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Comment on “Temporal Correlations of the Running
Maximum of a Brownian Trajectory”

Bénichou et al. [1] use the running maximum (RM)
position in a single experimental trajectory of a particle
exhibiting 1D Brownian motion (BM) to estimate its
diffusion coefficient. This is unreliable: While the estima-
tor’s precision (reproducibility) increases with the sug-
gested parameter tuning, so does its inaccuracy (bias), as
increasing emphasis is put on the RM’s maximum value.
In the mathematical idealization for BM used in Ref. [1],

Bt is the position of a particle diffusing with coefficient D.
However, Bt ¼

ffiffiffiffiffiffiffi

2D
p

Wt, where Wt is the Wiener process.
In this model, BM is a scale-free process.
Experimentally, one samples positions xi¼1;…;N at time

points ti¼1;…;N [1]. Typically, constant time lapse Δt is
used, such that ti ¼ iΔt and T ¼ NΔt. For BM, measured
positions relate as xiþ1¼xiþ

ffiffiffiffiffiffiffi

2D
p

ηi, where ηi¼Wtiþ1
−Wti

is a Gaussian white noise with hηii ¼ 0 and hηiηji ¼ Δtδi;j
for all i, j. Each of the N − 1 displacements Δxi¼xiþ1−xi
contains information about D; hence, variances of estima-
tors in this discrete case are limited by N, not T, due to the
scale invariance of BM.
A reasonable estimator D̂ for D should (i) be unbiased,

i.e., hD̂i ¼ D, and (ii) have a variance that decreases as
1=N, for sufficiently large but practically relevant N. The

discretized version D̂ðNÞ
msd of Dmsd [1] with τ ¼ Δt, i.e.,

D̂ðNÞ
msd ¼

P

N−1
i¼1 ðΔxiÞ2=½2ðN − 1ÞΔt�, complies with (i) and

(ii) for N ≥ 2 in the present case of instantaneous recording
of positions and in the absence of measurement noise. It is
even optimal: It achieves the Cramér-Rao lower bound
[2,3] and thus has the lowest possible variance among
unbiased estimators.
With discrete sampling, the RM is Mi ¼ maxj¼1;…;ixj,

and thus the RM-based estimator of Ref. [1] must read

D̂ðN;kÞ
es ¼½CðkÞPN

i¼1M
k
i �2=k, withCðkÞ≡ð½Δt ffiffiffi

π
p ðk=2þ1Þ�=

f2kΓ½ðkþ1Þ=2�Tk=2þ1gÞ and k > 0. As a function of N, the

information available to D̂ðN;kÞ
es increases so slowly that its

variance approaches a constant value [1]. This is in conflict
with (ii). The variance can be made arbitrarily small,
however, by increasing k [1]; thus it is argued that

D̂ðN;kÞ
es is superior to D̂ðNÞ

msd for small T [1].
Application of both estimators to Monte Carlo (MC)

simulated BM shows, however, that the estimates of D̂ðNÞ
msd

scatter with a normal distribution around D, while the

estimates of D̂ðN;kÞ
es are skewed [Figs. 1(a) and 1(b)]. This

results in a bias, hD̂ðN;kÞ
es i ≠ D, which is in conflict with (i).

The bias becomes worse with increasing k [Fig. 1(c)], while

the variance indeed decreases [Fig. 1(d)]. The bias of D̂ðN;kÞ
es

vanishes too slowly with N to ensure any practical

relevance of D̂ðN;kÞ
es relative to D̂ðNÞ

msd [Figs. 1(c) and 1(d)].
In summary, the estimator suggested by Bénichou et al.

[1] unfortunately yields biased values for the diffusion
coefficient, while optimal, plug-and-play alternatives
already exist [2,3].
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FIG. 1. (a) Histograms of estimates obtained from application

of, respectively, D̂ðNÞ
msd (red) and D̂ðN;kÞ

es with k ¼ 1 (blue) to 105

MC simulated, discretely sampled BM trajectories using
D ¼ 0.25, Δt ¼ 1, and N ¼ 104. (b) The same as (a) for
k ¼ 100. (c) Mean values of estimates obtained as in (a) for

various values of N. Results are shown for D̂ðNÞ
msd (pluses) and

D̂ðN;kÞ
es with, respectively, k values of 1 (full circles), 10 (open

circles), and 100 (crosses). (d) The same as (c) for the variances of

the estimates. The theoretical variance 2D2=ðN − 1Þ for D̂ðNÞ
msd, the

Cramér-Rao lower bound, is indicated (full line).
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