Mj = Central Jutland, Sd = 

Southern Denmark, Sj = Zealand. A heatmap illustration with information regarding acquired 

ARGs, virulence and iron acquisition proteins and plasmid profile numbers of each A. salmonicida 

isolate is shown to the right of the tree. Presence and absence of protein sequences are illustrated by 

presence and absence of a red square, respectively. Plasmid profile number is shown and isolates 

that harbor ARGs against multiple antibiotics are labeled with “res”. Four minor clades marked 

with a red ring consist solely of isolates without plasmid pAsa3 and pAsal1. 
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Figure 2. Heatmap illustrating presence and absence of 78 virulence associated and iron 

acquisition protein sequences found in the NCBI protein database among the 101 A. 

salmonicida sequenced isolates and the reference A449. Isolates are displayed on the right and 

sequence protein names on the bottom. Threshold limit for presence of protein in an isolate was set 

to 75% similarity, expressed as percent sequence identity (ID). Red color represents > 95% ID, pink 

color > 85% ID, dark blue > 75% ID and light blue > 65% ID. 
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Supplementary information appendix 

 

Table S1. Full genomic data of the 101 sequenced A. salmonicida isolates. Isolates are labeled as 

stated in Figure 1. 

 
Isolate Coverag

e 

N50 Contigs Longest 

contig 

Average 

contig 

coverage 

Total bps in 

contigs 

Pct. of 

expected 

size 

Pct. 

reads in 

as 

Insert Size Country Accession no. 

Nj2   2001 103 99385 184 381279 304 4696711 94 99 489 Denmark XXXXXXXX 

Mj22   2002 99 110666 201 381769 264 4750938 95 98 493 Denmark XXXXXXXX 

Nj4   2002 128 105305 193 381512 calc. error 4786335 96 98 431 Denmark XXXXXXXX 

Mj11   2003 107 110599 194 381412 486 4697103 94 98 492 Denmark XXXXXXXX 

Sj3   2003 98 115031 207 381370 312 4758893 95 98 500 Denmark XXXXXXXX 

Sd1   2004 91 105305 199 381627 255 4753998 95 99 424 Denmark XXXXXXXX 

Sd4   2004 142 110691 213 381366 calc. error 4759628 95 99 469 Denmark XXXXXXXX 

Sj3   2004 101 102467 202 381541 300 4750816 95 98 484 Denmark XXXXXXXX 

Sd5   2005 86 110641 213 381106 238 4793498 96 99 483 Denmark XXXXXXXX 

Mj7   2008 55 102530 188 381640 193 4690018 94 98 513 Denmark XXXXXXXX 

Mj16   2008 83 110691 159 381687 211 4740131 95 99 469 Denmark XXXXXXXX 

Mj4   2008 108 89390 223 381675 calc. error 4747695 95 98 482 Denmark XXXXXXXX 

Sj3   2008 94 106301 197 381477 249 4751762 95 98 492 Denmark XXXXXXXX 

Sj4 (a)   2009 105 99384 200 381109 290 4750997 95 98 479 Denmark XXXXXXXX 

Sj3 (a)   2009 120 103045 202 381434 calc. error 4758324 95 99 458 Denmark XXXXXXXX 

Sj3 (b)   2009 98 102584 214 381231 288 4757155 95 98 461 Denmark XXXXXXXX 

Sj4 (b)   2009 99 102333 209 381317 313 4756966 95 99 461 Denmark XXXXXXXX 

Mj10   2009 55 99385 216 381398 164 4771942 95 99 449 Denmark XXXXXXXX 

Mj10   2010 88 102393 204 381260 242 4768899 95 98 456 Denmark XXXXXXXX 

Sj3   2010 87 102561 206 381380 calc. error 4758588 95 99 438 Denmark XXXXXXXX 

Sj4 (a)   2010 93 102544 217 381709 309 4757978 95 99 431 Denmark XXXXXXXX 

Sj4 (b)   2010 101 107109 203 381641 calc. error 4753148 95 99 439 Denmark XXXXXXXX 

Nj1   2011 150 110550 228 381259 calc. error 4932368 99 98 463 Denmark XXXXXXXX 

Sj4   2011 98 110673 206 381376 310 4760058 95 99 467 Denmark XXXXXXXX 

Mj9   2012 144 102679 198 381659 402 4753140 95 99 439 Denmark XXXXXXXX 

Mj12   2014 85 110681 166 381442 262 4676044 94 99 463 Denmark XXXXXXXX 

Sd6 (a)   2013 126 110711 203 381684 371 4758827 95 99 451 Denmark XXXXXXXX 

Sd6 (b)   2013 135 102582 209 381428 376 4761737 95 99 459 Denmark XXXXXXXX 

Mj14   2014 78 99257 209 381297 calc. error 4844616 97 97 513 Denmark XXXXXXXX 

Sd4   2014 147 102543 200 381302 457 4755925 95 98 438 Denmark XXXXXXXX 

Mj11   2014 112 102566 209 381692 361 4772818 95 98 427 Denmark XXXXXXXX 

Sd10   2014 117 106303 199 381207 314 4750421 95 99 457 Denmark XXXXXXXX 

Mj3   2014 149 107109 204 381362 411 4769894 95 98 463 Denmark XXXXXXXX 

Sj4   2014 81 110654 212 381386 489 4757435 95 98 513 Denmark XXXXXXXX 

Sj7   1980 29 114971 144 381478 99 4665337 93 98 533 Denmark XXXXXXXX 
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Mj24   1980 36 115031 144 381653 177 4641600 93 98 475 Denmark XXXXXXXX 

Mj18   1981 84 110681 166 381396 297 4680471 94 98 531 Denmark XXXXXXXX 

Sj7   1981 130 102554 191 381632 401 4700129 94 99 476 Denmark XXXXXXXX 

Sj4   1981 41 115042 163 381518 194 4661527 93 98 421 Denmark XXXXXXXX 

Mj16   1981 28 96255 170 381112 82 4698702 94 99 448 Denmark XXXXXXXX 

Sd3   1982 31 110578 187 381371 94 4703018 94 99 488 Denmark XXXXXXXX 

Sj4   1982 44 110479 158 381370 129 4669963 93 99 495 Denmark XXXXXXXX 

Sd2   1982 61 110574 181 381663 187 4655791 93 99 460 Denmark XXXXXXXX 

Mj10   1982 35 110592 179 381556 147 4717685 94 98 510 Denmark XXXXXXXX 

Sj4   1983 47 110643 189 381565 185 4745156 95 98 444 Denmark XXXXXXXX 

Mj6   1983 59 110685 171 381612 calc. error 4678164 94 99 422 Denmark XXXXXXXX 

Mj15   1983 52 110673 162 381503 158 4668980 93 99 486 Denmark XXXXXXXX 

Sd2   1983 39 102684 180 381349 126 4740974 95 99 470 Denmark XXXXXXXX 

Sj7   1984 37 102725 189 381428 133 4687108 94 98 433 Denmark XXXXXXXX 

Mj15   1984 43 110650 160 381326 132 4669787 93 99 459 Denmark XXXXXXXX 

Nj3   1984 59 102317 191 381545 208 4702292 94 98 465 Denmark XXXXXXXX 

Mj16   1985 92 102683 186 381167 352 4693921 94 99 449 Denmark XXXXXXXX 

Mj5   1986 51 110600 205 381324 154 4723248 94 99 483 Denmark XXXXXXXX 

Mj18   1986 54 106303 184 381326 201 4704747 94 98 451 Denmark XXXXXXXX 

Mj16   1986 32 99374 208 381361 93 4760365 95 98 478 Denmark XXXXXXXX 

Mj11   1987 58 102503 183 381392 167 4686542 94 99 426 Denmark XXXXXXXX 

Mj16   1987 56 110581 197 381546 170 4723289 94 99 453 Denmark XXXXXXXX 

Mj13   1987 45 110665 204 381556 121 4759024 95 99 488 Denmark XXXXXXXX 

Sj5   1988 85 115073 162 381442 248 4648311 93 99 512 Denmark XXXXXXXX 

Sj4   1988 84 115001 191 381621 336 4698058 94 98 506 Denmark XXXXXXXX 

Sd9   1988 77 102439 236 381519 calc. error 4778057 96 98 478 Denmark XXXXXXXX 

Mj11   1988 112 110588 180 381329 344 4712958 94 99 435 Denmark XXXXXXXX 

Sj1   1989 97 99385 193 381207 403 4696354 94 98 451 Denmark XXXXXXXX 

Sj3   1989 82 118192 147 381415 298 4709626 94 98 497 Denmark XXXXXXXX 

Mj2   1990 105 110638 138 381483 calc. error 4712403 94 99 451 Denmark XXXXXXXX 

Sj3   1990 123 115044 153 381353 392 4708363 94 99 450 Denmark XXXXXXXX 

Mj20   1990 97 99384 206 381475 396 4745926 95 98 488 Denmark XXXXXXXX 

Sj5   1990 147 110649 180 381458 487 4735891 95 99 376 Denmark XXXXXXXX 

Scotland 68 99386 161 381321 234 4672419 93 99 438 Scotland XXXXXXXX 

Sj3   1991 144 110534 187 381129 461 4686788 94 99 407 Denmark XXXXXXXX 

Nj5   1991 145 110468 179 381427 450 4744445 95 99 394 Denmark XXXXXXXX 

Sj5   1991 110 115054 150 381276 368 4708174 94 99 471 Denmark XXXXXXXX 

Mj18   1991 89 110645 170 381628 299 4700329 94 99 453 Denmark XXXXXXXX 

Sj4   1992 109 90171 192 381434 calc. error 4744289 95 99 472 Denmark XXXXXXXX 

Sj1   1992 78 111005 171 381498 248 4700594 94 99 491 Denmark XXXXXXXX 
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Sd8   1992 84 102569 187 381652 250 4693600 94 99 523 Denmark XXXXXXXX 

Sj6 (a)   1993 104 110683 184 381352 503 4711783 94 98 481 Denmark XXXXXXXX 

Sj6 (b)   1993 81 102839 210 381188 264 4756685 95 99 420 Denmark XXXXXXXX 

Sj2 (a)   1993 173 102788 201 381562 564 4757469 95 99 367 Denmark XXXXXXXX 

Sj2 (b)   1993 119 102537 209 381325 348 4756068 95 99 443 Denmark XXXXXXXX 

Mj21   1993 107 105305 200 381727 323 4760383 95 99 478 Denmark XXXXXXXX 

Mj19   1994 77 105305 187 381317 206 4693576 94 99 482 Denmark XXXXXXXX 

Sj5   1994 49 99385 207 381506 146 4757079 95 98 521 Denmark XXXXXXXX 

Nj3   1995 90 102828 202 381519 263 4758748 95 98 465 Denmark XXXXXXXX 

Mj12   1995 133 110503 167 381263 431 4737917 95 99 408 Denmark XXXXXXXX 

Mj1   1995 126 110655 170 381310 calc. error 4716005 94 99 373 Denmark XXXXXXXX 

Mj4   1995 117 102745 197 381303 423 4746620 95 98 431 Denmark XXXXXXXX 

Sj5   1995 89 102519 200 381605 274 4758268 95 98 472 Denmark XXXXXXXX 

Sd2   1995 129 102730 205 381625 395 4754891 95 99 430 Denmark XXXXXXXX 

Mj23 (a)   

1996 

121 102588 175 381681 388 4737728 95 98 466 Denmark XXXXXXXX 

Mj23 (b)   

1996 

124 110588 166 381327 388 4688488 94 99 508 Denmark XXXXXXXX 

Sj6 (a)   1996 62 110688 202 381738 calc. error 4755441 95 98 560 Denmark XXXXXXXX 

Sj6 (b)   1996 101 105305 197 381146 calc. error 4697453 94 99 430 Denmark XXXXXXXX 

Mj8   1997 164 99757 208 381552 598 4779438 96 99 404 Denmark XXXXXXXX 

Sd7   1997 59 102690 182 381336 164 4741454 95 99 503 Denmark XXXXXXXX 

Mj20   1997 108 102547 205 381430 calc. error 4749870 95 99 374 Denmark XXXXXXXX 

Sj4   1998 77 110635 187 381495 387 4697323 94 98 480 Denmark XXXXXXXX 

Sj4 (a)   1999 72 110581 160 484118 193 4735436 95 99 485 Denmark XXXXXXXX 

Mj17   1999 93 110527 186 381251 calc. error 4697920 94 98 516 Denmark XXXXXXXX 

Sj4 (b)   1999 86 99385 197 381581 228 4707087 94 99 496 Denmark XXXXXXXX 

NCIMB 1102 

(Type strain 

1962) 

91 103414 195 381570 552 4713735 94 97 482 England XXXXXXXX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

Table S2. Overview of 78 virulence associated and iron acquisition protein sequences found in 

the NCBI protein database. The following is shown in the table: name of protein sequence, short 

description, location of the protein coding gene, Genbank accession number and the number of A. 

salmonicida isolates harboring the given protein sequence. Isolates are labeled as stated in Figure 1. 

 
Protein Short description of protein function Gene location Genbank accession no. Present in 

no. of 

isolates 

AopP T3SS effector protein  pAsal1 YP_009062872.1 51 

AscV T3SS inner membrane export apparatus pAsa5 EHI50383.1 77 

AscC T3SS protein of the outer membrane ring pAsa5 ABD48952.1 77 

AscG T3SS chaperone pAsa5 ABO92527.1 77 

AscP T3SS needle length control; ruler protein; 

regulation of secretion; substrate specifity 

switch 

pAsa5 EHI50374.1 77 

AscH T3SS regulator needle assembling pAsa5 EHI50401.1 77 

AscF T3SS early substrate, needle subunit pAsa5 EHI50399.1 77 

AscX T3SS translocator needle subunit chaperoned 

by AscY 

pAsa5 ABO92546.1 77 

AcrH T3SS chaperone for AopB/AopD pAsa5 EHI50387.1 77 

Acr2 T3SS chaperone pAsa5 ABO92547.1 77 

AcrV T3SS middle substrate; tip translocon; 

hydrophilic translocators; protective antigen; 

anti-host factor 

pAsa5 ABO92541.1 77 

AopB T3SS translocon; hydrophobic translocators; 

pore in host cell 

pAsa5 EHI50388.1 77 

AopD T3SS translocon; hydrophobic translocators; 

pore in host cell 

pAsa5 EHI50389.1 77 

AopN T3SS secretion control of translocators and 

immune suppressor 

pAsa5 EHI50378.1 77 

Ati2  T3SS inositol polyphosphate 5-phosphatase pAsa5 ABO92519.1 77 

Ati1  T3SS translocator needle subunit (Ati2 

chaperone) 

pAsa5 ABO92520.1 77 

AopH T3SS putative tyrosine phosphatase  pAsa5 ABD48950.1 93 

SycH  T3SS AopH chaperone pAsa5 ABO92484.1 93 

AopO T3SS putative serine/threonine kinase pAsa5 ABD48951.1 99 

AopO chaperone T3SS AopO chaperone pAsa5 ABO92569.1 99 

VapA (A-layer protein) Tetragonal virulence array protein; coats 

surface of bacteria; confers virulence to 

bacteria 

Chromosome EHI51039.1 101 

Extracellular nuclease Secreted enzyme; cell communication Chromosome ABO90268.1 101 

AexT T3SS secreted toxin; ADP-ribosyltransferase Chromosome ABD48949.1 102 

FlpC Type IV pilus secretin Chromosome ABD57354.1 102 

IcmF T6SS protein Chromosome KFN20003.1 102 

VgrG T6SS effector protein pAsa4 (homolog on 

chromosome) 

KIX26565.1 102 

S-protein  T2SS S-protein secretion component E Chromosome ABO89526.1 102 

Aerolysin Aerolysin toxin Chromosome ABO91859.1 102 

Aerolysin B Aerolysin B toxin Chromosome ABO90867.1 102 

EF-G Elongation factor G Chromosome A4SHV8.2 102 
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EF-Tu Elongation factor Tu Chromosome A4SHU2.1 102 

DnaK Molecular chaperone Chromosome EHI53225.1 102 

HtpG Heat shock protein; ATPase activity Chromosome ABO89902.1 102 

PNPase mRNA degradation; 3'-5'-exoribonuclease 

activity; magnesium ion binding 

Chromosome A4SJR9.1 102 

Aminopeptidase N Aminopeptidase activity; metallopeptidase 

activity; zinc ion binding 

Chromosome EHI52287.1 102 

Methionine gamma-lyase Lyase activity; pyridoxal phosphate binding Chromosome ABO90396.1 102 

Phosphate 

acetyltransferase 

Phosphate acetyltransferase activity; acetyl-

CoA biosynthetic process 

Chromosome ABO91377.1 102 

Extracellular lipase Triglyceride lipase activity Chromosome EHI50452.1 102 

TagA ToxR-regulated lipoprotein; 

metalloendopeptidase activity  

Chromosome EHI53531.1 102 

Ahe2 Serine-type endopeptidase activity Chromosome EHI54143.1 102 

N-acetylglucosamine  N-acetylglucosamine-binding protein A; viral 

capsid 

Chromosome KHF01495.1 102 

Enolase Magnesium ion binding; phosphopyruvate 

hydratase activity; glycolytic process 

Chromosome EHI51131.1 102 

Outer membrane  Outer membrane protein Chromosome ABO89374.1 102 

OmpK40 Outer membrane porin II Chromosome EHI50654.1 102 

DegQ Serine-type endopeptidase activity Chromosome EHI52649.1 102 

Hemolysin Hemolysis in other organism; toxin Chromosome EHI53183.1 102 

Alpha-amylase 

extracellular 

Alpha-amylase activity; cation binding; 

carbohydrate metabolic process 

Chromosome ABO89392.1 102 

Alpha-amylase  Alpha-amylase activity; cation binding; 

carbohydrate metabolic process 

Chromosome ABO91424.1 102 

Secreted metalloprotease Metallopeptidase activity Chromosome EHI52510.1 102 

collagenase Serine-type endopeptidase activity; zinc ion 

binding 

Chromosome EHI52177.1 102 

GCAT Lipase activity; transferase activity, transferring 

acyl groups 

Chromosome ABO88676.1 102 

Chitinase  Carbohydrate binding ; chitinase activity  Chromosome ABO90207.1 102 

Endochitinase Carbohydrate binding ; chitinase activity  Chromosome ABO91302.1 102 

Pullulanase Carbohydrate binding; pullulanase activity Chromosome EHI52980.1 102 

RTX Calcium ion binding Chromosome ABO88975.1 102 

Cytolytic delta-endotoxin Insecticidal protein; pathogenesis  Chromosome EHI53783.1 102 

Patatin family 

phospholipase 

Lipid metabolic process Chromosome EHI53765.1 102 

Phospholipase phospholipase C precursor Chromosome EHI52973.1 102 

ABC-type ferric 

transporter 

ABC-type ferric siderophore transporter; 

periplasmic binding protein 

Chromosome ABO92284.1 102 

Ferric siderophore 

receptor B  

Iron ion binding; receptor activity; siderophore 

transport 

Chromosome ABO92283.1 102 

Hydroxamate-type ferric 

transporter 

ABC-type hydroxamate-type ferric siderophore 

transporter; periplasmic binding protein 

Chromosome ABO92281.1 102 

Outer membrane ferric 

receptor 

Iron ion binding; receptor activity; siderophore 

transport 

Chromosome ABO91837.1 102 

ABC-type ferric 

permease  

Transporter activity Chromosome ABO92286.1 102 

Outer-membrane heme 

receptor 

Receptor activity; transporter activity Chromosome ABO91308.1 102 

Hemin receptor Receptor activity; transporter activity Chromosome ABO90714.1 102 
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Colicin receptor Receptor activity; transport Chromosome ABO89926.1 102 

N-acyl homoserine 

lactone synthase 

N-acyl homoserine lactone synthaseactivity, 

quorum sensing 

Chromosome EHI52135.1 102 

LuxS Iron ion binding; S-ribosylhomocysteine lyase 

activity; quorum sensing 

Chromosome A4SIY8.1 102 

AsaR Transcriptional activator; DNA binding Chromosome ABO91724.1 102 

LuxU Phosphorelay protein; signal transducer activity Chromosome ABO90799.1 102 

LuxO Phosphorelay signal transduction system; ATP 

binding; sequence-specific DNA binding 

Chromosome ABO91277.1 102 

CpaB Flp pilus assembly protein Chromosome EHI53195.1 102 

FlgE flagellar hook protein Chromosome EHI52692.1 102 

Oligopeptidase A Metal ion binding; metalloendopeptidase 

activity 

Chromosome ABO92225.1 102 

M13 family peptidase Metalloendopeptidase activity Chromosome EHI53386.1 102 

TRAP Transporter solute receptor; TAXI family Chromosome ABO91932.1 102 

LasA Metalloendopeptidase activity Chromosome ABO89393.1 102 

Immune inhibitor A Metalloendopeptidase activity Chromosome ABO88993.1 102 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

Table S3. Overview of 11 A. salmonicida plasmids found in the NCBI nucleotide database. The 

following is shown in the table: name of plasmid, short description, antibiotic resistance genes 

encoded on plasmid, length of plasmid in base pairs (bp), and Genbank accession number. Isolates 

are labeled as stated in Figure 1. 

 
Plasmid Short description Antibiotic resistance 

genes  

Length 

(bp) 

Genbank 

accession no. 

pAsa1 Small cryptic plasmid   5424 NC_004923.1 

pAsa2 Small cryptic plasmid  5247 NC_004925.1 

pAsa3 Small cryptic plasmid  5616 NC_004924.1 

pAsa4 Large plasmid encoding three T6SS proteins aadA1, cat, sul1, tet(E)  166749 NC_009349.1 

pAsa5 Large plasmid encoding the majority of T3SS proteins  155098 NC_009350.1 

pAsa6 Medium plasmid encoding homologs of the T3SS Effector protein 

AopH and AopH chaperone  

 18536 NC_009352.2 

pAsal1 Small plasmid encoding the T3SS Effector protein AopP   6371 NC_004338.1 

pAr_32 Sequence from the pAr-32 resistance-determining region aadA2, catA2, sul1 9340 AJ517791.1 

pRAS1 Sequence from the pRAS1 resistance-determining region sul1, tet(A), dfrA16 11663 AJ517790.2 

pRAS3.1 Non-conjugative Tet C plasmid tet(C)  11851 NC_003123.1 

pRAS3.2 Non-conjugative Tet C plasmid (variant of pRAS3.1) tet(C)  11823 NC_003124.1 
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Table S4. Plasmid content of the 101 A. salmonicida sequenced isolates and the reference 

A449. Numbers under each plasmid name represent percent coverage of that plasmid (in base pairs) 

for a given isolate. If percent coverage is higher than 60%, the plasmid is said to be present in the 

isolate and the color of the cell is green. Threshold limit for presence of plasmid in an isolate was 

set to 75% similarity expressed as percent sequence identity (ID) and 60% of alignment length 

(coverage) of the plasmid. Following abbreviations are used for percent coverage: 100 = 100% 

coverage, <100 = from 80% up to 99% coverage, <80 = from 60% up to 79% coverage, <60 = from 

10 up to 59% coverage, <10 = from 1% up to 9% coverage, 0 = 0% coverage. Isolates are labeled as 

stated in Figure 1.  

 

A. salmonicida 

isolate 
pAsa1 pAsa2 pAsa3 pAsa4 pAsa5 pAsa6 pAsal1 pAr-32 pRAS1 pRAS3.1 pRAS3.2 

Plasmid 

profile 

no.  

Sd4   2004 100 < 80 100 < 10  < 100 < 80 100 0 0 0 0 1 

Mj7   2008 100 < 100 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Nj1   2011 100 < 100 < 100 < 60 < 100 < 80 100 0 0 0 0 1 

Sd6 (a)   2013 100 < 100 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Sd6 (b)   2013 100 100 < 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Sd4   2014 100 < 80 < 100 < 10  < 100 < 80 100 0 0 0 0 1 

Mj16   1981 100 < 100 < 100 < 10  < 80 < 80 100 0 < 10  0 0 1 

Nj3   1984 100 < 100 100 < 10  < 80 < 80 100 0 < 10  0 0 1 

Mj16   1987 100 < 100 < 100 < 10  < 80 < 80 100 0 0 0 0 1 

Sd9   1988 100 < 100 100 < 10  100 < 80 100 0 0 0 0 1 

Nj3   1995 100 < 80 < 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Mj1   1995 100 < 100 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Mj4   1995 100 < 100 100 < 10  < 100 < 80 100 0 0 0 0 1 

Mj23 (a)   

1996 100 < 100 < 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Mj23 (b)   

1996 100 < 80 < 100 < 10  < 100 < 80 100 0 0 0 0 1 

Mj17   1999 100 < 100 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Mj11   2003 100 < 100 100 0 < 100 < 80 100 0 < 10  0 0 1 

Sj3   2003 100 < 100 100 < 10  < 100 < 80 100 0 0 0 0 1 

Sj3 (a)   2009 100 < 100 < 100 < 10  < 100 < 80 100 0 0 0 0 1 

Sj3 (b)   2009 100 < 100 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Sj4 (b)   2009 100 100 < 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Sj3   2010 100 < 100 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Sj4 (a)   2010 100 < 80 100 < 10  < 100 < 80 100 0 0 0 0 1 

Sj4   2011 100 100 < 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Mj14   2014 100 < 100 100 < 60 < 100 < 80 100 0 0 0 0 1 
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Sj4   2014 100 < 80 100 < 10  < 100 < 80 100 0 0 0 0 1 

Sj4   1981 100 < 100 100 < 10  < 80 < 80 100 0 0 0 0 1 

Sj4   1983 100 < 80 100 < 10  < 100 < 80 100 0 0 0 0 1 

Sj7   1984 100 < 100 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Mj5   1986 100 < 100 100 < 10  < 80 < 80 100 0 0 0 0 1 

Mj18   1986 100 < 100 100 < 10  < 80 < 80 100 0 0 0 0 1 

Sj4   1988 100 < 100 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Sj1   1989 100 < 100 100 < 10  < 100 < 80 100 0 0 0 0 1 

Mj20   1990 100 < 100 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Sj6 (a)   1993 100 < 100 100 < 10  < 80 < 80 100 0 0 0 0 1 

Sj6 (b)   1993 100 < 80 < 100 < 10  < 100 < 80 100 0 0 0 0 1 

Sj2 (a)   1993 100 < 100 < 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Sj2 (b)   1993 100 100 < 80 < 10  < 100 < 80 < 100 0 < 10  0 0 1 

Mj21   1993 100 < 100 100 < 10  < 100 < 80 100 0 0 0 0 1 

Sj5   1994 100 100 < 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Sj5   1995 100 < 80 < 100 < 10  < 100 < 80 100 0 0 0 0 1 

Sj6 (b)   1996 100 < 80 100 < 10  < 100 < 80 100 0 < 10  0 0 1 

Mj8   1997 100 < 100 100 < 10  < 100 < 80 100 0 < 10  < 60 < 60 1 

Sj4   1998 100 < 100 100 < 10  < 100 < 80 100 0 0 0 0 1 

NCIMB 1102 

(Type strain 

1962) 100 < 100 100 < 10  < 80 < 80 100 0 0 0 0 1 

Mj4   2008 100 < 10  100 < 10  < 100 < 80 < 100 0 0 0 0 2 

Sj7   1981 100 < 100 < 100 < 10  < 60 < 80 100 0 0 0 0 3 

Scotland   100 < 100 < 100 < 10  < 60 < 80 100 0 0 0 0 3 

Mj24   1980 100 < 80 100 < 10  < 60 < 60 100 0 0 0 0 4 

Mj10   1982 100 < 100 100 < 10  < 60 < 60 100 < 60 < 60 0 0 4 

Mj6   1983 100 < 100 100 < 10  < 60 < 60 100 0 0 0 0 4 

Mj18   1981 100 < 80 100 < 10  < 60 < 60 100 0 0 0 0 4 

Mj16   1986 100 < 80 < 100 < 10  < 100 < 60 100 0 0 0 0 5 

Mj15   1983 100 < 100 100 < 10  < 60 < 60 < 60 0 0 0 0 6 

Mj15   1984 100 < 100 100 < 10  < 60 < 60 < 60 0 0 0 0 6 

Sj4   1982 100 < 80 100 < 10  < 60 < 60 < 60 0 0 0 0 6 

Mj12   2014 100 < 80 100 < 10  < 60 < 80 < 60 0 < 10  0 0 7 

Sj4 (a)   2009 < 100 100 < 80 < 10  < 100 < 60 < 60 0 0 0 0 8 

Sj7   1980 100 < 100 100 < 10  < 80 < 60 < 60 0 0 0 0 8 



37 

 

Sj4   1992 100 < 100 100 < 10  < 100 < 60 < 60 0 0 0 0 8 

Sj1   1992 100 < 80 100 < 10  < 80 < 60 < 60 0 0 0 0 8 

Sj4 (b)   2010 < 100 < 80 < 60 < 10  < 100 < 60 < 60 0 < 10  0 0 9 

Sj4 (a)   1999 < 100 < 100 0 < 10  < 80 < 60 < 60 0 0 0 0 9 

Mj22   2002 < 100 < 100 < 60 < 10  < 100 < 80 < 60 0 0 0 0 10 

Nj4   2002 < 100 < 100 < 60 < 10  100 < 80 < 60 0 < 10  0 0 10 

Sd5   2005 < 100 < 80 < 10  < 10  < 100 < 80 < 60 < 60 < 60 0 0 10 

Mj16   2008 < 100 < 100 0 < 10  100 < 100 < 60 0 0 0 0 10 

Mj10   2009 < 100 < 100 < 10  < 10  < 100 < 80 < 60 < 10  0 < 60 < 60 10 

Mj10   2010 < 100 100 0 < 10  < 100 < 80 < 60 0 < 10  0 0 10 

Mj9   2012 < 80 < 100 0 < 10  < 80 < 80 < 60 0 0 0 0 10 

Sd10   2014 < 100 100 < 10  < 10  < 100 < 80 < 60 0 < 10  0 0 10 

Mj13   1987 < 100 < 100 < 10  < 10  < 100 < 80 < 60 0 < 10  0 0 10 

Mj2   1990 < 100 < 80 0 < 10  < 100 < 80 < 60 0 < 10  0 0 10 

Mj12   1995 < 80 < 100 < 60 < 10  < 100 < 80 < 60 0 < 10  0 0 10 

Sd1   2004 < 80 < 100 0 < 10  < 100 < 80 < 60 0 < 10  0 0 10 

Sj3   2004 < 100 < 100 < 60 < 10  < 100 < 80 < 60 0 < 10  0 0 10 

Sj3   2008 < 80 100 < 60 < 10  < 100 < 80 < 60 0 0 0 0 10 

Mj11   2014 < 80 < 100 0 < 10  < 100 < 80 < 60 0 0 6 6 10 

Mj3   2014 < 100 < 100 < 10  < 10  < 100 < 80 < 60 < 60 < 60 0 0 10 

Sj5   1988 < 100 < 80 < 60 < 10  < 80 < 80 < 60 0 0 0 0 10 

Mj18   1991 < 100 < 80 < 60 < 10  < 80 < 80 < 60 0 0 0 0 10 

Sd2   1995 < 100 < 80 0 < 10  < 100 < 80 < 60 0 < 10  0 0 10 

Sj6 (a)   1996 < 100 < 100 < 60 < 10  < 100 < 80 < 60 0 0 0 0 10 

Mj20   1997 < 80 < 100 < 60 < 10  < 100 < 80 < 60 0 < 10  0 0 10 

Sj4 (b)   1999 < 100 < 100 0 < 10  < 100 < 80 < 60 0 0 0 0 10 

Nj2   2001 100 < 100 100 < 10  < 100 < 80 < 60 0 < 10  0 0 11 

Sd3   1982 100 < 80 100 < 10  < 80 < 80 < 60 0 < 10  0 0 11 

Mj16   1985 100 < 100 100 < 10  < 100 < 80 < 60 0 < 10  0 0 11 

Nj5   1991 100 < 100 100 < 10  < 100 < 80 < 60 0 < 10  0 0 11 

Sd8   1992 100 < 100 100 < 10  < 100 < 80 < 60 0 0 0 0 11 

Mj19   1994 100 < 100 100 < 10  < 100 < 80 < 60 0 < 10  0 0 11 

Sd7   1997 100 < 100 100 < 10  < 100 < 80 < 60 0 < 10  0 0 11 

Sd2   1982 100 < 80 100 < 10  < 80 < 80 < 60 0 0 0 0 11 
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Sd2   1983 100 < 100 100 < 10  < 100 < 80 < 60 0 < 10  0 0 11 

Mj11   1987 100 < 80 100 < 10  < 100 < 80 < 60 0 < 10  0 0 11 

Mj11   1988 100 < 100 100 < 10  < 80 < 80 < 60 0 0 0 0 11 

Sj3   1989 100 < 80 100 < 10  < 100 < 80 < 60 0 < 10  0 0 11 

Sj3   1990 100 < 80 100 < 10  < 100 < 80 < 60 0 < 10  0 0 11 

Sj5   1990 100 < 100 100 < 10  < 100 < 80 < 60 0 0 0 0 11 

Sj3   1991 100 < 100 100 < 10  < 100 < 80 < 60 0 0 0 0 11 

Sj5   1991 100 < 100 100 < 10  < 100 < 80 < 60 0 0 0 0 11 

Reference 

A449 (France 

1975) < 100 < 100 100 100 < 100 0 0 0 0 0 0 12 

TOTAL  102 101 78 1 92 87 53 0 0 0 0 12 
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Figure S1. Phylogeny of A. salmonicida. Maximum likelihood tree based on the alignment of 667 

SNPs found among the 101 A. salmonicida sequenced isolates and the reference A449. Isolates are 

labeled as stated in Figure 1.  
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