Technical University of Denmark

Measurement of properties and pilot testing. CERE lab and model development

Fosbøl, Philip Loldrup

Publication date: 2016

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Fosbøl, P. L. (2016). Measurement of properties and pilot testing. CERE lab and model development. Poster session presented at EFCE Working Party on Fluid Separations - 58th Technical Meeting, Copenhagen, Denmark.

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Measurement of properties and pilot testing

CERE lab and model development

Application: Rate based modeling of CO₂ capture

Philip Loldrup Fosbøl + many students and faculty

EFCE WP, May 12th 2016

CERE Center for Energy Resources Engineering

DTU Chemical Engineering

Department of Chemical and Biochemical Engineering

CERE Industrial Consortium 2016

EU Activities

- CASTOR
 - FP6 EU project
- iCap
 - Gas hydrate
 - Demixing process
- CESAR/CLEO
 - Thermodynamic model implementation
 - CASTOR comparison
- OCTAVIUS
 - Process Benchmarking
 - CAPE-Open develoment
- INTERACT
 - Lab scale & pilot trials using enzymes
- EERA
 - Preparation of consortia idea creation for new EU calls

World CO₂ Emissions by Region (Mio ton CO₂)

EU energy in figures 2014

4 CERE, DTU Chemical Engineering, Technical University of Denmark

DTU

Ħ

Australian "Coal Mountain"

Carbon capture and storage (CCS)

6 CERE, DTU Chemical Engineering, Technical University of Denmark

May 12th 2016

CO₂ capture

CERE, DTU Chemical Engineering, Technical University of Denmark

CAPCO2 unit operation

Aspen **Plus**

10

Physical properties in Rate based modelling

- Liquid properties
 - Diff. coef. A in W
 - Diff. coef. CO_2 in A-W sol.
 - Surface tension of W and A-W sol.
 - Viscosity of A-W sol.
 - Second order rate constant of CO₂ abs. in A-W
 - Thermodynamic properties
 - Heat cap. of solution
 - Henry's constant of CO₂ in A-W sol.
 - Equilibrium CO₂ pressure over A-W sol.
 - Heat of abs. of CO₂ in A-W sol.
 - Saturation pressure of W
 - Heat of vaporization of W
 - Density of pure W, A, and sol.
- Gas properties
 - Diffusivity of CO₂ in gas
 - Diffusivity of W in gas
 - Viscosity of gas (CO₂-Air-W)
 - Thermodynamic properties
 - Density of gas
 - Heat cap. of gas (CO₂, Air, W)

W: Water A: Amine Sol.: Mixture

May 12th 2016

Reaction kinetics between CO₂ and solvent

13 CERE, DTU Chemical Engineering, Technical University of Denmark

Experimental work - calorimetric

• High pressure DSC

 Phase change, heat of absorption by DSC

Thermodynamic modelling ex: CO₂-PZ-K₂CO₃-KHCO₂-H₂O

16 CERE, DTU Chemical Engineering, Lechnical University of Denmark

May 12th 2016

Pilot tests and demonstration

- CO₂ Absorber
 - 10m height (Variable height)
 - 10cm diameter
 - Capacity: Approximately 40Nm³/h
 - Structured packing (Mellapack)
 - Temperature and sampling readings
 - Every meter
 - Temperature and loading profiles
 - Well developed DAQ for flow etc.
- Absorber test runs
 - Standard Amines
 - Enzymes
- Desorber
 - Design in progress

May 12th 2016

Mass Transfer Modeling

30 wt.% MEA

5 molal PZ

18 CERE, DTU Chemical Engineering, Technical University of Denmark

Comparison to pilot data

Rate based simulation with solids (PZ)

EU benchmarking

- Desorber reboiler duty
 - Good reproducibility (±5%)
 - High scatter at high flooding

- Midsection scattered (10°C)
- Top+bottom high reproducibility (1-5°C)

Dynamic Absorber and Desorber Model

Compression & transport

• Speed of sound

• HP Gas diffusion

CO₂ storage

• Reservoir CO₂ injection using CT-scanning

Dynamics (dCapCO2), MEA vs. PZ

27 CERE, DTU Chemical Engineering, Technical University of Denmark

May 12th 2016

Optimization of energy consumption

on the specific regeneration energy

Statements on CO₂ emitting energy sources

- Cheap energy sources will be used by 3rd world countries as long as they are available
- Coal and oil are cheap and "easy" energy resources
- Renewable technologies will be beneficial for developed countries but will take longer to implement in the 3rd world
- Several industrial processes produce noticeable amounts of CO₂ which may not be reduced by renewable energy
 - Cement industry
 - Fermentation industry (Medicine, food, and bioethanol production)
 - Agriculture
 - Transportation

CAPCO2 unit operation

Aspen Plus

Simulation <	4	Main Flowsheet 🗙 Control Panel 🗴 ABS (DTUCAPCO2-UNIQUAC) - Parameters 🗙 Setup - Report Options 🗙 GAS-FLOW (MATER										
All Items d		De	DesignSpecs									
CONDENSE			Index 🖷	Variable V	Value 😽	Units 🕅	Physical Type					
DES .		.4										
🧭 Variables		>	1	DIAMETER	1.1	METER	LENGTH					
🧭 Parameters)÷	2	HEIGHT	10	METER	LENGTH					
🧭 Equations		5	2	CONDENSER TEMPERATURE	25	C	TEMPERATURE					
Block Options		<u></u>	5	CONDENSER_TEMPERATORE	25	C	TEMPERATORE					
🕨 📷 EO Modeling		>	4	REBOILER_TEMPERATURE	121	С	TEMPERATURE					
🚫 Results		>	5	REBOILER_PRESSURE	185000	PA	PRESSURE					
💿 Stream Results			6		1.01262e+06	1	ENERGY					
🚫 Stream Results (Custom)		<u></u>	0	KEBOILEK_BOTT	1.012020+00	,	ENERGY					
RICH-HX		÷.	7	CONDENSER_DUTY	0	1	ENERGY					
🕢 Input												

Simulation 6	Main Flowsheet × Control Panel × ABS (DTUCAPCO2-UNIQUAC) - Parameters × Setup - Report Options × GAS-FLOW (N									
All Items 🗸 🗸		Co	nfiguration UserDefined_Packing Bui	ltIn_Packing						
CONDENSE A			Name V.	Value 7	Description V					
DES DES		14								
🧭 Variables		×	CONDENSER	None	Configuration of utilities					
🧭 Parameters			REBOILER	Internal	Configuration of utilities					
🥺 Equations					45					
🕝 Block Options		<u>)</u>	MASSTRASNFERMODEL	Rocha, Bravo and Fa	Mass trasnfer and hydraulic capacity correlation mo					
EO Modeling		×	ENHANCEMENT_FACTOR	DTU-GM (2015)	Estimation of mass trasnfer with simultaneous reacti Pressure drop calculation Packing type					
🚫 Results		×	PRESSURE_DROP	None						
Stream Results		×	SET_PACKING_TYPE	User defined						
Stream Results (Custom)										
RICH-HX										
💿 Input										