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Abstract  

Chinese hamster ovary (CHO) cells are the preferred cell factory for the production of therapeutic 

glycoproteins. Although efforts primarily within bioprocess optimization have led to increased 

product titers of recombinant proteins (r-proteins) expressed in CHO cells, post-transcriptional 

bottlenecks in the biosynthetic pathway of r-proteins remain to be solved. To this end, the ectopic 

expression of transgenes (effector genes) offers great engineering potential. However, studies on 

effector genes have in some cases led to inconsistent results. Whereas this can in part be attributed 

to product specificity, other experimental and cellular factors are likely important contributors to 

these conflicting results. Here, these factors are reviewed and discussed with the objective of 

guiding future studies on effector genes. 

Keywords: Cell engineering, Chinese hamster ovary (CHO) cells, ectopic expression, endoplasmic 

reticulum, ER stress, gene dosage, product quality, recombinant protein production, secretion 

bottleneck, specific productivity
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1. Introduction 

Chinese hamster ovary (CHO) cells are the most frequently used cell host for biopharmaceutical 

production of glycoproteins (Walsh, 2014). Besides being the host cell used for the first approval of 

a recombinant biopharmaceutical produced in mammalian cells in 1986 (Wurm, 2004), CHO cells 

are the preferred choice for a number of reasons. First, CHO cells can easily be adapted for high-

density suspension growth in a chemically defined, serum-free medium in large-volume cultures 

(Kim et al., 2012; Sinacore et al., 2000). Second, gene amplification methods have been established 

for CHO cells, leading to high specific productivity (qp) of recombinant protein (r-protein) in stable 

cell lines (Durocher and Butler, 2009). Third, CHO cells are less prone to virus infection than other 

mammalian production cell lines and are therefore regarded as a safe host for the production of 

human therapeutics (Berting et al., 2010). Last, CHO cells and other mammalian cells are the 

platform of choice for the production of human recombinant glycoproteins because of their ability 

to correctly make human-like post-translational modifications (PTMs), in particular glycosylation 

(Butler and Spearman, 2014). Human-like PTMs turn r-protein products into functional drug 

molecules with reduced immunogenicity, prolonged serum half-life and high pharmacological 

efficacy in the human body (Walsh and Jefferis, 2006). 

The production of r-proteins in CHO cells in optimized bioprocesses can reach qp of 50–90 pg 

per cell per day (pcd) (Hacker et al., 2009). As previously pointed out by Khan and Schröder 

(2008), professional secretory plasma cells are capable of secreting IgM at a rate of 200–400 pcd 

(Fazekas et al., 1980; Randall et al., 1992). This clearly indicates that nature’s physiological limit 

not yet has been reached and thus, intracellular rate-limiting steps in protein production remain to 

be resolved. Indeed, post-transcriptional rate-limiting steps in the biosynthetic pathway of r-proteins 

have been reported multiple times in CHO cells (Johari et al., 2015; Kallehauge et al., 2016; S. J. 

Kim et al., 1998; Ku et al., 2008; Schröder et al., 1999) as well as in other mammalian cells (Barnes 

et al., 2004; Fann et al., 1999). The presence of a post-transcriptional bottleneck suggests that there 

are many opportunities to improve the secretory pathway machinery in CHO cells. Moreover, 

artificial protein scaffolds such as fusion proteins are becoming more popular in the 

biopharmaceutical industry with increasing market shares (Aggarwal, 2014). These non-native 

scaffolds are in general more prone to misfolding (Lee et al., 2007). Thus, the cost-efficient 

production of these difficult-to-express fusion proteins will most likely require substantial 

engineering of the folding machinery in the secretory pathway. 

Engineering CHO cells by the ectopic expression of transgenes (hereafter referred to as effector 

genes) is an attractive solution to improve the secretory capacity of CHO cells. In many cases, such 

engineering efforts have led to positive effects on qp on a variety of r-proteins (see recent reviews 

(Fischer et al., 2015; Hussain et al., 2014; Nishimiya, 2013)). This multitude of studies showing 

positive effects clearly underpins the potential of modulating the expression of effector genes. 

However, as previously pointed out (Hussain et al., 2014; Kim et al., 2012; Mohan et al., 2008), 

some effector genes are flawed by inconsistent effects. To exemplify this, all published studies on r-

protein productivity (volumetric productivity or qp) in CHO cells with the ectopic expression of the 

widely studied protein disulphide isomerase (PDI) are listed in Table 1. PDI is an endoplasmic 

reticulum (ER)-resident enzyme conferring disulphide isomerase activity (Hatahet and Ruddock, 

2009). Moreover, PDI forms and reduces disulphide bonds in nascent polypeptides in the lumen of 

the ER and in parallel inhibits the aggregation of folding intermediates through its function as a 

chaperone (Appenzeller-Herzog and Ellgaard, 2008). The reported effects of overexpressing PDI on 

volumetric productivity and qp vary from a two-fold decrease through no effect to a 1.4-fold 

increase. This inconsistency, can to some extent, be explained by product specificity, as several 
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different r-proteins have been used as model proteins. In fact, PDI overexpression only increased qp 

for one of four monoclonal antibody (MAb) variants in a parallel experimental setup (Pybus et al., 

2014). However, many cellular and experimental factors are at play when examining how an 

effector gene affects volumetric productivity and qp (Fig. 1). Thus, it is likely that factors other than 

product specificity are involved in the inconsistency of PDI’s effect on volumetric productivity and 

qp of r-proteins.  

In contrast to PDI, the effect of many effector genes on volumetric productivity or qp has only 

been reported once (Hussain et al., 2014; Nishimiya, 2013). Notwithstanding product specificity, it 

is likely that a considerable number of these effects are conditional – for example, specific to the 

monoclonal cell line or the expression platform being used. The applicability of such conditional 

effects is often limited to the research group in question and not to the CHO engineering field in 

general. Here, cellular and experimental factors that potentially affect the outcome when studying 

effector genes will be described and discussed. If these factors are appreciated, the risk of 

unintentionally investigating conditional effects can be minimized and the chance of finding true 

positive effects can be increased. 

 

2. CHO host cell lines 

In 1957, the immortalized, original CHO cell line (the common ancestor for all CHO cell lines) 

was established from the ovaries of an outbred female Chinese hamster (Puck, 1957; Wurm, 2013). 

This original cell line has led to a multitude of commercially available and proprietary CHO cell 

lines (Wurm, 2013). Being an immortalized cell line, the genome of CHO cells is inherently 

unstable (Frye et al., 2016). Moreover, dihydrofylate reductase deficiency (DHFR) in the widely 

used DXB11 and DG44 cell lines was achieved by subjecting cells to radiation- and chemical-

mediated mutagenesis (Urlaub et al., 1983; Urlaub and Chasin, 1980). Thus, host CHO cell lines 

constitute a genomically diverse family in terms of single nucleotide polymorphisms (Lewis et al., 

2013), copy-number variations (Kaas et al., 2015) and karyotypes (Wurm and Hacker, 2011). 

Moreover, it has recently been suggested to regard CHO host cell lines as ‘quasispecies’, 

emphasizing the extensive genetic heterogeneity residing in the CHO host cell family (Wurm, 

2013).  

When CHO host cell lines are compared, they are found to be not only genetically divergent but 

also phenotypically diverse. For example, it has been shown that the ER size in the CHO-K1 host 

cell line is larger compared to a DXB11-derived host cell line, and the mitochondrial mass was also 

found to be higher in CHO-K1 cells (Hu et al., 2013). These phenotypic differences could explain 

the approximately 10-fold lower qp observed for the DXB11-derived host cell line compared to 

CHO-K1 cells, which was obtained for two different MAbs from stable gene-amplified clones (Hu 

et al., 2013). In a recent CHO bibliome study by Golabgir et al. (2016), a meta-analysis of 

bioprocess studies showed that the cell growth rate and qp of DXB11- compared to DG44-derived 

cell lines were significantly higher and lower, respectively. Although the bibliome data consist of a 

range of process conditions and experimental setups, both DG44 and DXB11 are DHFR-deficient 

cell lines. Consequently, the gene-amplification process and clone selection are therefore 

comparable, warranting the comparison of qp. Moreover, CHO-K1-derived cells were found to 

grow slower than DG44-derived cells in the bibliome study. The observed differences between 

CHO-K1, DXB11 and DG44 host cells clearly illustrate the phenotypic diversity that resides within 

the family of CHO host cells.  
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Being such a diverse family of cell lines, the following question arises: Are effects on qp of an 

effector gene transferable across CHO host cell lines? In the PDI example, at least four CHO host 

cell lines (DXB11, DG44, CHO-K1 and CHO-S) have been used (Table 1). Because of product 

specificity and other factors, it is not possible to make any conclusion on the influence of CHO host 

cell lines on PDI as an effector gene. As for the spliced form of X-box-binding protein 1 (XBP-1S), 

it has been shown that ectopic XBP-1S expression was able to increase the volumetric productivity 

of erythropoietin (EPO) in CHO-K1 as well as in the murine NS0 myeloma cell line (Ku et al., 

2008). Moreover, Tastanova et al. (2015) found that the CHO-derived transcription factor Yin Yang 

1 (YY1) improved the volumetric productivity of a MAb (Rituximab) upon co-transfection in a 

transient expression setup in CHO-K1 and CHO-S cells. Moreover, YY1 expression also improved 

the volumetric productivity of MAb in DG44- and DXB11-derived stable cell lines. In a transient 

expression setup using the human orthologue, the positive effect of YY1 on volumetric productivity 

was also observed in human embryonic kidney (HEK) cells, human cervical cancer cells (HeLa) 

and human fibrosarcoma cells (HT-1080), which are immortalized cell lines with genomes vastly 

different from CHO cells. Future studies will show whether the generic effect of YY1 and XBP-1S 

between genomically distinct cell lines is an exception that proves the rule. 

 

3. Clonal variation 

Phenotypic heterogeneity is observed not only between CHO host cell lines but also within the 

cell population of CHO host lines. In fact, CHO cells are known for being able to adapt to changes 

in process conditions, which has been exploited in the industry to generate clonally derived cell 

lines with enhanced manufacturing capabilities (Frye et al., 2016). Moreover, the majority of cells 

in host cell lines seem to be intrinsically incapable of high production of MAb, and universally 

competent cells are likely relatively rare cases (O’Callaghan et al., 2010). Functional heterogeneity 

residing in the host cell population is typically referred to as clonal variation (Fig. 2). Although not 

CHO cells, how clonal variation is generated (phenotypic drift) has been elegantly demonstrated in 

the murine cell line NS0 (Barnes et al., 2006). Three rounds of limiting dilution were performed, 

and variation in cell growth rate was observed after each round of subcloning. This phenomenon 

has subsequently been observed in subclones of a CHO-K1-derived host cell line (Davies et al., 

2013). The cell growth rate changed for approximately half of the clones during extended culture 

time, demonstrating that both static (inheritable) phenotypes and phenotypic drift were observed. 

Moreover, the initial cell growth rate of the subclones varied substantially, which demonstrates the 

presence of clonal variation within the host cell line. When analysing single cells in a monoclonal 

cell line culture, large variation in transgene expression has been observed, which could not be 

attributed to variables such as cell cycle and cell size (Pilbrough et al., 2009). Since this variation 

was shown to fluctuate within a relatively short period, phenotypic drift may partly originate from 

non-genetic diversity. However, a comprehensive genome and epigenome characterization of a 

CHO-K1 host cell line adapted to growth in three different media showed high variation in genome 

sequence both as a result of media adaptation and under constant culture conditions over time 

(Feichtinger et al., 2016). Based on these observations and as previously stressed by Frye et al. 

(2016), absolute genetic homogeneity in a cell culture does not seem achievable because of the 

genomic plasticity inherent in immortalized mammalian cell lines. 

Clonal variation for recombinant CHO cell lines does not originate only from functional 

heterogeneity in the host cell line, as genetic heterogeneity is also introduced during the generation 

of recombinant cell lines (Fig. 2). For example, chromosomal aberrations were observed in 10 of 16 

stable gene-amplified GFP-expressing cell lines not observed in the DG44 host cell line (Derouazi 
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et al., 2006). In addition, significant differences in specific growth rate and qp of subclones from a 

gene-amplified MAb-producing clonally derived DG44 CHO cell line have been observed (N. S. 

Kim et al., 1998). Thus, recombinant monoclonal cell lines generated by gene amplification are 

genetically and phenotypically diverse.  

Does an observed phenotypic difference between two recombinant cell lines originate from 

clonal variation or from stable expression of an effector gene? If only one control cell line and one 

effector gene-expressing cell line (both monoclonal) are being investigated, it is not possible to rule 

out that an observed phenotypic difference originates from clonal variation (Stockholm et al., 2007). 

Instead, this would require a number of monoclonal cell lines in both categories to demonstrate that 

the difference is a consequence of expressing the effector gene. In the PDI example, only single 

clonally derived producer cell lines have been used as host cell lines when analysing the effect of 

constitutively expressing PDI (Table 1). These monoclonal producer cell lines have then been used 

as hosts to generate either quasi-monoclonal or mono-monoclonal PDI-expressing lines (see Fig. 2 

for definitions). Thus, the observed effects of PDI expression are likely biased by clonal variation, 

as quasi-polyclonal and mono-monoclonal cell lines in general do not represent the average 

phenotype in the host cell line. This bias can be addressed if employing polyclonal producer cell 

lines (see ‘Clonality and clonal variation’ in section 7). 

In summary, caution must be exercised when investigating the effects of expressing effector 

genes in clonally derived producer cell lines. At a minimum, quasi-polyclonal or mono-monoclonal 

cell lines from two but preferably three different monoclonal producer cell lines should be 

examined. Alternatively, transient expression or stable episomal expression of the r-protein product 

circumvents the bias originating from clonal variation (see section 7). 

 

4. Effector gene origin 

The main application of CHO cells in the biopharmaceutical industry is to produce human-like 

glycoproteins. Although humanized, some MAb biopharmaceuticals are chimeric molecules of 

mouse and human amino acid sequences (Ahmadzadeh et al., 2014). Thus, human and, to some 

extent, murine-derived polypeptide sequences are expressed in a heterologous CHO-based context. 

In view of this, should the origin of an effector gene be human, CHO or mouse? In the PDI example 

(Table 1), all three origins have been reported, although human PDI is overrepresented (four of six 

studies). This observation is consistent with an overall preference for the human origin of effector 

genes (Fischer et al., 2015).  

The argument for using a human effector gene would be that the effector gene protein is 

expected to directly interact with the r-protein. In other words, it is thought to facilitate a favourable 

interaction between two autologous (human) molecules that is less likely to take place between two 

heterologous molecules (direct effect; see Fig. 1). In contrast, the argument for using a CHO 

effector gene would be that an effector gene is expected to interact with host cell molecules 

(indirect effect through element X; see Fig. 1). For example, an effector gene-encoded transcription 

factor and a chaperone are expected to interact with host cell molecules (DNA) and the r-protein, 

respectively. Thus, the choice of effector gene origin depends on the function of the effector gene.  

The influence of effector gene origin on CHO cell line engineering has not been systematically 

investigated. However, it has been shown that both CHO- and human-derived PDI can improve qp 

of human MAb-related r-proteins in CHO cells (Johari et al., 2015; Mohan et al., 2007; Pybus et al., 

2014) (Table 1). Moreover, XBP-1S has been shown to increase volumetric productivity and qp in 
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CHO cells – both the human (Becker et al., 2008; Cain et al., 2013; Pybus et al., 2014) and murine 

(Hansen et al., 2015; Ku et al., 2008) orthologues. In contrast, only the CHO-derived and not the 

human orthologue of YY1 was able to increase volumetric productivity in CHO cells and vice versa 

in human cells (Tastanova et al., 2015). As pointed out by the authors, this clearly indicates that 

interaction with host-specific co-factors was required. 

Although there might be a few cases where a human effector gene orthologue is needed, CHO 

orthologues are more likely to be functional because they will be present in a non-foreign 

(autologous) cellular context like YY1. Thus, using CHO-derived effector genes likely increases the 

chances of identifying true positive effects and at the same time minimizing the risk of false 

negative effects. Furthermore, applying CHO-derived effector genes would enable direct 

comparisons of the expression level between the recombinant effector gene and the endogenous 

gene. Accordingly, this would entail comparisons of effector gene doses across experiments and 

studies (see section 6). 

Cloning CHO and Chinese hamster gene sequences has recently become a more straightforward 

task owing to the drafts of Chinese hamster and CHO cell line genomes (Brinkrolf et al., 2013; 

Lewis et al., 2013; Xu et al., 2011). Moreover, efforts to improve the quality of the Chinese hamster 

genome and to refine annotations are currently ongoing (Kremkow et al., 2015). The availability of 

correctly annotated Chinese hamster gene sequences is likely to facilitate the autologous, ectopic 

expression of effector genes in CHO cells in future CHO cell line engineering studies. 

 

5. Secretion bottleneck and ER stress 

A non-linear relationship between the transcript level and qp in CHO cells shows that there is a 

post-transcriptional bottleneck in the biosynthetic pathway of r-proteins. Such a bottleneck has been 

reported in CHO cells upon transient expression of an Fc-fusion protein (Johari et al., 2015) and 

EPO (Ku et al., 2008), although only EPO titer and not qp was reported for the latter example. In 

addition, a post-transcriptional bottleneck has been reported in stable MAb-producing CHO cells (S. 

J. Kim et al., 1998) and NS0 myeloma cells (Barnes et al., 2004). Moreover, a post-translational 

rate-limiting step (hereafter referred to as a ‘secretion bottleneck’; Fig. 3A) has been demonstrated 

in stable CHO cell lines expressing antithrombin III (Schröder and Friedl, 1997) as well as in baby 

hamster kidney cells constitutively expressing activated protein C (Fann et al., 1999). In these two 

cases, a non-linear relationship between the intracellular level of r-proteins and qp was observed, 

which demonstrates that the bottleneck was downstream of translation and translocation and 

therefore within the secretory pathway (ER, Golgi and secretory transport vesicles). Most 

intracellular whole MAb molecules in stable CHO cell lines have been found to be in the early part 

of the secretory pathway (between ER and cis-Golgi) for cell lines with and without a secretion 

bottleneck (O’Callaghan et al., 2010). The study by O’Callaghan et al. also demonstrated that 

bottlenecks in the biosynthetic pathway of the same MAb molecule are cell line-specific, 

irrespective of qp. For example, in one cell line with qp of 7 pcd, the folding and assembly rate of 

MAb was particularly slow, whereas in another cell line with qp of 8 pcd, secretion was the rate-

limiting step. 

The unfolded protein response (UPR) is a homeostatic transcriptional program that is induced 

when the capacity of folding and processing incoming nascent polypeptides in the ER is exceeded 

(Moore and Hollien, 2012; Walter and Ron, 2011). This protein folding perturbation is called ER 

stress. If high levels of ER stress conditions persist, the UPR will eventually become pro-apoptotic 

(Jäger et al., 2012; Moore and Hollien, 2012; Sano and Reed, 2013). ER stress originating from r-
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protein expression has been observed several times. For example, qp of certain r-proteins has been 

shown to correlate with ER stress levels upon transient expression (Johari et al., 2015; Ku et al., 

2010). Once post-transcriptional and/or secretion bottleneck conditions were established, ER stress 

levels increased abruptly upon a higher expression level of r-protein (Fig. 3B). Moreover, cell lines 

expressing seemingly difficult-to-express r-proteins have been shown to have increased levels of 

ER stress compared to cell lines expressing easy-to-express r-proteins (Johari et al., 2015; Le Fourn 

et al., 2014; Sommeregger et al., 2016). These examples show that ER stress and secretion 

bottlenecks are intimately linked.  

In two studies by Ku et al., a post-transcriptional bottleneck was identified at high gene doses of 

transiently expressed EPO (Ku et al., 2010, 2008). Ectopic expression of XBP-1S was found to 

improve the volumetric productivity of EPO only at gene doses causing ER stress and with a post-

transcriptional bottleneck phenotype (Ku et al., 2008). Consequently, some ER-related effector 

genes – such as XBP-1S – can improve volumetric productivity and/or qp only in conditions where 

a post-transcriptional bottleneck is present (Fig. 3A). Being an ER-localized protein, the effects of 

PDI on qp likely depend on whether such bottlenecks are present. However, the presence of a post-

transcriptional bottleneck has been investigated for only two of eleven r-proteins (Table 1). 

Preferably, non-secretion bottleneck as well as secretion bottleneck conditions should be established 

when analysing effector genes, which would minimize the risk of obtaining false negative results. 

Indeed, an inadequate conclusion would have been drawn if only a low gene dosage of EPO had 

been used by Ku et al. (2008).  

Obtaining positive effects on qp of effector genes in conditions without post-transcriptional 

bottlenecks is an interesting supposition. To the knowledge of the authors, no studies have 

methodically investigated this topic. Although not investigated, it seems likely that a post-

transcriptional bottleneck was not present when expressing Rituximab in CHO-S cells in the study 

by Tastanova et al. (2015), as we have obtained a >10-fold higher qp in a comparable transient 

expression setup in shake flasks (Hansen et al., 2015). Nevertheless, a three-fold increase in 

Rituximab titer was obtained upon YY1 overexpression in CHO-S (Tastanova et al., 2015). In a 

stable CHO-DG44-derived clone expressing MAb, the positive effect of YY1 was also observed, 

and this effect could not be ascribed to an increase in the cell growth rate or transcript level of MAb 

heavy and light chains. The increase in qp combined with an unchanged transcript level suggests 

that the secretion rate per transcript must be three-fold higher, indicating that the effect is post-

transcriptional. Differences in the translation rate have been predicted between stable monoclonal 

CHO cell lines expressing the same MAb by mathematical modelling (O’Callaghan et al., 2010), 

suggesting that the effect of YY1 could be an increased translation rate. Alternatively, it could be a 

decreased degradation of folding intermediates mediated by the ER-associated degradation pathway 

(Hussain et al., 2014; Merulla et al., 2013) or autophagy- and lysosomal-mediated degradation (Kim 

et al., 2013). Nevertheless, the YY1 example implies that a secretion bottleneck phenotype does not 

seem to be a prerequisite for improving qp. 

 

6. Effector gene dosage 

Whether an effector gene is able to improve qp depends not only on the presence of the effector 

gene-encoded protein but also on the expression level. In other words, the outcome of expressing an 

effector gene on qp depends on the effector gene dosage (Brown and James, 2015; Xiao et al., 

2014). In a study by Davis et al. (2000), CHO clones stably expressing an Fc-fusion protein with 

different expression levels of PDI (‘low PDI’, ‘medium PDI’ and ‘high PDI’) were used (Table 1). 
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Whereas the low PDI clone had no apparent effect on product titer, the medium PDI had increased 

intracellular levels of the Fc-fusion protein but no effect on titer and the high PDI clone had 

increased intracellular levels of Fc-fusion protein and a two-fold decrease in titer. If leaving clonal 

variation out of consideration, this example shows that the folding machinery can be overwhelmed 

when an ER-localized enzyme exceeds an optimal expression level range. Like ER-resident 

enzymes, gene dosage titration is also important when investigating transcription factors as effector 

genes. Johari et al. (2015) observed increased volumetric productivity of two MAb variants when 

expressing either XBP-1S or cleaved activating transcription factor 6 (ATF6c) at lower gene doses 

and no effect at the highest gene dosage. Moreover, the gene dosage for both effector genes 

inversely correlated with cell growth, suggesting that the expression of XBP-1S and ATF6c 

generated a fitness cost. When Tastanova et al. (2015) investigated how the gene dosage of the 

transcription factor YY1 affected the volumetric productivity of a variety of MAb molecules and 

CHO cell lines, an optimal gene dosage range of YY1 was observed. These examples demonstrate 

the importance of gene dosage titration. 

Two complementary strategies were employed to titrate the YY1 gene dosage by transient 

expression: the filler plasmid (empty vectors) principle and promoters with different strengths 

(Tastanova et al., 2015). Filler plasmids are used to titrate the effector gene-encoding plasmid 

(Estes et al., 2015; Rajendra et al., 2015, 2012), whereas promotors with different strengths drive 

transcription at different rates (Brown and James, 2015; Qin et al., 2010). The filler plasmid 

principle is a cost-efficient solution in transient expression-based setups, as no additional cloning 

work is needed besides a single plasmid preparation of the filler plasmid. Moreover, a linear 

relationship between the transfected plasmid load and mRNA can be expected at relatively low gene 

doses (Johari et al., 2015; Ku et al., 2008; Rajendra et al., 2015). When controlling the expression 

level of stably integrated effector genes, using a set of promotors with different strengths is the 

preferred choice (Brown and James, 2015). 

Only a single gene dosage has been used when investigating the effect of PDI expression on 

nine of eleven r-proteins (Table 1). This means that, in nine of eleven cases, it is unknown whether 

an optimal or adverse gene dosage was used. This indicates that a substantial number of studies on 

ectopic expression of effector genes have only employed a single gene dosage, suggesting that the 

gene dosage space for many studied effector genes remains to be explored.  

In summary, a wide range of effector gene doses should preferably be used in the attempt to find 

an optimal range of expression. Moreover, the expression level of the effector gene and the 

endogenous gene should be compared to facilitate comparisons across studies, which requires that 

CHO-derived effector genes be used (see section 4). These efforts would facilitate higher chances 

of drawing valid conclusions as well as higher chances of identifying conditions where effector 

genes improve qp. 

 

7. Expression platforms  

There are several different platforms for the ectopic expression of r-proteins in CHO cells. r-

proteins can be expressed either transiently from a non-integrated plasmid or from a gene stably 

integrated into the genome. Transient gene expression (TGE) is a widely used technology for the 

rapid production of r-proteins, usually during a 2-10 day batch or fed-batch process (Baldi et al., 

2007). TGE is the preferred production method during the early stages of drug development for 

preclinical studies, as a sufficient quantity of r-protein can be obtained within a short period of time 

(Kim et al., 2012). However, the lower protein yield achieved with TGE in CHO cells has 
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historically been a major drawback compared to the substantially higher yields obtained with stable 

gene expression (SGE). Thus far, extensive efforts to improve TGE yields in CHO cells have been 

made by optimizing the culture environment (Galbraith et al., 2006; Ye et al., 2009), transfection 

efficiency (Mozley et al., 2014; Rajendra et al., 2015, 2012), vector systems (Cho et al., 2001; 

Mariati et al., 2010) and host cell line (Cain et al., 2013; Daramola et al., 2014; Macaraeg et al., 

2013). Therefore, TGE has become a robust and flexible system, applicable to multiple r-proteins, 

expression volumes and bioprocesses with substantially increased yields of up to 3 g/L for MAb-

producing CHO cells (Liu et al., 2015).  

SGE is a prerequisite for the stable, large-scale manufacturing of r-proteins as biologics for 

clinical applications (Noh et al., 2013; Wurm, 2004). Stable cell lines are typically generated using 

selection based on a selective marker expressed on the same plasmid as the r-protein (Priola et al., 

2016). If desired, the gene encoding the r-protein can be amplified to increase qp, although gene-

amplification in general reduces the stability of volumetric productivity and qp in extended culture 

conditions (Chusainow et al., 2009). The two most widely used gene amplification systems are the 

DHFR system and the glutamine synthetase system (Noh et al., 2013). Nowadays, companies report 

titers of >10 g/L for MAb production (Gronemeyer et al., 2014). As an alternative to random 

transgene integration, piggyBac or sleeping beauty-mediated transposition can be used, where 

transgene integration into highly transcribed regions of the host genome is favoured. This leads to a 

generally higher rate of transgene transcription compared to the random integration of plasmids 

(Ding et al., 2005; Galvan et al., 2009; Wilson et al., 2007). Consequently, higher qp and stability 

compared to stable producer clones obtained by random integration have been achieved with MAb 

titers of up to 7.6 g/L (Matasci et al., 2011; Rajendra et al., 2016). 

Inducible expression (IE) platforms support the idea of a regulated, biphasic r-protein 

expression throughout the production phase, e.g., being turned off during growth and turned on only 

during the late exponential and stationary phase. The inducible nature of the IE platform provides a 

powerful expression system for r-proteins that might confer toxicity when being expressed by 

constitutive promoters. Several systems with either repressor or activator configurations have been 

developed for mammalian cells to achieve tight control of gene expression. Among many, there are 

i) antibiotic-based regulation systems, such as the Tet-Off-On system regulated by tetracyclin 

(Gossen and Bujard, 1992; Mohan et al., 2007), the Pip system regulated by streptogramin 

(Fussenegger et al., 2000) and the E.REX system regulated by macrolides (Weber et al., 2002); ii) 

an aptamer-based regulation system (Werstuck and Green, 1998); and iii) the cumate gene-switch 

(Gaillet et al., 2010; Mullick et al., 2006). All these inducible systems have been successfully used 

in CHO cell lines, and a 0.24 g/L titer of an Fc-fusion protein has been reported for this system 

(Gaillet et al., 2010). 

Expression from replicating episomes in CHO cells reduces the loss of plasmid and thereby 

prolongs the nuclear retention time of the plasmid after cell divisions (Van Craenenbroeck et al., 

2000). Episomal replication can be achieved using, e.g., the Polyomavirus large T gene (PyLT) and 

its origin of replication (PyOri) (Heffernan and Dennis, 1991), while plasmid maintenance and 

segregation can be accomplished using Epstein-Barr virus nuclear antigen-1 (EBNA-1) and its 

origin of replication (OriP) (Lupton and Levine, 1985; Yates et al., 1984). Using these two sets of 

complementing viral components, the episomal platform was reported to increase and prolong TGE 

yields of a growth hormone and MAb in CHO cells in comparison to non-replicating plasmid 

controls (Codamo et al., 2011; Kunaparaju et al., 2005). Without antibiotic-based selection, 

expression from replication-proficient episomes can be regarded only as a quasi-stable gene 

expression platform, as episomes eventually will be lost with a half-life of approximately 8-9 days 
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(Silla et al., 2006). Without selection, titers of up to 2 g/L MAb have been reported (Daramola et 

al., 2014). However, if antibiotic-based selection is applied, a stable pool of cells can be obtained 

that stably replicates and segregate episomes for more than two months (Silla et al., 2006). Thus, 

when combined with selection, the system can be regarded as stable episomal expression (SEE). 

Although all the described expression systems have been used successfully to express r-

proteins in CHO cells, each expression platform has advantages and disadvantages when used for 

effector gene expression. In Table 2, four selected expression systems are compared as platforms 

for analysing how effector genes affect qp. It is important to note that other expression systems are 

available – such as stable pools and monoclonal cell lines obtained by lentiviral vector-mediated 

gene transfer (Oberbek et al., 2011) or stable pools obtained by piggyBac transposons (Matasci et 

al., 2011). In addition, the four expression systems can be combined in different ways – such as 

using IE (Chung et al., 2004) or TGE (Hayes et al., 2010) in a monoclonal stable producer cell line. 

Nevertheless, the selected expression platforms serve to highlight important aspects to consider 

when choosing a platform and interpreting the final data. 

Duration – from transfection to answer: The preparation of plasmids carrying effector and r-

protein genes takes approximately the same time for all four expression platforms. However, the 

time span from transfection to an answer varies substantially. TGE is clearly the fastest track, as 

experiments are typically done within two to three days (Hansen et al., 2015; Johari et al., 2015; Ku 

et al., 2008). SEE is also relatively fast, as antibiotic-based selected SEE cells can be obtained 

within two weeks (Silla et al., 2006). In contrast, both IE and SGE platforms require generation and 

characterization of monoclonal cell lines that take months to perform (Noh et al., 2013).  

Gene dosage and combining genes: In terms of gene dosage titration (Rajendra et al., 2012) 

and combining genes (Nishimiya et al., 2013), TGE offers complete flexibility, as a variety of 

different plasmids (filler plasmid and/or plasmids carrying different effector genes) can be co-

expressed. This is not the case for SEE, as the copy numbers of two plasmids with different genes 

expressed, in some cases, will drift towards selection for the plasmid/gene giving rise to the lowest 

fitness cost (personal communication with Dr Mikael Rørdam Andersen, Technical University of 

Denmark). To avoid this drift, the r-protein gene and effector gene must be co-expressed from the 

same plasmid. Relatively few cell lines are manageable to maintain in parallel, which decreases the 

throughput of gene combinations for the IE and SGE platforms. Because the effector gene is 

constitutively expressed in the described IE and SGE platforms (Table 2), the effector gene dosage 

is not titratable in these platforms. Notably, recent advances in promoter engineering in CHO cells 

make it possible to precisely control the gene dosage in TGE and possibly also in SEE, IE and SGE 

platforms spanning over two orders of magnitude (Brown et al., 2014). 

Transfection stress and variability: A considerable drawback of TGE is the cytotoxic effect 

from transfection, here termed ‘transfection stress’ (Fig. 2). Different transfection reagents induce 

different levels of cytotoxicity in terms of impeded cell growth rate and a drop in viability (our own 

unpublished observations), as well as the inhibition of protein synthesis (Underhill et al., 2003). 

Notably, transfection stress can be reduced through process or cell engineering optimization (Johari 

et al., 2015; Macaraeg et al., 2013; Majors et al., 2008). In addition, variability in transfection 

efficiency is an inherent problem for TGE (Hansen et al., 2015; Liu et al., 2008); however, 

optimization and selection of the appropriate method can reduce variability substantially (Davies et 

al., 2013). For the SEE, IE and SGE platforms, transfection stress is most likely not an issue 

because of the lengthy (≥2 weeks) antibiotic-based selection processes. 
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ER stress: The expression of r-proteins is inducible for the TGE (transfection) and IE (addition 

of inducing agents) platforms. In contrast, r-proteins are constitutively expressed during the 

selection processes in the SEE and SGE platforms. Whereas the effector gene and the r-protein are 

co-expressed during the selection process in the SEE platform, the r-protein is typically first 

integrated into the genome (monoclonal cell line; Fig. 2) and subsequently the effector gene 

(quasi/mono-monoclonal cell line; Fig. 2) in the SGE platform. Thus, in contrast to the TGE, IE and 

SEE platforms, the SGE platform subjects cells to ER stress before investigating whether the 

effector gene of interest can alleviate the ER stress originating from r-protein expression. In other 

words, some cells with a high r-protein expression level and consequently a high level of ER stress 

will likely not survive during the selection processes (Hu et al., 2013) (Fig. 3B). These highly 

relevant, stressed cells will therefore not be part of the effector gene test case, in contrast to the 

TGE and IE platforms. This could introduce a bias towards cells with lower level of ER stress or 

cells inherently capable of coping with high levels of ER stress. It is important to note that stable 

producer cells adapted to a permanent increase in ER stress levels can be obtained (Sommeregger et 

al., 2016); however, the ER stress levels in these clones are not high enough to induce apoptosis. 

Instead, conditions with pro-apoptotic levels of ER stress are more likely to be established by TGE 

and IE because of the inducible nature of the two systems. Notably, the SEE platform does not 

allow for pro-apoptotic levels of ER stress to persist throughout the selection process. However, it 

does enable an effector gene of interest to alleviate pro-apoptotic levels of ER stress, because the 

effector gene and r-protein are co-expressed throughout the entire process. 

Secretion bottleneck: Post-transcriptional and secretion bottlenecks have been reported in CHO 

cells for TGE (Johari et al., 2015; Ku et al., 2008) and SGE platforms (O’Callaghan et al., 2010). 

To the best of the authors’ knowledge, a secretion bottleneck has not been reported in CHO cells for 

IE platforms, which likely is a result of a presumably low transcription rate of the r-protein gene 

compared to the TGE and SGE platforms. Naturally, the occurrence of a secretion bottleneck is 

protein-specific, and it is likely that, for some difficult-to-express proteins, a secretion bottleneck 

can be readily obtained. A post-transcriptional bottleneck in CHO cells has been reported upon 

expression from replicating episomes (Pybus et al., 2014); however, this was without antibiotic-

based selection and is therefore not regarded as SEE (Table 2). A relatively high average qp (10 pcd 

for MAbs) can be obtained using the SEE platform (personal communication with Dr Meelis 

Kadaja, Icosagen Cell Factory Ltd, Estonia), implying that post-transcriptional and/or secretion 

bottleneck conditions can be established using the SEE platform.  

Clonality and clonal variation: When using TGE and SEE platforms, a representative pool of 

cells from the host cell line is being tested (polyclonality), whereas clonally derived cells are 

typically used in the IE and SGE platforms (monoclonality). Whilst polyclonal cells represent an 

average phenotype of all cells in the host cell line, monoclonal cell lines typically represent a 

favoured phenotype identified within the functionally heterogeneous pool of cells (Fig. 2). Thus, 

different questions are being put forward when expressing effector genes in polyclonal and 

monoclonal cells. If qp is increased upon effector gene expression in polyclonal cells, this finding 

can likely be transferred to the majority of cells within the host cell line. This is not necessarily the 

case for clonally derived cell lines expressing effector genes (mono-monoclonal; see section 3). 

Thus, findings from a clonally derived cell line might be conditional; that is, the effect only applies 

to the cell line in question (O’Callaghan et al., 2010). 

Validation: Since SGE is the preferred production platform for therapeutic proteins in the 

industry (Noh et al., 2013), any effector gene should preferably be validated in a SGE context – that 

is, in high-producer monoclonal cell lines. For example, effects obtained from TGE are sometimes 
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transferable to a SGE context (Tastanova et al., 2015) and sometimes not (Mohan and Lee, 2010). 

The need for validation is obviously a drawback of the TGE, SEE and IE platforms. However, if 

measures described here are taken – such as applying different effector gene doses and establishing 

conditions with and without post-transcriptional and/or secretion bottlenecks – the success rate of 

validating effector genes is likely to increase. 

In summary, TGE is the preferred platform for screening effector genes because effector genes 

can readily be combined, gene dosage can easily be titrated and post-transcriptional and/or secretion 

bottlenecks can be obtained; in addition, TGE is not hampered by clonal variation and adaptation to 

ER stress (Table 2). A considerable drawback is the presence of transfection stress and transfection 

variability, which, however, can be addressed to some extent through process optimization. Once 

combinations of effector genes and gene doses have been identified, they need to be validated, 

preferably in multiple stable mono-monoclonal cell lines derived from different host cell lines. 

 

8. Product quality 

Although volumetric productivity and qp are important measures, the ability to enhance product 

quality is equally important in the biopharmaceutical industry (Gramer, 2014). Volumetric 

productivity is the mass of produced r-protein per volume per culture time in cell-free supernatants. 

However, a significant fraction of the protein mass can be misfolded or incorrectly processed 

variants of the r-protein (Kunert and Reinhart, 2016). In such cases where product quality is 

impaired, an increase in product titer does not necessarily correlate with an increase in the yield of 

bioactive r-protein. Quality attributes defining the overall product quality are molecularly diverse 

features of the r-protein, such as misfolding/aggregation, incorrectly processed propeptides, 

enzymatic degradation and amino acid sequence variations (Gramer, 2014). Moreover, 

glycosylation is probably the most important quality attribute of therapeutic glycoproteins, because 

the pharmacokinetic effects of undesired glycosylation patterns can be decreased drug efficacy or 

increased antigenicity (Bertozzi et al., 2009; Butler and Spearman, 2014). Recent advances in 

glycoengineering and descriptions of how effector genes can be used to modulate glycosylation 

have been described in recent reviews (Bennun et al., 2016; Dicker and Strasser, 2015; Spahn and 

Lewis, 2014). Because of scope limitations, only misfolding/aggregation and propeptide processing 

in relation to effector genes will be described here. 

Some secreted proteins are expressed as inactive proprotein precursors containing one or more 

inhibitory propeptides that need to be proteolytically cleaved off by propeptidases before full 

activity is achieved (Wiederanders et al., 2003). Since these propeptides in general are essential for 

protein folding (Chen and Inouye, 2008), propeptide-containing r-proteins need to be expressed as 

proproteins to prevent misfolding and degradation. However, there are multiple examples of 

insufficient cleavage of propeptides of r-proteins expressed CHO cells, leading to the secretion of a 

mixture of inactive proprotein and mature, correctly processed r-protein (Preininger et al., 1999; 

Sathyamurthy et al., 2015, 2012; Wasley et al., 1993). In these studies, the ectopic expression of 

effector genes encoding propeptidases increased the percentage of correctly processed r-proteins. 

This demonstrates that the propeptidase machinery within CHO cells can be the bottleneck for the 

production of propeptide-containing r-proteins. Solving this type of bottleneck is unique to 

propeptide-containing r-proteins and is therefore not generally applicable for enhancing qp of other 

types of r-proteins.  

Product quality in terms of misfolding and aggregation is intimately linked to the secretory 

pathway. Schröder et al. (2002) demonstrated that increasing the r-protein expression level of 
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antithrombin III through gene amplification in stable clonally derived CHO cells gave rise to the 

formation of disulphide-bonded aggregates. Similarly, lowering the gene dosage when transiently 

expressing an Fc-fusion protein in HEK cells has also been shown to reduce aggregate formation 

(Estes et al., 2015). In the PDI example (Table 1), the product quality has been investigated in only 

one of eleven examples. Here, a 1.2-fold increase in qp of an Fc-fusion protein was observed upon 

PDI overexpression (Johari et al., 2015). However, PDI overexpression was found to impair product 

quality through a 1.4-fold increase in the formation of high molecular aggregates. Thus, the overall 

effect of PDI overexpression was a decrease in the number of correctly folded Fc-fusion protein 

molecules produced per cell per unit time. This study elegantly illustrates the importance of 

analysing quality attributes when studying how effector genes affect qp. 

 

9. Concluding remarks and future directions 

A desirable goal of engineering the secretory capacity of CHO cells is to generate a universally 

competent cell line (‘super-CHO’) capable of manufacturing all r-proteins in demand. In general, 

this seems difficult to achieve because of product specificity (McLeod et al., 2011). For example, it 

has been reported that host cell line subclones being able to produce a MAb at relatively high qp 

levels compared to the host cell pool were not able to produce high levels of an Fc-fusion protein 

(O’Callaghan et al., 2015). Moreover, two similar antibody fragments have been shown to 

differentially influence the cell’s physiology in terms of different proteomic responses in a product-

specific manner (Sommeregger et al., 2016). Similarly, effector genes have been shown to increase 

qp in a MAb-variant-specific manner (Pybus et al., 2014). However, some effector genes can 

increase qp for different types of r-proteins in CHO cells. For example, XBP-1S was able to increase 

qp and/or product titer for secreted embryonic alkaline phosphatase (SEAP) and vascular endothelial 

growth factor (VEGF) (Tigges and Fussenegger, 2006), EPO (Ku et al., 2008), MAb (Becker et al., 

2008; Cain et al., 2013; Pybus et al., 2014), an Fc-fusion protein (Johari et al., 2015) and α1-

antitrypsin and C1 esterase inhibitor (Hansen et al., 2015). Similarly, YY1 expression was able to 

increase product titer for SEAP, VEGF and MAb (Tastanova et al., 2015). This type of general 

effector genes seems to be able to traverse product specificity. It is important to note that general 

effector genes most likely also will fall short when it comes to r-proteins that require specialised 

modifications, such as the cleavage of propeptides (Sathyamurthy et al., 2015) and γ-carboxylation 

of clotting factors (Kumar, 2015). Thus, positive effects of general effector genes are likely not 

generally valid per se, but the effect may be retrieved once specialized post-translation 

modifications are no longer constituting a bottleneck. 

The function of proteins encoded by general effector genes is probably conceptually different 

compared to effector gene-encoded proteins with more product-type specific effects (i.e. not general 

effector genes). In order to traverse product-specificity, the effect of general effector genes is 

probably multifaceted. Such multifaceted effects can be the result of simultaneously changing the 

expression level of several genes. Several cellular processes and/or molecules are able to confer 

such effects; for example phosphorylation (Rajesh et al., 2015), microRNAs (Barron et al., 2011; 

Hackl et al., 2012), transcription factors (Adachi et al., 2008; Harding et al., 2003) and histone 

marks (Dahodwala and Sharfstein, 2014). The molecules involved in these processes do not interact 

directly with the r-protein and the effects are therefore indirect (Fig. 1). An attractive advantage of 

using general effector genes is the possibility of modulating the expression level of more genes than 

is currently possible when co-expressing multiple single effector genes. However, some effects 

from general effector genes may also be adverse due to pleiotropic, undesired regulation of a subset 
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of genes (Stearns, 2010). Thus, investigating and eliminating these potential adverse effects of a 

general effector gene of interest may improve the desired phenotype. 

Although single general effector genes seem to be part of the answer, multiple (general) 

effector genes are likely a more coherent and robust solution for increasing the secretory capacity 

(Harreither et al., 2015; Seth et al., 2007). In fact, multiple reactions within the biosynthetic 

pathway of MAb seem amenable for improvement (O’Callaghan et al., 2010). This notion is 

supported by non-limiting examples of studies demonstrating an increase in volumetric productivity 

or qp in CHO cells upon the expression of effector genes related to translation and translocation (Le 

Fourn et al., 2014), ER folding processes (Borth et al., 2005; Chung et al., 2004; Hwang et al., 

2003) and protein transport and secretion (Florin et al., 2009; Peng et al., 2011; Peng and 

Fussenegger, 2009) (Fig. 1). Several reports have demonstrated synergistic effects on the 

volumetric productivity or qp of co-expressing multiple genes in CHO cells (Cain et al., 2013; Le 

Fourn et al., 2014; Mohan and Lee, 2010; Peng and Fussenegger, 2009), demonstrating the potential 

of combining effector genes. In addition to effector gene overexpression, downregulating 

endogenous genes might be equally important for increasing qp (Feichtinger et al., 2016; Harreither 

et al., 2015). Finally, supplementing small-molecule chemical chaperones combined with effector 

gene overexpression has been shown to exceed the limits of functional heterogeneity present in the 

CHO-S host cell line (Johari et al., 2015). 

When modulating the expression of multiple effector genes, the relative stoichiometry between 

gene transcripts (gene dosage) becomes an important aspect to consider to obtain an optimal effect 

on qp (Xiao et al., 2014). However, qp is not the only relevant factor: the time integral of viable cell 

density (accumulated viable cell number) and product quality attributes are important measures to 

control in production bioprocesses for increasing the product yield (Gramer, 2014; Kim et al., 

2012). This is not a simple task, because process parameters (for example metabolite concentration 

and osmolality) in a bioreactor can change throughout a bioprocess (Justice et al., 2011). These 

dynamic changes affect the overall physiology and fitness of the cell and are likely to affect 

transcription rates in a promoter-specific manner (Brown and James, 2015). Such bioprocess-

dependent variables can therefore interfere with the gene dosage of single and multiple effector 

genes. Thus, highly context-specific promoter designs are needed to simultaneously control the 

expression level of multiple effector genes during production bioprocesses (see recent review 

(Brown and James, 2015)). In combination with improved designs of vector elements, site-specific 

integration of expression cassettes into so-called safe harbour sites (Papapetrou et al., 2011) in the 

CHO genome has the potential of enabling predictable and stable expression levels of effector genes 

in clonally derived cell lines. Based on the game-changing CRISPR-Cas9 technology (Mali et al., 

2013), site-specific integration into CHO cells is now possible at a relatively low cost with 

applicable efficiencies (Lee et al., 2016, 2015). 

The global cellular view of systems biology and ’omics-based approaches holds a unique 

potential to identify pathways and gene networks comprising novel effector genes (Datta et al., 

2013; Gutierrez and Lewis, 2015; Kildegaard et al., 2013). These networks would most likely be 

tedious to identify using a classical reductionist’s approach where typically only a few genes are 

being tested. Indeed, as recently stated by Clarke and Lee (2014), the CHO community is currently 

generating ’omics data at an ever-increasing rate. This is supported by the following non-exhaustive 

examples on CHO ’omics studies: genomics (Lewis et al., 2013; Xu et al., 2011), transcriptomics 

(Becker et al., 2011; Doolan et al., 2008), translatomics (Courtes et al., 2013), proteomics (Baycin-

Hizal et al., 2012; Carlage et al., 2009), metabolomics (Selvarasu et al., 2012; Zang et al., 2011) and 

integrative ’omics (Clarke et al., 2012). Moreover, a consensus genome-scale reconstruction of 
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CHO cell metabolism has now been established (Hefzi et al., 2016) which potentially opens up new 

designs of CHO cell lines (Kaas et al., 2014). In fact, using the genome-scale model to assess 

resource utilization suggests modulating expression of effector genes related to the secretory 

pathway is a more efficient way of improving qp compared to typical bioprocess treatments such as 

sodium butyrate and hypothermia (Hefzi et al., 2016). 

As mentioned by Hussain et al. (2014), some CHO ’omics studies were probably hampered by 

clonal variation (Fig. 2), because only a few monoclonal cell lines were compared. As previously 

described, CHO cells – even within a host cell line – are functionally and genomically diverse and 

only a fraction of the cells are universally competent in terms of r-protein production (O’Callaghan 

et al., 2010). Moreover, the ‘omics profile of gene-amplified clonally derived high producer cells 

are probably vastly different compared to before transfection, due to, for example, adaption to ER 

stress. Thus, an ’omics profile of a high producer might comprise information on the end point of 

coping with a high secretion load. However, the profile does not necessarily contain any 

information on the cellular mechanism(s) involved in coping with the initial secretion load that the 

cell is subjected to right after transfection and/or gene amplification events. Instead, the intrinsic 

capability for coping with the initial secretion load is more likely to be found in non-transfected 

cells (non-adapted cells; Fig. 2). In fact, Harreither et al. (2015) were able to show that the 

capability to obtain high qp from transient expression is reflected in the native transcriptome of host 

cell line subclones. Besides being a potential source of novel candidate effector genes, ’omics-based 

profiling of non-adapted monoclonal cells holds the potential to give fundamental insight into the 

functional heterogeneity of CHO cells. 

Historically, the CHO lineage was not generated for r-protein production but for the 

investigation of molecular and classical cell genetics (Wurm, 2013). Moreover, CHO cells do not 

originate from dedicated secretory tissues like plasma cells and β-cells. By default, CHO cells 

therefore seem to be a suboptimal cell line for r-protein production, with many opportunities for 

improvement. The significant advances achieved through the ectopic expression of effector genes 

(Fischer et al., 2015) are likely only the tip of the iceberg, as relatively few of the approximately 

20,000 genes in the Chinese hamster genome (Kremkow et al., 2015; Lewis et al., 2013) have been 

investigated. Furthermore, combining effector genes increases the number of possible test 

conditions dramatically. However, the number of possible test conditions can be reduced through 

systems biology- and ‘omics-based approaches. Despite valuable guidance from systems biology, 

several novel effector genes (single genes and combinations) remain to be investigated. In 

conclusion, the cellular and experimental factors described here will likely aid future investigations 

of effector genes and thereby accelerate the development of CHO cell lines with optimized 

secretory capacity. 
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Tables 

Table 1. Studies on how ectopic expression of protein disulphide isomerase (PDI) affects volumetric productivity or qp of r-proteins in 

CHO cells. 

r-protein 

and 

reference 

r-protein 

expression
a
; 

clonality
b
 

Post-

transcripti

onal 

bottleneck 

Orig

in of 

PDI 

PDI 

expression
a
; 

clonality
c
 

Gene 

dosage 

Host cell; 

cell culture 

Effect on titer/qp 

Interleukin-

15 

(Davis et al., 

2000) 

SGE; 1 

monoclonal 

cell line 

Not 

investigated 

Hum

an 

SGE; quasi-

polyclonal 

Single gene 

dose  

CHO-

DXB11; 2-3 

days batch 

culture 

No effect 

Fc-fusion 

protein 

(Davis et al., 

2000) 

Stable 

expression; 1 

monoclonal 

cell line 

Not 

investigated 

Hum

an 

SGE; quasi-

polyclonal and 3 

mono-

monoclonal cell 

lines 

3 clones 

with 

different 

levels of 

PDI 

expression  

CHO-

DXB11; 2-3 

days batch 

culture 

Polyclonal: No effect 

Mono-monoclonal: 2-

fold decrease in titer for 

clone with highest PDI 

expression 

MAb 

(Borth et al., 

2005) 

SGE; 1 

monoclonal 

cell line 

Not 

investigated 

Not 

re-

porte

d 

SGE; quasi-

polyclonal 

Single gene 

dose  

CHO dhfr
- 
; 3 

days batch 

culture 

1.37-fold increase in qp 

Thrombopoie

tin 

(Mohan et al., 

2007) 

SGE; 1 

monoclonal 

cell line 

Not 

investigated 

CH

O 

IE; 2 mono-

monoclonal cell 

lines 

Single gene 

dose 

CHO-

DXB11; 3 

days batch 

culture 

No effect 

MAb 

(Mohan et al., 

2007) 

SGE; 1 

monoclonal 

cell line 

Not 

investigated 

CH

O 

IE; 2 mono-

monoclonal 

lines 

Single gene 

dose 

DG44; 2 

days batch 

culture 

1.15–1.27-fold increase 

in qp 

MAb 

(Hayes et al., 

2010) 

SGE; 1 

monoclonal 

cell line 

Not 

investigated 

Hum

an 

TGE; 1 mono-

monoclonal line 

Single gene 

dose  

CHO-K1SV; 

2 days batch 

culture 

No effect 

MAb (4 

variants) 

TGE 

(episomal-

Yes 

(predicted 

Hum

an 

TGE; polyclonal Single gene 

dose 

CHO-K1 

EB27; 10 

No effect for 3 variants 

and 1.3-fold increase in 
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(Pybus et al., 

2014) 

replication); 

polyclonal 

by 

modelling) 

days fed-

batch culture 

qp for 1 variant. 

Fc-fusion 

protein 

(Johari et al., 

2015) 

TGE; 

polyclonal 

Yes Hum

an 

TGE; polyclonal 3 gene doses CHO-S; 3 

days batch 

culture 

Gene dosage/effect on 

qp: 10%/no effect, 

20%/1.2-fold increase 

(1.4-fold increase in 

aggregate formation), 

40%/1.3-fold increase.  

α1-antitrypsin 

(Hansen et 

al., 2015) 

TGE; 

polyclonal 

Not 

investigated 

Mou

se 

TGE; polyclonal Single gene 

dose 

CHO-S; 3 

days batch 

culture 

1.2-fold decrease in qp 

C1 esterase 

inhibitor 

(Hansen et 

al., 2015) 

TGE; 

polyclonal 

Not 

investigated 

Mou

se 

TGE; polyclonal Single gene 

dose 

CHO-S; 3 

days batch 

culture 

1.6-fold decrease in qp 

MAb 

(Our 

unpublished 

data) 

TGE; 

polyclonal 

Not 

investigated 

Mou

se 

TGE; polyclonal Single gene 

dose 

CHO-S; 3 

days batch 

culture 

1.3-fold decrease in qp 

a)
 For definition and abbreviation of expression platforms, see Table 2. 

b) 
Clonality of cells expressing the r-protein before transfection of the effector gene (SGE). r-proteins and effector genes are co-expressed in 

TGE platforms (polyclonal). For definition of clonality, see Figure 2. 
c) 

Clonality of cells expressing PDI. For definition of clonality, see Figure 2. 
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Table 2. Selected expression platforms available for analysing how effector genes affect qp in CHO 

cells.  

 Transient gene 

expression 

(TGE)
a
 

Stable 

episomal 

expression 

(SEE)
b
 

Inducible 

expression 

(IE)
c
 

Stable gene 

expression 

(SGE)
d
 

Time from transfection to 

answer: 
2-3 days

e
 ~2 weeks >2 months >2 months 

Gene dosage easily titrated: Yes No Yes No 

Genes easily combined: Yes No No No 

Transfection stress and 

variability: 

Yes No No No 

Cells adapted to ER stress: No (No)
f
 No Yes 

Secretion bottleneck easily 

obtained: 
Yes (Yes)

g 
No Yes 

Clonality: Polyclonal Polyclonal Mono-

monoclonal
h
 

Mono-

monoclonal
h
 

Clonal variation: No No Yes Yes 

Validation by SGE needed: Yes Yes Yes No 
a)

 Transient, plasmid-based co-expression of r-protein and effector genes. Examples: (Hansen et al., 

2015; Johari et al., 2015; Ku et al., 2008; Tastanova et al., 2015). 
b) 

Stable episomal co-expression of r-protein and effector genes after antibiotic-based selection 

(without selection resembles TGE). No published examples of co-expression are available, but the 

expression system is described here: (Kunaparaju et al., 2005; Silla et al., 2006). The r-protein gene 

and effector gene must be co-expressed from the same plasmid to prevent a drift in copy number 

between the two genes (see ‘Gene dosage and combining genes’ in section 7 for details). 
c) 

Inducible expression of a stably integrated gene encoding the r-protein in a clonally derived cell 

line constitutively expressing an effector gene of interest. No reported examples of this specific 

setup are available to the best of the authors’ knowledge, but examples of the expression system are 

described here: (Mohan et al., 2007; Mohan and Lee, 2010). 
 

d) 
Constitutive (stable) co-expression of stably integrated genes encoding r-protein and effector 

genes in clonally derived cell lines. Examples: (Dreesen and Fussenegger, 2011; Haredy et al., 

2013; Tastanova et al., 2015). 
e)

 Features regarded as advantages are highlighted in boldface type. 
f)
 See ‘ER stress’ in section 7 for details. 

g)
 See ‘Secretion bottleneck’ in section 7 for details.

 

h)
 Quasi-polyclonal cell lines can also be used; however, mono-monoclonal cell lines are commonly 

used. For definition of quasi-polyclonal and mono-monoclonal cell lines, see Fig. 2. 
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Figure legends 

Figure 1. Cellular and experimental factors affecting the biosynthetic pathway of r-proteins in 

CHO cells. Graphical representation of a CHO cell co-expressing an r-protein (gene, mRNA, 

polypeptide and protein in red letters) and an effector gene (gene and protein in blue letters). Effects 

from external factors are indicated with dashed arrows. Effector protein-mediated effects are shown 

with thin line arrows, and whether these effects are direct or indirect through interactions with an 

unknown DNA or protein element (element X) are illustrated. Nucleus, ER, Golgi and transport 

vesicles are depicted in the upper half of the cell. Since localization of effector proteins is gene-

dependent, cytoplasmic organelles are not depicted in the lower half of the cell. PTM, post-

translational modification. 

 

Figure 2. Clonal variation in stable CHO cell lines. A typical process of generating a clonally 

derived stable CHO cell line co-expressing an r-protein and an effector gene is illustrated. CHO 

cells are depicted as circles, and the red circle is a high-producer cell clone selected for transfection 

of the effector gene. To depict the heterogeneity within the cell pools, the qp level of each cell is 

illustrated as black and grey pie charts for transient and constitutive expression of the r-protein, 

respectively. Clonality of each phase is indicated. Quasi-polyclonal and mono-monoclonal mean 

that the polyclonal cell line and monoclonal cell line, respectively, both originate from a 

monoclonal r-protein producer cell line. Whether cells have adapted to expression of the r-protein is 

indicated (see ‘ER stress’ in Table 2). The extent of clonal variation throughout the process is 

depicted and is defined as the possible phenotypic difference from an average cell in the host cell 

line. Transfection-mediated stress is depicted (see ‘Transfection stress’ in Table 2). SCS: single-cell 

sorting. 

 

Figure 3. Secretion bottleneck and ER stress. A) Schematic depiction of a secretion bottleneck 

upon co-expression of an r-protein and an effector gene. The black solid line shows the relationship 

between translation rate of an r-protein and qp. The grey solid line illustrates that expression of 

certain effector genes gives rise to a positive effect on qp only when a secretion bottleneck is 

present. The grey and black dashed lines indicate the onset translation rate for a secretion bottleneck 

with and without expression of a qp-increasing effector gene, respectively. B) Schematic graph 

showing how secretion bottlenecks affect ER stress levels. Same colour code as in panel A is used 

except for the red line, which indicates the threshold between anti- and pro-apoptotic ER stress 

levels. 
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