
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Photonic arbitrary waveform generator based on Taylor synthesis method

Liao, Shasha; Ding, Yunhong; Dong, Jianji; Yan, Siqi; Wang, Xu; Zhang, Xinliang

Published in:
Optics Express

Link to article, DOI:
10.1364/OE.24.024390

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Liao, S., Ding, Y., Dong, J., Yan, S., Wang, X., & Zhang, X. (2016). Photonic arbitrary waveform generator
based on Taylor synthesis method. Optics Express, 24(21), 24390-24400. DOI: 10.1364/OE.24.024390

http://dx.doi.org/10.1364/OE.24.024390
http://orbit.dtu.dk/en/publications/photonic-arbitrary-waveform-generator-based-on-taylor-synthesis-method(d736134b-bfab-46f4-abca-17201a6b44cc).html


Photonic arbitrary waveform generator based 
on Taylor synthesis method 

SHASHA LIAO,1 YUNHONG DING,2 JIANJI DONG,1,* SIQI YAN,1,2 XU WANG,1 
AND XINLIANG ZHANG

1 
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 
Wuhan 430074, China 
2Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark 
*jjdong@mail.hust.edu.cn 

Abstract: Arbitrary waveform generation has been widely used in optical communication, 
radar system and many other applications. We propose and experimentally demonstrate a 
silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on 
Taylor synthesis method. In our scheme, a Gaussian pulse is launched to some cascaded 
microrings to obtain first-, second- and third-order differentiations. By controlling amplitude 
and phase of the initial pulse and successive differentiations, we can realize an arbitrary 
waveform generator according to Taylor expansion. We obtain several typical waveforms such 
as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian 
waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time 
mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any 
spectral disperser or large dispersion, which are difficult to fabricate on chip. Our scheme is 
compact and capable for integration with electronics. 
© 2016 Optical Society of America 

OCIS codes: (320.5540) Pulse shaping; (070.1170) Analog optical signal processing. 
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1. Introduction 

Optical arbitrary waveform generation (OAWG) attracts many attentions in recent years 
because it plays a critical role in many applications, such as generating optical ultra-wide band 
(UWB) signal [1,2], optical pulse radar [3], all optical temporal differentiator [4,5], and test of 
optical communication system. Many OAWG schemes have been proposed and they can be 
classified into several different methods according to the principle. The widely adopted ones 
are based on Fourier synthesis and frequency-to-time mapping. The schemes based on Fourier 
synthesis method usually consist of a source of optical frequency comb, spectral dispersers 
with high resolution and complex amplitude and phase modulation arrays. These schemes have 
very good performance and have been realized by different materials, such as mature fiber 
grating techniques [2,6–8], indium phosphide (InP) platform [9], silica on silicon [10,11], 
silicon nitride [12,13] and silicon platform [14–16]. However, high resolution integrated 
spectral disperser is still a big challenge for the chip fabrication resulting in the difficulty to 
manipulate the comb lines one by one when the comb spacing is very small. And the phase of 
comb lines is very sensitive to environmental fluctuation, making phase control very difficult 
and requiring coherent detection. The schemes based on frequency-to-time mapping usually 
consist of short pulse source, spectral shaper and dispersion medium which is used to realize 
the mapping. The source can be coherent light source [17,18] or incoherent light source [19]. 
And the spectral shaper can be obtained by using mature fiber grating techniques [20,21] or 
photonic integrated circuits. However, the dispersion medium is single mode fiber (SMF) or 
dispersion compensation fiber (DCF) in most of the schemes. To implement large dispersion on 
chip is still a big challenge. 

In the paper, we propose and demonstrate a silicon on insulator (SOI) on chip optical 
arbitrary waveform generator based on Taylor synthesis method. Unlike other schemes based 
on Fourier synthesis method, we control the amplitude and phase of the differential waveform 
(Taylor series in time domain) of each tap instead of optical frequency comb lines. By 
thermally adjusting the amplitudes and phases of initial pulse, first-, second- and third-order 
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differential waveforms generated by cascaded microrings, we obtain several typical waveforms 
such as triangular waveform, sawtooth waveform, square waveform, flat-top waveform and 
Gaussian waveform, and so forth. Our scheme is compact, small power consumption and 
capable for integration with electronics [22,23]. Comparing with other schemes, our scheme 
has no requirements of high frequency resolution disperser, coherent detection and large 
dispersion. 

2. Principle 

In previous works, arbitrary waveforms were mostly obtained by using Fourier expansion 
method [2,6–17]. However, an arbitrary waveform can also be expanded by Taylor series [24] 
with 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 30 0 0 0
0

1! 2! 3! n!

n
n

n

f f f f
f t f t t t t R t

′ ′′ ′′′
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where f (n)(t) is n-th derivative of f(t), Rn(t) is the remainder of Taylor formula. Because Rn(t) is 
infinitesimal of higher order than tn, we can ignore it. n-th derivative g(n)(t) of Gaussian pulse 
g(t) can be expressed as 
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i
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where Ai is a constant coefficient which can be calculated from the differentiation. When we 
combine original pulse and different order derivatives, we can get an equation as below 

 ( ) ( ) ( ) ( ) ( ) ( )
( )

0 1 2 3 2 3
0 1 2 3

n
n n

n

B g t B g t B g t B g t B g t
C C t C t C t C t

g t

′ ′′ ′′′+ + + + ⋅⋅⋅ +
= + + + + ⋅⋅⋅ +  (3) 

The right part of the Eq. (3) is in the same form with Eq. (1). So we can obtain arbitrary 
waveforms by combining a Gaussian pulse and its different order derivatives with different 
weighting factors. In fact, other pulses more than Gaussian pulse can be the input pulse in 
Taylor synthesis method [25]. 

Figure 1 compares the schematic diagrams of arbitrary waveform generation by Fourier 
synthesis method and Taylor synthesis method. The upper part of Fig. 1 is the arbitrary 
waveform generation by Fourier synthesis method. This method combines a series of 
sinusoidal waves with different harmonic frequencies. The bottom part is based on Taylor 
synthesis method. A Gaussian pulse and its different order derivatives are combined with 
different weights to generate arbitrary waveforms. The schematic diagram of our on-chip pulse 
shaper is also shown in Fig. 2. The pattern structure is monolithically integrated on an SOI 
wafer, and it has the advantages of easy fabrication and compact footprint. The input Gaussian 
signal is divided into four taps by cascaded multimode interferometer (MMI) couplers, and 
then propagates through several microring resonators (MRRs), which are used to generate 
differential waveforms of the Gaussian pulse. An N-order differential can be considered as the 
input pulse multiplied by a filter with the transfer function of (j(ω-ωc))

N, where ωc is the optical 
carrier frequency. And the transfer function of an MRR just meets this requirement under 
critical coupling condition [24], so a single MRR can be a first-order differentiator and 
cascaded MRRs can realize a high-order differentiator. There is no MRR in the first tap, so the 
output of this tap is the initial Gaussian pulse. There is one MRR in the second tap resulting in 
first-order differentiation. Similarly, the output of the third and fourth taps is the second- and 
third-order differentiations of the input Gaussian pulse. There are an amplitude modulation unit 
(realized by a Mach-Zehnder interferometer (MZI) with one arm phase-modulated) and a phase 
modulation unit in each tap. All MRRs and phase modulation units are controlled by thermal 
electrodes. Assuming that the input Gaussian pulse and its derivatives are normalized and the 
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amplitudes and phases of them are set with α0, α1, α2, α3 and φ0, φ1, φ2, φ3, respectively, then the 
output of the pulse shaper can be expressed as 

 ( ) ( ) ( ) ( )
3

0

expi
i i

i

a t g t jα ϕ
=

=  (4) 

g(i)(t) represents the i-th order derivative of Gaussian pulse with peak amplitude normalized to 
one. Our scheme has some advantages comparing with the schemes based on Fourier synthesis 
and frequency-to-time mapping. It is more compact because of using the MRRs as 
differentiators, and does not require a precise disperser for line by line shaping or an on-chip 
large dispersion. 

 

Fig. 1. Schematic diagrams of arbitrary waveform generations by Fourier synthesis method and 
Taylor synthesis method. 

 

Fig. 2. Schematic diagram of the proposed on-chip pulse shaper. 
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First of all, the central frequency of input Gaussian pulse is aligned to the notch of the 
MRRs to obtain the differentiations. And by jointly tuning both amplitude and phase arrays of 
the input Gaussian pulse and its derivatives we can achieve several typical waveforms. The 
amplitude and phase array of target waveform can be calculated according to Taylor expansion. 
Figure 3(a) shows the input Gaussian pulse with a full width at half maximum (FWHM) of 61.8 
ps. By setting the amplitude array and phase array to α = [1, 0.27, 0.32, 0.09] and φ = [0, 0.5π, 0, 
0.5π], respectively, we can obtain a square waveform which is shown in Fig. 3(b). The FWHM 
of the simulated square waveform is 113.1 ps. Figure 3(c) shows an isosceles triangular 
waveform generated by this pulse shaper. In this case, the amplitude array and phase array are α 
= [0.25, 0.15, 1, 0.51] and φ = [0, 0.6π, 0, 1.47π], respectively. The FWHM of the simulated 
isosceles triangular waveform is 121.2 ps. Then we simulate a super-Gaussian waveform by 
setting the amplitude and phase array to α = [1, 0.03, 0.31, 0.06] and φ = [0, π, 0, 1.35π], 
respectively. In order to achieve two opposite sawtooth waveforms, we can just set the 
amplitude and phase arrays to α = [0.41, 0.39, 1, 0.42], φ = [1.1π, 0.99π, 1.38π, 0] and α = [0.46, 
0.79, 1, 0.53], φ = [0, 1.03π, 0.2π, 1.25π], respectively. The corresponding simulated 
waveforms are shown in Figs. 3(d), 3(e) and 3(f). The FWHMs of the simulated super-Gaussian 
pulse and the sawtooth waveforms are 105.1 ps, 85.9 ps and 73.6 ps. In order to demonstrate 
that our scheme can generate more general waveforms, we simulated two opposite oblique 
triangular waveforms and a Gaussian waveform. The amplitude and phase arrays of the two 
opposite oblique triangular waveforms are α = [1, 0.88, 0.88, 0.32], φ = [0, 1.95π, 1.7π, 0] and α 
= [1, 0.06, 0.03, 0.09], φ = [1.9π, π, 0, 1.5π], respectively, and the FWHMs are 68.1 ps and 94.4 
ps. The corresponding simulated waveforms are shown in Figs. 3(g) and 3(h). And the 
Gaussian waveform with an FWHM of 85.9 ps is shown in Fig. 3(i). And the amplitude and 
phase arrays are α = [1, 0, 0.21, 0.02] and φ = [0, 0, 0, 1.3π], respectively. Finally, we set the 
amplitude and phase arrays to α = [0, 1, 0, 0] and φ = [0, 0, 0, 0], respectively, and we can obtain 
the first-order differentiation of the input pulse which is shown in Fig. 3(j). The amplitude and 
phase arrays of all simulated waveforms are shown in Table 1 for concision. The ideal 
waveforms of the corresponding waveforms are also shown in the Figs. 3(b)-3(j) (red dash line) 
for comparison. As shown in Figs. 3(c)-3(j), the simulated waveforms are in good agreements 
with the ideal ones. The simulated square waveform which is shown in Fig. 3(b) has larger 
distortion with the ideal one than other simulations, because the square waveform has very 
sharp edges which need higher-order differentiation components. 
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Fig. 3. Simulated waveforms (blue solid line) of the pulse shaper and the ideal ones (red dash 
line) of (a) input Gaussian pulse, (b) square waveform (the amplitude array and phase array are 
[1, 0.27, 0.32, 0.09] and [0, 0.5π, 0, 0.5π], respectively), (c) isosceles triangular waveform (the 
amplitude array and phase array are [0.25, 0.15, 1, 0.51] and [0, 0.6π, 0, 1.47π], respectively), (d) 
super-Gaussian waveform (the amplitude array and phase array are [1, 0.03, 0.31, 0.06], and [0, 
π, 0, 1.35π], respectively), (e) and (f) sawtooth waveforms (the amplitude array and phase array 
are [0.41, 0.39, 1, 0.42], [1.1π, 0.99π, 1.38π, 0] and [0.46, 0.79, 1, 0.53], [0, 1.03π, 0.2π, 1.25π], 
respectively), (g) and (h) oblique triangular waveforms (the amplitude array and phase array are 
[1, 0.88, 0.88, 0.32], [0, 1.95π, 1.7π, 0] and [1, 0.06, 0.03, 0.09], [1.9π, π, 0, 1.5π], respectively), 
(i) Gaussian waveform (the amplitude array and phase array are [1, 0, 0.21, 0.02] and [0, 0, 0, 
1.3π], respectively) and (j) first-order differentiation (the amplitude array and phase array are [0, 
1, 0, 0] and [0, 0, 0, 0], respectively). 

Table 1. Amplitude and phase arrays of the simulated waveforms 

Waveform type Amplitude array Phase array 
α0 α1 α2 α3 φ0 φ1 φ2 φ3 

Square 1 0.27 0.32 0.09 0 0.5π 0 0.5π 
Isosceles triangular 0.25 0.15 1 0.51 0 0.6π 0 1.47π 

Super-Gaussian 1 0.03 0.31 0.06 0 π 0 1.35π 
Sawtooth 1 0.41 0.39 1 0.42 1.1π 0.99π 1.38π 0 
Sawtooth 2 0.46 0.79 1 0.53 0 1.03π 0.2π 1.25π 

Oblique triangular 1 1 0.88 0.88 0.32 0 1.95π 1.7π 0 
Oblique triangular 2 1 0.66 0.03 0.09 1.9π π 0 1.5π 
Gaussian waveform 1 0 0.21 0.02 0 0 0 1.3π 

First-order differentiation 0 1 0 0 0 0 0 0 
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3. Experimental verification 

 

Fig. 4. Metallurgical microscopy image of the on-chip pulse shaper, (a) whole graph, details of 
(b) MZI and (c) MRR. 

The microscopic image of our pulse shaper is shown in Fig. 4(a). The pulse shaper is fabricated 
on an SOI wafer with 250 nm thick top silicon layer and 3 μm thick buried oxide (BOX). The 
height of the waveguide is 250 nm and the width is 450 nm. The six MRRs are all the same size 
with a radius of 20 μm. In order to get larger extinction ratio, the MRRs are all add-drop ones, 
and the two gaps of the MRR are 230 nm and 240 nm, respectively. The size of our pulse shaper 
is about 4 mm2. We use fully etched apodized grating couplers [26] for the coupling between 
fiber and chip. There are five steps in the fabrication. The first step is to simultaneous fabricate 
the grating couplers and silicon waveguides. Here we use a single step of E-beam lithography 
and inductively coupled plasma reactive ion etching (ICP-RIE). The second step is to deposit a 
700 nm thick silica on the sample. Depositing another 700 nm layer of 
boro-phospho-silicate-glass (BPSG) is the third step. It is annealed in nitrogen condition and 
for planarizing the surface. After that, the top glass layer is thinned to 1μm by buffered 
hydrofluoric acid (BHF) etching. The last step is to fabricate the heaters. The heater patterns 
(100 nm Ti) are formed by E-beam lithography followed by metal deposition and lift-off. The 
fiber-to-fiber loss of our pulse shaper is about 22 dB when there is no voltage applied to the 
electrodes. And the loss of the waveguide and grating are 2 dB/cm and 3 dB/port, respectively. 
And the loss of the MMI and MMR are both less than 0.2 dB. And the loss of the modulators is 
less than 0.4 dB. All four taps are fabricated with metal thermal conductors to tune the 
amplitude and phase respectively. And the MRRs are also fabricated with metal thermal 
conductors to tune the resonant wavelengths. The insertion loss can be effectively reduced by 
introducing an aluminum mirror by flip-bonding process [27]. Figures 4(b) and 4(c) show the 
details of MZI and MRR. 

 

Fig. 5. Experimental setup of the arbitrary waveform generation with employing the on-chip 
pulse shaper. (TLD: tunable laser diode, PC: polarization controller, MZM: Mach-Zehnder 
modulator, BPG: bit pattern generator, EA: electronic amplifier, OTDL: optical time delay, 
EDFA: erbium-doped fiber amplifier, OSC: oscilloscope). 
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The experimental setup for the arbitrary waveform generation is shown in Fig. 5. A 
continuous wave (CW) light is emitted from the tunable laser diode (TLD). And the light is 
modulated by two cascaded Mach–Zehnder modulators (MZMs), which are driven by a bit 
pattern generator (BPG) at a bit rate of 10 Gbit/s with code “1000”. So the repetition period of 
the input Gaussian pulse is 400 ps. The wavelength of the CW light is aligned to the resonant 
wavelength of the MRRs. And the slight drifts of the resonant wavelengths of the MRRs are 
calibrated by the thermal electrodes. We use two polarization controllers (PCs) before the 
MZMs because of the polarization sensitivity. Two erbium doped fiber amplifiers (EDFAs) 
connected at the output of the MZMs are used to amplify the optical signal. An optical tunable 
delay line (OTDL) is used to synchronize the data signal applied on the MZMs. Two vertical 
grating couplers are used to couple the light from fiber to silicon waveguide and the output 
signal from waveguide to fiber. And another PC is also placed before the input grating coupler. 
To simplify the experiment operations, we use wire-bonding technique. Firstly, we bond the 
electrode pads on chip with the electrodes on a printed circuit board (PCB) and then external 
wires are pasted on the electrodes by conductive adhesive. We use independent power supplies 
to apply variable voltages to the heaters by the external wire. And a high speed oscilloscope 
(OSC, Agilent 86100C) is used to measure the output temporal waveform. 

Figure 6(a) shows the measured input Gaussian pulse with a FWHM of 60 ps. The 
measured square waveform is shown in Fig. 6(b). The FWHM of the measured waveform is 
108.9 ps. In order to achieve this waveform, we should adjust all the voltages applied on the 
amplitude electrodes and phase electrodes to match with the simulated condition. In 
experiment, the differentiations have some loss when generated by MRRs, so the coefficient of 
the amplitude array is not the same with simulated one. The coefficients of the amplitude and 
phase arrays are shown in Table 2. We also achieve isosceles triangular waveform, which is 
shown in Fig. 6(c) as the blue solid line, and the FWHM is 125.2 ps. A super-Gaussian 
waveform with the FWHM of 107.4 ps is shown in Fig. 6(d). And two opposite sawtooth 
waveforms are shown in Figs. 6(e) and 6(f) with the FWHM of 84.4 ps and 70.4 ps, 
respectively. Figures 6(g) and 6(h) are two opposite oblique triangular waveforms with the 
FWHMs of 64.5 ps and 97.4 ps, respectively. And the Gaussian waveform is shown in Fig. 6(i), 
the FWHM of the measured waveform is 83.4 ps. And at last the measured first-order 
differentiation is shown in Fig. 6(j), the FWHMs is 131.1 ps. The ideal ones are also shown as 
the red dash line for comparison. In order to analyze the distortions between the measured 
waveforms and the ideal ones, we use a total average error to represent the distortions. The 
error can be expressed as: 

 ( ) ( )1
m i

T

Error P t P t dt
T

= − ⋅  (5) 

where Pm(t) and Pi(t) are the power of measured waveforms and ideal waveforms, respectively, 
and T is the time period which is 400 ps in our scheme. The average errors of the measured 
waveforms are shown in Table 3. The maximum average error is less than 10%, which means 
that the measured waveforms are consistent to the ideal ones, so our scheme has a good 
performance on waveform generation. 
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Fig. 6. Measured waveforms (blue solid line) of the pulse shaper and ideal ones (red dash line) of 
(a) input Gaussian pulse, (b) square waveform, (c) isosceles triangular waveform, (d) 
super-Gaussian waveform, (e) and (f) sawtooth waveform, (g) and (h) oblique triangular 
waveform, (i) Gaussian waveform and (j) first-order differentiation. 

Table 2. Amplitude and phase arrays of the measured waveforms 

Waveform type 
Amplitude array Phase array 

α0 α1 α2 α3 φ0 φ1 φ2 φ3 
Square 1 0.57 0.59 0.27 0 0.5π 0 0.5π 
Isosceles triangular 0.14 0.17 1 0.84 0 0.6π 0 1.47π 
Super-Gaussian 1 0.06 0.57 0.18 0 π 0 1.35π 
Sawtooth 1 0.22 0.45 1 0.69 1.1π 0.99π 1.38π 0 
Sawtooth 2 0.25 0.91 1 0.87 0 1.03π 0.2π 1.25π 
Oblique triangular 1 0.53 1 0.87 0.52 0 1.95π 1.7π 0 
Oblique triangular 2 0.71 1 0.04 0.2 1.9π π 0 1.5π 
Gaussian waveform 1 0 0.39 0.06 0 0 0 1.3π 

First-order differentiation 0 1 0 0 0 0 0 0 

Table 3. Average errors of the measured waveforms 

Waveform type Error Waveform type Error Waveform type Error 

Square 9.9% 
Isosceles 
triangular 

3.3% Super-Gaussian 3.4% 

Sawtooth1 6.5% Sawtooth2 6.8% 
Oblique 

triangular 1 
4.0% 

Oblique triangular 2 3.4% Gaussian 3.3% 
First-order 

differentiation 
6.5% 

The average errors of the generated waveforms mostly result from the limitation of number 
of the taps. And if we increase taps in our pulse shaper, the average errors can be reduced. We 
simulate the average errors of the triangular waveform and square waveform using different 
taps, and the results are shown in Fig. 7. The red circle dot is the calculate errors of the 
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triangular waveform, and the blue square is that of the square waveform. The orange and black 
lines are the numerical fittings of the measured dots. The error of the triangular waveform 
decreases from 3.2% to 1.4% when the number of taps increasing from 4 to 11. And the error of 
square waveform decreases from 7.5% to 5%. So we can obtain more precise waveform with 
larger number of taps. And in our scheme, there should be n-1 MMRs on the n-th tap, the whole 
system will be quite huge when n is large. But we can use an asymmetric MMI after the (n-1)-th 
differentiation to split the signal to two taps: one tap for amplitude and phase modulation, and 
the other tap is launched into an MMR for the n-th differentiation. The MMI can be a power 
splitter and balancer simultaneously. In this way, the chip size of the pulse shaper will be 
greatly reduced. 

 

Fig. 7. Average errors of the triangular waveform and square waveform with different taps. 

Complete controlling of the amplitude modulators and phase modulators is very important 
in our scheme. For simplification, we only test the amplitude modulators. We adjust the central 
wavelength of the input pulse to make it far from the resonant wavelength of the MRRs. And 
we jointly tune amplitude modulators on each tap to make the output power zero. Then we 
choose one of the amplitude modulator and vary the voltage from 0 V to 7 V. Figure 8(a) shows 
the output power varying with the voltage applied on to the electrode as the blue dots. The red 
solid line is a numerical fitting of the measured dot. Figure 8(b) shows four examples of 
different output power of the output pulse. It is obvious that the amplitude modulator in our 
scheme can be completely controlled. The power consumption varies when the pulse shaper is 
in different functions, and the maximum power consumption is about 350 mW. The bandwidth 
of the generated waveform is limited by the bandwidth of input Gaussian pulse and the 
operation bandwidth of the MRRs. In our scheme the operation bandwidth of the MRRs is 
about 10.5 GHz. 

 

Fig. 8. (a) Output power varies with the voltage applied on to the electrode (measured power is 
shown as blue dot and numerical fitting is shown as red solid line), and (b) four examples of 
different output power of output pulse. 
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4. Conclusions 

We have proposed and demonstrated a photonic arbitrary waveform generator based on a 
silicon integrated circuit. Unlike other widely adopted schemes using Fourier synthesis 
method, our scheme is based on Taylor synthesis method. Firstly, we use cascaded MRRs to 
generate first-, second- and third-order differentiations of the input Gaussian pulse. Then, we 
adjust the voltages to control the amplitudes and phases of the initial pulse, first-, second- and 
third-order differentiations. Finally, we combine these signals to implement several typical 
waveforms such as square waveform, isosceles triangular waveform, sawtooth waveform, 
oblique triangular waveform, Gaussian waveform and super-Gaussian waveform. And we also 
analyzed the distortions between the generated waveforms and ideal ones and verified the 
complete amplitude control of our pulse shaper. Our scheme is compact because of employing 
MRRs, and has advantages of small power consumption and capability for integration with 
electronics. Comparing with Fourier synthesis schemes and frequency to time mapping 
schemes, our scheme does not require high frequency resolution disperser, coherent detection 
or large dispersion reducing the complexity of fabrication. 
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