Downloaded from orbit.dtu.dk on: Dec 18, 2017

Technical University of Denmark

=
—
—

i

Spectral Tensor-Train Decomposition for low-rank surrogate models

Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Bigoni, D., Engsig-Karup, A. P., & Marzouk, Y. M. (2014). Spectral Tensor-Train Decomposition for low-rank
surrogate models. Poster session presented at Spatial Statistics and Uncertainty Quantification on
Supercomputers, Bath, United Kingdom.

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


http://orbit.dtu.dk/en/publications/spectral-tensortrain-decomposition-for-lowrank-surrogate-models(4c94d968-b209-4871-98b1-218bdea7f415).html

I DTU Compute

ELU

o
o

#aPUlab

D T U C om@pute

Spectral tensor-train decomposition

for low-rank surrogate models

Daniele Bigoni*!, Allan P. Engsig-Karup!, Youssef M. Marzouk?

I Department of Applied Mathematics and Computer Science, Technical University of Denmark
> Department of Aeronautics and Astronautics, Massachusetts Institute of Technology

* Corresponding author: dabi@dtu.dk
Introduction

The construction of surrogate models is very important as a mean of acceleration in computational methods
for uncertainty quantification (UQ). When the forward model is particularly expensive compared to the
accuracy loss due to the use of a surrogate — as for example in computational fluid dynamics (CFD) — the
latter can be used for the forward propagation of uncertainty [7] and the solution of inference problems [4].

Problem setting

We consider f € L?*(|a,b]?), where d > 1 and
assume f is a computationally expensive func-
tion. Let € € [a, b be random variables entering
the formulation of a parametric problem. In the
context of UQ, we might want to:

e Compute relevant statistics
¢ Inquire the sensitivity of f to &
e Infer the distribution of &

In most real problems, these goals require an
high number of evaluations of f. Often the con-
struction of the surrogate and its evaluation in
place of the original f provides a good payoff.

Tensor-train decomposition

Let f be evaluated at all points on a tensor grid
X = @) x;, where x; = (z;);_, for j € [1,d].
Let A= f(X).

Discrete tensor-train approximation [5]

Forr = (1, Ty« s Td—1, 1), let A;r be s.t.
A(il, . ,id) — ATT(il, . ,id) + gTT(ily . ,id)
Arr= > Gilag, iy, 1) ... Galag_1, iq, @)

The construction can be built through the evalu-
ation of f on the most important fibers (Fig. 1),
detected using the TT-cross algorithm [6].

For example, let f(z,y) = oy sin(dr(z +y))
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Figure 2: TT-cross: selection of fibers.

¢ Existence of low-rank best approximation
e Memory complexity: linear in d

e Computational complexity: linear in d

It tackles the curse of dimensionality.
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Functional TI-decomposition

Using the spectral theory on (non-symmetric)
Hilbert-Schmidt kernels, we can construct
a functional counterpart of the discrete TT-
approximation.

Functional tensor-train approximation [1]

Forr=(1,r,...,74.1,1), let frr be s.t.

f(x) = frr(x) + Rrr(x)

r

fTT(X): Z 71((340,%1,041)°°°%z(04d—1,$d7 Oéd)

where v;(«;_1, -, ;) are orthogonal (see [1]).

frr 1s constructed through the eigenvalue de-
composition of Hermitian integral operators de-
fined in terms of f. It can be proved that [1]:

o for fixed r, frr is optimal
F _ exists and

oif IS continuous, then

0Lz
Vilag_1, -, ap) € Cﬁk(]k) for all k&, a1 and «.

The latter statement can be relaxed:

Let I ¢ R? be closed and bounded, and f &
L*(I) be a Holder continuous function with ex-
ponent > 1/2 such that f € H*(I). Then frr is
such that v;(a;1,-, a;) € HE (I;) for all j, o
and Q.-

Numerical Examples
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Figure 1: TT-cross

Software: http://www.compute.dtu.dk/~dabi/
Python PyPi: TensorToolbox

Spectral TT-decomposition

Let P : L2(I) — span ({®;};.) where {®;};" are
orthogonal polynomials:

N
Pnfrr =) &P;
i—0

Let [Ty : L(I) — span ({li}ﬁo), {1}V, being the
Lagrange polynomials:

where L™ is the Lagrange interpolation matrix.
Conclusions

e Tackles the curse of dimensionality.
e Spectral convergence on smooth functions.

Ongoing works

¢ Anisotropic heterogeneous adaptivity.
e Ordering problem.

e Application in the fields of coastal engineering
[2, 3] and geoscience.
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The method shows spectral
convergence on both the tests,
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even on f,, when there is no
analytical low-rank represen-
tation.

For d = 5, we compare the
non-adaptive STT-Projection
with the anisotropically adap-
tive Smolyak Sparse Grid.
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Ordering problem

TT and STT are negatively
affected by the wrong or-
dering of the dimensions,
leading to an increased
computational cost and se- ——
vere loss of accuracy. (a) Vicinity matrix
We propose a strategy to
find a good ordering.

15

5

102
# Func. eval

10°

6.0
5.4
4.8

14.2
13.6
13.0
12.4

1.8
1.2
0.6
0.0

161

14+

12f
10r

o N H [e)] (o]
T T T T

Iinsiinnnilinis

51916 6 1013 3 121417187 4 2111 9150 8

(c) Hierarchical clustering

(b) Undirected graph

We construct a vicinity matrix based on the 2nd order ranks of the
tensor. We then need to solve the Traveling Salesman Problem.
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