

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Training Convolutional Neural Networks for Translational Invariance on SAR ATR

Malmgren-Hansen, David; Engholm, Rasmus ; Østergaard Pedersen, Morten

Published in:
Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Malmgren-Hansen, D., Engholm, R., & Østergaard Pedersen, M. (2016). Training Convolutional Neural
Networks for Translational Invariance on SAR ATR. In Proceedings of EUSAR 2016: 11th European Conference
on Synthetic Aperture Radar (pp. 459-462). IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/84002112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/training-convolutional-neural-networks-for-translational-invariance-on-sar-atr(89eae6be-7d93-4b04-a7ab-f4d509820afc).html

Training Convolutional Neural Networks for Translational In-
variance on SAR ATR

David Malmgren-Hansen, Technical University of Denmark, dmal@dtu.dk, Denmark
Rasmus Engholm, Terma A/S, rae@terma.com, Denmark
Morten Østergaard Pedersen, Terma A/S, mdp@terma.com, Denmark

Abstract
In this paper we present a comparison of the robustness of Convolutional Neural Networks (CNN) to other classifiers
in the presence of uncertainty of the objects localization in SAR image. We present a framework for simulating simple
SAR images, translating the object of interest systematically and testing the classification performance. Our results
show that where other classification methods are very sensitive to even small translations, CNN is quite robust to
translational variance, making it much more useful in relation to Automatic Target Recognition (ATR) in a real life
context.

1 Introduction

Compared to classification studies on natural images,
Synthetic Aperture Radar (SAR) datasets are often
smaller and contain more biases. One of very few pub-
lic available SAR Automatic Target Recognition (ATR)
datasets is the Moving and Stationary Target Acquisition
and Recognition (MSTAR) that was collected during the
1990s. MSTAR contains several subsets with different
tasks to solve. One of these is the 10 target classifica-
tion task where 10 specific vehicles must be recognized.
Although it is an interesting problem this does not con-
tain much class variance. A more realistic scenario could
be how well general target classes like "tanks" that might
contain many different instances can be recognized from
other classes of vehicles like "cars" or "busses".
The targets in MSTAR are densely sampled along az-
imuthal object rotation, but far most images are taken
at 15◦ and 17◦ depression angles with almost no back-
ground variation.
Recent advances in Convolutional Neural Networks
(CNNs) for computer vision problems makes it interest-
ing to study the benefits of these algorithms on SAR prob-
lems as well. This has been done for the MSTAR dataset
by Morgan in [3]. In [3] a CNN classifier is applied to the
10 target classification task from MSTAR and it achieve
results similar to other state of the art methods bench-
marked on this problem, e.g. by [4], [5], [7] and [8]. Due
to the sparsity of object representation in the data, there
are more investigations to be made in order to find the
best classification models.
In this article we first show how to generate a simulated
dataset where the amount of translational variance is big-
ger than for the MSTAR dataset (see Section 2). We then
describe the design of the CNN used as well as the clas-
sification algorithms for comparison (see Section 3). Fi-
nally we show the results of the comparison (Section 4)
and conclude that the convolution layers in a CNN can
make it more invariant to translational variance, and su-

perior to other machine learning classification algorithms
(Section 5).

2 Data Simulation

For our SAR image simulations, the geometry consists of
a CAD model placed on a corrugated surface representing
the terrain. The surfaces are generated by selecting points
in an ground grid (x-y plane) and then picking the vertical
displacement (the z component) from a normal distribu-
tion with a given variance. The ground planes vertical
displacement is then low-pass filtered to give a smooth
and more natural terrain.
A highly simplified optical algorithm is used to trace mul-
tiple rays and find the intersection points between the in-
cident signal and the model and/or terrain. The cell value
in the image corresponds to the range / cross-range value
of the intersection point. Here a simple diffuse scattering
contribution is found from the angle between the surface
normal at the intersect point and the incident ray direc-
tion. Based on whether a ray intersects with the model
or terrain, the value of the cell is scaled with a scatter-
ing cross section representing the material (metal for the
target and soil for terrain).
Parameter values for the simulation model, such as ma-
terial reflection coefficients and background variation,
have been adjusted according to images from the MSTAR
dataset. This is done by manually defining boundaries in
an MSTAR image for background and target, and then
analyse the values from each region. The relationship be-
tween the median from the two sets of values was used to
define the relation between the reflection coefficients for
terrain and vehicle model in the simulation. The terrain
topology variation in our simulation is adjusted so his-
tograms from background pixels in a MSTAR image and
in a simulated image is most alike.
By adjusting the parameters in this way, we get a simu-
lated image that has a visual appearance close to the real

SAR images, despite using a simple simulation proce-
dure. In Figure 1 an image from the MSTAR dataset can
be seen together with a simulated image from our dataset.

Our simulation tool is implemented in python and GPU
accelerated with the VTK toolset. It takes approximately
2 minutes to simulate an image of 192x192 pixel resolu-
tion.

(a) MSTAR image of a
T62 tank.

(b) Simulated SAR image
of a leopard tank.

Figure 1: Comparison of an MSTAR image and a similar
vehicle modelled with our SAR simulation algorithm.

2.1 Dataset

Our dataset is constructed from 14 CAD models from 7
different vehicle classes, so each class has two instances.
When simulating the images, a background is chosen be-
tween 100 different generated examples and rotated ran-
domly. Then a model is placed with a given rotation
and images from seven different depression angles are
generated. A shadow mapping technique is used to re-
move points not visible from a the radar position so these
does not contribute to the simulation. We sample with
20◦steps of azimuthal object rotation which gives us 18
images per vehicle per depression angle. This is in to-
tal 1764 images of 192x192 pixel resolution and to look
most like MSTAR data our pixel spacing is 0.2 meter and
resolution 0.3 meter.

CAD model examples from each target class are shown
in Figure 2 along with a simulated SAR image of the
given model.

Figure 2: Examples on target instances and their sim-
ulated SAR image. Pixel values are clipped in order to
show the background in the simulated images.

When training our machine learning algorithms we ex-
tract sub-images of 128x128 pixels from our dataset.
This allow us to gradually extract datasets that have
higher translational variance of the target. Our method
is illustrated at Figure 3. The maximum distance away
from the center which our sub image can be extracted
is 192−128

2 = 32 pixels in each direction. We extract
datasets with different random translation levels within
32 pixels. By gradually increasing the level of random
translation we can measure how it effects the accuracy of
the algorithms.

Figure 3: Illustration of how sub-image extraction gives
us translational target variance.

3 Classifiers

The classifiers used in our study are all end-to-end learn-
ing based models. This means they all take raw pixel val-
ues as input and there are no hand crafted feature extrac-
tors preprocessing the data for the classifier. One of the
nice properties on Convolutional Neural Networks is its
ability to learn feature extractors in its convolution layers
and base a nonlinear decision boundary on top of this.
The data set described in Section 2.1 is split randomly
in five parts on which we make a 5-fold cross-validation
of all classifiers. This gives us training set sizes of 1411
samples and test sets of 353 samples for each fold. We
report performance of our classifiers as the fraction of
correct classifications averaged over the cross-validation.
The classifiers has been chosen to span complexity from
very simple classifiers (K-Nearest Neigbor) to state of
the art (Convolutional Neural Networks and Random
Forests). We have futhermore tested various subcompo-
nents of the CNN, the Multi Layer Perceptron i.e. the
fully connected layers in the CNN and the Softmax i.e
the output layer in the CNN.

3.1 Convolutional Neural Network

Our CNN model has 5 layers with trainable parameters,
3 convolutional and 2 fully connected hidden layers. We
train our model with a stochastic gradient descent (SGD)
algorithm minimizing the multiclass log-loss over our 7
target classes.

Layer kernels kernel size Dropout fraction
C1 18 9x9 0.25
C2 36 5x5 0.25
C3 120 4x4 0.25
F4 400 120 0.50
F5 7 400 0.25

Table 1: CNN layer sizes shown. In total the model has
138’159 parameters.

After the first two convolution layers we apply a max
pooling operator to reduce the dimensionality. The first
max pooling operation has a window size of 6x6 pixels
and the second a window size of 4x4 pixels. After all
layers we apply a Rectified Linear Unit activation func-
tion as Krizhevsky et al. in [2] showed how this can make
CNN’s converge faster. We found it necessary to apply
the dropout technique described by Srivastava et al. in
[6] to prevent overfitting. In this technique a fraction
of randomly chosen network weights are omitted from
the weight updates in each iteration of the SGD algo-
rithm. Our model layer sizes together with the fraction
of dropout used can be seen in Table 1. Considering the
amount of variation in target appearance in our dataset, a
training set size of 1411 samples cannot be considered a
lot and it seems reasonable that measures must be taken
to prevent overfitting to the training data.

3.2 Classification models

We use an implementation of Random Forest [1], an en-
semble method of classification trees from the Python
library scikit-learn. The primary parameters for the Ran-
dom Forest is the number of trees N and the number of
features per tree m. The parameters (N,m) have been
found by 5-fold cross-validation to be 512 trees and 128
features per tree.

K Nearest Neighbours is the classic approach of storing
all training images together with their class. At test time,
euclidean distances is calculated between the given test
images and all training images and the k shortest dis-
tances vote which class the test images belongs to. the
k-parameter have found by 5-fold cross-validation to be
optimal at k = 1.

A simpler neural network where the input layer size
is number of pixels 1282, one hidden layer with 128
nodes and a softmax layer to output probabilities for the
7 classes in the dataset (2’114’432 trainable parameters).

Our softmax classifier is a one layer shallow neural net-
work normalized with a softmax function output. It is
similar to the Multilayer perceptron but has only a 7 neu-
rons with each 16384 weights giving in total 114’688
trainable parameters.
.

4 Results
At Figure 4 our results can be seen. The test score which
is the percentage of correct classifications on the test data
averaged over 5-fold cross-validation procedure.

It can be seen that the Convolutional Neural Network
does not decrease in performance as fast as the other al-
gorithms when we increase translational object variance.
It is not a surprise that there is some decrease in all classi-
fiers performance, because we keep the number of train-
ing images fixed as well as the size of the classifiers.
When increasing the dimensions of variance we should
also expect a lower performance. The interesting fact,
seen at Figure 4, is the relative performance drop between
the CNN and the other classifiers. It clearly shows that
CNN can be trained to have translational invariance.

5 Conclusions
There are many ways to increase the problem size shown
in this article towards more realistic scenarios for SAR
ATR. We have created a simulated dataset that covers
some many type of variance in target appearance. By
controlling the amount translational variance of target
alignment we have shown how CNN are superior to oth-
ers machine learning algorithms in dealing with transla-
tional variance.

●
●

●
●

●
●

●

●
●

●

40

60

80

100

0 10 20 30
Translation Variance [Pixels]

A
c

c
u

ra
c
y

 [
%

]

Model
● CNN

KNN
MLP
RandomForest
Softmax

Figure 4: Test score plotted as a function of the percentage of randomly translational variance. Note that the first drop
in performance happens around 3 pixels random translational variance

The impracticalities of collecting real SAR datasets that
represent all natural variances of target representation
for SAR ATR, are many. It is therefore very important
to consider realistic problems when benchmarking algo-
rithms on the sparse data available. We have shown that
when considering the best algorithms for SAR ATR one
must know the precision of placing targets consistently.
Whether it is from a detection algorithm or manually ex-
tracted target patches, their displacement variability must
be considered as even small inconsistent displacements
can have big impact on the accuracy of a classifier. We
have shown that some algorithms have a drastic decrease
in performance when objects vary in position with as lit-
tle as 3 pixels.

References
[1] Leo Breiman. Random forests. Machine Learning,

45(1):5–32, 2001.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E.
Hinton. Imagenet classification with deep convolu-
tional neural networks. pages 1097–1105, 2012.

[3] David A. E. Morgan. Deep convolutional neural net-
works for ATR from SAR imagery. Proc. SPIE,
9475:94750F–94750F–13, 2015.

[4] Joseph A O’Sullivan, Michael D DeVore, Vikas Ke-
dia, and Michael I Miller. SAR ATR performance
using a conditionally gaussian model. Aerospace and
Electronic Systems, IEEE Transactions on, 37(1):91–
108, 2001.

[5] Umamahesh Srinivas, Vishal Monga, and Raghu G
Raj. SAR automatic target recognition using dis-
criminative graphical models. Aerospace and Elec-
tronic Systems, IEEE Transactions on, 50(1):591–
606, 2014.

[6] Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Suskever, and Ruslan Slakhutdinov.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research.

[7] Steffen Wagner. Combination of convolutional fea-
ture extraction and support vector machines for radar
ATR. In Information Fusion (FUSION), 2014 17th
International Conference on, pages 1–6. IEEE, 2014.

[8] Qun Zhao and Jose C Principe. Support vec-
tor machines for SAR automatic target recognition.
Aerospace and Electronic Systems, IEEE Transac-
tions on, 37(2):643–654, 2001.

