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Summary
Van der Waals heterostructures (vdWHs) represent a novel and largely unexplored
class of materials. Since 2013, when Geim and Grigorieva first conceived the stack-
ing of 2D (two-dimensional) materials to create artificial layered structures with tai-
lored properties, a number of promising (opto)electronics devices, e.g. light emitting
diodes, solar cells, ultra-fast photodetectors, transistors etc., have been successfully
fabricated. It is well established that for isolated 2D semiconductors and vdWHs the
optical response is governed by excitonic effects. While it is understood that the re-
duced amount of electronic screening in freestanding 2D materials is the main origin
of extraordinarily strongly bound excitons, a theoretical understanding of excitonic
effects and of how the electronic screening is affected for the more complex case of
multi-layer structures is still lacking due to the computational limitations of standard
ab-initio methods.

In this thesis first-principles models that overcome the limitations of standard
ab-initio techniques are developed for the description of dielectric, electronic and ex-
citonic properties in isolated 2D materials and vdWHs. The main contribution is
a multi-scale method that seemingly connects the excitonic effects in the monolayer
limit to the more challenging case of multi-layered structures. The method is based
on the analogy between vdWHs and the popular construction toy Lego. This analogy
is much deeper than one would first expect: it is possible to predict the dielectric
properties of a vdWH from the dielectric functions of the individual 2D layers, which
represent the dielectric genome of the heterostructure. From the vdWH dielectric
properties one evaluates the screened interaction between the electron and hole form-
ing the exciton which can then be used in a generalized hydrogenic model to compute
exciton binding energies in isolated, supported, or encapsulated 2D semiconductors.
The non-locality of the dielectric screening is inherently included in our method and
we can successfully describe the non-hydrogenic Rydberg series of low-dimensional
systems. This multi-scale method also proves successful when combined with many-
body perturbation techniques for accurate prediction of electronic band structure or
with complex scaling techniques for exciton dissociation rates in vdWHs. The valid-
ity of our techniques is demonstrated through numerous comparison to experimental
results.

Ultimately this thesis puts forth a first-principles methodology that allows us to
address scientific questions that are beyond the capability of existing state of the
art techniques and enables 2D materials researcher to predict and design dielectric,
electronic and excitonic properties of general vdWHs.
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Resume
Van der Waals heterostrukturer (vdWHs) representerer en ny og uudforsket klasse af
materialer. Siden 2013, da Geim og Grigorieva for første gang forestillede sig at stable
2D (to-dimensionelle) materialer for at skabe kunstigt lagdelte strukturer med skræd-
dersyede egenskaber, er det lykkedes at fabrikere lovende (opto)-elektroniske enheder
som f.eks. lysdioder, solceller, ultra-hurtige photodetektorer og transistorer. Det er
velkendt at for isolerede 2D halvledere og vdWHs, er det optiske respons domineret
af excitoner, og at grunden til de særligt stærkt bundne excitoner skal findes i den
reducerede elektroniske skærmning. En teoretisk forståelse for de excitonske effekter,
og for hvordan den elektroniske skærmning er påvirket i de mere komplekse tilfælde
med multi-lags strukturer mangler stadig grundet computationelle begrænsninger af
standard ab-initio metoder.

I denne afhandling er ab-initio modeller, som overkommer begrænsningerne på
standard teknikker, udviklet til beskrivelse af dielektriske, elektroniske og excitonske
egenskaber i isolerede 2D materialer og vdWHs. Hovedbidraget er en metode, som
forbinder excitonske effekter i et enkelt lag med det mere udfordrende tilfælde af
strukturer bestående af flere lag. Metoden er baseret på analogien mellem vdWHs
og det populære konstruktionslegetøj Lego. Denne analogi stikker dybere, end man
umiddelbart skulle tro: det er muligt at forudsige de dielektriske egenskaber af en
vdWH fra den dielektriske function af de individuelle 2D lag, som således kan siges
at repræsentere heterostrukturens dielektriske genom.

Med de dielektriske egenskaber af vdWHs kan man evaluere den skærmede vek-
selvirkning mellem elektronen og hullet, som danner excitonen, og som dernæst kan
blive brugt i en generaliseret hydrogen-model til beregning af bindingsenergier af ex-
citoner i isolerede, understøttede eller indkapslede 2D halvledere. Ikke-lokaliteten
af den dielektriske screening er i sagens natur inkluderet i vores metode, og vi kan
beskrive den ikke-hydrogenske Rydberg serie af lav-dimensionelle systemer succes-
fuldt. Denne multi-skala metode har vist sig at fungere, når den kombineres med
mange-legeme perturbationsteknikker til præcis bestemmelse af elektroniske bånd-
strukturer eller med komplex skaleringsteknikker til beregning af excitonske dissocier-
ingsrater i vdWHs. Gyldigheden af vores fremgangsmåder er demonstreret igennem
talrige sammenligninger med resultater fra experimenter.

Denne afhandling presenterer ab-initio metoder, som tillader os at takle vidensk-
abelige spørgsmål, som tidligere var uden for rækkevidde med eksisterende teknikker,
og gør det muligt for forskere at forudsige og designe dielektriske, elektroniske og
excitonske egenskaber af generelle vdWHs.
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CHAPTER 1
Introduction

During the Second World War, when detectors for radar were based on silicon and
germanium and their reliability was a necessity, a lot of effort was put into improving
the device performance. At that time very little was known about the physics of the
two semiconductors [1]. Scientists soon realized that the fabrication of better detec-
tors could be achieved only through a deeper understanding of the materials they
were made of. It was not long until materials research led to the greatest invention
of the past century: the transistor, developed by Bardeen and Brattainin in 1948 [2].
Since then, condensed matter physics and materials science have been source of many
scientific and technological breakthroughs that have had a tremendous impact on our
lives. Think, for example, of how the advance of materials science transformed the
computer from an exotic scientific “toy” to an ubiquitous tool in our everyday lives.
Inventions such as LEDs, lasers, optical fibers, solar cells and superconductors would
have not been possible without an intimate knowledge of materials properties. Nowa-
days, most technology relies on silicon and related oxides microelectronics. While the
popularity of silicon over other equivalent semiconductors is due to its abundance and
ease of processability, the key to the success of microelectronics has been the possi-
bility to integrate electronic components in microchips. Integration has been crucial
as it has led to low manufacturing cost and great device reliability. The quest for
integration on an even smaller scale and the development of nanoelectronics, has mo-
tivated the process of miniaturization of silicon transistors, which have now reached
sub-micrometer minimum feature size. However silicon technology can no longer keep
up with Moore’s law [3] due to manufacturing and material properties limitations [4].
Reasearch in nanoelectronics should therefore be directed towards new materials and
methods to build electronic devices at the nanoscale.

It was 2004 when Geim and Novoselov succeeded in isolating graphene, a single
layer of carbon atoms, from graphite, the material used in our pencils [5]. Graphene
is one of a kind material, characterized by exceptionally high electrical and thermal
conductivity [6] and high carrier mobility [7]. Graphene is also a playground for fun-
damental physics showing e.g., the Quantum Hall effect at room temperature [8] or
the Klein tunneling [9]. Graphene has allowed researchers to reconsider technologi-
cal concepts such as spintronics [10], where spin rather than charge is controlled to
transfer information, and even gave rise to new fields such as valleytronics [11], which
exploits the peculiar valley degrees of freedom to operate the devices. Unfortunately,
graphene based field-effect transistors (FETs), the base of modern technology, can-
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not be effectively switched on and off because pristine graphene lacks an electronic
bandgap. One approach to the development of graphene transistors is engineering a
bandgap using methods like nanostructuring [12], chemical functionalization [13] or
nanopatterning [14], however these methods are particularly complex and often lead
to degradation of the intrinsic graphene properties.

Graphene is not the only material in the class of 2D crystals. The next in line is
monolayer hexagonal Boron Nitride (hBN). The interest in hBN began when it proved
to be an exceptional substrate for graphene, increasing the quality of graphene’s elec-
tronic properties as compared to standard SiO2 substrates [15]. Being a large gap
insulator, hBN was used as a gate dielectric [16] and tunnel barrier [17] in transistors.
Another key material in the 2D family is monolayer MoS2, a direct gap semiconduc-
tor, which has been successfully used in field effect transistors, achieving high on/off
switching ratios with mobilities lower than in graphene but still remarkably higher
than standard thin-film semiconductors [18]. MoS2 belongs to the class of materials
with chemical formula MX2 called transition metal dichalcogenides (TMDs). TMDs
appear in two different hexagonal phases depending on whether the chalcogen atoms
are aligned (2H) or displaced (1T) in the out-of-plane direction [19]. Atomic layers
of TMDs can be isolated via mechanical or liquid-phase exfoliation [20] starting from
the bulk counterpart. TMDs span a large space of material properties, ranging from
metals VS2, TaSe2 and TaS2, semiconductors as WS2, WSe2, TaS2, RhTe2 and even
superconductors such as NbSe2, NbS2 and TaS2 [21, 22]. Many of the semiconduct-
ing bulk TMDs undergo an indirect to direct band gap transition accompanied by a
large increase in photoconductivity, absorption and photoluminescence [23, 24] when
thinned down to monolayer size. For this reason, monolayer semiconducting TMDs
attracted a lot of attention for applications in optoelectronic devices, i.e. electronic
devices that can detect, control or generate light. Additionally, the fact that they are
atomically thin and mechanically strong makes them appealing for flexible and trans-
parent optoelectronics. Another important characteristic, general to 2D materials, is
the reduced dielectric screening due to the reduced dimensionality, which results in
strong excitonic effects setting the onset of photoluminescence and absorption well
below the electronic band gap [25,26,27,28,29]. TMDs are probably the most investi-
gated among the 2D crystals, but the family of 2D materials is continuously growing.
Just to name a few transition metal oxides and halides, phosphorene, silicene, ger-
manene, silicane, GaSe are currently of great interest to the field [30].

Apart from the extraordinary properties of 2D crystals as stand-alone materials,
the great promise resides in the possibility of stacking 2D layers together to form
hybrid multilayer heterostructures. Because such heterostructures are held together
by weak van der Waals forces, they are referred to as van der Waals heterostruc-
tures (vdWHs). 2D materials with different properties can be assembled with atomic
precision into designer vdWHs with novel and integrated properties, offering a great
opportunity for the realization of ultra-thin (opto)electronic devices with embedded
multi-functionality [30]. The ultimate goal is to complement or even replace Silicon
technology by creating a comprehensive vdWHs platform for building different com-
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ponents, such as transistors, batteries, (photo)detectors, photovoltaic cells, lasers and
bio- and chemical sensors. First proof of principle devices are already available, such
as vertical tunnelling transistors with promising electrical characteristics [31], light
emitting diodes with high electroluminescence [32], photodetectors with ultrafast re-
sponse [33] or high-efficiency ultra-thin photovoltaic devices [34].

Despite the great promises offered by 2D materials and their vdWHs, the main
limitation is the current fabrication process, which relies on direct stacking of the
2D layers [30]. In the so called pick-and-lift technique one starts by exfoliating the
first 2D layer from its bulk crystal using Scoth-tape and subsequently deposit it on
a membrane. The membrane is then brought into contact with a second layer, also
isolated using the Scotch-tape technique. Due to van der Waals forces, the second
layer sticks to the first when the membrane is lifted. This process is repeated for all
required layers. Although this procedure may seem simple, in practice it is extremely
slow and poor in terms of device reproducibility. Therefore more controlled and
efficient methods, such as direct growth through chemical vapor deposition (CVD)
or physical epitaxy [30], need to be developed to achieve mass production and offer
long-term prospects.

In any case, there is still very little known about van der Waals heterostructures
and, even though their future might be uncertain, we as scientists need to deepen the
knowledge of these promising materials. A theoretical understanding of the optical
and electronic behavior of these atomically structured materials is crucial. Computer
simulation and modeling based on quantum mechanical methods provide direct access
to these properties without the need of performing actual experiments. Theoretical
simulations have two advantages over experimental measurements. First, they allow
us to simplify the investigation by isolating specific physical phenomena otherwise
entangled in the actual measurement, as e.g. excitonic and electronic excitations.
Second, they are much more efficient for materials screening projects aimed at finding
good candidate for a given application, especially considering the enormous phase
space of physical properties spanned by the family of 2D materials and their vdWHs.
On the other hand computational methods rely on approximation whose validity
needs to be critically assessed, often by comparing with experiments.

In this thesis I investigate the excitonic and electronic properties of 2D semiconduc-
tors and van der Waals heterostructure with the main focus given to the development
of first-principles simplified models. While standard ab-initio methods such as density
functional theory (DFT) and many-body perturbation theory (MBPT) have already
been successfully applied to freestanding 2D crystals to calculate, e.g., electronic band
gaps and exciton binding energy [27, 28], they are computational unfeasible for vd-
WHs, except for lattice matched heterostructures consisting of a few layers [28,35,36].
This is when our simplified models, that build upon DFT and MBPT, are the most
relevant. The main contribution of this thesis is a multi-scale method, the quantum
electrostatic heterostructure (QEH) model, which allows us to calculate the dielectric
function of general vdWHs by electrostatically coupling the dielectric response of the
individual layers without having to perform calculations for the full heterostructure.
The dielectric function of the heterostructure can be used to calculate the screened
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electron-hole interaction entering a generalized hydrogenic equation for the exciton,
which in turn is used to calculate the exciton binding energy. The exciton binding
energy is a measure of how strongly the electron and the hole forming the excitons are
bound and is of technological relevance in photovoltaic devices or photodectors that
rely on exciton dissociation [33,37,38,39,40]. Along these lines, by complex scaling of
the hydrogenic equation, we are able to calculate the exciton dissociation rate under
the application of an electric field. Ultimately, the QEH model can be combined with
MBPT methods, such as GW , for calculating accurate electronic band alignment in
vdWHs, relevant for charge transfer mechanisms at the interfaces of the constituent
layers. In conclusion, in this thesis I present a comprehensive platform for calculating
excitonic and electronic properties of vdWHs.

The structure of the thesis is the following:

• Chapter 2 provides an introduction to the theoretical foundation of the ab-
initio methods to calculate ground- and excited state properties of materials.
Specifically, it presents density functional theory and many-body perturbation
theory as viable routes for the solution of the many-body problem.

• Chapter 3 explains the concept of microscopic and macroscopic dielectric and
optical response of a crystal and elaborates on the difference between 2D and 3D
materials. Additionally, it discusses the importance of excitonic effects for the
optical properties of 2D semiconductors and how to account for them through
the Bethe-Salpeter equation.

• Chapter 4 gives a critical assessment of the Mott-Wannier model for excitons
in freestanding 2D materials, with emphasis on the role of the screened electron-
hole interaction. It also shows how a very simple analytic model can be found
for the calculation of exciton binding energies in 2D.

• Chapter 5 addresses the challenge of modelling vdWHs by presenting the quan-
tum electrostatic heterostructure (QEH) model. Combining the QEH with the
Mott-Wannier model it reports a number of calculations on intra and interlayer
excitons in vdWHs. Furthermore, combining the QEH with GW it presents the
method for calculating band structures and band alignment in vdWHs starting
from the isolated layers.

• Chapter 6 explains the concept of resonance and complex scaling techniques
useful for the calculation of exciton dissociation rates in electric fields. It reports
the calculation of dissociation rates for ultra-thin vdWHs.

• Chapter 7 presents a brief summary of the results and an outlook.



CHAPTER 2
The Many-Body Problem

This chapter is devoted to the introduction of the fundamental formalism and methods
to calculate the quantum mechanical properties of materials. The behavior of a
quantum system is exactly determined by the solution of its Schrödinger equation.
Unfortunately for most of the physical problems and in particular the ones relevant for
this thesis, a direct solution of the Schrödinger equation cannot be determined. One,
then, has to recast to alternative methods in order to calculate physical quantities
such as ground state energy, dielectric response, electronic and excitonic excitation
energies and so on. Two of such methods are density functional theory and many-
body perturbation theory. While the first is in principle an exact ground state theory
the second provides a systematic way to achieve increasing accuracy on excited states
properties. In the following the basics of the two theories and their connection is
provided.

2.1 The Many-Body Hamiltonian
The starting point for the description of the atomic scale physical and chemical prop-
erties of a material is the time dependent Schrödinger equation1

i ∂
∂t

|Φ(t)⟩ = Ĥ(t)|Φ(t)⟩, (2.1)

with Ĥ the many-body Hamiltonian of the system and |Φ⟩ the many-body wave func-
tion solution to the Schrödinger equation. For systems at equilibrium, the time inde-
pendent wave function can be obtained from the stationary version of the Schrödinger
equation:

Ĥ|Φ⟩ = E|Φ⟩, (2.2)

1throughout the thesis atomic units are employed.
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where E is many-body energy associated to |Φ⟩. The many-body Hamiltonian of an
unperturbed condensed matter system consisting of interacting electrons and nuclei
in motion can be written as:

Ĥ =
Nel∑

i

p̂2
i

2
+

Nnuc∑
I

P̂ 2
i

2MI
+
∑
iI

ZI

|r̂i − R̂I |
+ 1

2
∑
i ̸=j

1
|r̂i − r̂j |

+ 1
2
∑
I ̸=J

ZIZJ

|R̂i − R̂J |
, (2.3)

where the first two terms on the RHS are the kinetic energy of the electrons and
nuclei respectively and the last three represent, in order, the nucleus-electron, electron-
electron and nucleus-nucleus Coulomb interaction.

Solving the Schrödinger equation with the Hamiltonian above, which contains
both electronic and nuclei degrees of freedom, is a daunting task. A great simplifi-
cation arises by separating the electronic problem from the nuclei one by means of
the Born-Oppenheimer approximation [41]. Within this approximation it is assumed
that the electrons, because of their light mass, move much faster than the nuclei
and therefore from an electron point of view the nuclei can be considered still. This
entails that the eq. (2.1) reduces to two separate Schrödinger equations, one for the
electronic many-body wave function |Ψ⟩ and the other for the nuclei wave function |χ⟩,
so that |Φ⟩ = |Ψ⟩ ⊗ |χ⟩. The Born-Oppenheimer approximation is extremely handy
when one is mainly interested in the electronic properties, as in the case of this the-
sis. Indeed the information about the nuclei would appear in electronic problem only
parametrically through stationary nuclei positions, and the electronic Hamiltonian
would read:

Ĥel =
Nel∑

i

p̂2
i

2
+
∑
iI

ZI

|r̂i − RI |
+ 1

2
∑
i ̸=j

1
|r̂i − r̂j |

. (2.4)

Despite the simplification, though, the electron-electron interaction makes the elec-
tronic problem unsolvable exactly. Before moving to the next section and see how
to tackle the solution of the Schrödinger equation, it is convenient to express the
electronic Hamiltonian in second quantization in terms of field operators, ψ̂†(x)ψ̂(x)
(for more details see Ref. [42,43]):

Ĥ(t) =
∫

dxdx′ψ̂†(x)⟨x|ĥ(t)|x′⟩ψ̂(x′) + 1
2

∫
dxdx′v(x, x′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x),

(2.5)
with x = rσ representing a generalized spatial/spin coordinate and ĥ the single elec-
tron Hamiltonian2. As in eq. (2.5), from now on I will drop the subscript “el” when
referring to the electronic hamiltonian.

2For a condensed matter system subjected to an external electromagnetic perturbation the single
particle Hamiltonian is:

ĥ =
(p̂− 1

c
Aext(r̂, t))2

2
+
∑

I

ZI

|r̂ − R̂I |
+ Vext(r̂, t), (2.6)

where Aext(r̂, t) and Vext(r̂, t) are the vector and scalar potentials respectively. Finally v(x, x′) =
1

|r−r′| is the Coulomb interaction
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2.2 Density Functional Theory
Inspired by the Thomas-Fermi conjecture on the possibility of expressing the ground
state energy of a many-body system as a functional of the ground state electronic
density [44, 45], in 1964 Hohenberg and Kohn formally proved that the ground state
energy is indeed a unique functional of the ground state density [46]. In particular
they showed that there exists a bijective mapping between the external potential,
i.e. the system specific part of the Hamiltonian, and the ground state density. In
the following I will illustrate the main results of the Hohenberg and Kohn proof and
show how such a theorem can be utilized in practice by means of the Kohn and Sham
equation [47], in order to avoid the direct solution of the Schrödinger equation.

2.2.1 Hohenberg and Kohn Theorem
Take a N-particle system described by a Hamiltonian of the kind:

Ĥ = T̂ + V̂ el-el + V̂ ext, (2.7)

where T̂ represents the electronic kinetic energy, V̂ el-el the electron-electron inter-
action and V̂ ext =

∫
drvext(r)n̂(r) the system specific part of the Hamiltonian, i.e.

Coulomb interaction with the nuclei, external perturbation etc.
The starting point of the Hohenberg and Kohn derivation follows from two assump-

tions: to each unique (up to a constant) external potential there exists a mapping
C : vext → ΨGS that maps into a unique ground state (GS) wave function3. At the
same time there exists a mapping D : ΨGS → nGS that associates a single electronic
density to the ground state wave function (see fig. 2.1). This follows directly from
the definition of the ground state density in terms of ground state wave function:

nGS(r) = N

∫
dr1 · · ·��dr · · · drN ΨGS*(r1, ..., r, ..., drN )ΨGS(r1, ..., r, ..., drN ). (2.8)

Next Hohenberg and Kohn derive two main results:

( I ) The mappings D−1 : nGS → ΨGS and C−1 : ΨGS → vext exist and are unique
and therefore the ground state energy can be expressed as a unique functional
of the ground state density:

E
[
nGS] = T

[
nGS]+ V el-el [nGS]+

∫
drvext(r)nGS(r). (2.9)

The sum of the first two terms in the RHS is often referred to as universal
functional F

[
nGS(r)

]
since, unlike the last term, its form is the same for any

many-body system.
3If the ground state is degenerate, the same density can be reproduced by different degenerate

ground-state wave functions and therefore a unique functional Ψ[n] does not exist. However, by
definition these wave functions all yield the same energy, and the functional E[n] continues to exist
and to be minimized by nGS (see Ref. [48])
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{vext} {nGS}{ GS}

C

C�1 D�1

D

Figure 2.1: Schematic that illustrates the different mappings connecting the sets
of external potentials, ground state wave functions and ground state
densities. The Hohenberg-Kohn theorem proves the existence of the
mapping C−1 and D−1.

( II ) The energy functional satisfies the variational property with respect to the
density:

E
[
nGS] ≤ E [n] , (2.10)

where n(r) is a generic density. This comes really handy for the actual ap-
plication of DFT. Indeed, even if a one to one mapping from the external
potential to the ground state density exists, its explicit form is unknown and
the ground state energy cannot be calculated directly. However thanks to
the variational principle one can start with a “trial” density and find the the
energy extremum:

δE [n]
δn

∣∣∣∣
n=nGS

= 0. (2.11)

To conclude, the main points of the Hohenberg and Kohn theory are invertibility,
universality and variational access. Finally it is extremely important to emphasize
that no approximation has been performed, meaning that DFT is an exact ground
state theory.

2.2.2 Kohn-Sham equation
As mentioned in the previous section, a direct minimization of the energy functional is
a formidable task since the exact form of its universal part is unknown. In 1965 Kohn
and Sham proposed an alternative route for the minimization [47] that determined the
success of DFT and opened the possibility for application to real systems. The basic
brilliant idea is the construction of a fictitious system of non-interacting electrons for
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which energy minimization yields the same ground state density as the real interacting
system.

As a starting point, it is customary to rewrite the energy functional in such a
way that all the unknowns are contained in the so called exchange-correlation energy
functional Exc [n]:

E [n] = TNI [n] + V H [n] + V ext [n] + Exc [n] , (2.12)

where TNI is the kinetic energy of a non-interacting system of density n(r) and
V H [n(r)] =

∫
drdr′ n(r)n(r′)

|r−r′| is the Hartree energy, i.e. the classical Coulomb electron-
electron repulsion energy. Comparing eq. (2.12) to eq. (2.9), it is clear that Exc [n] =
T [n]−TNI [n]−V H [n]+V el-el [n]. In the case of the artificial non-interacting system,
the energy functional reads:

ENI [n] = TNI [n] + V KS [n] , (2.13)

with V KS [n] =
∫
drvKS(r)n(r) and vKS the effective potential in which the indepen-

dent particles are moving. Requiring that both the interacting and non-interacting
energy functionals are minimized by the same density, Kohn and Sham found an
expression for the effective potential:

vKS(r) = vH(r) + vext(r) + vxc(r), (2.14)

where each of the potentials is obtained as the functional derivative of their respecting
energy functionals with respect to the density, e.g. vxc(r) = δExc[n]

δn(r) . Since the
ground state density of the interacting system is by construction the same as the
non-interacting one, it can be readily calculated as:

n(r) ≡ nNI(r) =
occ∑

i

|ϕi(r)|2, (2.15)

with the wave functions ϕi(r) are obtained from the single-particle Schrödinger equa-
tion for the non-interacting system:[

−∇2

2
+ vKS(r)

]
ϕi(r) = ϵiϕi(r). (2.16)

Equations (2.14) to (2.16) are usually referred to as Kohn-Sham equations and their
solution is much more practical than the minimization of the energy functional. Notice
that because vH and vxc depend on n, which in turn depends on ϕi, eq. (2.16) is
nonlinear and it has to be solved self-consistently until a certain criteria of convergence
(usually on the density or on the energy) is satisfied.

One has to be extremely careful when attaching any meaning to the eigenvalues
ϵi and wave functions ϕi obtained from the solution of eq. (2.16). Indeed, they are
exclusively designed to give the right ground state density of the interacting system.
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However, it is now accepted that Kohn-Sham energies and wave functions give a
surprisingly good qualitative picture, especially in the case of solid state systems. For
example band structure calculations are often found to agree qualitatively well with
photoemission and inverse photoemission experimental data [49].

Despite the simplification brought by the Kohn-Sham approach, the main problem
remains the knowledge of the exact expression for the exchange-correlation potential.
The simplest, but yet one of the most successful approximations is the local-density
approximation (LDA). In LDA one borrows the results for the exchange and cor-
relation functional of the homogeneous electron gas (HEG) and assumes that the
system at a given point in space r can be described as a HEG with density n(r). The
exchange-correlation functional then becomes:

Exc
LDA[n] =

∫
drexcHEG(n(r)), (2.17)

where excHEG(n(r)) is the exchange-correlation energy per unit volume. The exchange
part of the latter is known exactly [48]:

ex
HEG(n) = −3

4

(
3
π

) 1
3

n
4
3 . (2.18)

The correlation part is a bit more tricky and an analytic form is not known. However
thanks to the numerically exact Quantum Monte Carlo calculations by Ceperley and
Alder [50] one can find a parametric expression for ec

HEG(n) from their numerical
data.

Because of the local homogeneous gas approximation, LDA is expected to perform
well for systems with slowly varying density. Surprisingly, LDA has been successfully
applied to systems very far from an homogeneous electron gas, yet providing really
good results. This is partially due to a systematic underestimation of Ec and an
overestimation of Ex which results in an error cancellation [51]. However LDA is also
known to overestimate bond energies and systematicly underestimate the electronic
band gap [52]. The jungle of exchange-correlation functionals that try to improve
over LDA is extremely vast, but since LDA is going to be the method of choice
for practically all the calculations in this thesis, they will not be discussed. I find
it important to mention, for later purposes, that a general problem of most of the
functionals is the correct description of long range interactions, as in hydrogen or van
der Waals bonds. In these cases one should rely on more refined methods based on
many body perturbation theory as the GW approximation.

2.2.3 GPAW: Electronic Structure Calculator
One last source of approximation reside in the actual implementation of the Kohn-
Sham equation and the choice of an appropriate basis set. The electronic structure
calculator used throughout the thesis is GPAW (Grid-based Projector Augmented
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Wave) [53, 54]. GPAW offers the possibility to solve the KS equations using three
different basis sets, namely real space grid, plane-waves and localized atomic orbitals
(LCAO) and all of them support periodic boundary conditions. One of the main
challenges for an electronic structure calculator is the ability of describing the rapidly
oscillating behavior of the wave functions in the region around the nuclei and the
smoother behavior away from them. GPAW does that using the projector augmented
wave (PAW) method proposed by Blöchl [55]. In this approach the space is divided
up in two different regions: augmentation spheres around each nuclei, where the wave
functions are represented in an atomic-like basis set and interstitial region where one
can define smooth wave functions which are more conveniently expandable in one of
the basis sets mentioned above. In practice one also employs a frozen core approx-
imation where, the core states are assumed to be localized inside the augmentation
sphere and not perturbed by the environment. In this way the core states are equiv-
alent to the isolated atoms ones and can be calculated solving the KS equation with
a spherically symmetric KS potential once for each element. This approximation is
supported by the fact that the valence electrons responsible for most of the physical
and chemical properties of the material, whereas the core electrons are mainly unper-
turbed by the chemical environment. The nice feature of the PAW formalism is that
one always has access to the all-electron wave functions, just by means of a linear
transformation of the smooth wave functions.

GPAW is not only a DFT calculator, indeed it offers many different features
that build upon DFT as for example the linear response modules [56] that allows
the users to calculate the dielectric response of a any given material, and many-
body perturbation theory methods such as GW approximation [57,58] and the Bethe-
Salpeter equation (BSE) [59].

2.3 Many Body Perturbation Theory
In the previous section I mentioned that even though DFT is only meant to describe
ground state properties, the KS eigenvalues and eigenfunctions usually give a good
qualitative description of the real excitations in the material. However when predict-
ing material properties for application in actual devices, accuracy in quantities such
as electronic band gaps, band alignment or optical spectra is strictly necessary and it
cannot be achieved via DFT unless one is able to cook up ad hoc exchange-correlation
functionals. From an even more fundamental point of view, it is not clear how the
single-particle KS framework can be adapted to account for many-body effects such
as excitons, which are central in this thesis. A systematic way to overcome the limita-
tions of DFT, and for example achieve better accuracy in the quantities listed above,
is provided by many body perturbation theory (MBPT). MBPT can be formulated
either by means of Feynman diagrams [42] or by following Schwinger’s functional
derivatives based approach [42, 60]. Following the latter approach, I will show how
it is possible to arrive to a set of equations, the Hedin equations, that provides a
unified exact framework for the description of in or out-of-equilibrium quantum sys-
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tems. In particular this will lead to the GW approximation for accurate calculations
of electronic excitations and (in the next chapter) the Bethe-Salpeter equation for
the determination of excitonic effects.

2.3.1 One-particle Green’s Function
No matter the formulation, the building block of MBPT is the one-particle Green’s
function, defined as the expectation value of time-ordered product of creation and
annihilation operators in the following way:

G(1; 2) ≡ 1
i ⟨0|T

{
ψ̂H(1)ψ̂†H(2)

}
|0⟩, (2.19)

where |0⟩ is the initial (t = t0) N -particles state, T is the time-ordering operator that
rearranges the operators in chronological order with later times to the left and we use
the short-hand notation j = xjtj , with x a collective space-spin variable. Notice that
the subscript H indicates that the field operators are taken in the Heisenberg picture.
If t1 is later than t2, the Green function describes the evolution of a (N + 1)-particles
system, created by adding a particle at 2, until the particle is removed at 1. For the
opposite order it describes, instead, a process in which a particle is removed (a hole
is created) in 1 and the resulting (N − 1)-particle system is allowed to evolve till a
particle is added back (a hole is destroyed) in 2. In other words the Green function
can be interpreted as the probability amplitude for a particle (hole) to go from 1 (2)
to 2 (1).

The one-particle Green function is a key quantity in many body perturbation
theory because it provides a full access to the expectation value of any one-particle
operator. Consider, indeed, an operator Ô, diagonal in spin for ease of notation:

Ô(t) ≡
∫
dxdx′ψ̂†(x)⟨x|Ô(t)|x′⟩ψ̂(x′) =

∫
dxO(x, t)ψ̂†(x)ψ̂(x). (2.20)

then its expectation value can be expressed using the one-particle Green function as:

O(t) = −i
∫
dx
[
O(x, t)G(x, t; x′, t+)

]
x=x′ , (2.21)

where with t+ we intend a time infinitesimally later than t.
The definition of the Green function in eq. (2.19) is often not convenient for its

actual calculation. Another way the Green function can be defined is through its
equations of motion. The latter follow directly from the Heisenberg equation4 for the

4Operators in the Heisenberg picture satisfy the well-known Heisenberg equation:

i d
dt
ÔH(t) =

[
ÔH(t), ĤH(t)

]
−

+ i ∂
∂t
ÔH(t), (2.22)

where the partial derivative is with respect to the explicit t-dependence of the operator Ô(t)
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field operators, and they read [42]:

i d

dt1
G(1; 2) −

∫
d3h(1; 3)G(3; 2) = δ(1; 2) − i

∫
d3v(1; 3)G2(1, 3; 2, 3+), (2.23)

− i d

dt2
G(1; 2) −

∫
d3G(1; 3)h(3; 2) = δ(1; 2) − i

∫
d3G2(1, 3−; 2, 3)v(3; 2), (2.24)

where I introduced the generalized delta-function δ(1; 2) = δ(x1 − x2)δ(t1 − t2) and
defined the two-particles Green function according to

G2(1, 2; 1′, 2′) = −⟨0|T
[
ψ̂H(1)ψ̂H(2)ψ̂†H(2′)ψ̂†H(1′)

]
|0⟩. (2.25)

The notation j± indicates that the time-argument is taken infinitesimally later (+) or
earlier (−) than j, keeping in mind that the limit has to be taken after the application
of the time-ordering operator.

The two-particles Green function is composed of four field operators and accounts
for the two-particle scattering processes; depending on their order, it can be thought
as a quantity describing the propagation of two electrons, two holes or an electron
and a hole within an interacting system.

Equations (2.23) and (2.24) are integro-differential equations and their solution
has to satisfy Kubo-Martin-Schwinger (KMS) boundary conditions [61,62]. To solve
eqs. (2.23) and (2.24) the two-particle Green function is required. The two-particle
Green function, in turn, satisfies its own equations of motion. These, however, involve
the three-particle Green function whose equations of motion present the four-particle
Green function and so on. Eventually, one generates an infinite hierarchy for the
N -particles Green functions

Gn(1, ..., n; 1′, ..., n′) = 1
in ⟨0|T

[
ψ̂H(1) · · · ψ̂H(n)ψ̂†H(n′) · · · ψ̂†H(1′)

]
|0⟩, (2.26)

which is known in the literature as the Martin-Schwinger Hierarchy (MSH) [42, 61].
The formal solution to the MSH can be found through Wick’s theorem [42, 43, 63],
however one way to truncate this hierarchy is to introduce a quantity called self-
energy: ∫

d3Σ(1; 3)G(3; 2) = −i
∫
d3v(1; 3)G2(1, 3; 2, 3+). (2.27)

The equations of motion for G(1; 2) can then be rewritten in the following way:

i d

dt1
G(1; 2) −

∫
d3 [h(1; 3) + Σ(1; 3)]G(3; 2) = δ(1; 2), (2.28)

− i d

dt2
G(1; 2) −

∫
d3G(1; 3) [h(3; 2) + Σ(3; 2)] = δ(1; 2). (2.29)

From these equations we can give to Σ the following physical interpretation: it repre-
sents a correction to the single particle Hamiltonian due to the inter-particle interac-
tion. Accordingly, h + Σ can be considered as a kind of self-consistent Hamiltonian.
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It is worth noting, that in general, Σ(1; 3) is not local in time and space; this means
that corrections to the single particle Hamiltonian in a specific spatial-time coordinate
depend also on what happened in another point at a different time.

Equation (2.28) and eq. (2.29) are often expressed in their integral form, the Dyson
equation for the Green’s function:

G(1; 2) = G0(1; 2) +
∫
d3d4G0(1; 3)Σ(3; 4)G(4; 2), (2.30)

where G0(1; 2) is the non interacting particles Green’s function that satisfies the
Green’s function equation of motion with Σ = 0. The equation above can be readily
verified by acting on eq. (2.28) with [−i (1′; 1)

−→
d

dt1
−h(1′; 1)] from the left and integrat-

ing over 1, or by acting on eq. (2.29) from the right with [−i
←−
d

dt2
(2; 2′) − h(2; 2′)] and

integrating over 2.
It is easy to verify that for G(1; 2) = G(x1,x2, t1 − t2), i.e. the time-dependence is

only on the time difference, eq. (2.28) and eq. (2.29) are equivalent. This is the case
for time independent hamiltonians or for steady state regimes. Under this condition
it is particularly convenient to use the Lehman representation [64] in frequency space
of the Green’s function:

G(x1,x2, ω) =
∑

i

ϕQP
i (x1)ϕ∗ QP

i (x2)
ω − ϵQP

i + iη sgn(ϵi − µ)
, (2.31)

with µ the chemical potential and ϵQP
i , ϕQP

i (x) the quasi-particle (QP) eigenvalues
and eigenfunctions specified in the following. Such a representation can be directly
obtained from eq. (2.19), by inserting the completeness relation in the N±1-particles
Hilbert space, i.e.

∑
i |ΨN±1

i ⟩⟨ΨN±1
i |, Fourier transforming to frequency space and

by defining the following quantities:

ϵQP
i =

{
EN+1

i − E0 ϵi > µ

E0 − EN−1
i ϵi < µ

,

ϕQP
i (x) =

{
⟨0|ψ̂(x)|ΨN+1

i ⟩ ϵi > µ

⟨ΨN−1
i |ψ̂(x)|0⟩ ϵi < µ

.

(2.32)

Inserting Lehman’s representation in eq. (2.28) one obtains the quasi-particle equa-
tion:

h(x)ϕQP
i (x) +

∫
dx′Σ(x,x′, ϵQP

i )ϕQP
i (x′) = ϵQP

i ϕQP
i (x). (2.33)

This results highlights the meaning of the different quantities in the Lehman repre-
sentation. Indeed, the equation has the structure of a single-electron Schrödinger
problem with a non-local potential, the self-energy. The latter carries information
on the correlation to the other electrons in the material and therefore the ϵQP

i and
ϕQP

i (x) can be thought as eigenvalues and wave functions of a quasi-particle, i.e. an
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independent particle dressed with the correlation to other electrons. Notice that since
the self-energy is in principle non-hermitian the eigenvalues ϵQP

i may have an imag-
inary part, indicating that the quasi-particle has a finite lifetime. This is because a
single particle state cannot describe the real excited state of the many-body system.

2.3.2 Hedin’s Equations
The next step is to find a way to calculate the self-energy. Without loss of generality
one can introduce a perturbing field φ(r̂) to the single-particle Hamiltonian ĥ in
eq. (2.5). Such a potential is a mathematical tool that is set to zero at the end of
the derivation, but it can be safely interpreted as an external field that polarizes the
material. Having this in mind, it is convenient to define the following “classically”
inspired quantities:

Total classical potential : Φ(1) = φ(1) +
∫
d2v(1, 2)n(2), (2.34)

Reducible polarizability : χ(1; 2) = δn(1)
δφ(2)

, (2.35)

Irreducible polarizability : P (1; 2) = δn(1)
δΦ(2)

, (2.36)

Inverse dielectric function : ϵ−1(1; 2) = δΦ(1)
δφ(2)

, (2.37)

notice that the electron density is directly related to the Green function, indeed
n(1) = −iG(1 : 1+)5. Going in order, Φ represents the classical total potential
generated by the perturbation, which is nothing else than the sum of the perturbation
itself and the Hartree potential. The irreducible and reducible polarizabilities describe
how the electron density varies as a consequence of the external perturbation or the
variation of the total potential respectively. These two functions are closely related
by a Dyson equation, indeed by applying the functional chain rule and using the
definitions above one has:

χ(1; 2) = δn(1)
δφ(2)

=
∫
d3 δn(1)
δΦ(3)

δΦ(3)
δφ(2)

=
∫
d3P (1; 3)

[
δ(3; 2) +

∫
d4v(3, 4)χ(4; 2)

]
= P (1; 2) +

∫
d3d4P (1; 3)v(3, 4)χ(4; 2).

(2.38)

The dielectric function, following the standard definition in electrodynamics, relates
the total potential to the perturbation. On the same fashion as for the equation above

5This is easy to see, since the expectation value of the density operator is n(1) =
⟨0|ψ̂†

H(1)ψ̂H(1)|0⟩
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it can be proved that the dielectric function is related to the polarizabilities by the
following equations:

ϵ(1; 2) = δ(1; 2) −
∫
d3v(1, 3)P (3; 2), (2.39)

ϵ−1(1; 2) = δ(1; 2) +
∫
d3v(1, 3)χ(3; 2). (2.40)

As I will emphasize in the next chapter, these quantities are key for understanding
the response properties of a material.

Differently from the diagrammatic perturbation theory where the perturbation
is the bare Coulomb potential v(1; 2), in Hedin’s approach [65], the perturbative
expansion is over the screened potential defined as:

W (1; 2) =
∫
d3v(1; 3)ϵ−1(3; 1). (2.41)

Such an approach goes along with the idea that the actual interaction between two
charges in a material is screened by all the other surrounding charges and therefore
W (1; 2) is the significant interaction rather than v(1;2).

The last quantity that needs to be introduced is a rather abstract one and it takes
the name of vertex:

Γ(1, 2; 3) = −δG−1(1; 2)
δΦ(3)

, (2.42)

where the inverse Green’s function G−1(1; 2) is defined so that the relation∫
d3G(1; 3)G−1(3; 2) =

∫
d3G−1(1; 3)G(3; 2) = δ(1; 2) holds.

Using all the above definitions and playing around with functional differentiation
one can arrive to a closed set of integral equations, namely Hedin’s equation. Since
their derivation can be extensively found elsewhere and it is not a result of this thesis
I will spare it to the reader and refer to Ref. [66,67]. Hedin’s equations read as follows:

G(1; 2) = G0(1; 2) +
∫
d3d4G0(1; 3)

(
vH(3)δ(3, 4) + Σxc(3; 4)

)
G(4; 2),

P (1; 2) = −i
∫
d3d4G(1; 3)G(4; 1)Γ(3, 4; 2),

W (1; 2) = v(1, 2) +
∫
d3d4v(1; 3)P (3; 4)W (4; 2),

Σxc(1; 2) = i
∫
d3d4G(1; 4)W (1+, 3)Γ(4, 2; 3),

Γ(1, 2; 3) = δ(1; 3)δ(2; 3) +
∫
d4d5d6d7δΣ

xc(1; 2)
δG(4; 5)

G(4; 6)G(7; 5)Γ(6, 7; 3).

(2.43)

The problem of finding the single-particle is rephrased in terms of these five inter-
dependent equations. Because of the interdependence, the solution has to be found
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self-consistently, i.e. starting with an approximation for one or more of the quanti-
ties above and then iterate Hedin’s equation until a desired level of approximation
is reached. To illustrate how this works in practice, I show in the following, how to
arrive to probably most known approximation to Hedin’s equations: the GW approx-
imation.

2.3.2.1 GW

As mentioned before one has to start with a guess for one of the quantities in eq. (2.43).
The simplest approximation for the vertex function is to retain only its trivial part:

Γ(1, 2; 3) ≃ δ(1; 2)δ(2; 3), (2.44)

which corresponds to neglecting the variation to the self-energy due to the polar-
ization of the material. Plugging this vertex into the expression for the irreducible
polarizability one gets:

P (1; 2) = −iG(2; 1)G(1; 2). (2.45)
The form of the polarization corresponds to the so called Random Phase Approxi-
mation. Finally plugging the vertex in the expression of the exchange-correlation
self-energy one has:

Σxc(1; 2) = iG(1; 2)W (1; 2), (2.46)
which obviously clarifies the name of GW approximation. Fourier transforming to
frequency space gives:

Σxc(x,x′, ω) = i
2π

∫
dω′G(x,x′, ω + ω′)W (x,x′, ω) (2.47)

and this expression can then be used directly in the QP eq. (2.33).

In principle the QP equation could be solved self-consistently (scGW method)
[67] just as in the case of the KS equation, however in practice this is a formidable
computational task and it is preferred to recur to further approximation. To this
scope, assuming that the KS equation is already a good description of the system,
the exchange and correlation potential vKS(x) can be added and subtracted to the
QP equation as follows:[

h(x) + vKS(x)
]
ϕQP

i (x) +
∫
dx′
[
Σ(x,x′, ϵQP

i ) − vKS(x)δ(x − x′)
]
ϕQP

i (x′) =

= ϵQP
i ϕQP

i (x).
(2.48)

Now, since Σ − vKS is expected to be small, one can calculate the correction to the
KS eigenvalues by means of first order perturbation theory, i.e:

ϵQP
i ≃ ϵKS

i − ⟨ϕKS
i |Σ̂(ϵQP

i ) − v̂KS|ϕKS
i ⟩, (2.49)
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where the self-energy at the QP eigenvalue can be obtained from a first order expan-
sion: Σ̂(ϵQP

i ) = Σ̂(ϵKS
i ) + (ϵQP

i − ϵKS
i ) ∂Σ̂(ω)

∂ω

∣∣∣
ω=ϵKS

i

.
Obviously the self-energy is now meant to be calculated by using KS eigenvalues

and wave functions. This method takes the name of G0W0 and over the years it
has been shown to be extremely successful at describing band gaps and electronic
excitation of a large variety of materials ranging from molecules, alkaline and tran-
sition metals, semiconductors, 2D materials and so on. The key feature of the GW
approximation is the inclusion of the long-range electronic screening effect, which
is completely absent in standard KS exchange correlation functionals. This has for
example made possible the description of image charge effects for molecules on sur-
faces [68,69] and the possibility of accounting for long range screening is an important
feature for describing van der Waals heterostructures as I will describe later.

2.3.3 Connection to DFT
In the last part of the chapter I would like to briefly illustrate how to link the KS
formalism to the results of many-body perturbation theory described above. First of
all it is convenient to define the Kohn-Sham Green function as the solution to the
following equation:[

i d
dt1

− h(x) − vH(1) − vxc(1)
]
GKS(1; 2) = δ(1; 2). (2.50)

Adding and subtracting vH(1)+vxc(1) to eq. (2.28) and integrating, similarly to what
is done to obtain eq. (2.30), a Dyson-like equation can be found, and in frequency
space it reads:
G(x1,x2,ω) = GKS(x1,x2, ω)+

+
∫
dx3dx4G

KS(x1,x3, ω)[Σxc(x3,x4, ω) − vxc(x3)δ(x3 − x4)]G(x4,x2, ω).

(2.51)
Now, since the full Green function and the KS one are supposed to give the same
electron density n(x) by construction of the KS problem, we can write:

n(x) = −i
∫
dω

2π
eiωδG(x,x, ω) = −i

∫
dω

2π
eiωδGKS(x,x, ω), (2.52)

with eiωδ to ensure that in the integration the contour has to be closed in the upper
half-plane. With this condition in mind, it is clear that integrating eq. (2.51) by

∫
dω
2π

and setting x1 = x2, the following identity has to hold:∫
dx3v

xc(x3)
∫
dωeiωδGKS(x1,x3, ω)G(x3,x1, ω) =

=
∫
dω

∫
dx3dx4e

iωδGKS(x1,x3, ω)Σxc(x3,x4, ω)G(x4,x2, ω).
(2.53)
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The last equation takes the name of Sham-Schlüter equation and it formally connects
the exchange correlation potential to the many-body self-energy [70]. Combined
with Hedin’s equation, it provides a systematic way to find approximations for the
tedious exchange-correlation potential. Unfortunately the vxc that can be found from
MBPT are of high complexity and lead to an unbearable computational cost. Such
an approach, indeed, has only been applied to atoms [71] and simple solids [72].
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CHAPTER 3
Dielectric Response of a

Material

Applying an external perturbation is the way to probe the quantum mechanical prop-
erties of a system. That is, for example, what we do in our everyday life whenever we
shine light on a material. In that case, the electromagnetic perturbation, by coupling
with the electrons, gives us access to the intimate nature of the electronic excitations
and provides a solid way to validate the theoretical description of the system. In
turn, understanding the way a material responds to an external perturbation from a
microscopic point of view allows for rational and clever design of new materials. In
this chapter I will describe the concept of dielectric function and its key role in de-
scribing the response of a material. A particular focus will be given to the connection
between its microscopic and macroscopic definition and how such a connection has
to be adapted when dealing with 2D systems. The dielectric function plays a central
role also in the description of optical response, however, because of the importance
of excitonic effects in 2D materials, a single-particle picture is no longer enough and
one has to rely on two-particle based many-body methods, such as the Bethe-Salpeter
equation.

3.1 Linear Response Theory: a brief overview

Let us apply a perturbation Ĥ ′(t) to a system described by the Hamiltonian in
eq. (2.5). For simplicity, I only consider a perturbation generated by a longitudi-
nal field so that Ĥ ′(t) can be written in terms of the density operator (neglecting
spin variables: x → r):

Ĥ ′(t) =
∫
drn̂(r)vext(r, t). (3.1)
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Considering only longitudinal fields might seem like an extreme restriction, but, as I
will discuss in section 3.4, it is what it takes to describe the kind of response relevant
for the problems within this thesis including the response to electromagnetic radiation
in the long wavelength limit.

If the magnitude of the perturbation is small enough, the variation in the ex-
pectation value of the density operator can be calculated by applying Kubo’s linear
response formula1:

δn(r, t) =
∫ t

t0

dt′
∫
drχR(r, t; r′, t′)vext(r′, t′), (3.2)

where the so-called density-density correlator is given by:

χR(r, t; r′, t′) = −iθ(t− t′)⟨0| [n̂H(r, t), n̂H(r′, t′)]− |0⟩. (3.3)

The choice of the symbol χ is not random. Indeed one can show that the density-
density correlation function is nothing else than the retarded component2 of the
reducible polarizability introduced in section 2.3.2. In general any kind of physical
response function is a retarded function as a consequence of the causality principle [42],
for which the response of the system has to be non-zero only after the perturbation
is applied. Mathematically speaking, causality is guaranteed by the presence of a
Heaviside function, exactly as in eq. (3.3).

The actual calculation of χ requires some approximations. As explained in sec-
tion 2.3.2, χ is related to the irreducible polarizability P by a Dyson equation. As in
the GW method, the random-phase approximation (RPA) for P is considered. Fur-
thermore, assuming that the system is well described at the Kohn-Sham level, the
dressed Green functions in eq. (2.45) can be replaced with the Kohn-Sham ones. With
homogeneity in time, i.e. χR(r, t; r′, t′) = χR(r, r′, t − t′), an explicit expression for
the retarded component of P can be found, and in frequency space it reads [56]

PR(r, r′, ω) ≈ 2
∑
n,n′

BZ∑
kq

(fnk − fn′k+q)
ϕ∗KS

nk (r)ϕKS
n′k+q(r)ϕKS

nk (r′)ϕ∗KS
n′k+q(r′)

ω + ϵKS
nk − ϵKS

n′k+q + iη

≡ χ0(r, r′, ω).

(3.5)

with the factor two accounting for the spin, the occupation factors fnk being either 1
or 0 (at zero Temperature) and +iη an infinitesimal imaginary number guaranteeing
the analyticity property of a retarded function. The reason why I have not use the

1The variation of the expectation value of an operator Ô(t) in linear response approximation,
is given by: δO(t) = −i

∫ t

t0
dt′⟨0|

[
ÔH(t′), Ĥ′

H(t′)
]

−
|0⟩. This formula takes the name of Kubo’s

formula [42,62]
2In general the retarded component of a correlator of the form C(1; 2) = ⟨0|T

[
ÔH(1)ÔH(2)′

]
|0⟩

is defined as:
CR(1; 2) = θ(t1 − t2)

[
⟨0|ÔH(1)ÔH(2)′|0⟩ − ÔH(2)′ÔH(1)|0⟩

]
. (3.4)
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equal sign in the equation above is to stress that using the KS eigenvalues and wave
functions is an approximation. The expression above represents the independent-
particle approximation for the irreducible polarization and is commonly denoted with
χ0, known as independent-particle polarizability. Notice that, since the materials
investigated in this thesis are periodic in at least two dimensions, I specialized the
expression above to Bloch type wave functions.

Another fundamental response function is the one that relates the total potential
to the external one:

vtot(r, t) =
∫ t

t0

dt′
∫
drϵ−1R(r, t; r′, t′)vext(r′, t′). (3.6)

Once again, the choice of the notation ϵ−1R is not random since one can show that
such a response function is the retarded component of the inverse dielectric function
introduced in section 2.3.2. This also means that one can apply eqs. (2.39) and (2.40)
to calculate ϵ−1R from PR or χR respectively. This is usually done within the RPA.

To illustrate the effect of dielectric screening, I show in fig. 3.1 how an external
potential of the form vext(r, t) = v0e

iq∥·r∥ is screened by a monolayer MoS2 along the
out-of-plane direction. As expected the total potential is reduced inside the material,
where the external perturbation is screened by the electrons, and it recovers the
external potential values only far away from it.

In the rest of the thesis, I will drop the superscript R as it will be clear from
the context whether or not it is the retarded component of a given function that is
needed.

Figure 3.1: Illustration of the dielectric screening in a MoS2 layer. An external
perturbation of the form vext(r, t) = v0e

iq∥·r∥ with q∥ = 1.5a.u. is ap-
plied and because of electronic screening the total microscopic potential
inside the material is reduced.
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3.2 Response Functions in Periodic Systems
Since all the systems treated in this thesis are periodic either in two or three dimen-
sions, it is convenient to express the quantities introduced in the previous section in
a plane-wave basis. This is, indeed, the basis set of choice in GPAW when it comes to
the calculation of linear response functions. In general any function associated with a
periodic system has to satisfy the translational symmetry of the lattice. In the case of
a two spatial variable functions, this means that f(r, r′) = f(r + R, r′ + R′), with R
and R′ lattice vectors. If such a condition is satisfied, then f(r, r′) can be expressed
through its inverse Fourier transform as follows:

f(r, r′, ω) = 1
Ω
∑

G,G′

BZ∑
q
ei(G+q)rfG,G′(q)e−i(q+G′)r′

, (3.7)

where Ω is the volume of the primitive cell, G is a reciprocal lattice vector and q is
a vector in the first Brillouin Zone (BZ). Using this result, χ0 can be expressed in a
plane wave representation [73,74]:

χ0
GG′(q, ω) = 2

Ω
∑
n,n′

BZ∑
k

(fnk − fn′k+q)
ρnk,n′k+q(G)ρ∗nk,n′k+q(G′)
ω + ϵKS

nk − ϵKS
n′k+q + iη

, (3.8)

with ρnk,n′k+q(G) = ⟨ϕKS
nk |ei(q+G)·r|ϕKS

n′k+q⟩ the so called charge-density matrix.
The RPA expression in eq. (2.39) for the dielectric matrix can be readily obtained

in a plane wave representation as well:

ϵG,G′(q, ω) = δG,G′ − vC(q + G)χ0
G,G′(q, ω), (3.9)

where vC(q + G) is the Fourier transform of the Coulomb potential and χ0 is the
independent-particles polarizability introduced in eq. (3.5). The relation between the
total and external microscopic potential is conveniently refurmulated as:

vtotG (q, ω) =
∑
G′

ϵ−1
G,G′(q, ω)vextG (q, ω), (3.10)

which is the Fourier space version of eq. (3.6).
It is instructive to analyze the long wavelength limit (q → 0) of χ0

0 0(q, ω = 0),
i.e. the “DC” component of the static independent particle polarizability. Using k · p
theory, it is possible to show [56] that the leading order in the charge-density matrix
is:

ρnk,n′k+q(G = 0) ≈ q · ⟨ϕKS
nk |p̂|ϕKS

n′k⟩
ϵnk − ϵn′k

q → 0. (3.11)

For a semiconductor the eigenvalues difference in the denominator is finite and there-
fore ρnk,n′k+q(G = 0) ∝ q, which implies χ0

00(q → 0) = aq2 + o(q2) with a just
a constant that can be determined as the coefficient of the second order term, i.e.
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a = 1
2

d2χ0
00(q→0)
dq2

∥

∣∣∣∣
q∥=0

. Notice that this result does not depend on the dimension-

ality of the system. Now, let us consider ϵ000(q → 0) in the same long wavelength
limit. From eq. (3.9) one has ϵ000(q → 0) = 1+av(q)q2 +o(q2). Because the Coulomb
kernel depends on the dimensionality, namely v3D(q) ∝ 1/q2 and v2D(q) ∝ 1/q, the
screening behavior of 2D material is different from a 3D one. In particular while in
2D ϵ000(q → 0) is has to go to 1 (ϵ000(q → 0) ∼ 1 + a 2π

q q
2 → 1), in 3D it can assume

any finite value above 1, depending on a. This observation gives a first hint on the
fact that dielectric screening is reduced in 2D, a concept that will be central in the
next chapters.

To finish this section a few word have to be spent on the Coulomb Kernel in
eq. (3.9) in the case of 2D materials. From an ab-initio point of view, even if a 2D
material is periodic along only two dimensions, it is more practical to apply 3D peri-
odic boundary conditions. In doing so, one has to make sure that the primitive cell in
the out-of-plane direction is large enough to avoid spurious hybridization and/or in-
teraction between the artificial replica of the 2D layers. While avoiding hybridization
among replicas does not require a particularly elongated cell, the long range nature of
the Coulomb interaction makes the use a very large cell a necessity. If h is a measure
of the extension of the out-of-plane electron density around the layer, then it is a good
rule of thumb to choose a cell which is larger than 2h. This is computationally quite
unfortunate, as by increasing the cell size the number of basis set functions increases
drastically and with that the computational cost. One trick to avoid this is to use a
Coulomb interaction which is truncated in the out-of-plane direction in realspace:

vtruncC (r, r′) =
θ( L

2 − |rz − r′z|)√
(r∥ − r′∥)2 + (rz − r′z)2

, (3.12)

with L the out-of-plane dimension of the primitive cell and the truncation length set
to L/2. A simple analytic form of its Fourier transform can be found [75] and it reads:

vtruncC (k) = 4π
|k|2

[
1 + e−k∥

L
2

(
kz

k∥
sin
(
kz
L

2

)
− cos

(
k⊥

L

2

))]
. (3.13)

From the expression above it is easy to verify that, for an infinitely large primitive
cell L → ∞, the 3D Coulomb potential is recovered, i.e. vtruncC (k) → v3DC (k) = 4π

|k|2 ,
whereas for q ≪ 1/L the 2D limit is obtained, namely vtruncC (k) → v2DC (k) = 2πL

k .
Using a truncated Coulomb interaction reduces the computational cost of response
calculations considerably, but careful convergence test on the out of plane cell size
have to be performed.
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3.3 Macroscopic Dielectric Function: the 3D and 2D

case
When applying an external perturbation, such as, e.g. an electric field, to a crystal,
the perturbation varies on a spatial scale much larger that the unit cell of the material.
The material response, however, induces variation of the total potential on an atomic
scale (see fig. 3.2). These variations are usually referred to as local field effects. The
latter cannot be resolved experimentally, where the fields measured are rather an
average over the unit cell than the microscopic total field itself. For this reason,
one is interested in a dielectric function that directly relates the macroscopic total
potential, Vtot, to the external one:

Vtot(r, ω)
∫
dr′ϵ−1

M (r − r′, ω)vext(r′, ω). (3.14)

Notice that because it is a macroscopic response, the spatial dependence of the re-
sponse function is on r − r′, which indicates homogeneity in space. In this section I
will show how the macroscopic dielectric function ϵM can be calculated in the case of
3D and 2D periodic systems.

Since we are interested only in variations on a scale larger than the unit cell, the
macroscopic total potential can be defined as the average of the microscopic one over
the unit cell [73]:

Vtot(r, ω) ≡ 1
Ω

∫
Ω(r)

dr′vtot(r′, ω), (3.15)

where the unit cell is centered at r. The microscopic total potential can be conve-
niently expanded as:

vtot(r, ω) = 1
Ω
∑
G

BZ∑
q
vtotG (q, ω)e−i(q+G)·r. (3.16)

A similar expression can be written for the external potential vext, but in that case
the only non-zero component is the G = 0 one. This is because typical external
perturbation are spatially smooth over the unit cell, whereas G ̸= 0 components
would describe oscillations with a period shorter than the unit cell. In formulas this
means:

vext(r, ω) = 1
Ω

BZ∑
q
vext0 (q, ω)e−iq·r. (3.17)

The macroscopic total potential can then be calculated by taking the average of
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v
ext

v
tot

Figure 3.2: Illustration of the local field effects in a periodic system.

eq. (3.16):

Vtot(r, ω) = 1
Ω2

∑
G

BZ∑
q
vtotG (q, ω)

∫
Ω(r)

dr′e−iq·r
′
e−iG·r

′

= 1
Ω2

∑
G

BZ∑
q
vtotG (q, ω)e−iq·r

∫
Ω(r)

dr′e−iG·r
′

= 1
Ω

BZ∑
q
vtot0 (q, ω)e−iq·r,

(3.18)

where in the second line I took e−iq·r
′ out of the integral as it varies slowly on the

unit cell scale and in the third line I used the Kronecker delta δG0 coming from
1
Ω
∫

Ω(r) dr′e−iG·r′ . Using eqs. (3.17) and (3.18) and defining Vtot(q, ω) = vtot0 (q, ω)
and vext(q, ω) = vext0 (q, ω), eq. (3.14) can be rewritten in reciprocal space as:

Vtot(q, ω) = ϵ−1
M (q, ω)vext(q, ω), (3.19)

with ϵ−1
M (q, ω) =

∫
dreiq·rϵ−1

M (r, ω). Now, from eq. (3.10) the G = 0 component of
the total potential is given by vtot0 (q, ω) =

∑
G′ ϵ

−1
0,G′(q, ω)vextG′ (q, ω) and since, as

explained before, the only contribution from the external potential is for G′ = 0, I
can write:

Vtot(q, ω) = ϵ−1
00 (q, ω)vext(q, ω). (3.20)

Comparing to eq. (3.19), I can relate the macroscopic dielectric function to the mi-
croscopic one:

ϵ3DM (q, ω) = 1
ϵ−1

00 (q, ω)
, (3.21)

which is a simple and elegant result. It is important to stress that 1
ϵ−1

00 (q,ω) ̸= ϵ00(q, ω),
since the latter does not contain local field effects [73,74]. Indeed picking directly the
G = G′ = 0 component of the dielectric matrix corresponds to completely neglect
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the response to fields oscillating with a period shorter than the unit cell, i.e. the
local field effects. If instead the G = G′ = 0 component is taken after the inversion
of the dielectric matrix, unless ϵGG′(q, ω) is diagonal, the G,G′ ̸= 0 components of
ϵGG′(q, ω) contribute to ϵ−1

00 (q, ω) bringing information of the local field effects.

Unfortunately things get more complicated when dealing with two dimensional sys-
tems and eq. (3.21) does not apply any longer. The reason is that for 2D materials,
the average that led to eq. (3.21) would be over a unit cell which is artificially elon-
gated in the out-of-plane direction in order to separate the layer replica as discussed
in the previous section. In the limit of large layer separation, most of the contribution
to the average of the microscopic total potential would then stem from the vacuum,
where the total potential is equal to the external one, and the macroscopic dielectric
function would approach one independently of the q-vector [76].

To avoid this problem it is reasonable to limit the out-of-plane average to a sig-
nificant thickness d around the layer, i.e :

V Q2D
tot (r∥, ω; d) ≡ 1

Ω∥d

∫
Ω∥(r∥)

dr′∥
∫ d/2

−d/2
dz′vtot(r′, ω), (3.22)

where z0 is the out-of-plane coordinate of the layer center and the superscript Q2D
(quasi-2D) indicates that the finite thickness of the 2D layer is taken into account.
A physically sound value for d would be the actual out-of-plane extension of the
electronic density. However since the latter requires ab-initio calculations, a good
rule of thumb is to take the interlayer distance in the bulk form of the material. I
will provide a more thorough discussion on the choice of d at the end of the section.

Following the same procedure as in eq. (3.18), it is straightforward to show that
the new average leads to:

V Q2D
tot (r∥, ω; d) = 1

Ω∥

BZ∑
q∥

2
d

∑
Gz

eiGzz0
sin(Gzd/2)

Gz
vtot0Gz

(q, ω)e−iq∥·r∥ , (3.23)

where I have adopted the notation G = G∥Gz. Notice that the sum over the BZ
vectors is only in the in-plane direction because with a really large simulation cell the
BZ is practically flat and only a single out-of-plane qz is used to represent it. If I now
define V Q2D

tot (q∥, ω; d) = 2
d

∑
Gz
eiGzz0 sin(Gzd/2)

Gz
vtot0Gz

(q, ω), use eq. (3.10) and keep in
mind that only the G′ = 0 component of the external potential contributes, I get:

V Q2D
tot (q∥, ω; d) = 2

d

∑
Gz

eiGzz0
sin(Gzd/2)

Gz
ϵ−1

0Gz 00(q∥, ω)Vext(q∥, ω), (3.24)

from which I can identify the Q2D macroscopic dielectric function:

1
ϵQ2D
M (q∥, ω; d)

= 2
d

∑
Gz

eiGzz0
sin(Gzd/2)

Gz
ϵ−1

0Gz 00(q∥, ω). (3.25)
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The calculated static (ω = 0) Q2D macroscopic dielectric function for monolayer MoS2
and hBN are shown in fig. 3.3, together with their respective bulk dielectric function.
From the figure it is clear that a monolayer is much less effective at screening compared
to the bulk counterpart. In addition, the Q2D macroscopic dielectric function features
a much stronger wavevector dependence compared to bulk, as it is forced to go to one
for q∥ → 0. Therefore, while the dielectric properties of a bulk semiconductor can be
well described with a dielectric constant ϵ = ϵM(q → 0), the same is not possible in
2D. It is important to stress that we numerically found ϵQ2D

M to be isotropic, i.e. the
same in all the direction in the BZ. By further inspection of fig. 3.3 we can distinguish
two different regimes, which are controlled by the dimensionless parameter q∥d: a 3D
regime, for q∥d ≫ 1, where the bulk-like behavior is recovered and a 2D one, for
q∥d ≪ 1, where a linear approximation,

ϵQ2D
M (q∥; d) → ϵ2DM (q∥) = 1 + 2παq∥, (3.26)

describes the dielectric function well, as illustrated by the blue lines in fig. 3.3. The
constant α is usually called the 2D polarizability constant and can be directly found
as the slope of the linear expansion. Alternatively, α can be calculated directly from
the reducible polarizability matrix. To show how this is done, I consider the d → 0
limit (strict 2D limit) of the static version of the Q2D macroscopic dielectric function:
1/ϵQ2D

M (q∥; d) ≃
∑

Gz
ϵ−1

0Gz 00(q∥), where for simplicity I set z0 = 0. Now, using the
reciprocal space relation between dielectric matrix and the reducible polarizability
matrix, i.e. ϵ−1

G,G′(q∥) = δG,G′ + vtruncC (q∥ + G)χG,G′(q∥), the Q2D macroscopic
dielectric function becomes:

1
ϵQ2D
M (q∥; d)

≃ 1 +
∑
Gz

vtruncC (q∥ + Gz)χ0Gz 00(q∥)

= 1 + vtruncC (q∥)χ0 0(q∥) +
∑

Gz ̸=0

vtruncC (q∥ + Gz)χ0Gz 00(q∥).
(3.27)
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1

3

5

7

9

11

13

15

q‖d = 1 (b)

Figure 3.3: Figure adapted from Paper II. Macroscopic dielectric functions for (a)
hBN and (b) MoS2. The bulk (black), Q2D (green) and 2D (blue) static
dielectric functions are shown. For more detail on the calculation check
Paper II.
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In the limit of zero thickness I expect the induced density to be non-zero only within
the plane, in other words δn(r) ∝ δ(z), which implies χ(r, r′) ∝ δ(z)δ(z′). This
condition translates to reciprocal space as χGG′(q∥) to be independent of the Gz and
G′z components, i.e. χGG′(q∥) = χG∥0 G′

∥0(q∥). This given, the equation above can
be further simplified:

1
ϵQ2D
M (q∥; d)

≃ 1 + vtruncC (q∥)χ0 0(q∥) + χ0 0(q∥)
∑

Gz ̸=0

vtruncC (q∥ + Gz). (3.28)

Taking now the long wavelenght limit q∥ → 0, consistently with the q∥d ≪ 1 regime,
and noticing that vtruncC (q∥) → 2πL/q∥, I get:

1
ϵQ2D
M (q∥; d)

≃ 1 + 2πL
q∥

χ0 0(q∥) + χ0 0(q∥)
∑

Gz ̸=0

vtruncC (Gz). (3.29)

In this limit the third term on the RHS is clearly a higher order term in q∥ and
therefore can be neglected. Taking the reciprocal of the equation and using 1/(1+x) ∼
1 − x , I arrive to:

ϵQ2D
M (q∥; d) ≃ 1 − 2πL

q∥
χ0 0(q∥). (3.30)

Since in the long wavelength limit χ0
0 0(q∥) = d2χ0

0 0(q∥)
dq2

∥

∣∣∣∣
q∥=0

+ o(q2
∥), as shown be-

low eq. (3.11), I can assume the same behavior for the reducible polarizability and
comparing to eq. (3.26), I can finally express the 2D polarizability as:

α = −L

2
d2χ0 0(q∥)

dq2
∥

∣∣∣∣∣
q∥=0

. (3.31)

In general, the linear behavior found for the 2D regime is in agreement with the
macroscopic dielectric function typically used for 2D materials first derived by Cud-
azzo et.al. in Ref. [77].

Ending this section, I return to the problem of defining the thickness parameter
d used for the average of the Q2D macroscopic dielectric function of MoS2.

Figure 3.4 illustrates the effect of varying the averaging thickness d on the Q2D
static dielectric function. The dashed lines indicate a variation in d of ±10% with
respect to the interlayer distance in bulk MoS2. Increasing (decreasing) d seems to
decrease (increase) ϵQ2D

M in the q∥d ∼ 1 region. However, the 2D and 3D regimes are
not affected by the choice of d. In the q∥d ≪ 1 limit, ϵQ2D

M is insensitive to d because
the induced potential decays slowly outside the layer and therefore is pretty much
constant over the averaging region. In the q∥d ≫ 1 limit, ϵQ2D

M is not affected as for
large wavevectors the material is unresponsive and the induced potential is negligible.
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3.4 Importance of Dielectric Function in Optical
Response

Let us see how we can relate the response functions calculated in the previous sections
to an experimental absorption spectrum. When perturbing a system with electromag-
netic radiation, eq. (3.1) is, in principle, not sufficient to describe the perturbation.
This is because the electromagnetic radiation is a transverse perturbation and there-
fore it cannot be represented only with a scalar potential. However, in the limit of
long wavelength (q → 0) the velocity gauge (transverse perturbation) and the length
gauge (longitudinal perturbation) are invariant and it becomes possible in this limit
to show that transverse and longitudinal response coincide [78]. A simple and intu-
itive explanation of such a result is to consider an electron in the material with a
velocity ve perturbed by a field E ∝ ei(q·r−ωt). The typical length experienced by the
electron during its motion is le ∼ ve/ω. Now if le ≪ 1/q the electron cannot “feel”
that the perturbation is a wave and as long as the field is locally the same, it cannot
distinguish between a longitudinal and a transverse perturbation.

In an absorption experiment we are interested in the power dissipated per unit
volume by the absorbing material. Such a quantity is given by:

p = 1
V

∫
V

dr j(r, t) · E(r, t). (3.32)

with j(r, t) the current density and E(r, t) the total electric field in the material.
These two quantities are further correlated to each other by the conductivity:

j(r, t) =
∫
dt′
∫

V

drσ(r − r′, t− t′)E(r′, t′). (3.33)
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Figure 3.4: Effect of averaging thickness d variation on the Q2D macroscopic di-
electric function in MoS2. The continuous black lines are relative to
d = 6.29Å (the interlayer distance in the bulk), while the dashed lines
delimiting the shaded region are calculated with a variation of ±10% in
d.
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Note that in this relation it is assumed that the perturbation and the current density
are longitudinal and in the same direction as the electric field. To continue, it is
convenient to focus on the power dissipated by a total electric field with well defined
Fourier components, i.e. E(r, t) = E0e

i(q·r−ωt) +c.c., where E0 is a real static vectors
giving the magnitude of the field. With this particular form of the external field,
eq. (3.33) can be simplified to:

j(r, t) = σ(q, ω)E0e
i(q·r−ωt) + c.c. (3.34)

and consequently the power per unit volume dissipated becomes:

p = 2Re [σ(q, ω)]E2
0 . (3.35)

The next step is to relate the conductivity to the irreducible polarizability. This can be
done by means of the continuity equation, which in Fourier space reads n(q, ω) = 1

ω q ·
j(q, ω). By expressing the density in terms of the reducible polarizability, n(q, ω) =
P (q, ω)Vtot(q, ω), and using that E(q, ω) = −iqVtot(q, ω), the continuity equation
yields the sought relationship:

σ(q, ω) = −i ω
q2P (q, ω). (3.36)

Inserting this in eq. (3.35), one gets p = −2 ω
q2 Im [P (q, ω)]E2

0 . Essentially the power
dissipated in the material per unit volume depends on the imaginary part of the
irreducible polarizability.

In the case of the optical absorption, because photons carry negligible momentum,
the long wavelength limit is satisfied and the absorption spectrum can be defined as:

ABS(ω) = lim
q→0

−4π
q2 Im [P (q, ω)] . (3.37)

I would like to stress that the prefactor 4π
q2 is the same regardless the dimensionality of

the system, In the derivation above I made use of macroscopic quantities. In the case
of bulk systems the absorption spectrum is often expressed in terms of the macroscopic
dielectric function. Indeed, remembering that ϵM(q, ω) = 1−4π/q2P (q, ω) and using
eq. (3.21) one has:

ABS3D(ω) = lim
q→0

Im[ϵ3DM (q, ω)] = lim
q→0

Im
[

1
ϵ−1

00

]
. (3.38)

However the same cannot be done in 2D since the Coulomb kernel linking the re-
ducible polarizability to macroscopic dielectric function goes as ∼ 1/q. Instead,
one should make use of the fact that in 2D the macroscopic reducible and irre-
ducible polarizabilities are the same in the long wavelength limit. To show this
we consider the relation between the two macroscopic polarizabilities: χ(q∥, ω) =
P (q∥, ω) + P (q∥, ω) 2π

q∥
χ(q∥, ω). Now in the long wavelength limit both P and χ go
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as q2
∥. This implies that the term P (q∥, ω) 2π

q∥
χ(q∥, ω) goes as q3

∥ and therefore can
be neglected leading to limq→0 χ(q∥, ω) = limq∥→0 P (q∥, ω). With the absorption
spectrum in terms of χ, local field effects are readily included taking the G = G′ = 0
component:

ABS2D(ω) = lim
q∥→0

Im[−4π
q2
∥
χ2DM (q∥, ω)] = lim

q∥→0
Im
[

−4π
q2
∥
χ2D00 (q∥, ω)

]
. (3.39)

In practice, χ2D has to be calculated from the 3D counterpart since it is what we
get from ab-initio calculations with 3D periodic boundary conditions. By definition
χ2D00 (q∥, ω) =

∫
dzdz′χG∥=0G′

∥=0(z, z′,q∥, ω), whereas χ00 00(q∥, ω) = 1
L

∫ L/2
−L/2 dzdz

′

χG∥=0G′
∥=0(z, z′,q∥, ω). Since χG∥=0G′

∥=0(z, z′,q∥, ω) is localized around the layer
we can see that χ2D00 (q∥, ω) = Lχ00 00(q∥, ω).

3.5 Including Excitonic Effects: The Bethe-Salpeter
Equation

When calculating the absorption spectrum of a semiconducting material within the
RPA approximation as introduced in the previous section, or any other independent-
particle approximation, the onset of the absorption coincides with the electronic direct
gap. This can be inferred from the irreducible polarizability in eq. (3.5), which has
poles only for frequencies matching the difference in eigenvalues. However, it is well
known experimentally that a material can absorb light for frequencies lower than the
electronic band gap. These apparently forbidden transitions arise from a many-body
effect called the exciton [79, 80, 81]. In a simple picture an exciton is a particle-
hole excitation which is created when an electron is excited from the valence to the
conduction band leaving a hole behind. The attractive Coulomb interaction between
the electron and hole leads to the formation of excitonic states that can potentially
be optically active at frequencies lower that the electronic band gap. An illustration
is reported in fig. 3.5 where the excitonic states are drawn as electronic states below
the conduction band, but of course a symmetric picture for the hole would be valid
as well.

In order to capture excitonic effects one has to get a better approximation for the
irreducible polarization by including electron-hole interaction. Since an exciton can
be depicted as two-particle many body problem, it is natural to introduce a quantity
that is related to the two-particle Green function [42,66,82]:

L(1, 2; 3, 4) = −iG(1; 3)G(4; 2) +G2(1, 2; 3, 4). (3.40)

Such a quantity is often referred to as a four-point reducible polarizability since it
reduces to the reducible polarizability when its coordinates are contracted in the
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Figure 3.5: Schematic of the formation of an exciton. An exciton can be seen as
electron-hole complex interacting via Coulomb interaction. Such inter-
action gives rise to states in the band gap that can be optically active.
In the sketch the excitonic states are arbitrarily drawn as electron states,
but a similar illustration for the hole would be valid as well.

following manner:
χ(1; 2) = L(1, 1+; 2, 2+). (3.41)

As shown by Bethe and Salpeter in 1951 [83], the four-point polarizability satisfies
the following exact Dyson equation:

L(1, 2; 3, 4) = L0(1, 2; 3, 4) +
∫
d5d6d7d8L0(1, 2; 5, 6)K(5, 6, 7, 8)L(7, 8; 3, 4), (3.42)

which goes under the name of Bethe-Salpeter equation (BSE). In particular,
L0(1, 2; 3, 4) ≡ −iG(1; 3)G(4; 2) and the kernel K(1, 2, 3, 4) is a complicated object
that carries information about the many-body effects in the system, and can be
written as:

K(1, 2, 3, 4) = v(1, 3)δ(1, 2)δ(3, 4) + iδΣ
xc(1; 2)

δG(3; 4)
. (3.43)

A derivation of the Bethe-Salpeter equation can be found in appendix A.
Let us focus on the meaning of eq. (3.42). With the kernel equal to zero, the BSE

reduces to L = L0, which is essentially the four-point version of the RPA in eq. (2.45).
The RPA consists of a simple product of electron and hole propagators (the Green
functions), meaning that no electron-hole interaction is included. When the kernel
is different from zero, instead, the independent particles picture is broken and the
interaction between the electron and the hole is introduced self-consistently through
the Dyson equation. To proceed further, one needs to specify an approximation for
the exchange-correlation self-energy and evaluate its derivative with respect to the
Green function. Employing the GW approximation and disregarding the variation
of the screened interaction due to the excitation, i.e. W (1;2)

δG(3;4) ≃ 0, one can write
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δΣxc(1;2)
δG(3;4) ≃ iδ(1, 3)δ(2, 4)W (1; 2) and therefore rewrite the kernel as:

K(1, 2, 3, 4) = δ(1, 2)δ(3, 4)v(1, 3) − δ(1, 3)δ(2, 4)W (1, 2). (3.44)

The two terms on the RHS can be identified with the unscreened exchange inter-
action and screened direct interaction. While the distinction between screened and
unscreened should be clear, the exchange and direct adjectives follow directly from
the order of the variables in the delta functions. Solving eq. (3.42), even with the
approximated kernel, is a demanding computational task and it is completely un-
affordable for realistic systems (at least up to this date). A great simplification is
obtained by considering only the static component of the screened interaction, i.e.
W (1, 2) = 1/2πW (x1,x2, ω = 0)δ(t1, t2). Indeed, with the static approximation, the
kernel is frequency independent and assuming the system to be homogeneous in time,
the BSE can be rewritten as a simple product in frequency space:

L(x1,x2,x3,x4;ω) = L0(x1,x2,x3,x4;ω)+∫
dx5dx6dx7dx8L0(x1,x2,x5,x6;ω)K(x5,x6,x7,x8)L(x7,x8,x3,x4;ω).

(3.45)

The validity of the static approximation is still a matter of research investigation,
but it has been successful at describing dielectric properties of semiconductors. In
Ref. [84], it is suggested that the good agreement with experiments on semiconduc-
tors is due to the cancellation of dynamical effects on the Green function and the self
energy, but the same does not happen for metals, where instead the static approxi-
mation needs to be relaxed.

If I express the BSE in the schematic form L(ω) = L0(ω) + L0(ω)KL(ω), then
it is clear that the solution for the four-point polarizability is given by L(ω) =
L0(ω) [1 − L0(ω)K]−1. Therefore, despite the simplification brought by the static
approximation, the solution of the BSE still requires the inversion of the operator
[1 − L0(ω)K] for each single frequency. The standard trick [59, 85] that is used to
overcome this problem, is to introduce a frequency independent two-particle Hamil-
tonian, H2p, and then use the spectral representation of its resolvent to calculate
L(ω). This is more conveniently done in the so called transition space, where the
basis functions are a product of two single-particle wave functions (the ones relative
to the states taking part of the transition), namely ψS(x1,x2) = ϕ∗n1k(x1)ϕn2k+q(x2).
The real space four-point polarizability can be expanded in this space as:

L(x1,x2,x3,x4;ω) =
BZ∑
q

∑
SS′

LSS′(q)ψS(x1,x2)ψ∗S′(x3,x4). (3.46)

Interestingly, it is possible to show (see appendix A) that the transition space can be
restricted to valence-conduction bands transitions only. Additionally, the fact that
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LSS′(q) is diagonal in q follows from the translational invariance of the system. As
anticipated above, LSS′(q, ω) is found through the following spectral representation
of [(ω + iη)1̂ − H2p

SS′(q)]−1 (see appendix A):

LSS′(q, ω) =
∑
λλ′

AS
λ(q)[AS′

λ′ (q)]∗N−1
λλ′(q)

ω − Eλ(q) + iη , (3.47)

with Nλλ′(q) = (q) =
∑

S [AS
λ(q)]∗AS

λ′(q) the overlap matrix and AS
λ(q), Eλ(q) the

eigenfunctions and eigenvalues of the non-hermitian two particle Hamiltonian:

H2p
SS′(q) = (ϵn2k+q − ϵn1k)δSS′ − (fn2k+q − fn1k)KSS′(q). (3.48)

The diagonal part consists of single-particle transition energies while the off-diagonal
terms are given by the BSE kernel KSS′(q) in the transition space.

At the end, the problem of inverting the operator [1 − L0(ω)K] at each frequency
has been reduced to a once for all diagonalization of the two-particle Hamiltonian.
Once again it is important to stress that the transitions can be safely restricted
to valence-conduction transitions. To simplify the diagonalization even more, it is
common to restrict the transition space even further to only the positive frequency
transitions, i.e. transitions from valence to conduction band. This approximation is
referred to as Tamm-Dancoff approximation and it has the advantage that in this
subspace the two-particle Hamiltonian is hermitian [85].

Apart from giving access to the polarizability, the two-particle Hamiltonian is a
source for physical insight. Indeed the eigenvalues Eλ(q) are essentially the transi-
tion energies of the system accounting for the electron-hole interaction. Since such an
interaction is attractive, the transitions energies become smaller, which is the reason
why semiconductive material may be optically responsive at frequencies below the
energy gap EG. An important piece of information that can be extracted from the
Eλ(q) is the exciton binding energy: Eb = max{EG − Eλ(q)}. This quantity de-
scribes how strong the exciton is bound, i.e. how strong the electron-hole interaction
is. The eigenfunctions AS

λ′(q), often called exciton weights, are identified with the
exciton wave functions in reciprocal space. Their connection to the real space exciton
wave function is then given by Ψex

λ (re, rh,q) =
∑

S A
S
λ′(q)ψS(re, rh). The exciton

wave function has to be thought of as the probability of finding an electron in re
given a hole in rh. In the description of optical experiments one is interested in the
q → 0 limit and the q-dependence of the excitonic properties is usually neglected. It
is worth mentioning, however, that by solving the BSE at finite q one could extract,
e.g., an excitonic band structure [86] or describe the propagation of excitons in inelas-
tic scattering experiments [87].

So far I have not specified the origin of the single-particle transition energies ap-
pearing in the diagonal part of the two-particle Hamiltonian and of the wave function
used to construct the transition space. In principle, to be consistent with the GW
approximation made for σxc to get the BSE kernel, eigenvalues and wave function
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should be obtained from the self-consistent GW (scGW ) method. Unfortunately the
computational cost of scGW is prohibitive for 2D crystals and “more importantly” is
not implemented in GPAW. It is common practice, then, to employ G0W0 eigenval-
ues for the single-particle transitions and KS wave functions for the transition space.
This poses the problem of initial state dependence of the BSE results as one could
utilize KS wave function calculated with different exchange-correlation functionals.
However this goes beyond the scope of this work and in the following LDA is chosen
as starting point. An even easier approach is to add a constant shift ∆s, the so called
scissor operator, to the KS eigenvalues difference.

To conclude this section I report the final expression for the reducible polarizability
matrix [59]:

χGG′(q, ω) = 1
Ω
∑
SS′

LSS′(q, ω)ρS(G)ρS′(G), (3.49)

where I used the charge-density matrix, defined in eq. (3.8), resulting from the
planewave representation of the transition space basis function, whose spatial co-
ordinates have been contracted according to eq. (3.41). From the knowledge of the
reducible polarizability one can calculate the dielectric matrix and for example ab-
sorption spectra, which include excitonic effects. An example of absorption spectrum
with and without excitonic effects is reported in fig. 3.6 for monolayer MoS2. One
can see that the spectrum is completely different when including excitons and the
onset of the absorption is lower than the energy gap. In addition the excitons couple
more strongly with light than the free electron-hole pairs as the absorption spectrum
calculated using BSE has higher intensity than the corresponding RPA one. Finally
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Figure 3.6: Absorption spectrum of MoS2 with (BSE) and without (RPA) excitonic
effects. For the BSE calculation the two topmost valence bands and the
four lowermost conduction bands are used to construct the transition
space and scissor operator of 0.8 eV is applied for the single-particle
transitions. A 30 × 30 k-points mesh is used for both RPA and BSE.
Spin-orbit coupling effects are accounted for non self-consistently..
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one can distinguish several peaks associated to excitons: the ones corresponding to
the lowest lying excitons (A and B), and the next excited excitonic states (A’,B’ and
C) [27]. The split of the excitonic peaks in A and B is due to spin-orbit coupling
effects. From this It is clear that excitonic effects are crucial for the description of
optical properties of real materials.

For later purposes, it is instructive to write down the planewave representation of
the exchange and screened Coulomb interaction in the kernel KSS′(q) = vSS′(q) −
WSS′(q):

vSS′(q) = 2
Ω
∑
G
v(q + G)ρ∗n1k,n2k+q(G)ρn′

1k,n′
2k+q(G), (3.50)

WSS′(q) = 1
Ω
∑
GG′

ρ∗n1k,n′
1k(G)v(q + G)ϵ−1

GG′(q, ω = 0)ρn2k+q,n′
2k+q(G). (3.51)

The factor two in the expression for the exchange interaction accounts for the spin
and the assumption that only singlet transitions contribute to the transitions. The
same factor is not present in the screened direct interaction since the spins are related
to each other by the delta functions in the second term of eq. (3.44) and therefore
they are not independent.

3.5.1 Remarks on BSE convergence
Doing a BSE calculation is extremely expensive in computational terms, the main two
reasons being the diagonalization of the two-particle Hamiltonian and the calculation
of the screened interaction. As I mentioned above, the two-particle Hamiltonian is
represented on the transition space restricted to valence to conduction band transi-
tions. Obviously even counting only these there are infinitely many transition and
one has to come up with a significant subset that is enough to describe the relevant
energy window. It turns out that for a semiconductor having non-degenerate highest
valence band and lowest conduction band, it is enough to include only those two to
get converged excitonic levels (at least for the lowest ones). If instead one is inter-
ested in the absorption spectrum up to several eV, the number of conduction and
valence bands has to be increased. For example it is shown in Ref. [27] that in order
to converge the MoS2 absorption spectrum up to 3.5eV one has to include the last
two valence bands and the first four conduction bands.

The other bottleneck of the BSE is the calculation of the screened interaction
which in turn requires the calculation of the dielectric matrix at a RPA level. This
stage of the computation is the limiting step in the case of two-dimensional materials.
Two parameters play an important role: the cutoff energy that sets the number of
unoccupied bands3 for the calculation of the RPA dielectric matrix and the number

3The need of setting the number of unoccupied bands for the calculation of the RPA dielectric
function follows from the sum over unoccupied states in eq. (3.8). It is important to stress that
the number of unoccupied bands is not related to the number of conduction states included in the
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Figure 3.7: Convergence of the exciton binding energy for MoS2 and h-BN. In this
case the exchange contribution to the kernel has not been included. The
markers, from left to right, are results from 60 × 60, 45 × 45, 30 × 30
and 12 × 12 k-points.

of k-points in the BZ. In fig. 3.7 I illustrate the convergence of the exciton binding
energy in MoS2 and h-BN as a function of k-point density in the two-dimensional
BZ. The highest k-point density in the plot corresponds to a 60 × 60 k-point mesh,
which according to the linear extrapolation in dashed line yields a converged result
within ∼ 0.1eV for MoS2 and 0.03eV for hBN. The reason for such a slow convergence
can be attributed to strong wavevector dependence of the dielectric function for 2D
materials, as illustrated in fig. 3.3. In particular, a coarse k-point sampling of the
dielectric function results in an underestimation of the screening and explains why
the exciton binding energy goes up for smaller k-point density. It is important to
mention that the same convergence issue appears in G0W0 calculations, since also in
that case one needs to calculate the screened interaction.

two-particle Hamiltonian
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CHAPTER 4
Modelling Excitons in 2D

Materials

Band gaps in the visible range and strong light-matter interaction turned out to be
the key to the success of two-dimensional (2D) semiconductors in (opto)-electronic
applications [19, 24, 25]. The extensive theoretical and experimental investigation of
the optical properties of these materials has demonstrated that the optical response
is mainly governed by strongly bound excitons [26, 27, 29, 88, 89]. The formation of
strongly bound excitons is unique to low-dimensional materials and it is a consequence
of the poor electronic screening due to the reduced dimensionality. From a theoretical
perspective, excitonic effects can be completely determined and understood in terms
of the Bethe-Salpeter equation (BSE). Unfortunately, solving the BSE is a tremendous
computational task, which becomes practically impossible in the case of complex
materials such as van der Waals heterostructures. As an alternative to the BSE, it
has been shown that under well-defined assumptions, the excitonic problem for bulk
systems can be reduced to the solution of a hydrogenic-like Schrödinger equation,
often referred to as the Mott-Wannier equation [90]:[

− ∇2

2µex
− 1
ϵr

]
F (r) = EbF (r), (4.1)

with µex the exciton effective mass, ϵ the dielectric constant, Eb and F (r) the exciton
energies and wave functions respectively and r the electron-hole separation vector.
This result agrees with the usual intuitive picture of an exciton as an electron and a
hole interacting via a Coulomb interaction which is screened by all the other electrons
in the material. However, as learned in the previous chapter, it is not clear how to
define a dielectric constant, ϵ, for 2D materials. The standard approach [77,91,92] is to
modify the electron-hole interaction using a linear approximation for the wavevector
dependence of the dielectric function, exactly as in eq. (3.26). In this chapter I will
provide a critical assessment of the standard approach, which is based on a strict 2D
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picture of the material, by taking into account the intrinsic finite thickness of the
2D layer and including the full wavevector dependence of the screened electron-hole
interaction. To conclude the chapter, I will show how, by a modified definition of a
2D effective dielectric constant, it is actually still possible to use the hydrogenic-like
eq. (4.1) and find an analytic expression for the exciton binding energies.
The work presented in this chapter is based on Paper III and the first part of Paper
II.

4.1 From BSE to the Mott-Wannier equations for 2D
materials

As shown in the previous chapter, the solution of the BSE comes down to the diago-
nalization of the resonant part of the two-particle Hamiltonian. While, in principle,
the two-particle Hamiltonian should be represented on a transition space consisting
of all the available valence and conduction band pairs, the properties of the most
strongly bound (lowest lying) excitons are usually well described by including only
the highest lying valence band and lowest lying conduction band. This is valid as long
as the two bands are well separated from all the others. Additionally, for optically
generated excitons, it is enough to consider only vertical transitions, i.e. q → 0. The
two-particle Hamiltonian in eq. (3.48) can then be rewritten as:

H2p
vck∥
vck′

∥

= (ϵck′
∥

− ϵvk∥)δk∥k′
∥

+Kvck∥
vck′

∥

, (4.2)

with k∥ taken as a 2D vector in the 2D BZ. It is convenient to explicit the kernel in
the reduced transition space:

Kvck∥
vck′

∥

=2
∫
drdr′ϕvk∥(r)ϕ∗ck∥

(r)v(r, r′)ϕ∗vk′
∥
(r′)ϕck′

∥
(r′) +

−
∫
drdr′ϕvk∥(r)ϕ∗ck∥

(r′)W (r, r′)ϕ∗vk′
∥
(r)ϕck′

∥
(r′),

(4.3)

where the KS superscript is omitted for ease of notation. The expression above
clarifies even better than eq. (3.44) the reason why the first and the second terms on
the RHS are referred to as exchange and direct screened interaction. According to
our ab-initio solution of the BSE for two representative 2D semiconductors, namely
MoS2 (in the 2H phase) and hBN, the effect of the exchange interaction amounts to
less than 5% of the exciton binding energy and therefore I will safely neglect it in the
following.

Typical 2D materials feature excitons fairly delocalized in real space, or equiva-
lently, fairly localized in reciprocal space. Technically speaking this means that the
excitonic weights Av(c)k∥

λ′ , introduced in section 3.5, are non-zero only around the top
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of the valence and bottom of the conduction band. This is illustrated in fig. 4.1, where
the absolute squared value of the excitonic weights for the lowest lying excitons in
MoS2 and hBN are plotted as green circles, whose radius is proportional to their mag-
nitude. It is evident that in both materials the exciton tends to localize around the
K-point of the BZ. Since it is only the states around the extrema of the valence and
conduction bands that matter, it is possible to approximate the bands as parabolic
(red dashed lines in fig. 4.1), i.e. ϵc(v)k∥ = ± k2

2me(h)
, with me(h) the electron(hole)

effective mass. It follows that the diagonal part of the two-particle Hamiltonian in
eq. (4.2) can be expressed as diag(H2p

vck∥
vck′

∥

) = k2
∥

2µex
, with the exciton mass defined as

µ−1
ex = m−1

e +m−1
h .

Since a parabolic energy dispersion is characteristic of free charges, it is justi-
fied to approximate valence and conduction Bloch wave functions as ϕv(c)k∥(r) =
e

ik∥·r∥√
Ω∥

ϕv(c)⊥(z), namely the product of an in-plane plane-wave normalized to the
area of the unit cell Ω∥ and a distribution ϕv(c)⊥(z) for the out-plane direction. In
particular for the latter, it is reasonable to choose the in-plane average of the valence
(conduction) wave functions calculated at the point k∥ 0 of the BZ corresponding to
the position of the bands extrema, in formula ϕv(c)⊥(z) = ( 1

A

∫
dr∥|ϕv(c)k∥ 0(r)|2)1/2.

The square of the out-of-plane part of the valence and conduction wave functions in
hBN and MoS2 are illustrated in fig. 4.2.

Thanks to the discussed approximations, the kernel Kvck∥
vck′

∥

simplifies to:

Kvck∥
vck′

∥

= − 1
Ω2
∥

∫
dr∥dr′∥e

i(k∥−k′
∥)·r∥

[∫
dzdz′|ϕc⊥(z)|2W (r, r′)|ϕv⊥(z′)|2

]
e−i(k∥−k′

∥)·r′
∥ .

(4.4)
Because W (r, r′) is a function on a 2D periodic lattice it fulfills translational invari-
ance and therefore satisfies a 2D version of eq. (3.7):

W (r, r′) = 1
Ω∥

∑
G∥,G′

∥

BZ∑
q∥

ei(G∥+q∥)·r∥WG∥,G′
∥
(z, z′,q∥)e−i(q∥+G′

∥)·r′
. (4.5)

Inserting the last expression in eq. (4.4) and noting that the double integral over the
exponential gives δq∥ k′

∥−k∥δG∥ 0δG′
∥ 0, I arrive at a very compact expression for the

BSE kernel:

Kvck∥
vck′

∥

= 1
Ω∥
W̄ (k′∥ − k∥), (4.6)
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Figure 4.1: Absolute value squared of the excitonic weights of the lowest lying ex-
citon for monolayer hBN (a) and MoS2 (b) obtained as the solution to
the BSE based on a LDA band structure. In both materials the exci-
ton localizes at the K point. The parabolic approximation used in the
Mott-Wannier equation is shown in red. The electron and hole masses
calculated from LDA bands are respectively 0.93 a.u. and 0.62 a.u. for
hBN and 0.61 a.u. and 0.49 a.u. for MoS2.

where I defined the screened interaction energy in reciprocal space as

W̄ (q∥) =
∫
dzdz′|ϕc⊥(z)|2W0 0(z, z′,q∥)|ϕv⊥(z′)|2

=
∫
dzdz′dz′′|ϕc⊥(z)|2ϵ−1

0 0 (z, z′,q∥)vC(z′ − z′′,q∥)|ϕv⊥(z′′)|2.
(4.7)

The fact that only the G∥ = G′∥ = 0 component of the inverse dielectric function ap-
pears, means that the relevant screened interaction in the BSE Kernel is macroscopic
in the in-plane direction (see section 3.3). Combining this result with the parabolic
energy dispersion, the two-particle Hamiltonian becomes:

H2p
vck∥
vck′

∥

= δk∥k′
∥

k2
∥

2µex
+ 1

Ω∥
W̄ (k′∥ − k∥). (4.8)

Finally, the BSE eigenproblem
∑

k′ H2p
vck∥
vck′

∥

Ak′
∥ = EbA

k∥ can be reformulated in real

space as a generalized Mott-Wannier equation for 2D systems:[
−∇2

2D

2µex
+ W̄ (r∥)

]
F (r∥) = EbF (r∥), (4.9)

with r∥ the electron-hole separation vector, F (r∥) the so called envelope function, de-
fined as F (r∥) = 1

Ω∥

∑
k∥
e−ik∥·r∥Ak∥ and W̄ (r∥) = 1

Ω∥

∑
k∥
e−iq∥·r∥W̄ (q∥). Because
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Figure 4.2: Valence (red) and conduction (green) out-of-plane wave function
squared for (a) hBN and (b) MoS2 calculated at k∥ 0 = K. The grey
shaded area represents the extension of the step function used to ap-
proximate the actual out-of-plane density distribution of the electron
and the hole.

of the resemblance of eq. (4.9) with the Schrödinger equation for a 2D hydrogen
atom, it is now evident why the Mott-Wannier equation is usually associated with a
hydrogenic picture of the exciton. The reason why I used the term generalized is that
compared to the original Mott-Wannier equation eq. (4.1), no approximation on the
wavevector dependence of the electron-hole interaction energy has been made and the
finite extension in the out-of-plane is effectively taken into account.

To conclude this section, let us consider the explicit expression of the electron-
hole interaction energy in real space. Defining the electron (hole) charge density
ρe(h)(r) = ∓δ(r∥ − re(h) ∥)|ϕc(v)(z)|2, it is straightforward to show:

W̄ (re ∥ − rh ∥) =
∫
drdr′dr′′ ρe(r)ϵ−1

M (r − r′)ρh(r′′)
|r′ − r′′|

. (4.10)

Note that as argued below eq. (4.7) the dielectric function appearing in the expression
above has to be macroscopic in-plane. Essentially, eq. (4.10) shows that W̄ (re ∥, rh ∥)
is nothing else but the screened classical electrostatic interaction energy associated
with the electron and hole charge distributions.

4.2 Screened Coulomb Interaction
The main ingredients for the solution of the Mott-Wannier equation are the exciton
effective mass, which is easily calculated from ab-initio band structures, and the
screened electron-hole interaction energy, which will be the topic of this section.
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Forgetting for a moment about the dielectric screening, it is instructive to see how
the bare electron-hole interaction looks in reciprocal space in the case of a strict 2D
system and a finite thickness layer (see sketch in fig. 4.3). For a 2D plane, the out-of-
plane charge distribution for electron and hole reduces to a delta-function, meaning
that one is left with the interaction energy of 2D point-charges (fig. 4.3 (a)), which
is well known and reads:

V̄2D(q∥) = − 2π
|q∥|

. (4.11)

For an actual 2D material with finite thickness, the electron and hole should be rather
thought as lines of charges (fig. 4.3 (b)) with an out-of-plane distribution given by
|ϕc(v)(z)|2. By approximating the latter with a layer centered step-function of a
thickness d, it is possible to obtain an analytic expression for the bare interaction
energy in reciprocal space:

V̄Q2D(q∥) = − 4π
d|q∥|2

[
1 − 2

|q∥|d
e−|q∥|d/2 sinh

( |q∥|d
2

)]
. (4.12)

Details on the derivation of the above formula are given in Paper II. What is inter-
esting to see is that the asymptotic limits:

V̄Q2D(q∥) =

{
− 2π
|q∥| q∥d ≪ 1

− 4π
|q∥|2 q∥d ≫ 1

, (4.13)

are governed by the dimensionless parameter q∥d, the same encountered in the previ-
ous chapter when discussing the Q2D macroscopic dielectric function. Once again, for
q∥d ≪ 1 one recovers the 2D behavior, whereas for q∥d ≫ 1 the 3D limit is obtained.

Going back to the screened interaction energy, it is convenient to reformulate the
reciprocal space expression in eq. (4.7) in the following way:

W̄ (q∥) =
∫ ∞
−∞

dzdz′ρe(z,q∥)ϵ−1
00 (z, z′,q∥)φh(z′,q∥). (4.14)

In this form, the interaction energy can be seen as the electrostatic energy asso-
ciated with an electron being in the field φh(z,q∥) =

∫
dz′vC(z − z′,q∥)ρh(z,q∥)

generated by the hole. As explained in Paper II, the latter can be calculated numeri-
cally for an arbitrary out-of-plane hole distribution by solving the Poisson equation.
The convenience of the equation above is clear when approximating the electron and
hole out-of-plane distribution with a step-function. Indeed if I replace the potential
φh(z,q∥) with its average values around the layer and follow the derivation in Paper
II, the screened interaction energy becomes a simple product of the Q2D macroscopic
dielectric function and the bare Coulomb interaction:

W̄Q2D(q∥) = ϵ−1
Q2D(q∥)V̄Q2D(q∥), (4.15)
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Figure 4.3: Sketch of the Coulomb interaction between (a) point-charges in a 2D
plane and (b) quasi-2D point-charges, i.e. lines of charge extending
along the thickness of the material.

where, for ease of notation, I used a slightly modified notation for the dielectric
function compared to the original definition in section 3.3, i.e. ϵQ2D = ϵQ2D. Since
both functions on the RHS reduce to their respective 2D asymptotic limit for q∥d ≪ 1,
it is meaningful to define the d → 0 limit of the screened interaction energy:

W̄2D(q∥) = ϵ−1
2D(q∥)V̄2D(q∥). (4.16)

This is the interaction standardly used in literature for excitons in 2D materials
[77, 91, 92], but now directly derived from a microscopic approach as the q∥d ≪ 1
limit.

The advantage of the 2D approximation over the Q2D is that its real space equiv-
alent has an analytic form:

W̄2D(r∥) = 1
4α

[H0(x) −N0(x)]x=r∥/2πα , (4.17)

with H0(x) and N0(x) the Struve and Neumann functions and α the 2D polarizability
constant.

For the Q2D screened interaction energy, instead, only a semi-analytic expression
can be found by integrating the angular part of the inverse Fourier transform of
eq. (4.15):

WQ2D(r∥) = −2
d

∫ ∞
0

dq
J0(qr∥)

q
ϵ−1
Q2D(q)

[
1 − 2

qd
e−qd/2 sinh

(
qd

2

)]
, (4.18)

where the fact that the macroscopic dielectric function is isotropic has been used.
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Figure 4.4: Q2D and 2D interaction energy for monolayer hBN (a) and MoS2 (b)..

Figure 4.4 summarizes all the different screened and unscreened interaction en-
ergies introduced so far, for the specific case of hBN and MoS2. First of all, the
different interactions agree for large separation distances r∥, meaning that screening
is not effective on a long range and that the effect of finite thickness is irrelevant when
r∥ ≫ d. Comparing VQ2D with −1/r∥, one learns that the finite thickness of the layer
in the Q2D picture modifies the interaction even at the unscreened level, at least for
a distance smaller than the layer thickness (dMoS2 = 6.29Å and dhBN = 3.22Å). As
expected, including screening reduces the interaction and it does it more for the strict
2D limit since ϵ2D(q∥) > ϵQ2D(q∥) for all q∥. Overall the Q2D and 2D screened inter-
action energies agree very well, with the only deviation appearing for distances lower
than ∼ 1Å , a length scale much smaller than the typical exciton extension. Finally,
it is of interest to notice that the asymptotic behavior for r∥ → 0 is logarithmic for
both the Q2D and 2D interactions. This is well understood considering that in both
cases W ∝ 1/q2

∥ in the large q∥ limit, which is the limit that determines the small
separation distance behavior.

The are two main approximations going into eq. (4.15): the use of step-function
distributions and, within that, the replacement of the hole induced potential φh(z,q∥)
with its averaged value. While these approximations are handy to get a semi-analytic
result, they might seem a bit extreme and their validity needs to be checked via nu-
merical evaluation of eq. (4.14). The replacement of the potential of a step-function
distributed hole with its average value can be avoided by numerically solving the
Poisson equation for a step-function hole distribution. This leads to a screened inter-
action energy that I denote with WQ2D(q∥)steps. Even more generally, the assumption
of step-function distributions can be completely relaxed by using the actual charge
densities, such as the ones in fig. 4.2, and obtain WQ2D(q∥)wfs. I consider such an
interaction energy the highest level of approximation reachable within the framework
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introduced so far. I find it important to stress that the use of the Q2D subscript in
the two new interaction energies is consistent with the fact that the finite thickness
of the material is taken into account.

In order to compare the different screened interactions, it is convenient to define
an effective Q2D macroscopic dielectric function as the ratio between the unscreened
and screened interaction:

ϵγQ2D(q∥) =
⟨ργ

e (q∥)|ϕγ
h(q∥)⟩

⟨ργ
e (q∥)|ϵ−1

00 (ẑ, ẑ′,q∥)|ϕγ
h(q∥)⟩

, (4.19)

with the bracket notation indicating the integration over z (and/or z′) and γ =
steps,wfs. The calculated macroscopic dielectric functions for hBN and MoS2 are
shown in fig. 4.5. Whereas the deviation for q∥ greater than the reciprocal space radius
of the lowest lying exciton (indicated by the vertical line) is clear, the agreement for
q∥ < 1/Rexc is practically perfect. This observation will be crucial for justifying the
results on exciton binding energies in the following section.

4.3 Exciton Binding Energy: Quasi-2D Models vs 2D
A good way to test the different models described in the previous section, is to
calculate the binding energy of the lowest lying exciton and benchmark it against the
full BSE solution. Once again hBN and MoS2 are chosen as test systems due to their
rather different dielectric functions.

Considering that the interaction is isotropic, the Mott-Wannier equation can be
conveniently reduced to a radial equation. In addition, to simplify the numerical
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1

2

3

ε(
q ‖

)

1
Rexc

(a)

Q2D wfs

Q2D steps

Q2D

0.0 0.1 0.2 0.3

q‖(1/Å)

1

3

5

7

9

1
Rexc

(b)

Figure 4.5: Macroscopic dielectric functions for (a) hBN and (b) MoS2 calculated
within different levels of approximation described in the text. The ver-
tical line indicates the reciprocal space exciton radius.
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treatment of the divergence of the interaction for small electron-hole separation, a
logarithmic grid is employed. The results for the lowest lying exciton binding energy
are given in table 4.1. All the approaches agree well with each other, and the agree-
ment with the BSE benchmark can be considered really good given the simplicity
of the models. Surprisingly the different level of approximation of the out-of-plane
electron/hole distribution and related potentials, account for less than a few percents
difference in binding energy. As anticipated above, this can be justified by means of
fig. 4.5. Indeed, the wavevector values relevant for the description of the exciton are
the ones smaller or comparable to its reciprocal space extension, regime for which the
different effective macroscopic dielectric functions closely follow each other. A similar
argument can be used to explain the practically perfect agreement between the Q2D
and 2D approaches. In fact, for q∥ < 1/Rex, the Q2D dielectric functions are linear
and therefore well represented by the linear approximation in the 2D model.

To conclude, solving the Mott-Wannier equation with the 2D screened interaction
should be the method of choice in dealing with isolated layers since it is as accurate
as the Q2D methods but easier to implement from a numerical point of view.

4.4 Simple Effectively Screened Hydrogenic Model
While the generalized Mott-Wannier equation is already a simplification of the BSE,
it would be great if one could do even better by reducing the task of calculating
exciton binding energies to the evaluation of a simple analytic expression. This is
what is usually done in bulk systems where it is possible to define a static dielectric
constant and therefore use the original form of the Mott-Wannier eq. (4.1), which can
readily be solved to give:

E3D
b = µex

2ϵ23D
. (4.20)

Getting exciton binding energies in 3D is then just a matter of calculating ab-initio
effective masses and bulk dielectric constants.

In paper III we show that, despite the inherent non-locality of the dielectric screen-
ing, we can obtain a simple formula for the exciton binding energy even in the case
of 2D materials. The key to get to such a result is to define an effective dielectric
constant as the average screening felt by the exciton, in formula:

ϵeff =
a2
eff
π

∫ 2π

0
dθ

∫ 1/aeff

0
dq∥q∥ϵ2D(q∥). (4.21)

Here aeff is the radius of the exciton in real space (equivalent to the Rex used in the pre-
vious section). Borrowing the result for the ground state of the 2D hydrogen atom [93],
the exciton radius aeff can be expressed in terms of the effective dielectric constant
as aeff = ϵeff/2µex. This implies that eq. (4.21) has to be solved self-consistently. The
use of the 2D macroscopic dielectric function, ϵ2D(q∥) = 1 + 2παq∥, beside giving a
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Table 4.1: Numerical values for the energy of the lowest bound excitonic state at
the direct gap. Both the BSE and the models are based on LDA ab-
initio calculations. The exchange contribution to the BSE kernel is not
included as justified in section 4.1.

EBSE
b (eV) EQ2D

b (eV) E2D
b (eV) Esteps

b (eV) Ewfs
b (eV)

hBN 2.05 2.35 2.34 2.23 2.29
MoS2 0.43 0.61 0.60 0.57 0.59

good description of screening in isolated 2D layers, allows for the calculation of the
integral in eq. (4.21), specifically:

ϵeff = 1
a2
eff

(
1 + 4πα

3a2
eff

)
. (4.22)

Substituting the expression for aeff I get:

ϵeff = 1
2

(1 + 32παµex/3) . (4.23)

Using the result for the ground state energy of the 2D hydrogen [93] I finally arrive
at:

Eeff
b = 2µex

ϵ2eff
= 8µex

(1 + 32παµex/3)2 , (4.24)

which is the equivalent of eq. (4.20) for 2D materials.
The blue circles in fig. 4.6 illustrate the validity of eq. (4.24) for 51 isolated semi-

conducting transition metal dichalcogenides [21] by comparing to the exciton binding
energies obtained from the solution of the generalized Mott-Wannier equation with a
2D interaction. I would like to point out that some of the 51 materials have indirect
gap and therefore they can form indirect excitons, i.e. excitons where the electron
and hole are localized in different points of the BZ. Indirect excitons and (direct)
excitons can be treated on an equal footing, provided that the effective mass is calcu-
lated from the bands extrema hosting the electron and the hole. Overall the analytic
formula performs really well, giving an excellent agreement for loosely bound exciton
(Eb ≤ 0.5eV) but a tendency to overestimate the more strongly bound ones.

An interesting feature of eq. (4.24) is that it becomes independent of the exciton
effective mass for large values of αµex, specifically:

Eeff
b ≃ 3

4πα
, for 32παµex/3 ≫ 1. (4.25)

Surprisingly this approximation performs almost as good as the original expression,
as shown by the red squares in fig. 4.6. The independence from the mass can be
explained in terms of the interplay of two opposing effects. While a higher effective
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[17] we assess that the binding energies of 7 transition
metal dichalcogenides obtained with the Bethe-Salpeter
equation agree well with results obtained from Eq. (2).
However, in general the solution of Eq. (2) is a tedious task
and it would be highly desirable to have an expression like
Eq. (1) from which the exciton binding energy in a given
material can be easily estimated and understood. To
accomplish this, we calculate the average screening felt
by the exciton. To this end, we consider the expression

ϵeff ¼
a2eff
π

Z
2π

0
dθ

Z
1=aeff

0
dqqϵðqÞ; ð3Þ

where aeff is the effective Bohr radius. For the 2D hydrogen
atom the Bohr radius is given by a ¼ ϵ=ð2μÞ and Eq. (4)
has to be solved self-consistently for ϵeff given an expres-
sion for ϵðqÞ. In a strictly 2D system, the screening is linear
in q and Eq. (3) can be solved to yield

ϵeff ¼
1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32παμ=3

p
Þ: ð4Þ

Using that the hydrogenic binding energy in two dimen-
sions is a factor of four larger than in three dimensions [9],
we obtain

E2D
B ¼ 8μ

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32παμ=3

p
Þ2
: ð5Þ

This is the main result of the present Letter and comprises a
long-sought-for 2D analog of Eq. (1).
A remarkable property of the expression (5) is the fact

that it becomes independent of the effective mass if the
polarizability is large. More precisely,

E2D
B ≈

3

4πα
; 32παμ=3 ≫ 1: ð6Þ

It may come as a surprise that the binding energy becomes
independent of mass, since a large mass gives rise to a
localized exciton and the binding energy typically increases
with localization. This is reflected in Eq. (1), where the
binding energy is seen to be proportional to the mass.
However, in two dimensions, short range interactions are
screened more effectively than long range interactions.
Thus, there are two opposing effects of the exciton mass
and for large polarizabilities the binding energy becomes
independent of mass. In order to assert the applicability of
the expressions (5)–(6), we have calculated the effective
masses and static polarizabilities (in the random phase
approximation) of 51 semiconducting monolayers of tran-
sition metal dichalcogenides. For indirect band gap materi-
als we use the effective mass at the indirect gap. The
calculations were performed with the electronic structure
code GPAW [18,19], and we refer to the Supplemental
Material [17] and Ref. [20] for details on the calculations.

In Fig. 1 we compare the model binding energies with the
full solution of Eq. (2). Using the expression (5), the
agreement is seen to be on the order of 10%. With the
approximated expression (6), we obtain excellent agree-
ment for binding energies up to ∼0.5 eV, whereas the
binding energies are underestimated for strongly bound
excitons.
Recently, first-principles calculations have indicated that

exciton binding energies in different 2D materials scale
linearly with the band gaps [21]. In the present model, this
behavior comes out naturally since (without local field
effects) the in-plane components of the polarizability in the
random phase approximation are given by

α ¼
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and we expect that α will be roughly inversely proportional
to the band gap. This is illustrated in Fig. 2 for the 51

FIG. 1. Exciton binding energies of 51 transition metal dichal-
cogenides calculated as the lowest eigenvalue of Eq. (2) (vertical
axis) and the model result Eq. (5) (horizontal axis). We have
indicated the well-known example of MoS2.

FIG. 2. The 2D polarizability of 51 transition metal dichalco-
genides shown as a function of LDA band gaps.
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Figure 4.6: Effective dielectric constant model compared to the solution of the Mott-
Wannier equation with a 2D screened electron-hole interaction. The
exciton binding energies are calculated for 51 semiconducting transition
metal dichalcogenides from Ref. [21].

mass tends to localize and bind the exciton more, the higher dielectric screening for
localized excitons reduces the electron hole interaction, eventually compensating for
the increase in the binding energy.

4.4.1 Linear scaling of the 2D polarizability constant with respect
to the band gap

In Ref. [94] it is claimed that the exciton binding energy from BSE calculations scales
linearly with the size of the band gap. If this is true, we expect the 2D polarizability
constant to scale linearly with the inverse of the band gap, since according to eq. (4.25)
α ∝ 1/Eeff

b . The values of the 2D polarizability constant for the 51 TMDs are plotted
against the LDA band gaps in fig. 4.7, confirming a certain level of linear scaling.
The scaling law can be argued by starting from the definition of the 2D polarizability
constant in eq. (3.31). There, α is expressed in terms of the reducible polarizability,
however if we neglect the effect of local field effects, which should not affect trends,
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we can replace the reducible with the irreducible polarizability1

α ≃ αNLF = −L

2
d2χ0

0 0(q∥)
dq2
∥

∣∣∣∣∣
q∥=0

. (4.26)

The advantage of having χ0
0 0(q∥) is that its reciprocal space representation, as it

follows from eq. (3.8), can be readily expanded in power series of q∥ around q∥ = 0,
by approximating e±iq∥·r = 1 + q∥q̂∥ · r + o(q2

∥):

χ0
0 0(q∥) = 2

Ω∥L

occ∑
n

unocc∑
n′

BZ∑
k∥

|⟨ϕKS
nk∥

|q̂∥ · r|ϕKS
n′k∥

⟩|2

ϵKS
n′k∥

− ϵKS
nk∥

q2
∥ + o(q2

∥). (4.27)

To get this result the lowest order expansion of the wave functions and eigenvalue
differences have been employed. In accordance to what was discussed in section 3.2,
we find that χ0

0 0(q∥) ∝ q2
∥. Finally, from the equation above, we can identify 2D

1This is easily proven by following the same steps leading to eq. (3.31), and keeping in mind that
without local field effects, ϵQ2D

M (q∥, ω; d) = 2
d

∑
Gz

eiGzz0 sin(Gzd/2)
Gz

ϵ0Gz 00(q∥), and the dielectric
matrix can be expressed in terms of the irreducible polarizability χ0 through the RPA approximation
(see eq. (3.9)).

[17] we assess that the binding energies of 7 transition
metal dichalcogenides obtained with the Bethe-Salpeter
equation agree well with results obtained from Eq. (2).
However, in general the solution of Eq. (2) is a tedious task
and it would be highly desirable to have an expression like
Eq. (1) from which the exciton binding energy in a given
material can be easily estimated and understood. To
accomplish this, we calculate the average screening felt
by the exciton. To this end, we consider the expression

ϵeff ¼
a2eff
π

Z
2π

0
dθ

Z
1=aeff

0
dqqϵðqÞ; ð3Þ

where aeff is the effective Bohr radius. For the 2D hydrogen
atom the Bohr radius is given by a ¼ ϵ=ð2μÞ and Eq. (4)
has to be solved self-consistently for ϵeff given an expres-
sion for ϵðqÞ. In a strictly 2D system, the screening is linear
in q and Eq. (3) can be solved to yield

ϵeff ¼
1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32παμ=3

p
Þ: ð4Þ

Using that the hydrogenic binding energy in two dimen-
sions is a factor of four larger than in three dimensions [9],
we obtain

E2D
B ¼ 8μ

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32παμ=3

p
Þ2
: ð5Þ

This is the main result of the present Letter and comprises a
long-sought-for 2D analog of Eq. (1).
A remarkable property of the expression (5) is the fact

that it becomes independent of the effective mass if the
polarizability is large. More precisely,

E2D
B ≈

3

4πα
; 32παμ=3 ≫ 1: ð6Þ

It may come as a surprise that the binding energy becomes
independent of mass, since a large mass gives rise to a
localized exciton and the binding energy typically increases
with localization. This is reflected in Eq. (1), where the
binding energy is seen to be proportional to the mass.
However, in two dimensions, short range interactions are
screened more effectively than long range interactions.
Thus, there are two opposing effects of the exciton mass
and for large polarizabilities the binding energy becomes
independent of mass. In order to assert the applicability of
the expressions (5)–(6), we have calculated the effective
masses and static polarizabilities (in the random phase
approximation) of 51 semiconducting monolayers of tran-
sition metal dichalcogenides. For indirect band gap materi-
als we use the effective mass at the indirect gap. The
calculations were performed with the electronic structure
code GPAW [18,19], and we refer to the Supplemental
Material [17] and Ref. [20] for details on the calculations.

In Fig. 1 we compare the model binding energies with the
full solution of Eq. (2). Using the expression (5), the
agreement is seen to be on the order of 10%. With the
approximated expression (6), we obtain excellent agree-
ment for binding energies up to ∼0.5 eV, whereas the
binding energies are underestimated for strongly bound
excitons.
Recently, first-principles calculations have indicated that

exciton binding energies in different 2D materials scale
linearly with the band gaps [21]. In the present model, this
behavior comes out naturally since (without local field
effects) the in-plane components of the polarizability in the
random phase approximation are given by
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FIG. 1. Exciton binding energies of 51 transition metal dichal-
cogenides calculated as the lowest eigenvalue of Eq. (2) (vertical
axis) and the model result Eq. (5) (horizontal axis). We have
indicated the well-known example of MoS2.
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polarizability constant as the second order coefficient of the expansion:

α ≃ − 2
Ω∥

occ∑
n

unocc∑
n′

BZ∑
k∥

|⟨ϕKS
nk∥

|q̂∥ · r|ϕKS
n′k∥

⟩|2

ϵKS
n′k∥

− ϵKS
nk∥

. (4.28)

It is now possible to see the explicit dependence on the inverse of the band gap and
justify the results in fig. 4.7. This result then tells us that the linear scaling of the
binding energy follows directly from α and not from the effective mass as argued in
Ref. [94]

4.4.2 Non-hydrogenic Rydberg series
A well established peculiarity of 2D materials is that the excitonic spectrum (the
collection of excited excitonic states) does not follow a standard hydrogen-like Ry-
dberg series. As demonstrated by Chernikov et.al. in Ref. [95] for WS2 supported
on a SiO2 substrate, the experimental energy levels corresponding to the excited ex-
citonic s-like states are completely missed if the simple 2D hydrogenic eq. (4.1) is
used. This is because the “non-hydrogenicity” is the result of the non-locality in the
dielectric screening. In their paper, Chernikov et.al. show that the experimental non-
hydrogenic series is well represented either by solving the 2D Mott-Wannier equation
with a 2D screened electron-hole interaction and α used as a fitting parameter, or by
using eq. (4.1) and introducing a fitted quantum state dependent effective dielectric
constant. While I will show in the next chapter that to reproduce their experimental
data from first-principles calculations the effect of the substrate has to be included,
here we can naturally understand the quantum number dependence of the effective
dielectric constant from our simple effectively screened hydrogenic model.

An excited excitonic state is characterized by a radius that is larger than for
the lower lying states. Specifically for the s-states (l = 0), the solution of the 2D
hydrogenic problem gives [93]:

aeff,n = 3n(n− 1) + 1
2µex

ϵeff,n, (4.29)

with n the principal quantum number. Since the effective screening is defined in
terms of the excitonic radius, the quantum number dependence is directly transferred
to the dielectric constant, as given by the self-consistent solution of eq. (4.21):

ϵeff,n = 1
2

(
1 +

√
1 + 32αµex

9n(n− 1) + 3

)
. (4.30)

With this expression one can then calculate the excited excitonic energies as [93]:

Eeff
n = − µex

2(n− 1
2 )2ϵ2eff,n

. (4.31)
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Figure 4.8: Rydberg series (excitonic spectrum) for monolayer 2H-WS2 calculated

from (blue) Mott-Wannier eq. (4.9) with a 2D screened interaction
energy, (red) quantum number dependent dielectric constant model
(eq. (4.31)) and (magenta) basic hydrogenic model (eq. (4.1)), where
the effective dielectric constant is kept fixed and equal to the one for
the ground state ϵ1. The dependence of the effective dielectric constant
on the quantum number is illustrated in the inset. Including such a de-
pendence is crucial to reproduce the values from the 2D Mott-Wannier
equation.

As mentioned before, Ref. [95] shows that the 2D Mott-Wannier equation successfully
describes the non-hydrogenic behavior of the Rydberg series, and therefore we can use
it to benchmark eq. (4.31). The Rydberg series for WS2 is reported in fig. 4.8. A good
agreement is found between the 2D Mott-Wannier equation values (blue line) and the
effectively screened hydrogenic model (red line). The quantum number dependence
of the effective dielectric constant is illustrated in the inset, and it is evident that the
more the excitonic state is localized the higher is the screening that it experiences. To
highlight the importance of this quantum state dependence, we report the hydrogenic
Rydberg series obtained from a 2D hydrogenic equation with a fixed effective dielectric
constant ϵeff,n = ϵeff,1 (magenta line). It is clear that such an approach cannot be
applied to 2D materials.

As final remark one should notice that it would be straightforward to extend
our effectively screened model to excitonic levels with non-zero angular momentum
l. Indeed, it is enough to include the l dependence in the excitonic radius [93] and
calculate a new effective dielectric constant to insert in the formula for the exciton
energies. Since it can be shown that the higher angular momentum states are more
extended, they would experience a lower effective screening and consequently a higher
binding energy. Such a trend is in fact consistent with the findings in Ref. [96].
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CHAPTER 5
Designing Excitons in van der

Waals Heterostructures

The large and still growing family of two-dimensional materials is a great resource of
building blocks for (opto)-electronic devices. Just as LEGO bricks, two-dimensional
layers can be vertically stacked to create more complex structures named van der
Waals heterostructures (vdWHs) [34, 97, 98]. The possibility of tuning vdWHs elec-
tronic and dielectric properties by combining layers with different properties and/or
the order of the stack has lead to the fabrication of new efficient devices such as light
emitting diodes [32], field effect transistors [99], ultrafast photodetectors [33,100] and
so on. As for their monolayer constituents, the optical response of vdWHs is dictated
by excitonic effects [32, 33, 34, 35, 36, 101]. Not only can vdWHs host electron-hole
excitations within the constituent layers, but they are ideal for hosting excitations
with the electron and the hole localized in distinct layers, namely interlayer exci-
tons [102,103,104,105]. Compared to the isolated layers case, the dielectric screening
in vdWHs is enhanced and it leads to the formation of more loosely bound excitons.
This is a considerable advantage in opto-electronic devices, such as solar cells, where
efficient electron-hole dissociation is required [34, 37]. Additional decrease in exciton
binding energy is achievable for the interlayer excitons thanks to the spatial separation
between the electron and the hole, which also entails longer exciton lifetimes [36,102].

From an ab-initio point of view, the description of vdWHs is challenging, the main
reasons being the following:

• Lattice mismatch among the layers: the use of supercells is often required, mak-
ing the calculations particularly demanding;

• The number of layers of the stack could be large: as for the previous point this
often leads to unfeasible calculations;

• Long range screening among the layers: including long range dielectric screen-
ing effects is not possible at the DFT level, and many-body perturbation theory
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methods should be used instead.

It follows that standard ab-initio methods are limited to commensurable van der
Waals stacks consisting of a few layers. In this chapter I will show how to overcome
these limitations, by means of a multi-scale method, the quantum electrostatic het-
erostructure (QEH) method, which combines quantum accuracy at the monolayer
level and macroscopic electrostatic coupling of the layers. The method builds upon
the assumption that hybridization among the layers is negligible and therefore the
dielectric response of the vdWH can be obtained from the dielectric response of the
isolated layers. In other words the constituent monolayers can be mapped into di-
electric building blocks which constitute the dielectric genome of the heterostructure.
Once the dielectric function of the vdWH is known it can be, for example, used to cal-
culate the screened electron-hole interaction and solve the generalized Mott-Wannier
model (introduced in the previous chapter) to calculate intra and interlayer exciton
binding energies. Furthermore the QEH approach can be combined with the G0W0
method to include the effect of interlayer screening in the electronic band structure
and accurately calculate the band alignment in a vdWH, which is extremely relevant
when it comes to device engineering.

The results and methodology discussed in this chapter are entirely based on Paper
I, second part of Paper II and Paper IV. While in the following I will try to give
a comprehensive overview, the reader interested in a more detailed explanation is
referred to the papers.

5.1 The Quantum Electrostatic Heterostructure (QEH)
Model

The goal of the Quantum Electrostatic Heterostructure Model (QEH) is to calcu-
late the dielectric function of a vdWH directly from the dielectric response of the
constituent monolayers. The main advantage of vdWHs is that the layers are held
together via weak van der Waals interaction, with minimal or negligible hybridization.
This means that it is fair to assume that the response to an external perturbation of
each layer in the vdW stack is the same as the response in the freestanding condition
and it can be condensed in a so called dielectric building block. Once the dielectric
building blocks are calculated, they can be coupled together electrostatically in order
to obtain the response of the full heterostructure. How this is done in practice is
explained in the following.

In principle the response of the full heterostructure can be determined from
eq. (2.38), which I rewrite here within the RPA approximation and in frequency
space:

χ(r1, r2;ω) = χ0(r1, r2;ω) +
∫
dr3dr4χ

0(r1, r3;ω)vCr3, r4)χ(r4, r2;ω). (5.1)
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Note that, for simplicity, I omitted the spin-variables. In this equation, the Coulomb
interaction introduces correlation in the independent particle response χ0 both at the
intralayer and interlayer level. The main idea of the QEH approach is to simplify the
solution of eq. (5.1) by including intra and interlayer correlation through two separate
equations, as formally justified in the supplementary information of Paper I.

Because of the weak hybridization characteristic of vdWHs, the intralayer corre-
lation can be calculated for each layer separately by solving eq. (5.1) in freestanding
conditions and using a truncated Coulomb interaction. Next, for each layer, only the
in-plane macroscopic component of the reducible polarizability is then considered. I
denote the resulting reducible polarizability as χ̃i(z, z′; q∥, ω), with i being the layer
index. Notice that while a real space representation is used for the out-of-plane direc-
tion, the in-plane dependence is treated in reciprocal space. To construct the building
block, instead of keeping the full z, z′ dependence of the response function we consider
its multipole components:

χ̃iα(q∥, ω) =
∫
dzdz′(z − zi)αχ̃i(z, z′,q∥, ω)(z′ − zi)α, (5.2)

with α = 0,1, ... the multipole component index and zi the center of the layer i. The
reducible polarizability χ̃iα has to be interpreted as the α component of the response
to an external field with a eiq∥·r∥-like variation in-plane and proportional to (z− zi)α

in the out-of-plane direction. Specifically for the monopole and dipole components
(α = 0 and α = 1 respectively), it follows that χ̃iα is the response function to a
field which is constant or has a linear variation across the layer. To complete the
building block, we one more ingredient that will be needed in the calculation of the
interlayer Coulomb coupling (see eq. (5.5)). This is the out-of-plane shape of the
density induced by the external perturbation. In particular recalling eq. (3.2), we can
define the α multipole component of layer i as:

ρi,α(z,q∥, ω) =
∫
dz′χ̃(z, z′,q∥, ω) (z′ − zi)α

χ̃i,α(q∥, ω)
, (5.3)

where the denominator guarantees the right normalization. An illustration of the
monopole and dipole components of the induced densities is reported in blue lines
in fig. 5.1 (b) for a typical transition metal dichalcogenide (TMD). In general we
find ρi,α to be independent of frequency and it is therefore enough to only keep
the static part (ω = 0). Furthermore we limit our building blocks to the monopole
and dipole components, as it turns out to be enough to describe all the systems we
looked at. To summarize, to obtain a building block one first calculate χ̃i(z, z′; q∥, ω),
which accounts for intralayer correlation, from there the multipole components of the
response and the induced densities are obtained according to eq. (5.2) and eq. (5.3).
The building blocks for more than 50 2D layers ranging from TMDs to hBN and
graphene can be found in our computational material repository [106].

Once the building blocks for the layers in the vdWH are known, one can include
the correlation at the interlayer level by coupling the building blocks by solving the
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Figure 5.1: Panel (a): Schematic representation of the QEH model, where the two
dimensional layers, whose dielectric response is calculated with quan-
tum accuracy and condensed in dielectric building blocks, are coupled
together macroscopically via a long range Coulomb interaction. Panel
(b): Illustration of the monopole and dipole component of the induced
density ρM/D(z) in red and corresponding monopole and dipole induced
potentials ϕM/D(z).

following Dyson equation in the QEH basis:

χiα,jβ(q∥, ω) = χ̃i,α(q∥, ω)δiα,jβ + χ̃i,α(q∥, ω)
∑
ki,γ

V inter
iα,kγ(q∥)χkγ,jβ(q∥, ω), (5.4)

with i, j, k layer indices and α, β, γ ∈ [0, 1]. The kernel V inter
iα,kγ(q∥) in the RHS accounts

for the interlayer interaction and is defined as:

V inter
iα,kγ(q∥) = (1 − δi,k)

∫
dzρi,α(z,q∥)Φkγ(z,q∥). (5.5)

where Φkγ(z,q∥) is the potential generated by the induced density ρkγ(z,q∥) and it
can be calculated by solving a simple Poisson equation. An example of the monopole
and dipole components of such a potential is given by the red lines in fig. 5.1 (b).
Equation (5.5) shows that the interlayer Coulomb kernel is nothing else than the
overlap between the induced density and the potential generated by the induced
density. The factor (1 − δi,k) guarantees that the intralayer Coulomb interaction,
already accounted for in χ̃i,α, is left out.

Finally, with the knowledge of the full reducible polarizability, the dielectric matrix
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of the vdWH is obtained by the equivalent of eq. (2.40) in the QEH basis:

ϵ−1
iα,jβ(q∥, ω) = δiα,jβ +

∑
k,γ

Viα,kγ(q∥)χkγ,jβ(q∥, ω). (5.6)

An illustration of the QEH model is sketched in fig. 5.1 (a). For more details on the
derivation of the equations presented so far, the reader is referred to the supplemen-
tary information of Paper I. To conclude, the QEH provides a quantum mechanical
description of the non-local screening and it can be applied to heterostructures of
arbitrary composition and thickness. It is worth to mention that in a number of
recent papers [88, 107, 108], the dielectric screening in heterostructures has been in-
vestigated using the dielectric continuum model proposed by Keldysh [109], where the
screening properties of the layers are modified by the formation of image charges at
the interfaces. This classical approach, however, neglects the intrinsic non-localities
of the environmental screening, which are instead naturally included at a quantum
mechanical level in our QEH model.

In the following I will present several examples where the QEH method is applied.
We implemented the QEH method in GPAW and the python script that solves the
electrostatic equation starting from the dielectric building blocks can be found in
Ref. [106].

5.2 Dielectric Function in MoS2: from 2D to 3D
In chapter 3, I discussed how the dielectric response of a bulk material differs from the
response of a 2D layer. I showed that while for a bulk semiconductor the macroscopic
static dielectric function can be replaced by a constant, this is not possible for a
2D semiconductor since the dielectric function is strongly dependent on the in-plane
wavevector q∥. By means of the QEH model, it is now possible to investigate the
transition between the 2D and 3D behavior. An example of such a transition is shown
in fig. 5.2 (b) for the case of MoS2. The figure shows the QEH macroscopic dielectric
function for multi-layer MoS2 together with the ab-initio results for monolayer, bilayer
and bulk. In particular, the QEH macroscopic dielectric function is obtained as the
average over the layers composing the stack. While the agreement with the monolayer
ab-initio result is trivial, since the latter is used to define the dielectric building block,
the agreement for the bilayer is remarkable considering that the effect of hybridization
in bilayer MoS2 is known to affect the electronic band structure [110]. Turning the
argument around, this means that the dielectric properties are not that sensitive
to hybridization. As the number of layers increases, the QEH dielectric function
increases and approaches the bulk ab-initio result. However, for small values of q∥, a
linear drop towards unity is observed, with the drop becoming steeper for increasing
N . This indicates that, exactly as for the isolated layer case, the dimensionless
parameter q∥d, with d thickness of the slab, sets whether the behavior of the dielectric
function is 2D like (q∥d ≪ 1) or 3D like (q∥d ≫ 1). Finally it is worth noticing that
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Figure 5.2: Panel (a): Cartoon of the MoS2 multilayers. Panel (b): Dependence of
the macroscopic static dielectric function ϵM (q∥, ω = 0) on the number
of MoS2 layers N . The QEH dielectric function converges towards the
bulk ab-initio result for large N . Panel (c): Effective local dielectric
function, defined as Vext/Vtot(z), meaningful for the screening of con-
stant external potential across a N = 50 layers stack. The external po-
tential is proportional to eiq∥·r∥ in-plane direction, with q∥ = 0.036Å−1.

even for N = 100 the QEH dielectric function has not converged towards the bulk
one. While this is partially due to hybridization effects, the slow convergence can
be attributed to suppressed screening at the surfaces of the van der Waals stack.
In fig. 5.2 (c) one can, in fact, see that the z-dependent local dielectric function
defined as ϵ(z) = Vext/Vtot(z) decreases towards the surfaces consequently lowering
the contribution to the macroscopic screening.

5.3 Combining the QEH with the Mott-Wannier
equation

Combining the QEH with the generalized Mott-Wannier eq. (4.9) allows us to describe
excitonic effects in vdWHs. The screened electron-hole interaction energy given by
eq. (4.14) is readily expressed in the QEH formalism as:

W (q∥) = ρT
e
(q∥) ϵ−1(q∥) φ h

(q∥), (5.7)

with ρ
e

(ϕ
h
) being the electron density (hole induced potential) expanded in the basis

set of monopole and dipole components of the induced density (induced potential).
To be more specific, an arbitrary electron density ρT

e
(q∥, z) can be written as ρT =

[ρ1M , ρ1D, ρ2M , ρ2D, · · · , ρnM , ρnD] with ρiα the induced monopole/dipole density at
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layer i. A similar expression can be formulated for the hole induced potential by
using the basis of induced potentials instead. It is instructive to consider the practical
example of a vdWH consisting of three layers hosting an intralayer exciton localized at
layer i = 1. The electron density and hole potential would then be ρT = [1, 0, 0, 0, 0, 0]
and φT = [1, 0, 0, 0, 0, 0] respectively. While it should be clear why only the layer
i = 1 entries are non zero, the fact that I set the layer i = 1 dipole components
to zero follows from the reasonable assumption that the electron and hole density
distributions are symmetric around the layer, exactly as in fig. 4.2. Once the electron-
hole interaction is known, it can be plugged in the Mott-Wannier equation. The other
ingredient missing is the exciton effective mass. While, in principle, the effective mass
should be obtained from the electron and hole effective masses calculated from the
band structure of the vdWH, we assume that due to the weak hybridization the
freestanding layer masses are preserved.

Before moving to the example sections, I would like to point out the screeened
electron hole interaction obtained from the QEH is intrinsically of a quasi-2D (Q2D)
type since the finite extension of the electron and the hole density distribution in the
out-of-plane direction is taken into account through the QEH basis set. In the next
section this will prove important for the right description of excitons in vdWH, where
the condition q∥d ≪ 1 might no longer be satisfied.

5.3.1 The breakdown of the Linear Screening Model
In the previous chapter, I concluded that a linear approximation of the dielectric func-
tion is satisfying for describing the screening of the exciton electron-hole interaction
in isolated 2D crystals. To demonstrate that this is not necessarily the case in vdWHs
let us consider as a practical example a sandwich like heterostructure consisting of an
MoS2 layer encapsulated in n layers of hBN, as sketched in fig. 5.3 (a). To visualize
the variation in dielectric screening felt by an exciton in a given layer it is convenient
to extend the definition of effective macroscopic dielectric function in eq. (4.19) to
vdWHs:

ϵ(q∥) =
ρT

e
(q∥) φ h

(q∥)
ρT

e
(q∥) ϵ−1(q∥) φ h

(q∥)
. (5.8)

The effective dielectric function of MoS2 in the sandwich structure as a function of
a varying number of hBN layers is shown in fig. 5.3 (b) and it is referred to as Q2D.
In the same plot the linear approximation, obtained as a fit of the Q2D dielectric
function, is also reported and denoted by 2D. As was the case of multilayer MoS2 for
fig. 5.2, by increasing the thickness of the stack, i.e. adding more hBN layers, the
screening becomes higher and the drop to unity becomes steeper. This is once again
the result of the interplay between 2D and 3D behavior governed by the thickness of
the heterostructure. The Q2D dielectric function and its linear approximation can
be used to calculate the binding energy of the lowest lying exciton in the MoS2 layer.
The results are shown in fig. 5.3 (c). As one could expect, the increased screening
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2

4

6

8

✏(
q k

)

1
Rexc

(b)

MoS2

2 hBN

8 hBN

16 hBN

0 10 20 30 40 50
n�hBN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
b(

eV
)

(c)

Q2D

2D

Bulk Limit

0 5 10 15 20
n�hBN

10

12

14

16

18

20

R
ex

c
(Å
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2

4

6

8

✏(
q k

)

1
Rexc

(b)

MoS2

2 hBN

8 hBN

16 hBN

0 10 20 30 40 50
n�hBN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
b(

eV
)

(c)

Q2D

2D

Bulk Limit

0 5 10 15 20
n�hBN

10

12

14

16

18

20

R
ex

c
(Å
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Figure 5.3: Panel (a): Sketch of the MoS2-hBN sandwich structure. Panel (b): Ef-
fective macroscopic dielectric function from eq. (5.8) (full line) compared
to its linear approximation (dashed lines) for an increasing number of
hBN layers. The shaded region indicates the range spanned by the in-
verse of the exciton radii in the considered structures. Panel (c) and
(d): Binding energy and radii of the lowest lying excitons as function
of hBN layers. The results calculated using the full q∥-dependence and
the linear approximation for the dielectric function are both shown.

leads to a reduction of the binding energy, which for the Q2D dielectric function con-
verges towards a finite value of 0.31 eV, meaning that adding extra hBN at a large
distance from the MoS2 has no significant effect. On the other hand, the binding
energy obtained from the linear approximation quickly diverges from the Q2D and
eventually approaches zero. Accordingly, fig. 5.3 (d) shows that, while the radius for
the Q2D reaches a constant value, the radius calculated with the linear approxima-
tion diverges. In the previous chapter, I established that the linear approximation
performs well whenever the q∥d ≪ 1 and that the relevant q∥ for the exciton are the
ones smaller than the inverse of the excitonic radius, i.e. q∥ < 1/Rexc. Combining
the two criteria one has that for excitons the linear approximation is expected to
work for Rexc > d. While this condition is always satisfied for isolated layers, it is not
necessarily true for vdWHs since their thickness can be indefinitely increased whereas
the exciton radius eventually reaches a constant value. This explains why the linear
approximation breaks down. This is confirmed by inspection of fig. 5.3 (b), where
it is clear that the linear approximation significantly overshoots the Q2D dielectric
function in the range of q∥ lower than the inverse of the excitonic radius (indicated as
a shaded region spanning the radii for the heterostructures with the different number
of hBN).

While a 2D picture cannot always be applied to describe vdWHs, it is still possible
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to reformulate the QEH model in terms of 2D building blocks as opposed to the Q2D
ones in the original version (see sketch in fig. 5.4 (a)). Each layer is assumed to
be infinitesimally thin and characterized by a linear macroscopic dielectric function
ϵ2D(q∥) = 1 + 2παq∥. Without considering the out-of-plane extension of the layer,
only the monopole components of the induced density and response function have an
obvious definition. Given a layer i, the induced density is indeed just a delta function
at the layer center zi, while the response function is obtained directly from the 2D
dielectric function of the isolated layer:

χ̃2DiM(q∥) =
q∥

2π
[
ϵ−1 2D

i (q∥) − 1
]

= −
αiq

2
∥

1 + 2παiq∥
, (5.9)

where I used that the Coulomb potential in 2D is 2π/q∥. This strict 2D picture has
then the advantage that the interlayer Coulomb kernel in eq. (5.5) can be worked out
analytically:

ViM,kM (q∥) = (1 − δi,k)2πe−q∥|zi−zk|

q∥
. (5.10)

The validity of the QEH model based on 2D building blocks is assessed against
the standard QEH for heterostructures consisting of monolayer MoS2 supported on
a varying number of hBN layers (see fig. 5.4 (b)). Interestingly, even by starting
from building blocks with a linear dielectric function, the interlayer screening induces
non-linearities in the effective dielectric functions for q∥ < 1/Rexc, as it can be seen
in fig. 5.4 (c). The deviation from the linear behavior brings the QEH@2D dielectric
functions closer to the QEH@Q2D ones (check Paper II for the results obtained with
the QEH@Q2D on this specific structure) and leads to an exciton binding energy
which, unlike the one from the linear screening approximation, converges to a finite
value for increasing number of hBN layers, as shown in fig. 5.4 (d). However one can
observe that the reduction in binding energy predicted by the QEH@2D is around
50% smaller than the one predicted by the QEH@Q2D approach, meaning that within
the QEH@2D the interlayer screening is underestimated. This can be ascribed both
to the fact that strict 2D building blocks are less effective at screening because the
induced potentials away from the layer decays faster than it should and to the fact
that the dipole component of the response is neglected. To conclude, even if the QEH
based on strict 2D building blocks is formally and practically much simpler, it is not
as accurate as the Q2D counterpart.

5.3.2 Non-hydrogenic Rydberg Series in supported WS2
Accounting for environmental screening is not only relevant for vdWHs. It is often
the case that optical measurements on 2D materials are performed in the presence
of a substrate and, as demonstrated in the previous section, this could significantly
alter the excitonic properties of the material under investigation. As I anticipated
in section 4.4, the inclusion of dielectric screening due to substrate is necessary for
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Figure 5.4: Comparison between QEH@Q2D and QEH@2D approches. Panel (a)
Sketch of the QEH approach with two-dimensional building blocks
(QEH@2D). Panel (b) MoS2 supported on hBN layers structure. Panel
(c) effective macroscopic dielectric function obtained from the QEH@2D
and its linear approximation. The shaded region indicates the range of
the inverse of the excitonic radii for the different ’on top’ structures.
Panel (d) binding energy for the lowest lying exciton calculated with
the QEH@Q2D and QEH@2D for the ’on-top’ configuration.

a quantitative description of the non-hydrogenic Rydberg series in WS2 measured
in ref. [95]. In that particular experiment, indeed, the optical measurements were
performed on WS2 supported on a SiO2 substrate. In order to simulate the effect of
the substrate with the QEH model, we place a WS2 layer on top of a 100 hBN layers
slab as sketched in fig. 5.5 (a). The choice of hBN instead of SiO2 is dictated by the
limitation of the QEH to layered structure. However, considering that hBN and SiO2
have similar bulk dielectric constant, it is fair to assume that the dielectric behavior
is the same. The experimental Rydberg series together with the ones calculated with
the QEH for the freestanding and supported layer are plotted in fig. 5.5 (c). To
highlight the non-hydrogenicity peculiar of 2D materials, in the same panel I report
the Rydberg series obtained from a hydrogenic model with a fixed dielectric constant
(fitted to reproduce the highest experimental excitonic state). Without any doubt,
the agreement with the experimental values is improved with the inclusion of the
substrate. In addition, the relative deviation between the freestanding and supported
case is different for different excitonic states. This is an indication of the non-locality
in the environmental screening, which is confirmed in fig. 5.5 (b) where it is shown that
the difference in screened-electron hole interaction for the supported and freestanding
WS2 is larger for intermediate electron-hole separation. Since the spatial distribution
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Figure 5.5: Excitonic Rydberg series in supported WS2. Panel (a): WS2 supported
on a hBN substrate. Panel (b): screened electron-hole interaction en-
ergy in the supported (blue line) and free standing (black line) WS2.
The same panel shows the radial probability distribution, r|F (r)|2, of
the first five excitonic states. The normalization is arbitrary. Panel
(c): The Rydberg series calculated with the QEH for freestanding WS2
(green) and WS2 on hBN (blue) are compared to the experimental data
from Ref. [95] for WS2 on SiO2 (red). The hydrogenic Rydberg series
obtained for a constant ϵ = 1.7 is also displayed for reference.

of the intermediate excited excitonic states is mainly localized in the region where
the screened interaction in the freestanding and supported layers differ the most (see
fig. 5.5 (b)), it is the energy of these states that is affected the most. A more detailed
analysis can be found in Paper III.

5.3.3 Excitons in MoS2: from 2D to 3D

It is well known that when going from monolayer to bulk MoS2, the binding energy
of the exciton at the direct band gap is reduced by almost an order of magnitude
and such an effect is usually attributed to quantum confinement. In this section I
will show that combining the QEH with the generalized Mott-Wannier equation for
2D materials we are able to describe the transition from 2D to 3D behavior. At first
glance, it might seem abusive to use the generalized Mott-Wannier equation for 2D
materials to account for excitons in 3D systems since the motion in the out-of-plane
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Figure 5.6: Binding energy of the most strongly bound exciton in multilayer MoS2
calculated with the QEH method. The exciton is placed in the central
MoS2 layer and the reduction in the binding energy with the increase
in number of layers is due to environmental screening. The bulk result
calculated with BSE in Ref. [111] is almost completely recovered for 50
MoS2 layers.

direction should be included. Specifically one should solve the following equation:

[
−

∇2
∥

2µex
∥

− ∇2
⊥

2µex
⊥

+W (r)

]
F (r) = EbF (r). (5.11)

However for layered materials the out-of-plane exciton effective mass is much larger
than the in-plane one, i.e µex

⊥ ≫ µex
∥ . Therefore the kinetic energy contribution

in the out-of-plane direction can be left out and the 2D Mott-Wannier equation is
recovered. Since µex

∥ does not change considerably from monolayer to bulk MoS2,
as shown in Ref. [112], the variation in binding energy as a function of number of
MoS2 layers can only result from interlayer screening. To check the validity of this
argument, we used the QEH to calculate the screened electron-hole interaction for an
exciton localized in the central layer of MoS2 slabs with a varying number of layers
and then solved the Mott-Wannier equation to get exciton binding energies. The
calculated values are shown in fig. 5.6. Going from 2D to 3D, the binding energy
decreases continuously, eventually getting as close as 0.03eV to the value calculated
with BSE for bulk MoS2 [111]. This confirms that the reduction in exciton binding
energy can be almost completely ascribed to interlayer screening rather than quantum
confinement effects.
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Figure 5.7: Intra and Interlayer exciton binding energy as a function of number of
intercalating hBN (a) and vacuum (b) layers. The width of the vacuum
layers is chosen to be the same as the hBN one.

5.3.4 Interlayer Excitons
As mentioned in the introduction, vdWHs can host electron-hole excitations with the
two charges localized in different layers. The spatial separation between the electron
and the hole can be used as a new degree of freedom in designing excitons in vdWHs.
For example one could imagine that separating the two layers hosting the electron
and the hole by intercalating other 2D materials could be a way to engineer exciton
binding energies. In this section, I investigate this particular problem for the case of
MoS2/WSe2 bilayers intercalated with hBN.

The generalization of the QEH formalism to the calculation of the screened-
electron hole interaction for interlayer excitons is straightforward. Indeed it is enough
to correctly represent the electron density and the hole induced potential in the QEH
basis so that the two quantities are centered on the layers hosting the electron and
the hole respectively. Let us consider the MoS2/WSe2 bilayer. Since, as I will jus-
tify in the next section, this structure is characterized by interlayer excitons with
the electron sitting on MoS2 and the hole on WSe2, the electron density takes the
form ρe

T = [1, 0, 0, 0], while the potential induced by the hole can be written as
ϕh

T = [0, 0, 1, 0]. Next, the use of the generalized 2D Mott-Wannier for describing
interlayer excitons is justified by the fact that the electron and hole motion is still
along the in-plane direction, even if the two charges confined in distinct layers. The
electron-hole out-of-plane separation naturally enters the screened electron-hole in-
teraction. Additionally, the interlayer effective mass has to be calculated for the
the electron and the hole from the WSe2 and MoS2 valence and conduction bands
respectively.
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The binding energy of the lowest lying interlayer exciton for the MoS2/hBN/WSe2
heterostructures are plotted in fig. 5.7 (a). In the same plot the binding energy for the
MoS2 and WSe2 intralayer excitons are also reported. It is evident that the intralayer
exciton binding energies remains more or less constant with the addition of hBN layers.
This can be explained by a compensation between the increased dielectric screening
due to the intercalation of hBN and the reduction of dielectric screening following
the separation between the MoS2 and WSe2 which are the layers that are better at
screening. The interlayer exciton binding energy in the bilayer is strongly reduced
compared to the intralayer ones and it keeps decreasing as the number of hBN layers
is increased. To separate the effect of screening induced by the hBN from the effect of
spatial separation we perform similar calculations where the MoS2 and WSe2 layers
are separated by vacuum as shown in fig. 5.7 (b). It is evident that the behavior of the
interlayer exciton binding energy is the same, clearly indicating that the main effect
of intercalating hBN is the increase in the electron-hole spatial separation. Finally,
as expected, the binding energies of the intralayer exciton in MoS2 and WSe2 slowly
approach their freestanding layer values with increasing vacuum. The slow recovery
is a consequence of the long range nature of the dielectric screening.

5.4 Band Alignment in vdWHs: the G0W0-QEH
approach

In order for a vdWH to feature interlayer excitons, a type II electronic band align-
ment between the layers hosting the excitation is strictly necessary [102]. Thus, a
proper design of interlayer excitons has to start from an accurate description of the
position of the electronic bands in the heterostructure. Accurate band structure cal-
culations require high-level theoretical methods, such as G0W0, which are far from
being applicable to realistic vdWHs. It would then be ideal to predict the electronic
bands of a vdWH by performing band structure calculations for the monolayer con-
stituents only. One of the main issues with this approach is hybridization effects,
which, differently from the case of the dielectric response, are usually significant for
electronic bands. The other main issue is, instead, the effect of interlayer dielectric
screening on the electronic excitations. In this section I address these problems in
the case of MoS2/WSe2 based heterostructures. The choice of these specific systems
embraces both the lattice mismatch and large number of layers challenges and al-
lows us to benchmark our results on band alignment and interlayer exciton binding
energies (from the previous section) with available photoluminescence measurements
from Ref. [104].

I start out by performing band structure calculations on bilayer MoS2/WSe2 at the
LDA level in order to investigate the importance of hybridization between the layers.
Since MoS2 and WSe2 layers are incommensurable (see fig. 5.8 (b)), the use of a
supercell is required, since straining the layers to match the lattice would artificially
affect the electronic bands (see Supplementary Information of Paper IV). The use
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Figure 5.8: Panel (a): MoS2-WSe2 bilayer. Panel (b): Illustration of the primitive
and super cells for the specific twisting angle θ = 16.1◦. Panels (c) and
(e) show the geometrical relation between the BZs of the two material for
two twisting angles, θ, 16.1◦ (a) and 34.4◦ respectively. Panel (d) and (f)
show the LDA band structures of the MoS2/WSe2 bilayer for θ = 16.1◦
and θ = 34.4◦ respectively. The energy is taken with respect to vacuum.
The bands of the bilayers (circles) are unfolded and projected to the
respective layers. The isolated layers bands are shown for comparison
(continuous lines). For simplicity spin-orbit coupling is not included.

of supercells makes it also possible to set up structures where the two layers are
twisted with respect to each other, a configuration which is closer to the experimental
situation where the alignment angle between the layers is not necessarily controlled.
However, the use of supercells requires the unfolding of the band structure in order
to compare to freestanding layer calculations. By following the method proposed in
Ref. [113], which only relies on eigenvalues and wave functions obtained from the
supercell calculation, I implemented a routine in GPAW to unfold any given supercell
band structure to the corresponding primitive cell. To analyze the dependence of the
electronic bands on the alignment angle θ, I setup MoS2/WSe2 bilayers for θ ∼ 16.1◦
and θ ∼ 34.4◦. The choice of these values is dictated by having a strain less than
1% and a minimal number of atoms in the supercell. The MoS2 and WSe2 BZs for
the two twisted structures are shown in fig. 5.8 (c) and (e). The fact that the BZs of
the two materials are different in size and rotated with respect to each other adds an
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extra complication to the unfolding procedure. Indeed one has to unfold the supercell
bands to two different primitive BZs and subsequently project the bands on the layer
to which they belong. The projection is performed by iterating over the eigenvalues
along the band path and assigning them to the appropriate layer according to the
weight of the corresponding wave function on the two different layers. The unfolded
band structures obtained with the above procedure for the two different alignment
angles are plotted with colored circles in fig. 5.8 (d) and (f). For comparison with
the isolated layers bands are shown with continuous lines. The main observation
here is that the unfolded bands for the two bilayers are essentially the same, and
because the alignment angles are arbitrarily chosen it is safe to state that the band
structure is not dependent on the alignment angle. When comparing the bilayer
bands to the isolated layer ones the agreement is not stunning and two main effects
can be distinguished: a constant shift in energy throughout the BZ, up in energy
for MoS2 and down for WSe2, and shape modification of the bands around the Γ
point. The asymmetric energy shift is a clear signature of charge transfer between
the layers. Indeed, because of the mismatch of the energy of the band gap centers
of the two layers, the electron distribution rearranges at the interface leading to the
formation of an interface dipole. This, in turn, generates an electrostatic potential
that shifts the energy levels of the two layers asymmetrically. At the Γ point, instead,
we observe more than just a simple shift as the shape of the bands is altered. We
ascribe such an effect to hybridization of the wave functions of the two monolayers.
For a more detailed investigation of the charge transfer and hybridization effect check
the Supplementary Information of Paper IV. Importantly, as far as the interlayer
exciton formation is concerned, a clear type II band alignment exists between the
MoS2 and WSe2 layers, with the top of the valence band localized on WSe2 and the
bottom of the conduction band on MoS2. Since the two relevant band edges reside at
the K-point of the BZs, hybridization effects are minimal and therefore I can conclude
that, at the LDA level, the band structure of the bilayer MoS2/WSe2 can be obtained
as superposition of the freestanding layers bands and the effect of charge transfer can
be accounted for by adding a constant asymmetric shift.

While the use of DFT is advantageous in terms of computational demand, it often
yields a poor quantitative description of band gaps and band alignment, and higher
level methods, such as G0W0, are needed. To show that this is the case also for
the MoS2/WSe2 bilayer, the freestanding layers band structure calculated within the
G0W0 approximation (described in section 2.3.2.1) and LDA are compared in fig. 5.9
(a). In this case spin-orbit coupling is included. Apart from the qualitative type II
band alignment predicted by both LDA and G0W0, the LDA fails at describing both
the size of the band gaps and the level alignment. Since it could be argued that
the failure of the LDA is a consequence of the poor approximation for the exchange-
correlation functional rather than the DFT approach itself, I calculated the band
edges for MoS2 and WSe2 using the HSE hybrid functional, which is known to be
more reliable for the scope. The band edges within the different approximations are
shown in fig. 5.9 (b). While the improvement over the LDA result is considerable, the
HSE band edges are not yet as accurate as the G0W0 ones. Not surprisingly, we learn
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Figure 5.9: Panel (a): LDA and G0W0 band structure for the freestanding MoS2
and WSe2 layers. Only the portion of the BZ around the K-point is
shown. Panel (b): comparison of the LDA, HSE (HSE06) and G0W0
band edges. We chose the top of the valence band in MoS2 as refer-
ence energy to align the bands because of the uncertainty of the G0W0
vacuum levels. Spin-orbit effects are included in the calculations.

that G0W0 has to be the method of choice if high accuracy is crucial. Furthermore
it should be noted that the G0W0, or similarly the HSE, band alignment yields a
difference of the band gap centers of ∼ 0.3 eV as opposed to the ∼ 1 eV given by the
LDA. Since it is the mismatch in band gap centers that drives the charge rearrange-
ment at the bilayer interface, it means we should safely expect the charge transfer to
be negligible and no shift of the monolayer bands has to be applied to describe the
vdWH band structure.

Now that we know that hybridization and charge transfer effects can be neglected
at the band edges, we are only left with the problem of accounting for interlayer screen-
ing on the electronic bands. The natural way to include interlayer screening would be
performing a G0W0 calculation for the full vdWH, but this is clearly not a viable so-
lution. However, we can combine the QEH model with monolayer G0W0 calculations
and include the macroscopic contribution of the interlayer screening. Specifically, we
can modify the screened electron-electron interaction of a given layer by adding the
extra screening coming from the neighboring layers. In formulas:

W vdWH
GG′ (q, ω) = W free

GG′(q, ω) + δW (q, ω)δG0δG′0, (5.12)
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Figure 5.10: Panel (a): Band alignment diagram for bilayer MoS2-WSe2 calculated
with the G0W0-QEH method. In the same diagram the energy levels
associated to the lowest intra and inter-layer excitonic levels are shown.
The shaded region and the arrow indicates the reduction of interlayer
exciton binding energy due to the intercalation of hBN. Panel (b) and
(c) show the variation of intra and interlayer gaps and exciton bind-
ing energies respectively. The variation is taken with respect to the
separated layers.

where W free
GG′(q, ω) accounts for the intra layer screening, as in any monolayer G0W0

calculation, and δW (q, ω) is the correction due to interlayer screening. Such a cor-
rection is readily calculated with the QEH. First, the screened electron-electron in-
teraction is calculated for the isolated layer and for the layer embedded in the het-
erostructure by using eq. (5.7) with φ

e
instead of φ

h
1. Then, taking the difference

between these two different interactions, δW (q, ω) is obtained. As briefly mentioned,
only the macroscopic part of the dielectric screening is included, as inferred from the
δG0δG′0 in eq. (5.12). This is a reasonable approximation since we verified that the
G,G′ ̸= 0 components rapidly decay outside the layer and therefore do not play a
relevant role in the interlayer screening. This G0W0-QEH approach, reduces the task
of calculating the band structure for the full vdWHs to at most N -G0W0 monolayer
calculations, with N the number of layers in the heterostructure.

Next I apply the newly developed method, to the MoS2/WSe2 based heterostruc-
tures and finally get an accurate energy levels diagram including all the relevant
effects, see fig. 5.10 (a). The G0W0-QEH can be further exploited to evaluate the
effect of hBN intercalation on intra and interlayer gap. The results are shown in

1Since in the QEH both electrons and holes are represented with the monopole component of
the induced density, the only difference between φ

h
and φ

e
is a sign.
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fig. 5.10 (b) where the variation of the band gaps with respect to the isolated layers is
plotted. Although the band gap renormalization is noticeable when going from mono-
layers to bilayer, the intercalation of h-BN does not have a considerable effect. For
comparison, the variation of intra and interlayer exciton binding energy is reported in
fig. 5.10 (b). The effect of interlayer screening on both intra and interlayer gaps is of
the same order of magnitude as the effect on intralayer exciton binding energy. Dif-
ferently from the interlayer exciton case, no dependence on the MoS2-WSe2 distance
is observed for interlayer gap.

The ultimate test for the methodologies introduced so far is to benchmark the
results on band edges and exciton binding energies for the MoS2/hBN/WSe2 het-
erostructures with experimental measurements on interlayer exciton photolumines-
cence (PL) from Ref. [104]. In particular, we can estimate the position of the PL
peaks of the lowest lying interlayer excitons as:

EPL = EIG − EInter
b , (5.13)

with EIG the interlayer band gap and EInter
b the interlayer exciton binding energy.

The position of the photoluminesce peaks calculated with the G0W0-QEH together
with the photoluminence spectra are plotted in fig. 5.11 for the isolated monolayers
(left panel) and MoS2/hBN/WSe2 heterostructures (right panel). For the isolated
layers the PL signal is due to the intralayer excitons and therefore the peak positions
are calculated with the equivalent of eq. (5.13) for intralayer quantities. Because the
experimental measurements are performed on heterostructures supported on SiO2,
we simulated the effect of the substrate with 30 layers of hBN, which has a similar
bulk dielectric constant to SiO2. Compared to the freestanding case, the substrate
does not seem to considerably affect the PL peaks position. In general the agreement
with the experimental data for both isolated layers and heterostructures is remarkable
and it is further highlighted by the inset, where a shift in energy of only 0.13 eV has
been applied to match the experimental results. It has to be mentioned, though, that
interpretation of the PL peaks in Ref. [104] is ambiguous. Indeed, while it is claimed
that the PL peak for the bilayer without hBN is a clear signature of interlayer exciton,
for the MoS2/hBN/WSe2 and MoS2/3hBN/WSe2 the interlayer exciton peak could
be mixed with the WSe2 intralayer exciton one.

Finally, to demonstrate that the treatment of the band edges at the G0W0 is key
to the agreement with experiment, the PL peaks calculated from for LDA and HSE
band edges are also shown in fig. 5.11. While HSE results are reasonably close to the
G0W0 ones, the LDA dramatically misses the experimental values. The reason why
not even the trend of the PL peaks is correctly described with LDA is that charge
transfer effects cannot be neglected. Charge transfer, indeed, opens the interlayer
band gap shifting the PL peaks up in energy. Increasing the number of hBN layers,
the charge transfer is hindered and consequently the shift of the PL peaks decreases,
which explains the incorrect trend.



76 5 Designing Excitons in van der Waals Heterostructures

M
oS

2

W
S

e 2

0.0

0.5

1.0

1.5

2.0

P
L

E
n

er
gy

(e
V

)

0 1 2 3 4 5 6 7 8 9 10

no. hBN

Free Standing Supported

G0W0-QEH

HSE

LDA

0 1 2 3 4 5
1.3
1.4
1.5
1.6
1.7
1.8
1.9

0.13 eV
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CHAPTER 6
Exciton Dissociation

Devices such as solar cells or photodetectors, which convert photons into electrical
current, rely on the formation and subsequent dissociation of excitons. We have
seen in chapter 3 that the formation of excitons in 2D semiconductors is an efficient
process thanks to the strong coupling with light. Additionally, in chapter 4, we
learned that due to the reduced dielectric screening, in 2D excitons are strongly bound.
The latter represents a disadvantage when the excitons have to be dissociated into
free electron-hole pairs that could be detected/collected at the contacts. For this
reason photodetectors based on 2D materials cannot rely on thermal dissociation of
the excitons but require a field-assisted exciton ionization instead. This has been
demonstrated in Ref. [114], where exciton related photocurrent in MoS2 is observed
only if a finite bias is applied to the crystal.

Here I present the calculations we performed on Stark shift and dissociation of
the lowest lying exciton in monolayer MoS2 under the effect of a constant in-plane
electric field. In addition to that, I show how these quantities are affected when
combining MoS2 with hBN in ultra-thin vdWHs. We calculate the Stark shift and
the dissociation rate from the energy and the lifetime of the resonant state associated
with the lowest lying exciton. The resonant state, in turn, is obtained by applying
the complex scaling technique to the 2D Mott-Wannier Hamiltonian in eq. (4.9).
For the ultra-thin heterostructures the effect of interlayer screening is included by
calculating the screened electron-hole interaction through the QEH model, following
the procedure described in the previous chapter. We demonstrate that field-induced
exciton dissociation in MoS2 can be faster than intrinsic excitonic decay mechanisms
and that it is significantly facilitated when embedding the semiconducting layer in
hBN.

This chapter is fully based on Paper V, but I would like to point out that results
on exciton dissociation rates for in-plane and out-of-plane electric fields in multilayer
TMDs are presented in Paper VI. However, since my contribution to Paper VI was
limited to the calculation of the ab-initio parameters used in the model, the results
are not presented here.
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6.1 Definition of a Resonance
The first step towards the calculation of the dissociation rate is the identification of
a resonant state associated with the exciton. Consider fig. 6.1 where the potential
energy landscape experienced by the electron involved in the exciton is sketched with
and and without electric field in panel (a) and (b) respectively. When no electric field
is applied, the electron is “trapped” by the screened Coulomb potential generated
by the hole and it occupies the lowest energy state. Such a state is a bound state
localized around the hole and characterized by a real eigenvalue, as illustrated in
fig. 6.1 (a). In the presence of the electric field the situation is different. The electron
can now tunnel out of the potential generated by the hole. Bound states are no
longer eigenstates of the Mott-Wannier Hamiltonian as they are now coupled to the
continuum states made accessible by the electric field. One way to describe the
dynamics of electron “escaping” from the hole is to look for the so called resonant
states, or simply resonances. A resonance is defined as a solution of the stationary
Schrödinger equation with the following boundary conditions:

lim
r→∞

ψ(r) = AeiK·r, with Re [K · r̂] > 0. (6.1)
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Figure 6.1: Illustration of an excitonic state with and without electric field. Panel
(a): The lowest lying excitonic state is represented as the lowest energy
level associated to the electron trapped by the screened Coulomb poten-
tial (in blue) generated by the hole. Such a state is a bound state with
a real eigenvalue and is confined by the Coulomb potential as shown
by wave function (in green). Panel (b): the same excitonic state in the
presence of a in-plane electric field. The state is not bound since the
electron can now leak out of the attractive potential generated by the
hole. Such a state is, instead, a resonant state whose energy is complex
valued.
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Here r̂ is the unit position vector and the absolute value of momentum K is related
to the energy of the state by K =

√
2meϵ. These boundary conditions, originally

proposed by Siegert [115], impose that the allowed eigenfunctions are outgoing waves.
This corresponds to the assumption that the system is open and that charge can leak
out. If there exists a solution to the Schrödinger equation satisfying such conditions, it
can be formally shown (see e.g. [116]) the Hamiltonian of the system is non-Hermitian
and consequently admits complex eigenvalues ϵ = ϵR + iγ, with ϵR, γ ∈ R correspond-
ing to the energy and the lifetime of the resonance respectively. It is worth it to
stress that, even if it might seem unphysical, a non-Hermitian Hamiltonian is com-
mon in open quantum systems. Molecular junctions, e.g., can be fully described by an
Hamiltonian containing only the degrees of freedom of the molecule but accounting
for the flow of charge to and from the contacts through a complex-valued embedding
self-energy [42]. Importantly, it should be noted that an outgoing state with complex
eigenvalue, such as the resonance, is divergent and thus not square-integrable (see
the wave function in fig. 6.1 (b)). This poses a problem in finding resonant states by
means of standard methods, such as direct diagonalization of the Hamiltonian, which
are based on square-integrability and zero boundary conditions. Moreover, an extra
complication arises from the boundary conditions in eq. (6.1) which depend on the
energy of the resonance through K. In next section I describe how this issue can be
solved using the complex scaling method.

6.2 Complex Scaling Method: A short Introduction
The underlying idea of the complex scaling technique is to cancel the divergence of
resonant states by mapping the real spatial coordinates into the complex plane. This
approach, originally proposed in Ref. [117], has a dual advantage: it transforms the
resonant states into square-integrable functions and it suppresses the energy depen-
dence of their boundary conditions. Ultimately, this allows for resonant states to
be accessible with standard solution schemes for the stationary Schrödinger equation.
In this section I present an introduction to the basic concepts of the complex scaling
method, closely following Ref. [118].

Let us consider a generic single-particle stationary Schrödinger equation in real
space:

H(r)ψ(r) = ϵψ(r), (6.2)

with H(r) = − 1
2 ∇2 + v(r) and v(r) the trapping potential. The complex scaling

technique requires the potential v(r) to be dilation analytic. For the present discussion
it is enough to know that the Coulomb potential satisfies this condition [117] and that
the potential associated to the constant electric field, even if not dilation analytic, is a
particular case for which the complex scaling technique can be applied anyway [119].

The complex scaling transformation is essentially a rotation of the real space co-
ordinates into the complex space. In practice, the position and momentum operators
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are modified according to:
i∇ → e−iθi∇, (6.3)

r → reiθ, (6.4)

where θ is the rotation angle and it has to be thought as a fixed parameter. Applying
this transformations to eq. (6.2) we obtain the complex scaled Schrödinger equation:

Hθ(r)ψθ(r) = ϵθψθ(r), (6.5)

with
Hθ(r) = −1

2
e−i2θ∇2 + v(reiθ) and ψθ(r) = eiNθ/2ψ(reiθ), (6.6)

where N is the number of dimensions (in our case N = 2). The complex scaling
operation transformed the original Hamiltonian H into a non-Hermitian Hamiltonian
Hθ which now admits complex eigenvalues ϵθ. For sufficiently large θ, the analytic
continuation of the wave function ψ(r) in the complex plane suppresses the divergence
of resonant states and therefore they can be now found by solving eq. (6.5) with zero
boundary conditions.

It is of interest to investigate how the spectrum of H is affected by the complex
scaling. Let us consider the expectation value of H over the state ψ(r):

ϵ =
∫
drψ∗(r)H(r)ψ(r). (6.7)

If the integrand is analytic and its analytic continuation dies out (sufficiently quickly)
for r → ∞, the integration path can be rotated into the complex plane by θ without
altering the result. This is indeed the case for bound states, which are expected to
be localized. This conditions are satisfied by bound states and it can be shown that
ϵθ = ϵ for all θ1. Indeed:

ϵ =
∫
eiNθdrψ∗(eiθr)H(eiθr)ψ(eiθr)

=
∫
dr eiNθ/2ψ∗(eiθr)H(eiθr)eiNθ/2ψ(eiθr)

=
∫
dr ψ̄θ(r)Hθ(r)ψθ(r) = ϵθ,

(6.8)

where I defined ψ̄θ(r) = eiNθψ∗(eiθr) and in the first I used the fact that the integra-
tion path can be safely rotated. In practice this result means that the eigenvalues of
the bound states are untouched by the complex scaling and they keep lying on the
real axis.

The situation is different for the continuum states as they are not localized and
therefore the equivalence between the integration along the real path and the rotated

1As long as the state is analytic.
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one does not hold. In order to understand the effect of complex scaling on continuum
states we consider their asymptotic behavior and assume that it is not significantly
affected by the potential v(r). Then, for r → ∞ the complex scaled continuum states
can be found from:

− 1
2
e−i2θ∇2ψθ(r) = ϵθψθ(r). (6.9)

Clearly this equation is equivalent to the non-scaled one and they both yield the
same eigenstate, i.e. ψθ(r) = ψ(r). It is only the eigenvalues that are affected by the
complex scaling, i.e. ϵθ = ei2θϵ = ei2θ 1

2k
2 with k ∈ R. Hence, the effect of complex

scaling on the continuum states is a rotation of −2θ into the complex plane of the
non-scaled eigenvalues.

To better illustrate what has been discussed so far I report the spectrum of the
complex scaled Mott-Wannier Hamiltonian for MoS2 in absence of field in fig. 6.2. The
figure shows that for the three different values of θ the bound states are unaffected,
whereas the continuum states are rotated by −2θ as explained above. The reason
why the continuum does not start at Re[E] = Im[E] = 0 is a consequence of the finite
size of the simulation box.

The last type of states we need to analyze are the resonances. As described in the
previous section a resonant state is defined as such a state that satisfies the outgoing
boundary conditions in eq. (6.1). Applying the complex scaling transformation to the
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Figure 6.2: Illustration of the effect of complex scaling on the bound and contin-
uum states of the Mott-Wannier Hamiltonian for an exciton in MoS2
in absence of external field. While the bound states are not altered,
the continuum states rotate by an angle of −2θ. The fact that the con-
tinuum does not start at zero is a consequence of the finite size of the
simulation box.
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outgoing resonant state for r → ∞, one has:

ψθ(r) = eiNθ/2ψθ(eiθr) = eiNθ/2eiK·reiθ
= eiNθ/2ei(P−iQ)·reiθ

= eiNθ/2ei(P cos θ+Q sin θ)·rei(−P sin θ+Q cos θ)·r,
(6.10)

where I used K = P − iQ, with P,Q ∈ RN . From the expression above we can
infer that the resonant state becomes square-integrable only for values of θ such as
(−P sin θ+Q cos θ) · r̂ < 0, i.e θ > tan−1(Q · r̂/P · r̂). Practically speaking this means
that one has to solve eq. (6.5) with increasing values of θ until resonances appear.
Once appeared, the resonances eigenvalues are independent of θ. Finally, note that
because no external field is applied, resonant states do not appear in fig. 6.2.

6.3 Exciton life-time and Stark shift in ultra-thin vdHWs
From the previous section we learned that through the complex scaling method, res-
onant states are transformed into square-integrable functions which can be found by
numerically solving eq. (6.5), e.g., by iterative diagonalization. In the following I
discuss how we applied the complex scaling to the 2D Mott-Wannier Hamiltonian to
calculate the dissociation rate and Stark shift of excitons in MoS2 due to a constant
in-plane electric field. To determine the effect of environmental screening, we study
the case of freestanding MoS2 monolayer and MoS2 embedded in ultrathin vdWHs
with hBN, in particular MoS2-hBN and hBN-MoS2-hBN.

To describe the effect of the constant electric field on the excitons, we employ
the usual 2D Mott-Wannier Hamiltonian in eq. (4.9) and add the electric potential
associated with the external in-plane electric field. We assume that the field does not
affect the exciton effective mass. Regarding the screened electron-hole interaction, we
use the 2D expression in eq. (4.17), which, I recall, relies on the linear approximation
of the dielectric function. The 2D polarizability constant is calculated from the linear
fit of the full wave vector dependent Q2D dielectric function and in the case of vdWHs
it is calculated with the QEH. We have seen in section 5.3.1 that although a linear
dielectric constant approximation is not appropriate for vdWHs, it is acceptable for
heterostructure that are ultrathin, i.e. consisting of a very few layers, such as the
ones investigated in this section. The advantage of using the 2D interaction energy
is the availability of an explicit analytic form which can be directly complex scaled
by applying the transformation in eq. (6.4). Contrastingly the use of the full q-vector
dependent Q2D dielectric function would require a non trivial numerical continuation
into the complex plane. Once the Mott-Wannier Hamiltonian is complex scaled, it is
diagonalized iteratively for different θ and the resonant excitonic states are found.

The eigenvalue of the resonance carries information on both the Stark shift and
the lifetime of the excitonic state. Taking the difference between the real part of
the lowest resonant state, i.e. the resonance with the lowest real part of the energy,
and the binding energy of the lowest lying exciton we can calculate the Stark shift.
Note that the complex scaling method is a non-perturbative method as opposed to
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Figure 6.3: Exciton Stark shift in the MoS2 based structures as a function of field
strength calculated through complex scaling. Inset: the shift predicted
by our simple hydrogenic model(dashed lines) agrees well with the com-
plex scaling results for small fields.

the perturbative techniques usually employed to calculate the Stark shift. Figure 6.3
shows the Stark shift of the exciton binding energy as a function of field strength for
the three different structures. The Stark shift becomes larger with increasing field
strength and it shows a parabolic behavior for small fields. The parabolic behavior
is what one would expect from standard perturbation theory since the Stark shift is
a second order effect. To confirm this, we apply second order perturbation theory to
the simple effectively screened hydrogenic model discussed in section 4.4. An analytic
expression for the energy shift can be worked out and it reads:

∆E = −21
64
ϵ4eff
µ3 E

2, (6.11)

with ϵeff defined in eq. (4.23), µ the exciton effective mass and E the field strength.
The validity of this expression for very low field strength is verified in the inset of
fig. 6.3. Additionally, eq. (6.11) help us understand why the Stark shift is higher for
the vdWHs. Indeed ∆E ∝ ϵ4eff, and adding hBN to MoS2 increases the environmental
screening encoded in ϵeff.

Finally fig. 6.4 reports the field-induced exciton dissociation rate, evaluated as
1/γ where γ is the lifetime (imaginary part of the eigenvalue) of the resonant state
with the lowest real part of the eigenvalue. While it is not surprising that the dis-
sociation is faster for increasing field strength, the noticeable result here is that the
dissociation rate can be largely tuned by modifying the dielectric environment. It
is indeed seen in fig. 6.4 that the dissociation rate increases when going from MoS2
to MoS2-hBN and it increases even more for the hBN-MoS2-hBN structure. Such a
behavior is a consequence of the increased environmental screening that weakens the
binding of the electron-hole pair, making the exciton more prone to dissociate. The
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Figure 6.4: In-plane field-dependent dissociation rate of an exciton localized in the
MoS2 layer for the three different structures. The shaded region rep-
resents the range of typical dissociation rates associated with intrinsic
exciton decay processes.

field-induced dissociation is not the only process that causes the exciton to decay.
In an actual device processes such as radiative recombination [36], defect-assisted re-
combination [120], and exciton-exciton annihilation [121] all contribute to intrinsic
exciton decay and the relative importance of these effects depends on temperature,
defect concentration and exciton density. The typical decay rates associated with
these processes are indicated by the shaded region in fig. 6.4. We estimate that a
field-strength of 0.1 V/nm can be reasonably achieved at the contact-MoS2 interface
under experimental condition. For such a value of field, we see that the dissociation
process dominates over the other intrinsic decay mechanisms. We then conclude that
exciton dissociation via external field can be a viable route to separating electron-hole
pairs, and it is an even more efficient process if the active material, in this case MoS2,
is encapsulated in vdWHs.



CHAPTER 7
Conclusion

In this thesis I presented a comprehensive framework to calculate properties of exci-
tons in 2D materials and their heterostructures. I discussed how the daunting task
of solving the Bethe-Salpeter equation is rephrased in terms of a generalized Mott-
Wannier equation where the main ingredient is the screened electron-hole interaction.
The screened electron-hole interaction, in turn, is obtained with quantum accuracy
from the dielectric response of the material. For 2D semiconductors, as opposed to
bulk, I showed that the correct description of the excitons requires to take into ac-
count the non-locality of the dielectric function, which manifests itself with a strong
dependence on the in-plane wave-vector q∥. With our quasi-2D (Q2D) picture of
a 2D material, i.e. by accounting for the finite out-of-plane extension of the layer,
we were able to calculate the full q∥ dependence of the dielectric function. We then
demonstrated that in the limit q∥d ≪ 1, with d the thickness of the slab, the, com-
monly used linear approximation for the dielectric function is completely justified.
Since the relevant range of q∥ for excitons in isolated 2D crystals satisfies the q∥d ≪ 1
condition, we found that solving the Mott-Wannier equation with either a Q2D or a
linearly screened electron-hole interaction yields the same excitonic properties, such
as the binding energy. The linear behavior of the dielectric function is advantageous
when reducing the generalized Mott-Wannier equation to an effectively screened hy-
drogenic equation. Indeed defining an effective dielectric constant in terms of a linear
dielectric function allows us to construct an analytic expression for the energies of the
excitonic states in 2D semiconductors in terms of the 2D polarizability constant and
the effective mass. The non-locality of the dielectric screening in 2D materials ex-
tends to their van der Waals heterostructure. While standard ab-initio methods can
be directly applied to the calculation of the dielectric response of isolated 2D crystals,
they are computationally unfeasible for complex multilayer heterostructures. This,
however, did not stop us but, instead, motivated the development of a first-principles
multi-scale method, the QEH model, which can accurately and efficiently determine
the dielectric response of a generic vdWH from the dielectric properties of the con-
stituent layers. This is done by first encoding the dielectric response of each layer
into a dielectric building block and second coupling the building blocks by solving the
electrostatic Dyson equation in a discrete monopole/dipole basis. The QEH approach
enabled us to calculate dielectric, electronic and excitonic properties of realistic het-
erostructures at an extremely reduced computational cost and with high accuracy.
For example, we showed that combining the QEH with the Mott-Wannier equation
we could describe the 2D to 3D transition of the exciton binding energy in MoS2 and
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reproduce the experimental non-hydrogenic Rydberg series of the excitons in sup-
ported WS2. We found out that the linear approximation, successful for excitons in
isolated 2D crystals, breaks down in several-layer vdWHs and that the out-of-plane
extension of the layers has to be taken into account. Our framework allowed us to
even account for more exotic excitations in vdWHs such as interlayer excitons. By
calculating interlayer exciton binding energies and electronic band edges taking inter-
layer screening into account in both cases, we completely determined the energy levels
alignment in complex MoS2-hBN-WSe2 based heterostructure. This represents a first
step towards the understanding of processes at the interfaces between the layers and
allowed us to reproduce experimental results on interlayer exciton pholuminescence.
Finally, I presented how complex scaling the Mott-Wannier Hamiltonian can give us
access to the rate of field-assisted exciton dissociation in freestanding monolayer MoS2
or in ultra-thin vdWHs hBN/MoS2 and hBN/MoS2/hBN. While we estimated the
field-assisted dissociation to be faster than intrinsic exciton decay for a freestanding
MoS2 layer, we demonstrated that the dissociation rate can be significantly increased
by embedding MoS2 in ultra-thin vdWHs.

In my vision, the future of vdWHs looks bright but still a lot needs to be under-
stood if we want vdWHs to revolutionize nanoelectronics. In this work, we took the
first steps towards the understanding of the dielectric response of these innovative
materials and how this affects the energy and the lifetime of the excitons. However
problems such as the control of absorption, photoluminescence, charge transfer at the
interface and defects are still unsolved. There is still plenty of room for the devel-
opment of new ab-initio schemes, most likely based on a multi-scale approach, that
could give a solution to these open issues. For example a starting point to the under-
standing of photoluminescence of interlayer excitons in complex vdHWs structures
could be calculating the transition dipole moments of the initial and final excitonic
states and study how that depends on the alignment angle or distance between the
layers hosting the excitation.

A much more ambitious project would instead be the development of time de-
pendent methods based on non-equilibrium Green’s functions which include all the
intimate processes in the material, such as electron-electron, electron-phonon and
electron-defect scattering. This would give us direct access to the real time dynamics
of electrons and nuclei which could support the incredible amount of data produced
by ultra-fast pump and probe experiments in the past few years. At the same time,
being able to say something about the time scale of physical processes such as exci-
ton recombination, charge extraction at the contacts of a device or on-off switching
of transistors would be of a great importance for the engineering of the ultimate
high-performance (opto)-electronic device.



APPENDIX A
Derivation of the Bethe

Salpeter Equation
A.1 Bethe-Salpeter Equation
As we saw in chapter 2, a higher level of approximation in many-body interaction
can be obtained by iterating Hedin’s equations once more [122]. The way to go is
to plug the GW expression for the exchange correlation self-energy in the equation
for the vertex. We then need to calculate δΣxc(1;2)

δG(4;5) . Disregarding the variation of the
screened interaction due to the excitation, i.e. W (1;2)

δG(4;5) ≃ 0, we can write δΣxc(1;2)
δG(4;5) ≃

iδ(1, 4)δ(2, 5)W (1; 2) and therefore express the vertex as:

Γ(1, 2; 3) = δ(1; 2)δ(1; 3) + i
∫
d6d7W (1; 2)G(1; 6)G(7; 2)Γ(6, 7; 3). (A.1)

Inserting the relation above back into the equation for the irreducible polarizability
(eq. (2.43)) we get:

P (1; 2) = −iG(1; 2)G(2; 1)+
∫
d4d5d6d7G(1; 4)G(5; 1)W (4; 5)G(4; 6)G(7; 5)Γ(6, 7; 2).

(A.2)
If we now define a three-points irreducible polarizability as:

3P (1, 2; 3) = −i
∫
d5d6G(1; 5)G(6; 2)Γ(5, 6; 3), (A.3)

eq. (A.2) can be generalized to:

3P (1, 2; 3) = −iG(1; 3)G(3; 2) + i
∫
d4d5G(1; 4)G(5; 2)W (4; 5)3P (4, 5; 3). (A.4)

The two-points irreducible polarizability can be easily recovered by the three-point
one, since P (1; 2) =3 P (1, 1+; 2). To make the last equation even more appealing we
can introduce a new quantity:

L0(1, 2; 3, 4) = −iG(1; 3)G(4; 2) (A.5)
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and further generalize the irreducible polarizability to a four-point function:

4P (1, 2; 3, 4) = L0(1, 2; 3, 4) −
∫
d5d6d7d8L0(1, 2; 5, 6)4W (5, 6, 7, 8)4P (7, 8; 3, 4),

(A.6)
where I defined 4W (1, 2, 3, 4) = W (1, 2)δ(1, 3)δ(2, 4). Once again, the two-point irre-
ducible polarizability can be retrieved by contracting the four-point one: P (1; 2) =4

P (1, 1+; 2, 2+).
To proceed even further, the four-point irreducible polarizability can be related

to the four-point reducible polarizability, usually indicated with L(1,2;3,4), by gener-
alizing the Dyson eq. (2.38) to four-point functions:

L(1, 2; 3, 4) =4 P (1, 2; 3, 4) +
∫
d5d6d7d84P (1, 2; 5, 6)4v(5, 6, 7, 8)L(7, 8; 3, 4), (A.7)

with 4v defined by 4v(1, 2, 3, 4) = v(1, 3)δ(1, 2)δ(3, 4). Using this equation and
eq. (A.6) we can finally arrive to the Bethe-Salpeter equation (BSE) [83] within the
GW approximation:

L(1, 2; 3, 4) = L0(1, 2; 3, 4) +
∫
d5d6d7d8L0(1, 2; 5, 6)K(5, 6, 7, 8)L(7, 8; 3, 4), (A.8)

where I defined the kernel:

K(1, 2, 3, 4) = v(1, 3)δ(1, 2)δ(3, 4) −W (1, 2)δ(1, 3)δ(2, 4). (A.9)

In the next section I will show how eq. (A.8) can be solved in practice by using an
effective two-particles Hamiltonian.

A.2 From BSE to the two-particle Hamiltonian
Within the static kernel approximation introduced in section 3.5, eq. (A.10) is better
tractable in frequency space and it reads:

L(r1, r2, r3, r4;ω) = L0(r1, r2, r3, r4;ω)+∫
dr5dr6dr7dr8L0(r1, r2, r5, r6;ω)K(r5, r6, r7, r8)L(r7, r8, r3, r4;ω).

(A.10)

The advantage of working in frequency space is that one can easily get an explicit
form for L0 just by generalizing eq. (3.5) to four-coordinates:

L0(r1, r2, r3, r4;ω) = 2
∑
n1n2

BZ∑
kq

(fn1k−fn2k+q)
ϕ∗n1k(r1)ϕn2k+q(r2)ϕn1k(r′4)ϕ∗n2k+q(r′5)

ω + ϵn1k − ϵn2k+q + iη .

(A.11)
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A discussion of what wave functions and eigenvalues to use is provided in the main
text in section 3.5.

To make the solution of eq. (A.10) more practical, the four-points reducible polar-
izability can be represented in the so called transition space according to:

L(r1, r2, r3, r4;ω) =
BZ∑
q

∑
SS′

LSS′(q, ω)ψS(r1, r2)ψ∗S′(r3, r4), (A.12)

with the super-indices S = n1n2 and S′ = n3n4 and the transition basis function
defined by ψS(r1, r2) = ϕ∗n1k(r1)ϕn2k+q(r2). The fact that LSS′(q) is diagonal in q
follows from the translational invariance of the system. The idea of defining such a
transition space is not completely out of the box but it follows from the fact that L0
assumes a really simple form in this basis:

L0 SS′(q, ω) = fS(q)
ω − ϵS + iη δSS′ , (A.13)

which can be directly verified from eq. (A.11) and introducing fS(q) = fn2k+q −fn1k
and ϵS(q) = ϵn2k+q − ϵn1k.

With the previous two expressions and a bit of algebra [85], the BSE becomes a
trivial matrix equation for LSS′(q) and the solution can be conveniently written in
terms of the resolvent of an auxiliary non-hermitian two-particles hamiltonian H2p(q):

LSS′(q, ω) =
[
H2p(q) − (ω + iη)1

]−1
SS′ fS′(q), (A.14)

with 1 the identity matrix and H2p(q) given by:

H2p
SS′(q) = ϵS(q)δSS′ − fSKSS′(q). (A.15)

The advantage of writing the polarizability in terms of a resolvent is that one can
avoid inverting of a matrix for each frequency and instead just diagonalize the two-
particles Hamiltonian once for all. This is done by using the spectral representation
of the resolvent:

[
H2p(q) − (ω + iη)1

]−1
SS′ =

∑
λλ′

AS
λ(q)[AS′

λ′ (q)]∗N−1
λλ′

ω − Eλ(q) + iη , (A.16)

where Aλ and Eλ denote the eigenstates and eigenvalues of the two-particles hamil-
tonian and Nλλ′ is the eigenstates overlap matrix, in formula:

H2p(q)Aλ(q) = Eλ(q)Aλ(q), Nλλ′(q) =
∑

S

[AS
λ(q)]∗AS

λ′(q). (A.17)
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Just by making use of the delta function δSS′ and the occupation factor fS in the
definition in eq. (A.15), the two-particle Hamiltonian assumes a peculiar structure
[122]:

H2p
SS′ =


{vc}′ {cv}′ {vv}′ {cc}′

{vc} H2p,Res K K K
{cv} −K∗ −[H2p,Res]∗ −K −K
{vv} 0 0 ϵ{vv}δ{vv}{vv}′ 0
{cc} 0 0 0 ϵ{vv}δ{vv}{vv}′

,


(A.18)

where v and c indicate occupied (valence) and unoccupied (conduction) states respec-
tively. Because of the upper block triangular structure and the occupation factor fS′

in eq. (A.14), the only part of H2p that needs to be diagonalize is the one that involves
electron-hole transitions, i.e. the upper left block. The latter can be further divided
into four blocks: the resonant part, H2p,Res, which involves positive frequencies tran-
sitions (from valence to conduction states), the anti-resonant part, [H2p,Res]∗ and the
coupling between the two. It is standard procedure to apply the Tamm-Dancoff ap-
proximation [43] which consists in retaining only the resonant part and neglecting the
coupling terms. This leads to an extreme simplification of the diagonalization since
now the two-particle hamiltonian is represented only in the subspace of electron-hole
transitions and is hermitian.
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ABSTRACT: Vertical stacking of two-dimensional (2D)
crystals, such as graphene and hexagonal boron nitride, has
recently lead to a new class of materials known as van der
Waals heterostructures (vdWHs) with unique and highly
tunable electronic properties. Ab initio calculations should in
principle provide a powerful tool for modeling and guiding the
design of vdWHs, but in their traditional form such
calculations are only feasible for commensurable structures
with a few layers. Here we show that the dielectric properties
of realistic, incommensurable vdWHs comprising hundreds of
layers can be efficiently calculated using a multiscale approach where the dielectric functions of the individual layers (the
dielectric building blocks) are computed ab initio and coupled together via the long-range Coulomb interaction. We use the
method to illustrate the 2D−3D transition of the dielectric function of multilayer MoS2 crystals, the hybridization of quantum
plasmons in thick graphene/hBN heterostructures, and to demonstrate the intricate effect of substrate screening on the non-
Rydberg exciton series in supported WS2. The dielectric building blocks for a variety of 2D crystals are available in an open
database together with the software for solving the coupled electrodynamic equations.

KEYWORDS: van der Waals heterostructures, 2D materials, density functional theory, dielectric function, excitons, plasmons

The class of 2D materials, which started with graphene, is
rapidly expanding and now includes metallic and

semiconducting transition metal dichalcogenides1 in addition
to group III−V semimetals, semiconductors, and insulators.2

These atomically thin materials exhibit unique optoelectronic
properties with high technological potential.3−7 However, the
2D materials only form the basis of a new and much larger class
of materials consisting of vertically stacked 2D crystals held
together by weak van der Waals forces. In contrast to
conventional heterostructures that require complex and
expensive crystal-growth techniques to epitaxially grow the
single-crystalline semiconductor layers, van der Waals hetero-
structures (vdWHs) can be stacked in ambient conditions with
no requirements of lattice matching. The latter implies a weaker
constraint, if any, on the choice of materials that can be
combined into vdWHs.
The weak interlayer binding suggests that the individual

layers of a vdWH largely preserve their original 2D properties
modified only by the long-range Coulomb interaction with the
surrounding layers. Turning this argument around, it should be
possible to predict the overall properties of a vdWH from the
properties of the individual layers. In this Letter we show that
this can indeed be achieved for the dielectric properties.
Conceptually, this extends the Lego brick picture used by Geim
and Grigorieva8 for the atomic structure of a vdWH, to its
dielectric properties. Specifically, we develop a semiclassical
model that takes as input the dielectric functions of the
individual isolated layers computed fully quantum mechanically
and condensed into the simplest possible representation, and

couples them together via the Coulomb interaction, see Figure
1. Despite the complete neglect of interlayer hybridization, the
model provides an excellent account of both the spatial and
dynamical dielectric properties of vdWHs. The condensed
representation of the dielectric functions of the 2D crystals can
thus be regarded as the dielectric genome of the vdWH.
In addition to its conceptual value, our approach overcomes a

practical limitation of conventional first-principles methods.
Such methods are not only computationally demanding, but
also rely on periodic boundary conditions, which are
incompatible with the incommensurable interfaces found in
vdWHs. In fact, for many purposes, an in-plane lattice
mismatch between neighboring 2D crystals is preferred because
it reduces the interlayer coupling, and thus minimizes the risk
of commensurate−incommensurate transitions,9 and formation
of Moire patterns10 and associated band structure reconstruc-
tions,11 which are typical for systems with similar lattice
constants. This emphasizes the need for alternative approaches
for modeling vdWHs.
The dielectric function is one of the most important material

response functions. It determines the effective interaction
between charged particles in the material, contains information
about the collective oscillations of the electron gas
(plasmons),12 and enters as a fundamental ingredient in
many-body calculations of, e.g., excitons and quasiparticle
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band structures.13,14 We stress that in this work we consider
only the electronic contributions to the dielectric properties. In
particular, when referring to the static dielectric function we
mean the dielectric function at frequencies smaller than any
electronic transition energy but larger than the vibrational
energies of the system.
The (inverse) dielectric function is related to the electron

density response function, χ, via

∫ω δ χ ωϵ ′ = − ′ +
| − ″|

″ ′ ″− r r r r
r r

r r r( , , ) ( )
1

( , , ) d1

(1)

In our quantum-electrostatic heterostructure (QEH) model the
calculation of the dielectric function is divided into two parts. In
the first part the in-plane averaged density response functions
of the freestanding layers, χi(z, z′, q∥, ω), are obtained from ab
initio calculations. In practice we treat the in-plane momentum
transfer, q∥, as a scalar since most 2D materials are isotropic
within the plane. From χi we calculate the magnitude of the
monopole/dipole component of the density induced by a
potential with a constant/linear variation across the layer and
in-plane variation exp(ir∥ · q∥)

∫χ ω χ ω̃ = ′ ′ ′α
α αz z z z z zq q( , ) ( , , , ) d di i (2)

Here α = 0,1 for the monopole and dipole components,
respectively. In addition we calculate the spatial form of the
induced density, ρiα(z,q∥). With a proper normalization of ρiα
we can then write

∫ χ ω χ ω ρ′ ′ ′ = ̃α
α αz z z z zq q q( , , , ) d ( , ) ( , )i i i (3)

We have found that while χĩα depends strongly on frequency,
ρiα does not. The data set (χĩα, ρiα) with α = 0,1 or equivalently
α = M,D constitutes the dielectric building block of layer i, as
illustrated in Figure 1. According to eq 3 the dielectric building
block allows us to obtain the density induced in the (isolated)
layer i by a constant/linear potential. It is straightforward to
extend the dielectric building blocks to account for higher-order
moments in the induced density described by α > 1, but we

have found the dipole approximation to be sufficient in all cases
considered.
In the second part of the QEH model, the density response

function of the vdWH in the discrete monopole/dipole
representation is obtained by solving a Dyson-like equation
that couples the dielectric building blocks together via the
Coulomb interaction. The Dyson equation for the full density
response function giving the magnitude of the monopole/
dipole density on layer i induced by a constant/linear potential
applied to layer j reads (omitting the q∥ and ω variables for
simplicity)

∑χ χ δ χ χ= ̃ + ̃α β α α β α
γ

α γ γ β
≠

Vi j i i j i
k i

i k k j, ,
,

, ,
(4)

The Coulomb matrices are defined as

∫ ρ= Φα γ α γV z z zq q q( ) ( , ) ( , ) di k i k, (5)

where Φkγ is the potential associated with the induced density,
ρkγ, which we calculate on a uniform grid by solving a 1D
Poisson equation. Note that we leave out the self-interaction
terms in eq 4 since the intralayer Coulomb interaction is
already accounted for by the uncoupled χĩα. The (inverse)
dielectric function of eq 1 in the monopole/dipole basis
becomes

∑ω δ χ ωϵ = +α β α β
γ

α γ γ β
− Vq q q( , ) ( ) ( , )i j i j

k
i k k j,

1
, , ,

(6)

More details on the method and computations are provided in
the Supporting Information.
A database containing the dielectric building blocks of a large

collection of 2D materials has been constructed and is available
from our Web site.15 It presently contains more than 50
transition metal dichalcogenides and oxides, graphene at
different doping levels, and hBN, and more materials are
being added. From here the data files can be downloaded
together with a Python module for calculating the dielectric
function and associated properties of any combination of these
materials. QEH model calculations for vdWHs containing a few

Figure 1. Schematic of the QEH model. (a) The density response function and dielectric function of the heterostructure are calculated from the
dielectric building blocks of the individual layers assuming a purely electrostatic interaction between the layers. The dielectric building blocks are
calculated ab initio for the isolated layers. They comprise the monopole and dipole components of the density response function, χ ̃M/D, together with
the spatial shape of the electron density, ρM/D(z), induced by a constant and linear applied potential, respectively. (b) Monopole and dipole induced
densities (blue) together with the associated potentials (red) for monolayer MoS2.
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hundred layers can be performed on a standard PC. To
illustrate the variation in the dielectric properties of the 2D
semiconductors, Figure 2 shows the q∥-dependent static

dielectric functions of the monolayer transition metal
dichalcogenides and -oxides presently contained in our database
(for a complete overview of the materials see ref 16). All the
dielectric functions show the same qualitative form, in
particular they become 1 for q∥ → 0 and q∥ → ∞; however,
there is quite some variation in their magnitude. As expected
the size of the dielectric function correlates well with the size of
the band gap of the material indicated by the color.
First-principles calculations were performed with the GPAW

code.17,18 Single-particle wave functions and energies were
calculated within the local density approximation (LDA) using
400 eV plane wave cutoff and at least 45 × 45 sampling of the
2D Brillouin zone. Density response functions and dielectric
functions were calculated within the random phase approx-
imation (RPA). The RPA does not include (direct) electron−
hole interaction, but generally yields good results for the static
dielectric properties of semiconductors and dynamical response
of metals. Except for MoS2 bulk, we included at least 15 Å of

vacuum in the super cells perpendicular to the layers and
applied a truncated Coulomb kernel to avoid long-range
screening between periodically repeated structures. All response
functions were calculated in a plane wave basis including
reciprocal lattice vectors up to at least 50 eV. A similar cut off
was used for the sum over empty states, and convergence was
carefully checked. The frequency dependence of the response
functions was represented on a nonlinear frequency grid
ranging from 0 to 35 eV, with an initial grid spacing of 0.02 eV.
All details of the calculations and atomic structure geometries
are provided in the Supporting Information.
As a first application of the QEH model, we study how the

(static) dielectric function of a 2D material evolves as the layer
thickness increases toward the bulk. One of the most
characteristic differences between 2D and 3D materials is the
behavior of the dielectric function in the long wavelength limit:
For a bulk semiconductor, the dielectric function ϵ(q) tends
smoothly to a value larger than unity as q→ 0. This is the static
dielectric constant of the material, ϵ∞. In contrast ϵ(q∥) = 1 +
O(q∥) for a 2D semiconductor implying a complete absence of
screening in the long wavelength limit.19,20 Consequently, the
concept of the dielectric constant does not exist for a
freestanding 2D semiconductor.
Ab initio calculations were performed for the dielectric

function of MoS2 monolayer, bilayer, and bulk, and the QEH
model was used for multilayer structures up to 100 layers.
Figure 3b shows the dielectric functions averaged over the slabs,
i.e., the macroscopic dielectric function, as a function of the in-
plane momentum transfer. For large q∥ the dielectric functions
show similar behavior. However, whereas ϵ(0) = 14 for the
bulk, the dielectric functions of the slabs decrease sharply to 1
for small q∥. This demonstrates that the dielectric properties of
a vdWH of thickness L are 2D like for q∥ ≪ 1/L and 3D like
for q∥ ≫ 1/L. Interestingly, also the result for bulk MoS2 shows
reminiscence of the 2D nature of the constituent layers, where
the magnitude of the dielectric function has a slight drop when
q∥ → 0.
The QEH model describes the change in the dielectric

function from mono- to bilayer very accurately in spite of the
well-known differences between the mono- and bilayer band

Figure 2. Static dielectric function ϵ(q∥,ω = 0) of the 51 transition
metal dichalcogenides and oxides included in the database. As
expected, the magnitude of the dielectric function is seen to correlate
with the size of the band gap indicated by the color. The band gaps are
calculated with G0W0 in ref 16.

Figure 3. Two-dimensional to three-dimensional transition of the dielectric function. (a) Atomic structure of a 20 layer MoS2 slab. (b) The
macroscopic static dielectric function ϵM(q∥,ω = 0) as a function of the in-plane momentum transfer for different number of layers, N. The
macroscopic dielectric function relates the total potential averaged over the width of the slab to an external potential of the form Vext(r∥,z) = exp(ir∥ ·
q∥). The dielectric functions increase monotonically with N converging slowly toward the dielectric function of bulk MoS2 obtained from an ab initio
calculation. Excellent agreement between the QEH model and the ab initio results are seen for N = 1,2. The slow convergence toward the bulk result
is due to the strong spatial variation of the induced potential in the surface region of the slabs. This can be seen in panel (c), which shows Vext/
Vtot(z), i.e., the local dielectric function, for an external potential constant across the slab and with in-plane wave vector q∥ = 0.036 Å−1 for N = 50.
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structures.21 This shows that hybridization driven band
structure effects, i.e., quantum confinement, have negligible
influence on the dielectric properties of a vdWH which is the
main reason for the success of the QEH model. The model
result seems to converge toward the ab initio bulk result;
however, convergence is not fully reached even for N = 100.
The slow convergence toward the bulk result is mainly due to
the spatial variation of the induced potential across the slab. In
Figure 3c we show the z-dependent dielectric function defined
as ϵ(z) = Vext/Vtot(z), for a constant (along z) external potential
with a long wavelength in-plane variation for N = 50. Although
ϵ(z) is close to the ab initio bulk value (dashed line) in the
middle of the slab, screening is strongly suppressed in the
surface region. Increasing the slab thickness beyond 50 layers
brings the QEH result even closer to the bulk result in the
middle of the slab, but a small underestimation remains
originating from the difference in the band structures of the
monolayer and bulk systems. The suppressed screening in the
surface region is a direct consequence of the anisotropic nature
of the layered MoS2 crystals, which limits the screening of
perpendicular fields relative to in-plane fields, and is expected to
be a general property of vdWHs.
The model can also be used to calculate the response to

fields polarized along the z-direction, i.e., perpendicular to the
layers. In this case the perpendicular component, ϵzz(ω = 0),

can be calculated by applying an external potential with a linear
variation along z. In the discrete basis of the QEH model, such
a field is represented by a vector with 0 for all monopole
components and 1 for all dipole components. Comparing the
averaged slope of the total potential to the slope of the applied
linear potential for a slab of N = 100 layers of MoS2 yields ϵzz =
7.8. This value is somewhat larger than the bulk value of 6.03;
however, due to long-range surface effects the two numbers
should not necessarily coincide. In fact, we find excellent
agreement between the QEH model and full ab initio
calculation of ϵzz for a four layer MoS2 slab (see Supporting
Information).
Next, we consider the hybridization of plasmons in graphene

sheets separated by a hBN buffer layer of varying thickness, see
Figure 4a. Plasmons in graphene on hBN were recently found
to propagate with low loss,6 and the close to perfect lattice
match between graphene and hBN enables full ab initio
calculations for the thinnest heterostructures. Here we use
doped graphene that has a finite density of states at the Fermi
level, giving rise to metallic sheet plasmons with energies in the
regime 0−2 eV. The plasmon energies go to zero in the optical
limit, q∥ → 0, as characteristic for plasmons in 2D metals.22,23

We calculate the effect of hBN on the plasmons using the QEH
model for up to 20 layers of hBN and compare to full ab initio
calculations for 1−3 layers of hBN.

Figure 4. Plasmons in graphene/hBN heterostructures. (a) Two graphene sheets separated by three layers of hBN. (b) Eigenvalues of the
heterostructure dielectric function ϵ(ω). Only the two eigenvalue curves that fulfill the plasmon condition Reϵn(ωP) = 0 are shown. (c) The
eigenpotential, ψ(ωP), and associated density, ρ(ωP), of the plasmon modes. The plasmons correspond to the antisymmetric (+−) and symmetric (+
+) combinations of the isolated graphene plasmons. (d) Plasmon dispersion for heterostructures containing 1 and 3 layers of hBN. Full lines denote
the QEH model while ab initio results are denoted by symbols. (e,f) Energy and weight of the plasmon modes for up to 20 layers hBN between the
graphene sheets. Results for equivalent structures with vacuum filling the gap are also shown. Dashed black lines indicate the plasmon energy and
weight in an isolated graphene sheet. Overall, the QEH model is in excellent agreement with the full ab initio calculations performed for up to 3
layers of hBN.
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To identify the plasmons of the heterostructure we follow ref
24. In brief, we compute the eigenvalues, ϵn(ω), of the
heterostructure dielectric function for each frequency point and
identify a plasmon energy, ℏωP, from the condition Reϵn(ωP) =
0, see Figure 4b. The corresponding eigenvector, ϕn(ωP),
represents the potential associated with the plasmon oscillation,
see panel c. This analysis identifies two plasmons correspond-
ing to the symmetric (++) and antisymmetric (+−)
combinations of the graphene plasmons as previously found
for two freestanding graphene sheets.25 For 1−3 hBN layers,
the QEH model perfectly reproduces the ab initio results for
the dielectric eigenvalues, plasmon energies, and weights. The
weight is defined as the area under the peaks in the loss
function −Imϵ−1(q∥,ω), see panel b. The densities and
potentials of the plasmon eigenmodes shown in panel c are
also reproduced fairly accurately by the model, where the
qualitative differences for the induced densities, ρ(z), are due to
the use of a limited basis of the monopole and dipole response
for each layer. In panels e and f the result of full ab initio
calculations are shown by triangles, while the QEH results are
shown by continuous lines. The effect of the hBN buffer
(dashed lines) is to red shift and dampen the plasmons
compared to the result for two graphene sheets separated by
the same amount of vacuum (full lines). This is also reflected
by the relatively large amount of electron density located on the
hBN during the plasma oscillation, see panel c.
Finally, we explore some characteristic features of excitons in

freestanding and supported 2D semiconductors. A straightfor-
ward generalization of the well-known Mott−Wannier model27

leads to the following eigenvalue equation for the excitons of a
2D semiconductor19,28

μ
−

∇
+ =

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥W F E Fr r r

2
( ) ( ) ( )D

ex
b

2
2

(7)

where Eb is the exciton binding energy, F(r) is the wave
function, μex is the effective mass, and W(r) is the screened
electron−hole interaction. Assuming that the electron and hole
are localized in layer 1, the Fourier transformed screened
electron−hole interaction is obtained from the static (ω = 0)
response function (eq 4) and Coulomb interaction matrix (eq
5) of the QEH model

∑ χ= +
α β

β β α αW V V Vq q q q q( ) ( ) ( ) ( ) ( )M M
i j

M j j i i M1 ,1
,

1 , , ,1

(8)

The first term is the bare, i.e., unscreened, electron−hole
interaction in layer 1 under the assumption that the electron
and hole densities can be represented by the induced monopole
density, ρ1M(z). The second term describes the screening from
the surrounding layers and layer 1 itself. Note that the above
equation can be easily generalized to describe the screened
interaction between charges localized in different layers
(relevant for indirect excitons).
In ref 26 Chernikov et al. observed a peculiar non-hydrogenic

Rydberg series for the excitons in a single layer of WS2
adsorbed on a SiO2 substrate. Here we use the QEH model
to calculate the screened electron−hole interaction within the

Figure 5. Excitons in supported WS2. (a) Monolayer WS2 adsorbed on a hBN substrate. (b) The screened interaction between an electron and a
hole localized within a WS2 monolayer adsorbed on hBN. For comparison the unscreened 1/r potential is shown. The radial probability distribution
of the first five excitons, r|F(r)|2, are also shown (arbitrary normalization). (c) The calculated binding energies of the lowest five excitons in
freestanding WS2 (green) and WS2 on hBN (blue) and MoS2 (cyan). Experimental values from ref 26 for WS2 on SiO2 are shown in red. The 2D
hydrogen model with a 1/ϵr potential is shown for ϵ = 1.7. (d) The dielectric function of the WS2 layer defined as ϵ(q∥) = V(q∥)/W(q∥), where V(q)
and W(q) are the bare and screened interaction in the WS2 layer, respectively. (e) The screened interaction in the WS2 layer as a function of log(r).
(f) The relative difference between the screened interaction in the supported and freestanding WS2. Inset shows the relative difference between Eb
for the supported and freestanding WS2.
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WS2 layer from the dielectric function of the full hetero-
structure. Since the QEH is applicable only to layered materials
we place WS2 on a 100 layer thick slab of hBN, which has
dielectric constant very similar to that of SiO2 (both around 4).
For comparison we performed similar calculations using MoS2
as substrate (dielectric constant larger than SiO2). Figure 5c
shows the five lowest s-excitons calculated from eq 7 for both
freestanding and supported WS2. For freestanding WS2, we
obtain Eb = 0.59 eV for the lowest exciton in good agreement
with previous ab initio calculations.29 The enhanced screening
from the substrate lowers the exciton binding energies bringing
the entire series closer to the experimental values (red), in
particular for the hBN substrate.
The dielectric function of the WS2 layer is defined as ϵ(q∥) =

V(q∥)/W(q∥), where V(q∥) and W(q∥) are the bare and
screened interaction in the WS2 layer, respectively. Figure 5d
shows that the dielectric function of the supported WS2 layer
exceeds unity in the q∥ → 0 limit. For structures of finite width,
L, the dielectric function will in fact tend to unity for very small
q∥ ≪ 1/L. Here the results have been extrapolated to infinite
substrate thickness, where ϵ(q∥) tends to a value larger than
unity (in practice the extrapolation has no influence on the
calculated exciton energies, i.e., they are well converged for N =
100). This means that the nature of the screening within the
layer is not strictly 2D because the bulk substrate is able to
screen the long wavelength fields. In real space, the screened
potentials diverge as log(r) for small r and decay as 1/r for large
r, see panel e. In panel f we show how the substrate affects
W(r): The relative deviation from W(r) of the freestanding
layer vanishes for small and large r but becomes significant at
intermediate distances. As a consequence, the substrate-induced
change in the exciton binding energy is relatively larger for
intermediate exciton sizes. These results clearly demonstrate
the profound, nonlocal influence of substrates on the dielectric
screening and excitations in 2D materials.
In conclusion, we have demonstrated that the spatial and

dynamical dielectric properties of a vdWH can be accurately
and efficiently obtained from the dielectric properties of its
constituent 2D crystals. The presented quantum-electrostatic
heterostructure model (QEH) exploits this feature and enables
the calculation of the dielectric properties and collective
electronic excitations of realistic incommensurable hetero-
structures with ab initio precision. The dielectric building
blocks for more than 50 different 2D materials are available in
an open database allowing 2D materials researchers to
efficiently predict and design the dielectric properties of
realistic vdWHs.
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In this Supporting Information we provide a detailed
description of our quantum-electrostatic heterostructure
(QEH) model including the precise definition of the di-
electric building blocks. In addition we detail the spectral
analysis used to identify the plasmon eigenmodes for the
graphene/hBN structures and describe the calculation of
the screened electron-hole interaction used in the 2D ex-
citon model. Also, we describe how the model can be ap-
plied to calculate the response to fields with a variation
perpendicular to the layers. Finally, we provide compu-
tational details for all the ab-initio calculations presented
in the Letter.

I. FORMAL MATTERS

Within linear response theory, the induced density due
to an external field of the form Vext(r, t) = Vext(r, ω)eiωt,
is described by the density response function, χ(r, r′, ω):

nind(r, ω) =

∫
dr′χ(r, r′, ω)Vext(r

′, ω), (1)

The density response function can be obtained from its
non-interacting counterpart, χ0(r, r′, ω), that gives the
response to the total field, by solving the Dyson equation
in the random phase approximation (RPA):

χ(r, r′, ω) = χ0(r, r′, ω) +∫ ∫
dr1dr2χ

0(r, r1, ω)
1

|r1 − r2|
χ(r2, r

′, ω). (2)

For modelling of vdWHs, this equation is favourably split
into two parts, namely the intra-layer and inter-layer
parts, as described below.

We are assuming a basis set consisting of layer centred
functions, {φiα}, where i denotes the layer. Defining the
Coulomb matrix as

Viα,jβ =

∫
drdr′φiα(r)

1

|r− r′|φjβ(r′) (3)

we can divide the Coulomb interaction into its intra- and
interlayer parts: V = Ṽ + VI. The Dyson equation
Eq. 2 can then be separated into the following two matrix
equations

χ̃ = χ0 + χ0Ṽχ̃ (4)

χ = χ̃ + χ̃VIχ. (5)

To see this, simply insert Eq. 4 into Eq. 5

χ = χ0 + χ0Ṽχ̃ + χ0VIχ + χ0Ṽχ̃VIχ (6)

= χ0 + χ0VIχ + χ0Ṽ(χ̃ + χ̃VIχ) (7)

= χ0 + χ0VIχ + χ0Ṽχ (8)

= χ0 + χ0(Ṽ + VI)χ, (9)

which is the original Dyson equation.
At this point no approximations, except for the RPA,

have been introduced. In particular, χ0 in Eq. 4 is the
non-interacting response function of the full vdWH. To
make progress we make the assumption that the over-
lap/hybridization between wave functions (not to be con-
fused with the basis functions) on neighbouring layers
can be neglected. This allows us to replace χ0 of the het-
erostructure by the sum of χ0

i for the individual isolated
layers. In practice this means that Eq. 4 can be solved
for each layer separately.

We calculate χ0 for the isolated layers within the RPA
using single-particle wave functions and energies from
density functional theory (DFT) as described in Ref.1.
The interacting density response function, χ̃, for the
monolayer is obtained by solving the Dyson equation in
a plane-wave basis with a 2D truncated Coulomb Kernel,
Ṽ 2D
G :

Ṽ 2D
G,Gz

=
4π

G2

[
1− cos(GzL/2)

]
. (10)

The use of a truncated Coulomb interaction is essential to
avoid interaction between periodically repeated layers2.
The truncation length is set to half the unit cell height,
L. In the plane wave basis, the Dyson equation for the
density response function, χ̃, is then written:

χ̃G,G′(q‖, ω) = χ0
G,G′(q‖, ω) +∑

G1

χ0
G,G1

(q‖, ω)Ṽ 2D
G1

(q‖)χ̃G1,G′(q‖, ω), (11)

where q‖ belongs to the 2D Brillouin zone.

II. QEH MODEL

A. The dielectric building blocks

We start by defining the density response function for
the individual layers, where the macroscopic average is



2

FIG. 1: Basis functions used to represent potentials
(left) and induced densities (right) in the QEH model.

The example is for graphene at q‖ = 0.029Å
−1

.

taken in the parallel directions. The response function is
then expressed in terms of the perpendicular coordinates
z and z′, and the magnitude of the momentum transfer
parallel to the layer, q‖ (we assume isotropic materials,
where the response does not depend on the direction of
q‖, but the method can be straightforwardly generalized
to non-isotropic 2D materials):

χ̃(z, z′, q‖, ω) =
1

A

∫
A

∫
A

dr‖dr
′
‖χ̃(r, r′, q‖, ω)

=
1

L

∑
Gz,G′

z

eiGzzχ̃Gz,G′
z
(q‖, ω)e−iG

′
zz

′
, (12)

where the integration is over the in-plane coordinates, A
is the in-plane area of the supercell, and L is the height
of the supercell perpendicular to the layer. Integrating
over the in-plane coordinates corresponds to taking the
zero components G‖ = G′‖ = 0 in the plane-wave repre-

sentation of χ̃G,G′(q, ω). Working with χ̃ instead of χ̃0

ensures that local field effects within the isolated layer
are exactly taken into account.

For an efficient representation of the response functions
and solution of the Dyson equation we need a small yet
accurate basis set to represent the induced densities in
the layers and the potentials created by these induced
densities. To represent potentials we simply use a con-
stant and linear potential corresponding to a first order
expansion of the induced potentials, see Fig 1(left). We
refer to these as monopole (M) and dipole (D) potentials.
The potential basis functions of layer i at position zi are
thus

φi,M (z) = 1[zi−d/2,zi+d/2] (13)

φi,D(z) = (z − zi) 1[zi−d/2,zi+d/2] (14)

1C =

{
1 if z ∈ C

0 if z /∈ C
(15)

where d is a localisation parameter that is set equal to the
interplane distance. Since the density response is already
confined to the layer, the precise value of d is not essential

and in calculating the matrix elements of the intralayer
response function we integrate over all space:

χ̃iα(q‖, ω) =

∫ ∫
dzdz′φi,α(z)χ̃(z, z′, q‖, ω)φi,α(z′)

(16)

≈
∫ ∫

dzdz′(z − zi)αχ̃i(z, z′, q‖, ω)(z′ − zi)α, (17)

where α = {M,D} or equivalently α = {0, 1}.
The basis functions can be interpreted as potentials

that act on χ. In order to represent the induced densities
produced by these potentials, we introduce two density
basis functions defined as

ρi,α(z, q‖) =

∫
dz′χ̃(z, z′, q‖, ω = 0)φi,α(z′)

χ̃i,α(q‖, ω = 0)
. (18)

As an example, the monopole and dipole density ba-
sis functions for monolayer graphene are shown in
Fig. 1(right). We have found that the frequency depen-
dence of the basis functions can in general be omitted,
while the q‖-dependence is not always negligible. Divid-
ing by χ̃i,α(q‖, ω = 0) in Eq. 18 ensures that the density
basis function is normalized such that the overlap with
the potential basis is unity: 〈φi,α|ρi,α(q‖)〉 = 1, where in-
tegration over z is implied. To ease the derivation of the
Dyson equation in the monopole/dipole basis, we make
the approximation that the potential and density basis
functions form a dual basis, i.e.

〈φi,α|ρj,β(q‖)〉 = δαβδij , (19)

where α, β = {M,D}, and i, j are layer indices. This
implies that, within the subspace spanned by the basis
functions, we have the completeness relation

P =
∑
i,α

|ρi,α〉〈φi,α| = 1̂. (20)

We note that Eq. 19 is not exact because of the small but
finite overlap between potential and density basis func-
tions on neighbouring layers. However, taking this into
account gives very small modifications to the resulting
vdWH dielectric properties. Finally, we note that work-
ing with a dual basis is natural as, in general, the spec-
tral representation of the dielectric function is written in
a dual basis of potential and density eigenfunctions3.

B. Electrostatic Dyson equation

The Dyson equation (5) for the heterostructure den-
sity response function χ(z, z′, q‖, ω) is now written in the
potential basis of dimension 2N × 2N , where N is the
number of layers. In the following the (q‖, ω) variables
are omitted from the expressions for simplicity. Response
functions χ̃, χ and Coulomb kernel V are regarded as op-
erators and integration over r, r′ is implied in the inner
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products. The matrix elements of χ are written in the
potential basis:

〈φi,α|χ|φj,β〉 = 〈φi,α|χ̃|φj,β〉+ 〈φi,α|χ̃ V I χ|φj,β〉. (21)

The first term on the right hand side is simply the re-
sponse function of the isolated layers for which we have
〈φi,α|χ̃|φj,β〉 = χ̃i,αδiα,jβ . In the second term, applying
〈φi,α| to χ̃ returns χ̃i,α〈ρi,α| (this follows from Eq. 18 and
the symmetry of χ̃(z, z′)). Now the completeness relation
(20) is inserted between V I and χ, leading to

〈φi,α|χ|φj,β〉 = χ̃i,αδiα,jβ +

χ̃i,α
∑
k,α′

〈ρi,α|V I |ρk,α′〉〈φk,α′ |χ|φj,β〉

This leads to the final Dyson equation for the het-
erostructure:

χiα,jβ(q‖, ω) = χ̃i,α(q‖, ω)δiα,jβ +

χ̃i,α(q‖, ω)
∑
k 6=i,γ

Viα,kγ(q‖)χkγ,jβ(q‖, ω). (22)

The Coulomb kernel is here defined in the density basis
as: Viα,kα′ = 〈ρi,α|V |ρk,α′〉. The term V |ρk,α′〉 is the
potential at z from the density basis function in layer k,
which is found by solving Poisson’s equation for |ρk,α′〉
on a real space grid. Since the density parallel to the
layer just shows periodic oscillations with wave vector q‖,
Poisson’s equation reduces to a 1D differential equation:

∂2

∂z2
Φkα′(z)− q2‖Φkα′(z) = −4πρkα′(z). (23)

The elements of the V matrix are then: Viα,kα′ =
〈ρi,α|Φk,α′〉.

C. The dielectric matrix

The inverse dielectric function is related to χ through:
ε−1 = I − V χ. Due to the non-symmetric nature (in r
and r′) of the dielectric function, the elements of ε−1 are
naturally written using a mixed density/potential basis:

〈ρi,α|ε−1|φj,α〉 = δiα,jβ + 〈ρi,α|V χ|φj,β〉. (24)

Upon insertion of the completeness relation (20) this
gives

ε−1iα,jβ(q‖, ω) = δiα,jβ +
∑
k,γ

Viα,kγ(q‖)χkγ,jβ(q‖, ω). (25)

III. PLASMONS EIGENMODES

By following a previously developed method for iden-
tifying plasmon eigenmodes in nanostructures from ab

initio3, the dielectric matrix for the heterostructure,
Eq. 25, is diagonalized to solve the eigenvalue equation:∑

jβ

εiα,jβ(q‖, ω)fn,jβ(q‖, ω) = εn(q‖, ω)fn,iα(q‖, ω),

(26)

which returns the eigenvalues, εn(q‖, ω), and eigen-
vectors, fn,iα(q‖, ω) of the dielectric matrix in the
monopole/dipole basis. A plasmon eigenmode fullfills
that:

Re
∑
jβ

εiα,jβ(q‖, ω)fn,jβ(q‖, ω) = 0, (27)

corresponding to Reεn(q‖, ω) = 0. In practice, the plas-
mon energies are identified from the peaks in the eigen-
value loss-spectrum −Imεn(q‖, ω) since this includes the
finite imaginary part which can shift the plasmon energy.
The right eigenfunctions fn,iα give the induced potential
of the plasmon in the basis of φi,M/D. The left eigen-
functions, fniα, correspond to the induced density of the
plasmon in the basis of ρi,M/D

3. The induced density is
thus given by

ρn(z, q‖) =
∑
iα

fniαρiα(z, q‖) (28)

with the corresponding induced potential

φn(z, q‖) =
∑
iα

fniαΦiα(z, q‖) (29)

IV. EXCITONS

The Mott-Wannier model, widely used to model ex-
citons in bulk semiconductors, can be straightforwardly
generalised to 2D semiconductors. This leads to a 2D
hydrogenic Hamiltonian of the form[

−∇
2
2D

2µex
+W (r)

]
F (r) = EbF (r), (30)

where F (r) is the exciton wave-function, µex the exciton
effective mass and W (r‖) is the screened Coulomb po-
tential which includes the screening coming from the 2D
material itself and the environment, e.g. a substrate.

Now, consider electron and hole charge distributions
given by (the in-plane variation is a plane wave of wave
vector q‖)

ρe/h(z, q‖) =
∑
iα

ρ
e/h
iα (q‖)ρiα(z, q‖). (31)

We can then calculate the screened interaction between
the electron and hole charge distributions according to

W (q‖) =
∑

kα,iβ,jγ

ρekα(q‖)ε
−1
kα,iβ(q‖)Viβ,jγ(q‖)ρ

h
jγ(q‖).

(32)
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In the case of excitons located in the layer 1 we can
approximate ρe/h(z, q‖) = ρ1M (z, q‖)(z) and we recover
the expression in the Methods section. We can de-
scribe a general charge distribution, e.g. using con-
duction/valence band charge distributions ρe/h(z, q‖) =

|ψc/v(z, q‖)|2, by a simple redefinition of the Coulomb
matrix elements in Eq. 32.

Performing a 2D Fourier transform of W (q‖) yields the
screened potential in real space:

W (r‖) = − 1

2π

∫ ∞
0

dq‖q‖J0(q‖r‖)W (q‖), (33)

where Jn(x) is the Bessel function of the first kind. The
exciton mass can be obtained e.g. from an ab-initio band
structure calculation. We solve Eq. 30 using polar coor-
dinates and a logarithmic radial grid.

V. SCREENING OF PERPENDICULAR FIELDS

In the manuscript we show the results for the dielectric
function of multilayer MoS2 for wavevectors in the plane
of the layers (see Fig 3 in the main manuscript), and con-
sidered the spatial form of the response due to a constant
perturbation (along z). However, the model can also be
used to calculate the response to fields with a linear varia-
tion in the z−direction (perpendicular to the layers) and
can thus be used to calculate the z−component of the
dielectric function, εzz. This can be calculated in the
optical limit, qz → 0, with the expression:

ε−1zz =
12

L3

L/2∫
−L/2

∫ ∞
−∞

z ε−1(z, z′ω = 0) z′ dz′dz, (34)

where L is the width of the structure. In the QEH
model, this corresponds to taking the matrix product
of ε−1iα,jβ(q‖, ω) with a vector, v, with the elements:
vjβ = δβ,D, where only the dipole elements are non-zero:
v = {0, 1, 0, 1, ...}. The expression becomes:

ε−1zz =
1

L

∑
i,j

di vi,D ε
−1
iD,jD(q‖ = 0, ω = 0) vj,D, (35)

where di is the width of the individual layers and L =∑
i di.
In Fig. 2 the induced potential of a N=4 layer MoS2

slab due to an external potential with a linear form along
z, Vext(z) ∝ z, is shown together with the ab initio re-
sult. The potential is clearly screened by the material,
where the induced potential has opposite sign that the
external potential. The ab initio result is in this case ob-
tained by applying a weak electric field (within the linear
response regime) in the z-direction on the ground-state
DFT level. This calculation was performed on a real-
space grid representation of the electronic wavefunctions,
with a grid-spacing of h = 0.18 Å, and (12, 12) k-points,
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FIG. 2: Induced potential of a N=4 layer MoS2 slab,
due to an external perturbation with a constant slope
across the structure. The potentials are normalized

with respect to the potential drop across the structure,
∆Vext, the width of the structure here defined as
L = 4dMoS2

= 24.6Å. The dashed lines indicate the
center of the outermost layers.

which were sufficient to converge the ground-state elec-
tronic density that determines the total potential. The
induced potential is then obtained as Vind = Vtot − Vext.

As seen in Fig. 2, the QEH model captures the re-
sponse to perpendicular fields quite well, with a ten-
dency to overestimate the drop in induced potential
across the structure and therefore overestimate the di-
electric function. This leads to a value of εzz(QEH) =
7.71 compared to an ab initio value of εzz(ab initio) =
6.81 for the N = 4 MoS2 slab. In case of bulk
MoS2 we obtain εzz(bulk, ab initio) = 6.03 compared to
εzz(N = 100,QEH) = 7.83, which means that the bulk
limit is less well-described. However, this is to be ex-
pected since the model cannot account for the bulk limit
as q‖ → 0, since the dielectric function ε(q‖ → 0) = 1 for
finite slab widths in the model, while for a 3D system the
dielectric function tends to a finite value.

VI. COMPUTATIONAL DETAILS

A. Multilayer MoS2

Ab initio calculations were performed for monolayer
MoS2 to obtain the monolayer density response func-
tions and induced densities used as input for the QEH
model. The single-particle energies and wave functions
were calculated with the PBE exchange correlation func-
tional, with a plane-wave basis set with an energy cut-
off of 400 eV. A dense k-point sampling of (128, 128) in
the 2D Brillouin zone was used in order to calculate the
response at low momentum transfers. In the linear re-
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sponse RPA calculation we used an energy cutoff of 50
eV for the reciprocal lattice vectors. We used a nonlinear
frequency grid from 0 to 35 eV, with an initial grid spac-
ing of 0.02 eV and a broadening of 0.04 eV. Correspond-
ing ab initio calculations were performed for bulk and
bilayer MoS2, but with a k-point sampling of (64, 64, 1)
for the bilayer and (64, 64, 8) for bulk. For the monolayer
and bilayer calculations the truncated Coulomb kernel,
see Eq. 10, was used while the full, i.e. non-truncated
kernel, was used for the bulk calculation. We used an
in-plane lattice constants of 3.18 Å, and A-B stacking
with 6.15 Å separation between layers. For the mono-
layer and bilayer calculation the unit cells contained 20
Å of vacuum to separate the periodic images in the z-
direction. For the heterostructure calculation we used
the same separation between the layers as for the ab ini-
tio calculations (d = 6.15 Å). We note that the effect of
stacking arrangement (A-A or A-B) cannot be accounted
for within the model.

B. Graphene/hBN heterostructures

Ab initio calculations were performed to obtain the
dielectric building blocks of monolayer doped graphene
and hBN. Also, full ab initio calculations were done for
entire heterostructures, including up to three layers of
hBN, or the equivalent amount of vacuum, separating
the doped graphene layers. An in plane lattice-constant
of 2.5 Å was used for both graphene and hBN, so that
the heterostructure could be represented a 1×1 unit cell.
The layers were stacked in A-B configuration, with 3.326
Å separation (c-lattice constant of 6.653). We used PBE
exchange-correlation, a 340 eV energy cutoff for the plane
waves in the ground state calculations, and (100,100) k-
point sampling in the 2D Brillouin zone. In the response
calculation doped structures were obtained by shifting
the Fermi-level 1 eV upwards. An energy cutoff of 70
eV was used for the reciprocal lattice vectors, and un-
occupied bands were included up to 35 eV above the
Fermi level. All the calculations employed the truncated
Coulomb interaction and 20 Å vacuum to separate the
repeated structures. A non-linear frequency-grid with an
initial grid spacing of 0.02 eV and a broadening of 0.05
eV was used to represent the dynamic response function.
Plasmon eigenmodes were obtained by diagonalizing the
dielectric matrix in Bloch representation as described in
ref.3.

C. Excitons in supported WS2

The dielectric building blocks of the WS2, hBN, and
MoS2 monolayers were calculated as follows. Single-

particle energies and wave functions were calculated us-
ing LDA, a plane wave cut-off of 500 eV, and (45, 45)
k-points. The density response function was calculated
within RPA using an energy cut-off of 300 eV and includ-
ing empty states up to 50 eV above the Fermi level. The
truncated Coulomb kernel was employed and 20 Å vac-
uum was included in the supercell to separate repeated
layers. In setting up the heterostructure we used a sep-
aration of 3.22 Å between the 100 layers of h-BN and
5.08 Å between WS2 and h-BN. For WS2 on 50 layers
of MoS2 we used a uniform separation of 6.3 Å between
all layers. We then calculated the screened interaction
from Eq. 32 for q‖ up to (and including) the second Bril-
louin zone. For calculating the exciton Rydberg series we
solved Eq. 30 for spherical states on a radial logarithmic
grid and verified that the exciton energies were converged
to within 0.01 eV.

D. 2D Database

The dielectric building blocks were calculated for 51
transition metal dichalcogenides and oxides, hBN, and
graphene at 10 different doping levels from 0.1 to 1 eV.
For the single particle wave functions and energies ob-
tained from DFT, we used PBE exchange-correlation and
a plane-wave basis with a energy cutoff equal to 500 eV.
The 2D Brillouin zone was sampled by (200,200) k-points
for graphene, and for the remaining materials we used a
k-point density corresponding to (100,100) k-points.

For the density response functions we used a cutoff of
100 eV for the transition metal dichalcogenides and ox-
ides and 150 eV for graphene and hBN. The truncated
Coulomb kernel was employed and 20 Å vacuum was in-
cluded in the supercell to separate the repeated layers.
All materials were represented on the same frequency grid
from 0 to 35 eV, with an initial spacing of 0.01 eV and
a broadening of 0.05 eV. The response functions were
calculated for a range of in-plane momentum transfers,
q‖, within the first Brillouin zone of graphene up to a

maximum value of q‖ = 2.89 Å
−1

. At small q‖ below

0.3 Å
−1

we use a denser sampling with a grid spacing of

0.015 Å
−1

in order to capture the strong q‖-dependence
of the plasmon energies and the dielectric function in this
region. After this limit the grid spacing is increased to

0.029 Å
−1

. In order to obtain all response functions on
the same q‖-grid, the data for the remaining materials
was interpolated to the grid for graphene using conven-
tional 2D spline interpolation.

∗ Electronic address: kiran@fysik.dtu.dk † Electronic address: thygesen@fysik.dtu.dk
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Excitons in van der Waals heterostructures: The important role of dielectric screening

S. Latini,* T. Olsen, and K. S. Thygesen
Center for Nanostructured Graphene (CNG) and Center for Atomic-scale Materials Design (CAMD),

Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
(Received 26 September 2015; revised manuscript received 16 November 2015; published 17 December 2015)

The existence of strongly bound excitons is one of the hallmarks of the newly discovered atomically thin
semiconductors. While it is understood that the large binding energy is mainly due to the weak dielectric
screening in two dimensions, a systematic investigation of the role of screening on two-dimensional (2D)
excitons is still lacking. Here we provide a critical assessment of a widely used 2D hydrogenic exciton model,
which assumes a dielectric function of the form ϵ(q) = 1 + 2παq, and we develop a quasi-2D model with a much
broader applicability. Within the quasi-2D picture, electrons and holes are described as in-plane point charges
with a finite extension in the perpendicular direction, and their interaction is screened by a dielectric function
with a nonlinear q dependence which is computed ab initio. The screened interaction is used in a generalized
Mott-Wannier model to calculate exciton binding energies in both isolated and supported 2D materials. For
isolated 2D materials, the quasi-2D treatment yields results almost identical to those of the strict 2D model,
and both are in good agreement with ab initio many-body calculations. On the other hand, for more complex
structures such as supported layers or layers embedded in a van der Waals heterostructure, the size of the exciton
in reciprocal space extends well beyond the linear regime of the dielectric function, and a quasi-2D description
has to replace the 2D one. Our methodology has the merit of providing a seamless connection between the
strict 2D limit of isolated monolayer materials and the more bulk-like screening characteristics of supported 2D
materials or van der Waals heterostructures.

DOI: 10.1103/PhysRevB.92.245123 PACS number(s): 71.35.Cc, 71.20.Nr, 78.67.Wj

I. INTRODUCTION

Atomically thin semiconductors [1] such as graphene,
hexagonal boron-nitride (hBN), and MoS2 are presently being
intensely studied due to their extraordinary optoelectronic
properties. It is characteristic for these two-dimensional (2D)
semiconductors that excitonic effects play a fundamental role,
substantially modifying the optical spectrum by introducing
states within the band gap that couple strongly to light and
shift the onset of optical transitions to lower energies [2–7].
Knowledge of the nature of the excitonic states is thus essential
for device engineering [8–12]. The well known Mott-Wannier
model [13], which schematizes the exciton as a bound electron-
hole pair interacting via a statically screened Coulomb inter-
action, is widely used to estimate exciton binding energies
and radii in bulk materials. The main approximations behind
the Mott-Wannier model are essentially three: (i) The real
band structure is replaced by two parabolic bands. (ii) The
microscopic shape of the conduction and valence band wave
functions is neglected. (iii) The dielectric function is assumed
to be local in real space, i.e., q independent in reciprocal space.
For 2D materials, the performance of the Mott-Wannier model
and the validity of the underlying approximations have still not
been systematically investigated. The present work focuses
on (iii), which is the only approximation where the role of
the reduced dimensionality represents a qualitative difference
from the 3D case.

For bulk semiconductors the macroscopic dielectric con-
stant is defined as the limiting value of ϵ(q) as q → 0. For a
2D semiconductor this definition cannot be straightforwardly
adopted since ϵ(q = 0) = 1. In fact, for 2D systems the
dielectric function is strongly q dependent, and a more

*Corresponding author: simola@fysik.dtu.dk

elaborate treatment of the screening is required [14–16].
This issue has been treated by several authors [14,15,17,18],
who envisioned the 2D material as a strict 2D system, i.e.,
mathematically 2D, with a dielectric function of the form

ϵ2D(q) = 1 + 2παq, (1)

where α is the 2D polarizability of the layer, which can be
computed ab initio. The screened electron-hole interaction
energy then follows

W2D(q) = −2π

q
ϵ−1

2D (q), (2)

where 2π/q is the 2D Fourier transform of 1/r . This form
of interaction has the merit of leading to an analytical
expression in real space, and it has been successfully used
to describe exciton binding energies and radii of several
2D systems [15,17,18]. We note that the form 1/q for the
interaction and Eq. (1) for the dielectric function are consistent
approximations which both become exact in the limit of
vanishing thickness of the material, i.e., the strict 2D limit.
However, to the best of our knowledge the validity range and
limitations of these approximations have not previously been
systematically explored.

In this paper we relax the assumptions behind the 2D
model, adopting a microscopic approach that accounts for
both the finite thickness of the layer and the full wave-vector
dependence of the dielectric function. In the case of isolated
monolayers, ours quasi-2D (Q2D) description agrees well
with the established strict 2D model, providing a justification
for the latter. However, in the case of 2D layers supported
by semi-infinite substrates or for thicker, i.e., few-layer, 2D
materials, we find it important to account for the finite
thickness and include the full nonlinear q dependence of
the dielectric function. In a recent paper we introduced a
method for calculating the dielectric function of general

1098-0121/2015/92(24)/245123(13) 245123-1 ©2015 American Physical Society
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layered materials (so-called van der Waals heterostructures
[19–21]) where the dielectric functions of the individual layers
are computed ab initio and subsequently coupled together
electrostatically [22]. In the present work we use this method
to compute the screened electron-hole interaction and solve the
resulting quasi-2D Mott-Wannier model for various types of
heterostructures. We show that the exciton binding energy and
radius can be effectively tuned by controlling the screening via
the heterostructure environment. Surprisingly we find that the
transition from a strongly bound exciton in monolayer MoS2
(binding energy of 0.6 eV) to a weakly bound exciton in bulk
MoS2 (binding energy of 0.15 eV) can be seamlessly described
by the quasi-2D Mott-Wannier model, accounting only for the
change in the screening.

II. THE QUASI-2D PICTURE

Even though atomically thin semiconductors are referred to
as 2D materials, they obviously do have a finite thickness. In
this section, we show how the finite thickness can be accounted
for within a 2D description. We shall refer to this description as
the quasi-2D picture. To illustrate the concept, we consider the
interaction energy between two arbitrary charge distributions,

V12 =
∫

dr dr′ ρ1(r)ρ2(r′)
|r − r′|

. (3)

In the case of two point charges confined to a 2D plane
[see Fig. 1(a)], each charge distribution is given by a delta
function, i.e., ρi(r∥) = qiδ(r∥ − ri,∥), leading to an interaction
in reciprocal space:

V2D(q∥) = q1q2
2π

|q∥|
. (4)

Now we consider two charge distributions confined in a
slab with finite thickness. We want to treat the real system,
which is actually 3D, using an effective 2D description. We
do this by depicting the charge distributions as lines of charge
[Fig. 1(b)]. In other words, we assume that the charge densities
are delta functions in-plane and have a certain distribution
out-of-plane. The simplest approximation for the out-of-plane
distribution is a step function of thickness d. This translates
to ρi(r∥,z) = qiδ(r∥−ri,∥)

d
θ ( d

2 − |z − z0|), with z0 the center of
the material in the perpendicular direction, which leads to an

(a)

(b)

FIG. 1. Sketch of the (a) pure 2D and (b) quasi-2D Coulomb
interaction. In the latter case the point charges can be thought of as
lines of charge extending along the thickness of the material.

interaction energy of the form (see Appendix B)

VQ2D(q∥) = 4πq1q2

d|q∥|2

[
1 − 2

|q∥|d
e−|q∥|d/2 sinh

( |q∥|d
2

)]
.

(5)

It is instructive to note that in the limit of q∥d ≪ 1 we recover
the 2D potential energy, while for q∥d ≫ 1 we get the 3D one
(calculated in-plane):

VQ2D(q∥) =
{ 2πq1q2

|q∥| , q∥d ≪ 1,

4πq1q2
|q∥|2 , q∥d ≫ 1.

(6)

III. SCREENED INTERACTION

The (inverse) microscopic dielectric function gives the total
potential to first order in the applied external potential,

Vtot(r) =
∫

dr′ϵ−1(r,r′)Vext(r′). (7)

Notice that, since we are interested in static screening
properties, we only considered a time-independent external
perturbation. In standard ab initio calculations for 3D periodic
systems, the dielectric matrix is calculated within the random
phase approximation (RPA), which in plane-wave representa-
tion takes the form

ϵGG′(q) = δGG′ − v(q + G)χ0
GG′(q), (8)

with v(q + G) the Fourier transform of the Coulomb potential
and χ0 the noninteracting response function. For a 3D periodic
system, the total potential resulting from a plane-wave external
potential V0e

iq·r has the form

Vtot(r) = Ṽq(r)eiq·r, (9)

where Ṽq(r) is a lattice periodic function. Since usually we are
interested in macroscopic fields, we define the 3D macroscopic
dielectric function as

1
ϵM (q)

≡ ⟨Ṽq(r)⟩(
V0

= ϵ−1
00 (q), (10)

where ⟨· · · ⟩( denotes a spatial average over a unit cell. Note
that in general ϵM (q) ̸= ϵ00(q) due to local field effects [23].

A. Macroscopic dielectric function for 2D semiconductors

When Eq. (10) is applied to an ab initio calculation describ-
ing a 2D material as an infinite set of parallel sheets separated
by a vacuum region of thickness L, ϵM (q) = 1 + O(1/L) [16].
This is a consequence of an averaging region much larger
than the effective extension of the electron density around
the material. The standard definition in Eq. (10) becomes
meaningless in this case, which is the reason why relatively
different values for ϵM have been reported for monolayer MoS2
in the recent literature [4,24,25]. Therefore the definition of the
macroscopic dielectric function has to be revised, accounting
for the finite thickness. From the first equality in Eq. (10), it is
natural to substitute an average along the entire unit cell in the
out-of-plane direction with an average over a confined region
describing the actual extension of the electronic density. In
practice, we average the in-plane coordinates (r∥) over the unit
cell area A and the out-of-plane coordinate from z0 − d/2 to

245123-2



EXCITONS IN VAN DER WAALS HETEROSTRUCTURES: . . . PHYSICAL REVIEW B 92, 245123 (2015)

1
2
3
4
5
6
7

(q
)

q d = 1 (a)

Q2D

2D

Bulk

0.0 0.5 1.0 1.5 2.0 2.5

q (1/Å)
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FIG. 2. (Color online) Macroscopic dielectric functions for
(a) hBN and (b) MoS2. The bulk(black), along with the Q2D (green)
and 2D (blue) static dielectric functions are illustrated, the latter
corresponding to the linear fits in the small q∥ region. For these
calculations the q∥ values are taken along the ) − K direction, but
the homogeneity of the materials has been numerically verified.
The parameters used in the linear response ab initio calculation are
discussed in Sec. V.

z0 + d/2, where z0 denotes the center of the material and d its
width. The macroscopic dielectric function then becomes

1
ϵQ2D(q∥)

≡ ⟨Ṽq(r)⟩A,d

V0

= 2
d

∑

G⊥

eiG⊥z0
sin(G⊥d/2)

G⊥
ϵ−1
G⊥0(q∥), (11)

with ϵ−1
GG′ (q∥) calculated from χ0

GG′(q∥) according to the RPA
expression in Eq. (8). We stress that it is essential to use a
truncated Coulomb potential in Eq. (8) in order to decouple
the layers in neighboring supercells [16]. Note that we used
the label Q2D since this definition of macroscopic dielectric
function is consistent with the Q2D picture, as we show later
on. As a rule of thumb we choose d to be the distance between
the layers in the bulk form, but the results for excitons are not
very sensitive to this choice, as we show in the next session.

The q dependence of the static dielectric function is
illustrated in Fig. 2 for the case of monolayer hBN and
MoS2. Without loss of generality, the q∥ values reported in
the plot are chosen to be along the )-K direction. Indeed,
further numerical tests show that the dielectric function is
isotropic, i.e., it is not significantly affected by different
direction choices. In the low-q∥ regime the dielectric function
approaches 1, as expected for 2D materials [16]. We mention
in passing that the dielectric functions of a large collection
of 2D materials are available in the Computational Materials
Repository [26]; see Refs. [27] and [22].

In the plots we also show the linear fit relevant for small
q∥ as well as the bulk dielectric function. We see that for
q∥d ≪ 1 a linear ϵ is a viable approximation and we are in a
2D regime. In particular the 2D linear polarizability α can be
calculated from the slope of the linear fit. On the other hand,
when q∥d ≫ 1, the bulk behavior of the dielectric function is
recovered.

B. Screened Interaction in reciprocal space

To account for the screening in the charge-charge inter-
action we modify Eq. (3), introducing the dielectric function

W12 =
∫

V

dr dr′dr′′ ρ1(r)ϵ−1(r,r′′)ρ2(r′)
|r′′ − r′|

. (12)

In the following, we specialize to the case of electron-hole
interaction. Assuming an in-plane delta function distribution
and an unspecified z dependence for the charge densities we
can easily work out an expression for the screened interaction
energy in reciprocal space:

W (q∥) =
∫ ∞

−∞
dz dz′ρe(z,q∥)ϵ−1

00 (z,z′,q∥)φh(z′,q∥). (13)

Here ρe(z,q∥) is the out-of-plane density distribution for the
electron and φh(z,q∥) is the out-of-plane potential generated
by the hole. For details on how this potential is calculated,
see Appendix A. To study excitons in hBN and MoS2, we
take the out-of-plane electron and hole distributions to be
ρe,h(z) = ∓

∫
A

dr∥|ψc,vK (r∥,z)|2, with c and v the conduc-
tion and valence band indices respectively and K the high
symmetry point of the first Brillouin zone, since for both
materials that is where the lowest bound exciton is localized
[1,28]. Furthermore, in Eq. (13) we have introduced a mixed
representation for the dielectric function, specifically

ϵ−1
00 (z,z′,q∥) = 1

L

∑

G⊥G′
⊥

eiG⊥zϵ−1
0G⊥0G′

⊥
(q∥)e−iG′

⊥z′
. (14)

Note that taking G∥ = G′
∥ = 0 corresponds to an in-plane

macroscopic dielectric function, which also accounts for local
field effects.

To illustrate the effect of screening, Fig. 3 shows how
a potential generated by either the step function density
distribution or the actual hole density distribution is screened
by hBN and MoS2. In all cases the density distribution is
normalized to 1. The possibility of using either the actual
electron/hole out-of-plane density distribution (Fig. 4) or
simply a step-function gives us two different approximations
to calculate the screened interaction within the Q2D picture.

In the case of step-function density distributions, we can
find an analytic expression for the screened potential in
Eq. (13), if we make a further approximation. Indeed, if instead
of considering the full z dependence of φh(z,q∥) we take
its average value within a region of thickness d around the
layer, and then screen the resulting constant potential by the
full z-dependent dielectric function, the general expression
Eq. (13) reduces to (see Appendix C)

WQ2D(q∥) = − 4π

d|q∥|2
ϵ−1

Q2D(q∥)

×
[

1 − 2
|q∥|d

e−|q∥|d/2 sinh
( |q∥|d

2

)]

= ϵ−1
Q2D(q∥)VQ2D(q∥), (15)

where ϵ−1
Q2D(q∥) is the macroscopic dielectric function defined

in Eq. (11). We thus see that ϵQ2D is the natural dielectric
function to be used in the quasi-2D picture.
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FIG. 3. (Color online) z dependence of the total potentials (solid lines) coming from external perturbations (dashed lines) at different
in-plane wave vectors in the case of hBN [(a) and (c)] and MoS2 [(b) and (d)]. Left panels: The external perturbation is generated by a step
function density distribution (insets). Right panels: The external perturbation is generated by the actual hole out-of-plane density distribution
(insets), which is calculated as ρh(z) =

∫
A

dr∥|ψvK (r∥,z)|2, with v indicating the valence band and K the high symmetry point of the first
Brillouin zone. In all cases the density distributions are normalized to 1.

For each of the two different Q2D models for the screened
electron-hole interaction, we can associate a Q2D dielectric
function, defined as the ratio between the bare and the screened
potential:

ϵ
γ
Q2D(q∥) =

〈
ρ

γ
e (q∥)

∣∣φγ
h (q∥)

〉
〈
ρ

γ
e (q∥)

∣∣ϵ−1
00 (ẑ,ẑ′,q∥)

∣∣φγ
h (q∥)

〉 , (16)

where for simplicity we have used a bracket notation for the
integration over z and γ = steps,wfs indicates whether the
potentials are calculated from step functions or actual electron
and hole density distributions. Figure 5 shows a comparison of
the two dielectric functions thus obtained together with ϵQ2D
from Eq. (11) for hBN and MoS2. Clearly the curves perfectly
agree in the low-q∥ regime, while deviations appear for higher

4 −2 0 2 4

z (Å)

|Ψ
(z

)|2

(a)

−4 −2 0 2 4

z (Å)

(b) VB

CB

FIG. 4. (Color online) Valence (red) and conduction (green) band
densities for (a) hBN and (b) MoS2 calculated at the K point.

values. This observation is consistent with the fact that for
small wave vectors the total potentials are flat and therefore
well approximated by the Q2D average value (see Fig. 3). As
we show later, the relevant q∥ region for the screening is the
one below the the black vertical line representing the inverse
exciton radius, calculated from the ab initio Bethe-Salpeter
equation (BSE) (see Sec. V). Therefore the three different
Q2D approaches can be considered equivalent when dealing
with excitons in these monolayer materials.
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FIG. 5. (Color online) Macroscopic dielectric functions for
(a) hBN and (b) MoS2. The different dielectric functions are
calculated with the three different approaches explained in the
text: dielectric function from actual electron and hole distributions
(magenta), dielectric function from step function distributions (cyan),
and Q2D dielectric function (green). The vertical line represent the
radius of the exciton in reciprocal space.
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C. Screened interaction in real space

To obtain the form of the screened interaction energy in real
space we Fourier transform Eq. (13):

WQ2D(r∥) = − 2
d

∫ ∞

0
dq

J0(q|r∥|)
q

ϵ−1
Q2D(q)

×
[

1 − 2
qd

e−qd/2 sinh
(

qd

2

)]
, (17)

where J0(x) is the zeroth-order Bessel function and where we
used the fact that the dielectric function is isotropic. This is
the quasi-2D interaction which can be compared to its strict
2D counterpart defined in Eq. (2) [15]:

W2D(r∥) = 1
4α

[H0(x) − N0(x)]x=r/2πα, (18)

where H0(x) and N0(x) are the Struve and Neumann functions
respectively. We stress here that the parameter α can be
estimated from the slope of the fit in Fig. 2. We note that, while
this procedure of calculating the 2D polarizability differs from
the standard one, it is equivalent. In the case of MoS2, for
example, we obtain a value of 5.9 Å which agrees well with
the value of 6.6 Å obtained in the literature [18].

In Fig. 6 we report the numerical results for different
interaction energies: the bare Q2D (black) obtained from
Eq. (17) setting ϵQ2D to 1, the screened Q2D (green) obtained
from the same equation but including the screening as ϵQ2D and
the screened 2D (blue) calculated from Eq. (18). The results
are shown for both hBN and MoS2.

We note that the bare Q2D interaction agrees with −1/r
beyond a distance given by the layer thickness d. Furthermore
we see that increasing the layer thickness (going from hBN to
MoS2) reduces the bare Q2D interaction strength as expected
from Eq. (17). Including the screening reduces the interaction
strength even further. The reduction is most significant when
using the linear dielectric function (strict 2D screening) as
expected from Fig. 2, which shows that ϵ2D(q) > ϵQ2D(q)
for all q. We see that, apart from a significant deviation for
electron-hole separation smaller than roughly 1 Å, the 2D and
Q2D screened interactions agree and both show a logarithmic
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FIG. 6. (Color online) Screened Q2D and 2D interaction ener-
gies for (a) hBN and (b) MoS2. The interactions are calculated
numerically starting from the macroscopic dielectric functions in
Fig. 2 and using Eqs. (17) and (18) respectively. The bare Q2D curves
are calculated using the first equation but neglecting the screening.
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FIG. 7. (Color online) Variation of the macroscopic dielectric
function and effective interaction energy in MoS2 due to the change
in the thickness d of the averaging region in the Q2D model. The
continuous black lines are relative to d = 6.29 Å (the interlayer
distance in the bulk), while the dashed lines delimiting the shaded
region are calculated with a variation of ±10% in d .

dependence for r → 0. It is not surprising that the behavior at
short electron-hole separation is the same since both W2D(q)
and WQ2D(q) go as 1/q2 for large wave vectors. In particular
the logarithmic divergence can be understood directly as the
two-dimensional anti-Fourier transform of 1/q2. For distances
larger than the layer thickness, all the interactions (screened
and bare) approach the same value (−1/r), meaning that
screening is completely absent in the asymptotic limit.

D. Importance of the thickness parameter

We now return to the problem of choosing the external
parameter d entering the Q2D dielectric function. In Fig. 7
we show the Q2D dielectric function and the corresponding
interaction when d is varied by ±10% around the interlayer
distance in bulk MoS2. To the left of the maximum, ϵQ2D is
insensitive to d since the induced potential is constant over the
averaging region. Also in the high q∥ limit, ϵQ2D is not affected.
This is because for these wave vectors the induced potential
is in practice negligible. In general, increasing (decreasing)
d decreases (increases) ϵQ2D in the large wave-vector region.
Despite the fact that the variation in the dielectric function
is fairly visible for intermediate q values, the screened
interaction is barely modified. This is because the bare Q2D
one shows an opposite dependence on d, such that the product
WQ2D(q) = ϵ−1

Q2D(q)VQ2D(q) stays essentially unchanged. In
terms of exciton binding energies we have found that a ±10%
variation in d leads to a correction of less than 0.01 eV.

IV. GENERALIZED MOTT-WANNIER MODEL

An accurate description of excitonic effects requires the
solution of a computationally demanding many-body problem,
namely the Bethe-Salpeter equation (BSE) [29,30]. However,
it is well known for 3D systems that a satisfying qualitative de-
scription can be obtained modeling the exciton as a hydrogenic
atom constituted by an excited electron-hole pair interacting
via a statically screened Coulomb interaction. In this section
we generalize such a model to the Q2D case.
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The Bethe-Salpeter two particle Hamiltonian for a 2D
periodic system is given by

H 2P
n1n2k1
n3n4k2

(q∥) =
(
ϵn2k1+q∥ − ϵn1k1

)
δn1n3δn2n4δk1k2

+
(
fn1k1 − fn2k1+q∥

)
Kn1n2k1

n3n4k2

(q∥), (19)

where ni are band indices, ki are vectors in the first 2D
Brillouin zone, and q∥ is the in-plane momentum transfer,
or exciton center-of-mass momentum. In the following we
specialise to the case of vertical transitions, i.e., q∥ = 0. K
is the kernel containing the exchange and the screened direct
Coulomb interaction. This Hamiltonian describes scattering
processes between two electron-hole pairs excited by an exter-
nal perturbation. In general these processes should involve all
the occupied and unoccupied states in the spectrum; however,
when the conduction and valence bands are well separated
from the remaining bands, it is often a good approximation to
include only the valence and conduction band states. Together
with the Tanm-Dancoff approximation, this assumption allows
us to express the resonant part of the two-particle Hamiltonian
as

H
2P (res)
vck
vck′

= (ϵck′ − ϵvk)δkk′ + Kvck
vck′

. (20)

The kernel is given by

Kvck
vck′

= −
∫

V

dr dr′ψvk(r)ψ∗
ck(r′)W (r,r′)ψ∗

vk′(r)ψck′(r′)

+ 2
∫

V

dr dr′ψvk(r)ψ∗
ck(r)v(r,r′)ψ∗

vk′(r′)ψck′(r′),

(21)

where |ψαk⟩, with α = (v,c), represents single-particle Bloch
states for the valence and conduction band, W (r,r′) =∫

dr′′ ϵ−1(r,r′′)
|r′′−r′| is the screened interaction potential, and

v(r,r′) = 1
|r−r′| is the bare Coulomb potential. The first term on

the right-hand side of Eq. (21) is the direct screened electron-
hole potential while the second is the Coulomb exchange. Our
full ab initio solution of the BSE shows that the exchange term
only slightly decreases the exciton binding energy by 0.08 eV
and 0.02 eV for hBN and MoS2, respectively. This amounts
to less than 5% of the total binding energy, and we therefore
neglect the exchange contribution in the rest of the paper.

Throughout the BZ we consider the valence and conduction
band wave functions to be plane waves in the in-plane
direction and in the out-of-plane direction equal to ψ⊥(z) =
(
∫
A

dr∥|ψαK (r∥,z)|2)1/2 up to a normalization factor and with
α = v,c. With this approximation and proceeding as for
Eq. (13), the kernel becomes

Kvck
vck′

= 1
A

W (|k − k′|), (22)

where W (|k|) is the screened interaction in Eq. (13), which
can be evaluated in the various ways described in the previous
section, depending on the level of approximation.

Completely analogous to the 3D case, we can introduce the
envelope function F (r∥), defined as F (r∥) =

∑
k e−ikr∥A(k),

TABLE I. Geometry and effective masses.

Material a (Å) L (Å) d (Å) µex (a.u.)

MoS2 3.20 23.0 6.29 0.27
hBN 2.50 23.0 3.22 0.37

with A(k) excitonic weights in reciprocal space, and arrive at
an eigenvalue problem of a 2D hydrogenic atom:

[
− ∇2

2D

2µex

+ W (r∥)
]
F (r∥) = EbF (r∥), (23)

where µex is the exciton effective mass, calculated from the
hole and electron masses according to µ−1

ex = m−1
e + m−1

h .

V. EXCITON BINDING ENERGIES
OF ISOLATED MONOLAYERS

In this section we investigate the performance of the
Mott-Wannier model in Eq. (23) for the calculation of binding
energies of the lowest bound exciton in hBN and MoS2.

A. Ab initio calculation details

In order to solve Eq. (23) with either the Q2D or 2D po-
tential energies, we need to calculate the dielectric matrix. We
describe the two materials with a supercell technique and we
optimize the structure using the local density approximation
(LDA) exchange-correlation potential; geometrical details are
provided in Table I. To calculate the noninteracting response
function we use 150 eV cutoff energy for the reciprocal lattice
vectors G and G′ in order to account for local field effects.
We construct χ0 from LDA wave functions and energies, and
we then get the dielectric matrix using a truncated Coulomb
potential in order to avoid interaction between supercells [31].
The dielectric matrix is calculated on a 60 × 60 k-points grid.
Since it turns out that the exciton binding energy is sensitive
to the low wave-vector behavior of the screening, we use an
expansion of the density response function χ0 around q∥ = 0 in
order to calculate the dielectric matrix in the small-q∥ limit. All
calculations are performed with the GPAW code [32,33], which
is based on the projector augmented wave method. Details on
the implementation of the linear response code can be found
in Ref. [34]. We mention that the dielectric functions of more
than fifty 2D materials calculated in this fashion are available
in the Computational Materials Repository [26]. The exciton
masses as computed from the LDA band structure are given in
Table I.

To obtain the lowest bound exciton we numerically solve
the Mott-Wannier equation on a logarithmic grid. With this
method we are able to converge the lowest eigenvalue with
a precision of 0.002 eV. For a benchmark, we perform BSE
calculations using the GPAW code. For the screening of the
electron-hole interaction we use the static dielectric function
evaluated with the same parameters employed in the linear
response calculation. The particle-hole states of the BSE
Hamiltonian are constructed from a single LDA valence and
conduction band. To compare directly to our model, all the
BSE calculations are performed neglecting the exchange part
of the kernel. We stress that the binding energy of the first
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FIG. 8. (Color online) Convergence plot for the binding energy
obtained from the BSE solution against the inverse of the k-points
density. Extrapolation to infinite k-point sampling is shown. In the
BSE the exchange contribution is left out. The horizontal dashed lines
show the results given by the Q2D model.

exciton changes by less than 0.01 eV if the BSE Hamiltonian
is constructed from the four highest and four lowest conduction
bands. As reported previously [5,16], BSE binding energies in
2D materials are extremely sensitive to the k-point grid. We
therefore perform BSE calculations with up to 60×60 k points,
for which we get binding energies of 2.07 eV and 0.54 eV for
hBN and MoS2 respectively. Furthermore, assuming a linear
dependence of the binding energy with respect to 1/ρkpts , we
extrapolate the results to infinite k-points sampling (see Fig. 8).

B. Results

The values for binding energy of the lowest bound exciton
obtained with the different models for the screened electron-
hole interaction along with the extrapolation from the BSE are
reported in Table II. We first observe that there is practically
no difference in the binding energies obtained from the

TABLE II. Numerical values for energy (in eV) of the lowest
bound excitonic state at the direct gap. Both the BSE and the models
are based on LDA ab initio calculations. The exchange contribution
is not included.

EBSE
b E

Q2D
b E2D

b E
steps
b E

wf s
b

hBN 2.05 2.35 2.34 2.23 2.29
MoS2 0.43 0.61 0.60 0.57 0.59

Mott-Wannier model using either the Q2D or 2D screened
interaction. Moreover, the result from the Mott-Wannier
model(s) are within 0.3 eV and 0.18 eV of the BSE result for
hBN and MoS2, respectively. We consider this a reasonable
agreement given the simplicity of the model.

In Table II we also report the binding energies obtained
when the electron-hole interaction is calculated numerically
from Eq. (13) using step functions and actual electron and
hole density distributions. As pointed out in the discussion
of Fig. 5, we expect these two other approaches to give the
same description of excitons. Indeed, the binding energies we
obtained are in perfect agreement with the Q2D and 2D model
results.

The agreement between the Q2D and 2D descriptions can
be understood by looking at the q-space extension of the lowest
bound exciton wave function shown in Fig. 9. We see that for
both hBN and MoS2 the exciton is confined to a rather narrow
region around the K point. A localization of the exciton in q-
space means that the relevant contribution to the electron-hole
interaction comes from the low wave-vector regime. From the
calculated excitonic wave functions in real space we obtain
inverse exciton radii of 0.29 Å

−1
for hBN and 0.07 Å

−1
for

MoS2. Both of these values are comparable to 1/d (0.31 Å
−1

and 0.16 Å
−1

, respectively). As we have seen previously, in
this limit the Q2D screened interaction reduces to the strict 2D
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FIG. 9. (Color online) LDA band structure and exciton weights for (a) hBN and (b) MoS2. In both materials the exciton is well localized
at the K point. The excitonic weights are calculated as the absolute value squared of the eigenvector of the two-particle BSE Hamiltonian
associated with the lowest bound exciton. In red the parabolic bands used in the Mott-Wannier model. The values for the electron and hole
masses are 0.93 a.u. and 0.62 a.u. for hBN and 0.61 a.u. and 0.49 a.u. for MoS2.
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one, explaining the similarity of the binding energies obtained
with the two descriptions.

To conclude this section, we notice that in the evaluation
of the screened electron-hole interaction, we neglected the
in-plane spatial variation of the conduction and valence band
wave functions. The validity of this approximation can be
checked by performing a BSE calculation where the screened
interaction potential is evaluated using a dielectric matrix ϵ−1

GG′

where all matrix elements except for those where G∥ = G′
∥ =

0 are set to zero. In other words, we neglect all the in-plane
high frequency spatial variations of the wave functions. With
this constriction we obtain a binding energy of 2.21 eV for
hBN and 0.44 for MoS2. The neglect of in-plane variations
of the wave functions is thus responsible for 0.15 eV (hBN)
and 0.01 eV (MoS2) of the observed discrepancy between the
Mott-Wannier model and the full BSE calculation.

VI. EXCITONS IN LAYERED STRUCTURES

In this section, we show that a linear approximation for
the dielectric function breaks down when applied to excitons
in multilayered structures. While it is possible to include the
nonlinear q dependence of the dielectric function within a
strict 2D model, the Q2D description turns out to be necessary
to quantitatively capture screening effects.

A. The quantum electrostatic heterostructure (QEH) model

In order to calculate exciton binding energies in a layered
structure we first need the dielectric function. This can
be obtained using the quantum-electrostatic heterostructure
(QEH) model that we introduced recently [22]. In brief,
the underlying procedure in the calculation of the dielectric
function can be divided in two parts. In the first part the full
density response function of each isolated layer, calculated
from first principles, is used to obtain the monopole/dipole
components of the density response function as well as the
spatial profile of the electron densities in the z direction
induced by a monopole/dipole field. We refer to these data
sets as the dielectric building block of the individual layer.
In the second part, the dielectric building blocks are coupled
together via the Coulomb interaction to give the dielectric
matrix for the full structure. The dielectric matrix obtained
from the QEH model can be used to obtain the electron-hole
interaction according to

W (q∥) = ρᵀ
e
(q∥)ϵ−1(q∥)φ

h
(q∥), (24)

where ρ
e

(φ
h
) is the electron density (hole induced potential)

vector expressed in a basis set of monopole/dipole densities
(potentials). The basis set of induced densities and potentials
is also used as (left and right) basis functions for representing
ϵ−1. To be more explicit an arbitrary density vector ρ can be
represented as ρᵀ = [ρ1M,ρ1D,ρ2M,ρ2D, . . . ,ρnM,ρnD] where
ρiα , with α = M,D, is the induced monopole/dipole density
at the layer i. A completely equivalent expression can be
formulated for the induced potentials.

It is clear that the equation above is just a simple rewriting of
Eq. (13) in terms of a minimal monopole/dipole basis. We point
out that this formalism takes the finite extension of the layers
in the out-of-plane direction into account, and is therefore

consistent with the Q2D picture described in the previous
sections. In Ref. [22] we showed, based on the comparison with
full ab initio calculations, that the monopole/dipole basis is
sufficient to obtain an accurate description of the dielectric and
plasmonic properties of different layered heterostructures. We
mention that in literature [35,36] the effect of environmental
screening has been already investigated using a classical
approach, proposed by Keldysh [37], based on the formation
of image charges. To the best of our knowledge, this approach
has only been applied to systems with a 2D layer embedded
in two semi-infinite dielectric media. Furthermore, within this
classical treatment, the intrinsic nonlocalities in the dielectric
properties of the media and 2D layer are completely disre-
garded. Our method, instead, provides a quantum mechanical
description of the nonlocal screening and can be applied to
heterostructures of arbitrary thickness.

B. Breakdown of the linear screening model

As an example we consider two different types of het-
erostructures. The first, which we refer to as “on-top,” consists
of MoS2 on top of n layers of hBN. The second, which we
refer to as “sandwich,” consists of an MoS2 layer encapsulated
in n layers of hBN; see Figs. 10(a) and 10(c). The interlayer
distance between MoS2 and hBN is set to 5.1 Å. In Figs. 10(b)
and 10(d) we show the dielectric function of the MoS2 layer as
well as the linear approximation as a function of the in-plane
wave vector for different number of hBN layers. The effective
dielectric function of MoS2 in the heterostructure is defined
along the lines of Eq. (16):

ϵ(q∥) =
ρᵀ

e
(q∥)φ

h
(q∥)

ρᵀ
e
(q∥)ϵ−1(q∥)φ

h
(q∥)

, (25)
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FIG. 10. (Color online) Left panels: The on-top (a) and sandwich
(c) arrangements of the MoS2/hBN heterostructures. Right panels:
Effective dielectric function (full line) for the on-top (b) and sandwich
(d) configurations. The linear approximations to the dielectric
function is shown by dashed lines. The shaded regions in (b) and (d)
represent the range of inverse exciton radii found for the considered
structures. The q values below these regions are relevant for screening
the electron-hole interaction, and for the thicker structures this region
extends beyond the linear regime of ϵ(q).
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FIG. 11. (Color online) Energy and radius of the lowest bound
exciton for the [(a) and (c)] on-top and [(b) and (d)] sandwich
configuration as function of the number of hBN layers obtained from
the Q2D (green) and 2D (blue) approaches.

which gives the ratio of the bare to the screened interaction
between an electron and a hole in the MoS2 layer.

From Fig. 10, we notice that adding hBN layers to MoS2
changes the shape of the dielectric function, introducing
a pronounced feature that shifts towards low q∥ as the
number of hBN layers is increased. This shoulder-like feature
can be explained as an interplay between the 3D and 2D
screening characters. When more hBN layers are added to the
heterostructure, the system tends toward a bulk limit, where
the dielectric function is larger than 1 for q∥ = 0. However,
the heterostructure has a finite thickness d and, as required by
the 2D limit, when q∥ ≪ 1/d the dielectric function is 2D-like
and becomes 1 for q∥ = 0. This leads to a sharp drop in the
dielectric function, which becomes steeper as the thickness of
the heterostructure is increased, explaining the appearance of
the shoulder-like feature. It is clear, from Fig. 10, that the main
change in the dielectric function is caused by the nearest layers
of hBN. Adding more layers only causes a slight variation.
Obviously, this is due to the fact that hBN is less effective
at screening the electron-hole interaction as the distance from
MoS2 is increased. For the same reason, the screening is more
pronounced in the sandwich configuration than in the on-top
configuration.

We then proceed to calculate the binding energy of the
lowest bound exciton in the MoS2 layer for the two different
configurations, using both the full wave vector dependent
dielectric function (quasi-2D) and its linear approximation
(strict 2D). The results are shown in Figs. 11(a) and 11(b).
When the full dielectric function is used, the binding energy
converges towards 0.40 eV and 0.31 eV for the on-top and
sandwich configurations, respectively. These values represent
the bulk limits, i.e., MoS2 on a hBN substrate and MoS2 en-

capsulated by two semi-infinite stacks of hBN. The reduction
in binding energy of 0.2 eV for the on-top configuration is in
good agreement with the experimentally determined change in
exciton energy of WS2 when adsorbed on SiO2 [38] (the bulk
dielectric constants of SiO2 and hBN are similar). In contrast,
the assumption of linear dielectric screening completely fails
in estimating the exciton binding energies. Indeed, it quickly
diverges from the Q2D results, yielding much too small
binding energies. This behavior results from the continuously
increasing slope of the dielectric function, eventually arriving
at a condition of perfect screening (infinite slope).

Figures 11(c) and 11(d) show the exciton radii obtained
from the Q2D and 2D models. Interestingly, for the Q2D
model the increase in the exciton radius due to the screening
from the hBN is only 10% and 30% for the on-top and
sandwich configurations, respectively. The range of the inverse
exciton radius is indicated by a shaded region in Figs. 10(c)
and 10(d). As we demonstrated in the previous section, the
relevant q∥ for the screening lie mainly below the inverse
exciton radius. Inspection of Fig. 10 clearly indicates that
in this regime the linear approximation overshoots the full
wave-vector dependent dielectric function, and it gets worse
as the number of layers is increased.

C. Limitations of the 2D picture in layered structures

In the previous paragraph we showed that the assumption of
linear screening, i.e., Eq. (1), breaks down when the screening
from the environment is included. It is, of course, possible
within the 2D picture to couple a stack of 2D materials, each
described by a linear dielectric function, using the QEH model.
In this section we explore the validity of such an approach
using the Q2D results obtained in the previous section as a
reference.

We model the layered structure as infinitesimally thin
planes described by 2D building blocks, as opposed to the
Q2D ones used previously, and couple them electrostatically
via the QEH. While it is straightforward to define multipole
response function and induced density components when
a finite thickness is considered, in 2D only the monopole
components have an obvious definition. Within the 2D picture,
the monopole induced density is described by a delta function
centered at the layer position zi . The component of the 2D
response function of the (isolated) layer may be obtained from
the corresponding 2D dielectric function in Eq. (1):

χ̃M
2D(q∥) = q∥

2π

[
ϵ−1

2D (q∥) − 1
]

= −
αq2

∥

1 + 2παq∥
. (26)

For strict 2D layers, the Coulomb interaction between
monopole charge densities in layers at zi and zk takes the
form

ViM,kM (q∥) = 2πe−q∥|zi−zk |

q∥
, (27)

which reduces to the standard 2D Coulomb interaction in
reciprocal space for coupling within the layer.

To test the QEH with 2D building blocks, we consider the
“on-top” structure of the previous paragraph and in Fig. 12 we
report the effective dielectric function and energy of the lowest
bound exciton as a function of the number of hBN layers. It
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FIG. 12. (Color online) (a) Effective dielectric function (full line)
and (b) energy of the lowest bound exciton for the on-top MoS2-
hBN configuration, calculated with the QEH model based on a 2D
description of the layers. The linear approximations to the dielectric
function is shown by dashed lines in panel (a), along with the range of
inverse exciton radii found for the considered structures represented
by the shaded region.

is clear that the 2D dielectric function of the supported MoS2
deviates significantly from the Q2D result [see Fig. 10(b)] for
larger q∥. However, for smaller q∥ the 2D function actually
reproduces qualitatively the nonlinear structure of the Q2D
result. In terms of exciton binding energy, we observe a
convergence to a finite value when the number of layers of hBN
is increased, but the reduction in binding energy compared
to the free-standing layer is 50% smaller than the reduction
obtained with the Q2D approach. The underestimation of the
screening can be ascribed essentially to two reasons. First, the
potential generated by a 2D induced density decays faster than
the actual one, making the neighboring layers less effective
at screening the electron-hole interaction. Second, the dipole
response of the layers, which would increase the screening
even more, is not included. In particular we mention that,
within the Q2D approach, removing the dipole contribution
increases the converged value of the binding energy by 0.07
eV. To conclude, we have shown that, even though the 2D
model does capture the essential nonlinear shape of ϵ(q∥) in the
small q∥ regime, it underestimates the effect of environmental
screening and consequently predicts too small changes in
exciton binding energies due to substrate effects.

D. Transition from 2D to 3D excitons in MoS2

As a final example, we study the 2D to 3D transition of the
exciton in MoS2. In layered bulk materials, the Mott-Wannier
equation can be written as follows:

[
−

∇2
∥

2µex
∥

− ∇2
⊥

2µex
⊥

+ W (r)
]
F (r) = EbF (r), (28)

where typically the exciton mass in the out-of-plane direction
is much higher than that in the in-plane directions (µex

⊥ ≫ µex
∥ ).

Consequently, we can neglect the out-of-plane component
of the kinetic energy and be left with the 2D Mott-Wannier
model. Additionally, the in-plane effective mass does not vary
considerably going from monolayer to bulk MoS2 as shown in
Ref. [39]. Therefore, the main difference between the physics
of excitons in monolayer and layered bulk is contained in
the screened potential rather than the geometric confinement.
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FIG. 13. (Color online) Energy of the lowest bound exciton for
MoS2 incapsulated in MoS2 layers as function of the total number
of MoS2 layers obtained from the Q2D (green) and 2D (blue)
approaches. With the Q2D approach we can clearly see the transition
from the monolayer exciton to the bulk one.

Based on this, it is tempting to model the bulk exciton as
an electron-hole pair confined to a single layer but with an
interaction screened by the bulk environment. To test this we
consider a multilayer MoS2 structure and calculate the binding
energy of an exciton localized in the central MoS2 layer
using the Q2D Mott-Wannier model with screened potential
calculated from the QEH model. The results for the binding
energy as a function of the number of MoS2 layers are plotted
in Fig. 13. As expected, the reduction of the exciton binding
energy is larger when the monolayer is embedded in MoS2
than in the case of hBN [Fig. 11(b)]. Amazingly, the binding
energy converges towards a value of 0.16 eV, only 0.03 eV
higher than the previously reported ab initio value for bulk
MoS2 [40]. This shows that the different nature of excitons in
2D and layered 3D materials is mainly caused by the screening,
while quantum confinement plays a minor role.

VII. CONCLUSIONS

In this work we have presented a systematic study of the
screening properties of two-dimensional semiconductors and
layered structures. Taking into account the finite extension
of the 2D material in the out-of-plane direction, we have
proposed a general quasi-2D picture to describe the screened
electron-hole interaction in the context of excitons. We have
shown that, in the case of isolated layers, the excitons are
typically large enough that the screening can be described by a
linear dielectric function consistent with a strict 2D picture. On
the other hand, for multilayer structures where the screening
properties are intermediate between the 2D and 3D regimes,
it is essential to include the nonlinear q dependence of the
dielectric function. If this is done and a quasi-2D description
is employed, very satisfactory results are obtained for both
monolayer and multilayer structures using the same theoretical
framework. In combination with a recently introduced scheme
for computing dielectric functions of layered materials [22],
this makes it possible to model exciton physics in general van
der Waals heterostructures at very low computational cost.
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APPENDIX A: POISSON’S EQUATION
FOR LINES OF CHARGE

Charges in 2D materials can be depicted as lines extending
over the thickness of the layer. The potential generated by a
line of charge can be calculated from the Poisson equation,

∇2ϕ(r) = −4πρ(r). (A1)

Because of the cylindrical symmetry of the line of charge, it is
convenient to Fourier transform in the in-plane direction and
rewrite Eq. (A1) as

[
−|q∥|2 − ∂2

∂z2

]
ϕ(q∥,z) = −4πρ(q∥,z). (A2)

For a line of charge, the density distribution can be separated
as an in-plane delta function and an out-of-plane function
ρ(z), and therefore its in-plane Fourier transform would read
ρ(q∥,z) = e−iq∥·r∥ρ(z). From the structure of Eq. (A2) and
the form of the Fourier transformed density, it is convenient to
write the potential as ϕ(q∥,z) = e−iq∥ ·r∥

|q∥|2 ξ (z,q∥). Note that e−iq∥ ·r∥

|q∥|2
is the Fourier transformed solution for the Poisson equation for
a point charge in a 2D plane, therefore we can consider ξ (z,q∥)
as the out-of-plane component of the potential. Plugging
ϕ(z,q∥) and ρ(q∥,z) in Eq. (A2), we finally obtain the Poisson
equation for the out-of-plane potential generated by a line of
charge:

∂2

∂z2
ξ (z,q∥) − |q∥|2ξ (z,q∥) = −4π |q∥|2ρ(z). (A3)

To make the notation more intuitive, in the text we redefine
the out-of-plane potential generated by a line of charge as
φ(z,q∥) = 1

|q∥|2 ξ (z,q∥).

APPENDIX B: UNSCREENED Q2D INTERACTION

In this Appendix we derive the expression for the Q2D
unscreened charge-charge interaction energy in Eq. (5). Ac-
cording to our Q2D picture and assuming a charge distri-
bution ρ1,2(r∥,z) = qiδ(r∥−r1,2,∥)

d
θ ( d

2 − |z − z0|), the unscreened
charge-charge interaction in reciprocal space can be written as

VQ2D(q∥) = q1q2

A

∫

V

dr
θ
(

d
2 − |z − z0|

)
eiq∥·r∥

d

×
∫

V

dr′ 1
|r − r′|

θ
(

d
2 − |z′ − z0|

)
e−iq∥·r′

∥

d
, (B1)

where q∥ is the reciprocal space vector corresponding to
the separation vector r1,∥ − r2,∥. To proceed, we notice that
the integral in the second line can be interpreted as the
potential generated by an in-plane Fourier transformed charge

distribution ρ(q∥,z
′) = θ( d

2 −|z′−z0|)
d

e−iq∥·r∥ , and its analytic
form can be obtained solving Eq. (A2) as illustrated in
Appendix A:

ϕ(q∥,z
′)

= 4πe−iq∥·r∥

d|q∥|2

×
{

1 − e−|q∥|d/2 cosh(|q∥||z′ − z0|), |z′ − z0| < d
2 ,

e−|q∥||z′−z0| sinh(|q∥|d/2), |z′ − z0| > d
2 .

(B2)

Plugging this result in Eq. (B1) and integrating in-plane and
along z separately, we recover the expression Eq. (5)

APPENDIX C: SCREENED Q2D INTERACTION

In the following we show how to derive the expression for
the Q2D screened electron-hole interaction energy reported
in Eq. (15). For charge distributions of the kind ρi(r∥,z) =
δ(r∥−ri,∥)

d
θ ( d

2 − |z − z0|), the screened interaction reads

WQ2D(q∥) = −
∫

V

drdr′ θ
(

d
2 − |z − z0|

)
eiq∥·r∥

d
ϵ−1(r,r′)

×
∫

V

dr′′ 1
|r′ − r′′|

θ
(

d
2 − |z′′ − z0|

)
e−iq∥·r′′

∥

d
.

(C1)

As done in Appendix B, we can interpret the integral in the
second line as the potential in Eq. (B2). In order to keep the
calculation analytic, we approximate ϕ(q∥,z) with its average
inside the slab in the out-of-plane direction as

ϕ(q∥,z) ≃ 1
d

∫ z0+d/2

z0−d/2
dz ϕ(q∥,z)

= −4πe−iq∥·r∥

d2|q∥|2

(
1 − 2

|q∥|d
e−|q∥|d/2 sinh(q∥d/2)

)

= e−iq∥·r∥

d
VQ2D(q∥). (C2)

Inserting the last expression in Eq. (C2) and integrating in-
plane, we get

WQ2D(q∥) = VQ2D(q∥)
1
d

∫ z0+d/2

z0−d/2
dz

∫ z0+L/2

z0−L/2
ϵ−1

00 (z,z′)

= VQ2D(q∥)ϵ−1
Q2D(q∥). (C3)
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We present a generalized hydrogen model for the binding energies (EB) and radii of excitons in two-
dimensional (2D) materials that sheds light on the fundamental differences between excitons in two and
three dimensions. In contrast to the well-known hydrogen model of three-dimensional (3D) excitons, the
description of 2D excitons is complicated by the fact that the screening cannot be assumed to be local. We
show that one can consistently define an effective 2D dielectric constant by averaging the screening over
the extend of the exciton. For an ideal 2D semiconductor this leads to a simple expression for EB that only
depends on the excitonic mass and the 2D polarizability α. The model is shown to produce accurate results
for 51 transition metal dichalcogenides. Remarkably, over a wide range of polarizabilities the binding
energy becomes independent of the mass and we obtain E2D

B ≈ 3=ð4παÞ, which explains the recently
observed linear scaling of exciton binding energies with band gap. It is also shown that the model
accurately reproduces the nonhydrogenic Rydberg series in WS2 and can account for screening from the
environment.

DOI: 10.1103/PhysRevLett.116.056401

A striking property of two-dimensional semiconductors
is the ability to host strongly bound excitons. This was
initially predicted theoretically for hexagonal boron nitride
(hBN) [1], graphane [2], and various transition metal
dichalcogenides [3–5], and has subsequently been con-
firmed experimentally [6–8]. The quantum confinement of
excitons in two dimensions comprises a tempting and
intuitively appealing explanation for the large binding
energies in these materials [9]. However, it has become
clear that it is the reduced dielectric screening in two
dimensions that is the main origin of the large binding
energy [3,10]. The 2D electronic system is rather poor at
screening interactions and the effective Coulomb interac-
tion between an electron and a hole is simply much stronger
in two dimensions than in three dimensions.
A rigorous treatment of excitons requires advanced

computational methodology such as the Bethe-Salpeter
equation [11,12]. This approach has been applied to obtain
absorption spectra for numerous insulators and usually
yields very good agreement with experiments [13].
However, only systems of modest size can be treated by
such methods and simplified models of excitons will be an
inevitable ingredient in calculations of realistic systems.
For example, if the effect of substrates or the dielectric
environment is to be included in the calculation of excitons
in 2D systems [14], the computations become intractable
with a standard Bethe-Salpeter approach. For 3D materials
the Mott-Wannier model comprises a strong conceptual and
intuitive picture that provides a simple framework for
calculating exciton binding energies [15]. In the center-
of-mass frame, an excited electron-hole pair can be shown
to satisfy a hydrogenic Schrödinger equation, where band

structure effects are included through an excitonic effective
mass μ and the dielectric screening from the environment is
included through the static dielectric constant ϵ0. The
exciton binding energy in atomic units is then written as

E3D
B ¼ μ

2ϵ20
: ð1Þ

Thus, the daunting task of solving the Bethe-Salpeter
equation, has been reduced to the calculation of just two
parameters: the effective mass and the static dielectric
constant, both of which are easily obtained with any
standard electronic structure software package. This
approximation is well justified whenever the screening is
local, such that its Fourier transform can be approximated
by a constant in the vicinity of the origin. However, in
highly anisotropic structures such as layered materials this
assumption is expected to break down.
In 2D dielectrics, it is well known that the screening

takes the form ϵðqÞ ¼ 1þ 2παq [2], where α is the 2D
polarizability. The screening is thus inherently nonlocal in
real space, and it is not obvious if it is possible to arrive at a
hydrogenic model like Eq. (1). Instead, one can calculate
the 2D screened potential and solve the Schrödinger
equation for the electron-hole wave function

!
−
∇2

2μ
þWðrÞ

"
ψðrÞ ¼ EnψðrÞ; ð2Þ

where WðrÞ is the 2D convolution of the Coulomb
interaction and ϵ−1ðr − r0Þ. This approach has previously
been shown to provide good agreement with the Bethe-
Salpeter equation [14,16]. In the Supplemental Material
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[17] we assess that the binding energies of 7 transition
metal dichalcogenides obtained with the Bethe-Salpeter
equation agree well with results obtained from Eq. (2).
However, in general the solution of Eq. (2) is a tedious task
and it would be highly desirable to have an expression like
Eq. (1) from which the exciton binding energy in a given
material can be easily estimated and understood. To
accomplish this, we calculate the average screening felt
by the exciton. To this end, we consider the expression

ϵeff ¼
a2eff
π

Z
2π

0
dθ

Z
1=aeff

0
dqqϵðqÞ; ð3Þ

where aeff is the effective Bohr radius. For the 2D hydrogen
atom the Bohr radius is given by a ¼ ϵ=ð2μÞ and Eq. (4)
has to be solved self-consistently for ϵeff given an expres-
sion for ϵðqÞ. In a strictly 2D system, the screening is linear
in q and Eq. (3) can be solved to yield

ϵeff ¼
1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32παμ=3

p
Þ: ð4Þ

Using that the hydrogenic binding energy in two dimen-
sions is a factor of four larger than in three dimensions [9],
we obtain

E2D
B ¼ 8μ

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32παμ=3

p
Þ2
: ð5Þ

This is the main result of the present Letter and comprises a
long-sought-for 2D analog of Eq. (1).
A remarkable property of the expression (5) is the fact

that it becomes independent of the effective mass if the
polarizability is large. More precisely,

E2D
B ≈

3

4πα
; 32παμ=3 ≫ 1: ð6Þ

It may come as a surprise that the binding energy becomes
independent of mass, since a large mass gives rise to a
localized exciton and the binding energy typically increases
with localization. This is reflected in Eq. (1), where the
binding energy is seen to be proportional to the mass.
However, in two dimensions, short range interactions are
screened more effectively than long range interactions.
Thus, there are two opposing effects of the exciton mass
and for large polarizabilities the binding energy becomes
independent of mass. In order to assert the applicability of
the expressions (5)–(6), we have calculated the effective
masses and static polarizabilities (in the random phase
approximation) of 51 semiconducting monolayers of tran-
sition metal dichalcogenides. For indirect band gap materi-
als we use the effective mass at the indirect gap. The
calculations were performed with the electronic structure
code GPAW [18,19], and we refer to the Supplemental
Material [17] and Ref. [20] for details on the calculations.

In Fig. 1 we compare the model binding energies with the
full solution of Eq. (2). Using the expression (5), the
agreement is seen to be on the order of 10%. With the
approximated expression (6), we obtain excellent agree-
ment for binding energies up to ∼0.5 eV, whereas the
binding energies are underestimated for strongly bound
excitons.
Recently, first-principles calculations have indicated that

exciton binding energies in different 2D materials scale
linearly with the band gaps [21]. In the present model, this
behavior comes out naturally since (without local field
effects) the in-plane components of the polarizability in the
random phase approximation are given by

α ¼
X

m;n

Z

BZ

dk
ð2πÞ2

ðfnk − fmkÞ
jhumkjr̂∥junkij2

εnk − εmk
; ð7Þ

and we expect that α will be roughly inversely proportional
to the band gap. This is illustrated in Fig. 2 for the 51

FIG. 1. Exciton binding energies of 51 transition metal dichal-
cogenides calculated as the lowest eigenvalue of Eq. (2) (vertical
axis) and the model result Eq. (5) (horizontal axis). We have
indicated the well-known example of MoS2.

FIG. 2. The 2D polarizability of 51 transition metal dichalco-
genides shown as a function of LDA band gaps.
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transition metal dichalcogenides. Combining this with
Eq. (6) thus gives E2D

B ∝ Egap. However, in the present
model the scaling originates solely from the screening and
not the effective mass as previously proposed [21]. For the
present set of materials, we do not observe any correlation
between binding energies and effective mass. We use the
LDA band gaps and not the quasiparticle gaps, which could
be obtained from, for example, GW calculations [20], since
LDA typically gives a better estimate of the two-particle
excitation energies that enters the expression for α. In
contrast, the use of GW gaps would underestimate the
screening due to the lack of electron-hole interactions.
To validate the general applicability of the effective

screening model, we now show that it can also be used to
account for the entire exciton spectrum in 2D materials. In
Ref. [22], the exciton spectra of graphene derivatives was
predicted to deviate from the 2D Rydberg series and in
Ref. [23], the exciton spectrum of WS2 was measured and
shown to deviate significantly from the Rydberg series of a
2D hydrogen model scaled by an overall screening factor.
The reason is simply that the effective screening depends
on the n quantum number due to the increasing spatial
extent of higher lying Rydberg states. The authors used the
results to define n-dependent effective screenings ϵn, which
were then determined by fitting each term in the Rydberg
series to a 2D hydrogen model. The Rydberg series is thus
written as

E2D
n ¼ −

μ
2ðn − 1

2Þ
2ϵ2n

: ð8Þ

Two of the present authors have recently shown that the
Rydberg series can accurately be reproduced by solving
Eq. (2) with a screened 2D potential calculated from first
principles [14], and we will assume that approach to be an
accurate reference. Here we calculate the n-dependent
effective screening from first principles by replacing aeff
in Eq. (3) by an n-dependent characteristic extension of the
state. To this end, we note that for l ¼ 0, the first moment of
a state with principal quantum number n in a 2D hydrogen
atom with Coulomb interaction scaled by 1=ϵ is [9]

an ≡ hnjr̂jni ¼ ϵ½3nðn − 1Þ þ 1&=ð2μÞ; ð9Þ

where r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 þ ŷ2

p
. In terms of this, the aeff defined

previously is given by a1 and E2D
B is −E2D

1 . Within the
linear model the effective screening for state n then
becomes

ϵn ¼
1

2

$
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 32παμ
9nðn − 1Þ þ 3

s %
: ð10Þ

It is straightforward to generalize these expressions to l ≠ 0
[9], which results in a larger value of the effective radius anl
and thus ϵn;l>0 < ϵn;l¼0. The energy is still given by Eq. (8)

and at a given n, the higher angular momentum excitons
will therefore have a larger binding energy, which has been
observed in the case of 2H-WS2 monolayers [6]. As a case
study we consider this material and apply the linear
screening model. We obtain a first-principles 2D polar-
izability of α ¼ 5.25 Å and μ ¼ 0.19. In Fig. 3 we show the
Rydberg series calculated with the generalized hydrogen
model, which agrees very well with a full solution of
Eq. (2). In contrast, the pure 2D hydrogen model with an
overall effective screening is seen to significantly under-
estimate the binding energies at higher lying states, since
the decreased screening of extended states is not taken into
account. We also note that the model binding energies of
the n ¼ 1 state agree very well with a full solution of the
Bethe-Salpeter equation, which yields an exciton binding
energy of 0.54 eV [24].
We now proceed to show how the effect of screening by

the environment can naturally be taken into account in the
present framework. It should be noted, however, that the
linear model for the screening is expected to break down for
systems where the vertical extent of a substrate becomes
comparable to the Bohr radius of the exciton. For example,
if we consider a stack of N monolayers, α will diverge in
the limit of large N, since the bulk system will have
ϵðq ¼ 0Þ ≠ 1 [14,25]. The linear regime will therefore only
be valid for q ≪ 1=Nd, where d is the interlayer distance.
As an example where we expect the linear model to be
applicable, we consider a monolayer 2H-MoS2 and com-
pare the isolated layer with the two cases where it is in the
vicinity of another layer of 2H-MoS2 and in the vicinity of
a metallic layer of 1T-MoS2. In Fig. 4, we show the
absorption spectrum calculated from the Bethe-Salpeter
equation based on Kohn-Sham eigenvalues. The BSE
calculations were performed in a plane wave basis with
a 2D Coulomb truncation scheme [26,27] using a 60 × 60
k-point mesh. It is well known that the low energy
absorption spectrum of this system exhibits a double

FIG. 3. Rydberg series of a monolayer of 2H-WS2 calculated
with the generalized hydrogen model with linear screening
[Eqs. (8) and (10)] and from the solution of the 2D screened
Schrödinger equation (2). The results are compared with the bare
hydrogen model where the effective screening obtained from the
ground states is used for all states.
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excitonic peak due a spin-orbit split valence band [28,29].
This facilitates the identification of the excitons in the
2H-MoS2 layer in the vicinity of a metallic substrate with
low lying excitations. We have not performed the full
spinorial BSE calculations, but simply included spin-orbit
effects in the band structure in order to identify the
excitons. In the following we consider the binding energies
of the lowest exciton. The isolated layer exhibits an exciton
bound by 0.50 eV. In the vicinity of another 2H-MoS2
layer, the binding energy is decreased to 0.37 eV and the
metallic 1T-MoS2 decreases the binding energy to 0.10 eV.
We note that the quasiparticle band structure corrections
are expected to be much smaller for the case of
2H-MoS2@1T-MoS2 such that the actual positions of
the excitons would be similar for the three cases in an
optical absorption experiment. However, we have chosen to
leave out the quasiparticle corrections in order to illustrate
the difference in binding energies more clearly.
To apply the model we wish to calculate ϵðqÞ for the

2H-MoS2 layer when it is in the vicinity of a screening
environment. For small q, we may still write it as ϵðqÞ ¼
1þ 2π ~αq and we would like to extract ~α, which is the
relevant quantity for the screened hydrogen model. We
calculate it by the finite difference

2π ~α ¼ ϵðq1Þ − 1; ð11Þ

where q1 is a small finite value of q. In the present case we
take q1 as the smallest q vector in the direction of K
obtained from a 60 × 60 k-point grid. The 2D dielectric
function is obtained from

1

ϵðqÞ
¼

hV totðr∥; z0Þe−iq·riA
Vq

; ð12Þ

where V totðrÞ is the total potential resulting from an
external perturbation VextðrÞ ¼ Vqeiq·r and h…iA denotes
the average over the 2D unit cell of area A. It is
straightforward to relate this expression to an average over
the microscopic dielectric function ϵ−1ðr; r0Þ, which can be
calculated in the random phase approximation by most
electronic structure codes. We take z0 to be at the center of
the 2H-MoS2 layer, but we note that ~α is approximately
independent of the value of z0 when z0 is chosen in any part
of the central 3.0 Å of the layer. In Table I, we display the
calculated values of ~α along with the exciton binding
energies obtained from the model (5), the 2D Schrödinger
equation (2), and the BSE calculations. As expected, the
environment strongly affects the value of ~α. In particular,
the metallic 1T-MoS2 layer significantly increases the
screening, whereas the presence of another 2H-MoS2 layer
results in a less pronounced effect. We find good agreement
between the simple model, the 2D Schrödinger equation,
and the BSE calculations. We should note that the con-
vergence of the exciton binding energies in the presence of
the metallic 1T-MoS2 layer is very slow with respect to
k-point sampling and the converged result is expected to
exhibit a lower binding energy than the one obtained here.
Furthermore, we have not included the intraband contri-
bution (Drude response) to the static screening, which is
expected to scale as ∼1=q in 2D metals. On the other hand,
the 1T structure is known to distort into the so-called 1T 0

structure, which is a topological insulator with a gap on the
order 50 meV [30], and in that case the Drude response will
not be present. In any case, the screening is treated at the
same footing in the BSE and the model calculations since
the values of ~α were obtained by a finite difference
calculation on the same k-point grid that was used in the

FIG. 4. Dynamic 2D polarizability of 2H-MoS2 in different
environments calculated from the Bethe-Salpeter equation
based on Kohn-Sham eigenvalues. The vertical lines at 1.7 eV
marks the Kohn-Sham band gaps, which are nearly identical
in the three cases.

TABLE I. Exciton binding energies for 2H-MoS2 in different environments calculated from the Bethe-Salpeter
equation (BSE), the 2D Schrödinger equation, and the generalized screened hydrogen model. We also display the
values of ~α, which is the polarizability of the single 2H-MoS2 layer used in the calculations. For all calculations we
used an effective exciton mass of 0.276, which was obtained from the ab initio band structure.

2H-MoS2 2H-MoS2@2H-MoS2 2H-MoS2@1T-MoS2

EBSE
B [eV] 0.50 0.37 0.10

ESchr
B . [eV] 0.54 0.40 0.17

EModel
B [eV] 0.48 0.30 0.10

~α [Å] 5.83 10.0 30.1
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BSE calculations. The exact conditions under which the
linear model is applicable will depend on the thickness of
the substrate as well as the screening properties of the
substrate. For extended substrates, the present approach
may be generalized by calculating the full ϵðqÞ and solving
Eq. (3) numerically, but it is not clear that the analytical
results derived from the 2D hydrogen model (8) are able to
produce reliable results in this case. Alternatively, one may
solve a quasi-2D Schrödinger equation that incorporates
the finite extent of the slab [25]. We note that the present
method can be viewed as a generalized hydrogen model
analogue of the approach taken by Ugeda et al. [7], where
the full substrate screening was taken into account when
solving the Bethe-Salpeter equation for the layer.
To conclude, we have presented an analytical expression

for the exciton binding energies in 2D semiconductors that
only depends on the static 2D polarizability and the
effective mass, and produces good agreement with the
solution of the full screened 2D Schrödinger equation. It
has also been shown that for large polarizabilities, the result
becomes independent of mass and yields a linear relation
between exciton binding energies and band gaps. It has
previously been anticipated that the nonhydrogenic
Rydberg series could be attributed to an n-dependent value
of the effective screening [23]. Here we have obtained an
explicit expression for ϵn that provides an accurate account
of the full exciton spectrum. It has also been shown that the
model can be generalized to incorporate the effect of a
simple screening environment. We do not claim that the
presented expression for the effective screening (3) in the
linear model is unique. In fact, it is based on an unweighted
average of a linear model for the nonlocal 2D screening
over the extent of the exciton and it is easy to imagine more
elaborate averaging schemes. However, we believe that the
simplicity is the main merit of this procedure and the
resulting analytical expressions are very easy to apply to a
given 2D material. In particular, for complicated structures
it may not be possible to treat the electron-hole interaction
by a first-principles approach and our model results could
be a crucial ingredient in understanding the excitonic
structure in such materials.

The Center for Nanostructured Graphene (CNG) is
sponsored by the Danish National Research Foundation,
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Abstract

Van der Waals heterostructures (vdWH) provide an ideal playground for exploring

light-matter interactions at the atomic scale. In particular, structures with a type-II

band alignment can yield detailed insight into free carrier-to-photon conversion pro-

cesses, which are central to e.g. solar cells and light emitting diodes. An important

first step in describing such processes is to obtain the energies of the interlayer exciton

states existing at the interface. Here we present a general first-principles method to

compute the electronic quasi-particle (QP) band structure and excitonic binding en-

ergies of incommensurate vdWHs. The method combines our quantum electrostatic

heterostructure (QEH) model for obtaining the dielectric function with the many-body

GW approximation and a generalized 2D Mott-Wannier exciton model. We calculate

1



the level alignment together with intra and interlayer exciton binding energies of bilayer

MoS2/WSe2 with and without intercalated hBN layers, finding excellent agreement

with experimental photoluminescence spectra. Comparison to density functional the-

ory calculations demonstrate the crucial role of self-energy and electron-hole interaction

effects.

Keywords

van der Waals heterostructures, interlayer Excitons, band alignment, G0W0, Mott-Wannier

model.

The use of two-dimensional (2D) transition metal dichalcogenides1–4 as fundamental

building blocks in (opto)electronics has proved highly promising for the construction of ultra-

thin high performance devices.5–10 By reassembling different 2D crystals into van der Waals

heterostructures, designer materials with new and tailored properties can be made.10–17 As

for 2D monolayers,18–23 the optical properties of few-layer van der Waals heterostructures are

strongly influenced by excitonic effects10,15,16 as a consequence of the weak screening of the

electron-hole interaction.24 In addition to the intralayer excitons localized in the constituent

monolayers, vdWHs can host more complex types of excitons with electrons and holes resid-

ing in distinct layers, so-called (spatially) indirect excitons or interlayer excitons. Because of

the spatial charge separation, interlayer excitons posses longer electron-hole recombination

lifetimes25,26 than intralayer excitons, which make them ideal candidates for realization of

bosonic many-particle states like Bose-Einstein condensates.27 Moreover, interlayer excitons

are believed to play a central role in the charge separation process following photoabsorption

in solar cells or photodetectors.28,29 Of key importance to this process is the exciton binding

energy which quantifies the strength with which the electron and hole are bound together.

Due to the larger electron-hole separation, interlayer excitons are expected to have lower

2



binding energies than intralayer excitons. However, a detailed understanding of interlayer

excitons in vdWHs is still lacking mainly because of the highly non-local nature of the di-

electric function of 2D materials which makes screening less effective at larger distances.

This is in fact the origin of the non-hydrogenic Rydberg series in 2D semiconductors and

the non-degeneracy of 2D excitons with different angular momentum quantum numbers.30

The understanding of excitonic effects alone, however, is not sufficient for device engineer-

ing, where the knowledge of the alignment of the electronic bands of the vdWH is also

crucial. Several experimental investigations have shown, for example, that an underlying

type-II band alignment is required for the formation of interlayer excitons.31–33 However,

experimental data has not been supported by consistent theoretical studies yet. It is well

known that density functional theory (DFT) calculations are problematic when it comes to

prediction of band gaps and band alignment at interfaces and do not take excitonic effects

into account. An important deficit of the DFT approach, in addition to its general tendency

to underestimate band gaps, is its failure to describe image charge renormalization effects

that shift the energy levels of a 2D semiconductor34 or molecule35,36 when adsorbed on a

polarizable substrates. Ideally, one should employ many-body perturbation theory like the

GW approximation to obtain reliable band energies or the Bethe Salpeter Equation (BSE)

for exciton binding energies. However, the computational cost of such methods make them

unfeasible for vdWHs containing more than a few lattice matched 2D crystals.

Here, we show how to overcome these limitations, by means of our recently developed

quantum electrostatic heterostructure (QEH) approach37 and accurately calculate interlayer

exciton binding energies and electronic bands of vdWHs. For the excitons, the QEH allows

us to calculate the the screened electron-hole interaction to be used in a generalized 2D

Mott-Wannier model.24 For the band energies we use the QEH to modify isolated layer

G0W0 calculations by including the effect of interlayer screening on the electronic levels.

Remarkably we are able to predict band positioning in a vdWH at the cost of, at most,

N -G0W0 monolayer calculations, with N the number of layers in the stack.
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In this letter we apply our method to the case of MoS2-WSe2 bilayers intercalated with

a varying number of h-BN layers. The MoS2/hBN/WSe2 represents a prototypical type-II

heterostructure. Its well defined atomic structure and the possibility of varying the thickness

of the hBN spacer and the relative orientation of the photoactive layers, makes it an ideal

platform for studying light-matter processes on atomic length scales. At the same time,

the incommensurate nature of the van der Waals interfaces presents a great challenge for

ab-initio calculations. Nevetheless, we show that our QEH-based methodology allows us

to efficiently simulate the electronic structure of MoS2/hBN/WSe2, including excitonic and

self-energy effects, and accurately reproduce experimental photoluminescence spectra.

The main requirement for the existence of interlayer exciton is that the bottom of the

conduction band and the top of the valence band in a van der Waals stack are located in two

different layers. As shown in the following, this is the case of MoS2-WSe2 based heterostruc-

tures. Because of lattice mismatch (see table 1), MoS2 and WSe2 form incommensurable

heterostructures and therefore realistic band structure calculations require the use of rela-

tively large in-plane supercells as illustrated in panel (b) of fig. 1. By rotating the layers with

respect to each other, not only can the dimension of the supercell be reduced, but we can

also mimic more closely the experimental situation where the alignment angle between the

layers is not controlled. Following the procedure described by Komsa et al,38 we set up the

MoS2-WSe2 bilayer for two different alignment angles, specifically ∼ 16.1◦ and ∼ 34.4◦, so

that each layer is strained by less than 1%. To be able to compare the band structure of the

bilayer with the ones of the constituent isolated monolayers, we unfold the electronic bands

of the supercell to the ones of the primitive MoS2 and WSe2 cells. This is done by following

the method described in Ref. 39. We stress that, because of the lattice mismatch and a

non-zero alignment angle, the first Brillouin zones (BZ) of the two materials are different

in size and rotated with respect to each other as shown in panel (c) and (e) of fig. 1. This

implies that the unfolding of the bands has to be performed accordingly.
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Figure 1: Panel (a) cartoon of the MoS2-WSe2 bilayer system. Panel (b) Representation
of real space primitive and super-cell for θ = 16.1◦. Panels (c) and (e) illustrate how the
BZs are twisted and differ in size for the two different alignment angles θ, 16.1◦ (a) and
34.4◦ respectively. The unfolded LDA band structure with respect to vacuum for MoS2-
WSe2 bilayers with for θ = 16.1◦ and θ = 34.4◦ are plotted in panel (d) and (f) respectively.
Circles are used for the unfolded bilayer bands, while continuous lines are used for the isolated
layers. The bands are colored in blue or red based on the character of the band, i.e. if they
either belong to the MoS2 or WSe2 layers and the size. For comparison the isolated layers
LDA bands are shown with continuous lines. For simplicity no spin-orbit coupling is included
in the electronic bands.

The unfolded band structures, aligned with respect to vacuum level, for the two differ-

ent bilayers are shown as circles in fig. 1 panel (d) and (f) and compared to the isolated

monolayers bands in continuous lines. The band structures have been calculated using the

local density approximation (LDA) as described in the Methods section and for simplicity

the effect of spin-orbit coupling is not included here. We can clearly confirm that MoS2 and

WSe2 form a type II heterostructure, where the top of the valence band is localized on the

WSe2 layer, while the bottom of the conduction band belongs to MoS2. This implies that

MoS2/WSe2 can host interlayer excitons as sketched in fig. 5 (a). Furthermore, no signif-
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icant difference in the band structure emerges for the two different alignment angles and

thus we can conclude that the band structure of the bilayer is independent of the alignment

angle. When comparing to the bands of the isolated monolayer, we can distinguish two

main effects, as thoroughly shown in the Supporting Information: the effect of interlayer

hybridization, only around the Γ point, and a layer-dependent shift in energy throughout

the Brillouin zone. For the latter, we observe the MoS2 bands to be shifted up in energy

while the WSe2 bands are shifted down, with a consequent increase in indirect gap of 0.21

eV relative to the vacuum level-aligned isolated layers. Such an asymmetric shift is a clear

signature of the formation of a dipole at the interface of the two layers as a consequence of

charge rearrangement induced by the misalignment between the band gap center of the two

materials. To summarize, since hybrization is minimal around the K-point, which is where

the relevant band edges reside, and the charge transfer effect, if needed, can be accounted

for just by adding a constant shift, we learn that the bands of the bilayer can be directly

obtained as a superposition of the constituent isolated monolayers bands.

While in terms of computational cost it would be advantageous to utilize LDA band

structures for quantitative description of bands in vdWHs, their use is largely questionable

when accuracy on band alignment and on band gaps is required. To illustrate the LDA

failure, we compare the LDA and G0W0 electronic bands for the isolated MoS2 and WSe2

monolayers in panel (a) of fig. 2. In both approaches we include the effect of spin-orbit cou-

pling at a non-self-consistent level. While the qualitative picture of a type II band alignment

is preserved within the G0W0 approximation, the band alignment and band gaps predicted

by LDA are wrong. This is even more evident in panel (b) of fig. 2, where we directly show

the band edges for the isolated MoS2 and WSe2 layers. One could possibly argue that the in-

accuracy is due to the LDA exchange correlation functional rather than the DFT approach

itself. For this reason we also calculated band edges using the HSE06 hybrid functional,

which is known to perform well for band structures. However, as shown in panel (b), HSE

is better than LDA but still not as accurate as G0W0. We thus conclude that the G0W0
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Figure 2: Panel (a) LDA and G0W0 band structures for the isolated layers. The panel
illustrates a restricted part of the BZ around the K-point. The color code is the same as
for fig. 1, i.e. blue for MoS2 and red for WSe2. Panel (b) band edges within different
approximations. Because of the uncertainty of the G0W0 vacuum levels, all the bands are
aligned with respect to the top of the valence band in MoS2. For the HSE calculations the
HSE06 hybrid functional is used. Spin-Orbit Effects are included.

approximation is essential to obtain a quantitatively correct description of the band gaps and

band alignment. Importantly, we notice that while DFT predicts a rather large difference

in band gap centers of around 1eV , G0W0 gives a much smaller difference of around 0.3 eV.

This, together with the increased band gaps predicted by G0W0, strongly indicates that the

charge transfer and associated dipole shift of the bands, could be significantly overestimated

by DFT-LDA. We thus conclude that the band structure of the heterobilayer around the K-

point can be obtained by combining the G0W0 band structures of the isolated layers aligned

with respect to a common vacuum level and corrected for image charge screening effects (see

later).

The state of the art for describing excitonic effects from first principles is the many-body
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Bethe-Salpeter Equation (BSE).40–42 The solution of the BSE is, however, computationally

demanding already at the monolayer level and practically impossible for incommensurate

van der Waals heterostructures. However, it is well-known that, under well defined assump-

tions the excitonic many-body problem can be rephrased in terms of an effective hydrogenic

Hamiltonian, the Mott-Wannier Hamiltonian,43 which gives a satisfactory description of sev-

eral excitonic properties24,44–46. In the case of excitons in vdWHs, the motion of the electron

and the hole is restricted to the in-plane direction. This is a direct consequence of the

anisotropy of layered structures, which entails that the effective masses at the K-point in

out-of-plane direction are much higher than the in-plane direction. With this consideration

the hydrogenic Hamiltonian reduces to a 2D problem:

[
−∇

2
2D

2µex

+W (r‖)

]
F (r‖) = EbF (r‖), (1)

where µex is the exciton effective mass and W (r‖) is the electron-hole interaction energy.

The exciton effective mass is evaluated as µ−1ex = m−1e + m−1h , where the hole and electron

masses are calculated ab-initio and reported in table 1.

In the case of interlayer excitons eq. (1) is still valid. Indeed even if the electron and

the hole are separated in the out-of-plane direction, their motion is still confined in their

respective layers. On the other hand, this spatial separation affects the screened electron-

hole interaction energy, as shown below. In the specific case of MoS2/WSe2 heterostructures,

the electron and hole effective masses have to be estimated from the WSe2 and MoS2 valence

and conduction bands respectively. We found an interlayer exciton effective mass of 0.244

a.u.

Table 1: Lattice parameters and effective masses. The latter are calculated at the point K
of the BZ.

Material aMM (Å) aXX (Å) mh me µintra

MoS2 3.18 3.13 0.56 0.55 0.27
WSe2 3.30 3.31 0.48 0.44 0.23
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The Coulomb interaction between the electron and the hole in an exciton is highly sen-

sitive to the dielectric properties of the material.47 As we showed in our recent work,24 the

dielectric screening of finite thickness vdWHs is strongly non local. Using our recently devel-

oped quantum-electrostatic heterostructure (QEH) model, we can determine the dielectric

properties of these complex structures from first principles.37 Briefly, we first condense the

dielectric response of each single layer into a “dielectric building block” consisting of the

monopole and dipole components of the density response function of the isolated layer.48

Second, the dielectric building blocks are coupled together electrostatically by solving a

Dyson-like equation in the discrete monopole/dipole basis in order to obtain the density

response function for the whole structure. The underlying assumption of the QEH is that

hybridization is weak enough that is does not affect the dielectric properties of the het-

erostructure. We have found that this approximation is surprisingly good.

A collection of more than 50 dielectric building blocks together with the software for the

electrostatic coupling can be found in Ref. 49

From the response function, the dielectric function of the heterostructure is determined

and it can be used to obtain the screened electron-hole interaction energy:

W (q‖) = ρᵀ
e
(q‖) ε

−1(q‖) φ h
(q‖), (2)

where ρ
e

(φ
h
) is the electron density (hole induced potential) vector expressed in a basis set

of monopole/dipole densities (potentials). The basis set of induced densities and potentials is

also used as (left and right) basis functions for representing ε−1 (see Ref. 37). The underlying

structure of a vector in the multipole basis can be readily understood. An arbitrary density

vector ρ is represented as ρᵀ = [ρ1M, ρ1D, ρ2M, ρ2D, · · · , ρnM, ρnD] where ρiα, with α = M,D, is

the induced monopole/dipole density at the layer i. A completely equivalent representation

can be used for the potential. Now, for the specific case of an interlayer exciton in the

MoS2/WSe2 bilayer, the electron density vector takes the form ρe
ᵀ = [ρ1M, ρ1D, 0, 0], while
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Figure 3: Panel (a) Rydberg series for intra and interlayer excitons. The hydrogenic series
is obtained from the standard expression for the energy of a 2D hydrogen atom, i.e. Eb =

µex
2(n−1/2)2ε2 and by fitting ε to the lowest lying excitonic state in MoS2. Panel (b) effective

dielectric function and panel (c) Screened electron-hole interaction for intra and interlayer
excitons in bilayer MoS2-WSe2.

the potential induced by the hole is φh
ᵀ = [0, 0, φ2M, φ2D]. Because the electron and hole

distribution do not have dipole components, we set ρ1M = 1, ρ1D = 0 and φ2M = 0, φ2D = 0.

It is useful to define an effective dielectric function for the electron-hole interaction as

the unscreened Coulomb interaction over the screened one:

ε(q‖) =
ρᵀ
e
(q‖) φ h

(q‖)

ρᵀ
e
(q‖) ε−1(q‖) φ h

(q‖)
, (3)

A typical signature of excitons in two-dimensional materials is the non-hydrogenic Ryd-

berg series.50 The Rydberg series along with the full wave-vector dependent effective di-

electric screening and electron-hole interaction for the intra and inter-layer excitons in

the MoS2/WSe2 bilayer are shown in fig. 3 panel (a), (b) and (c) respectively. The non-

hydrogenic nature of the Rydberg series should be clear from the comparison with the dashed

line in panel (a) which represents the Rydberg series obtained from an hydrogenic equation
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where the electron-hole interaction is screened by a constant dielectric function. The first

interesting characteristic to notice is that the intra and interlayer Rydberg series converge

towards each others for higher excited excitonic states. This is not surprising considering

that higher lying states are more delocalized and once their radius is much greater than the

heterostructure thickness intra and interlayer excitons are practically indistinguishible, pro-

vided that the screening of the electron-hole interaction is comparable. As shown in panel

(b), the effective dielectric function is indeed the same for inter and intra-layer excitons

within the region of relevant wavevectors values, i.e. values of q‖ smaller than the reciprocal

of the exciton radius (indicated with a vertical line in panel (b) for the lowest lying exciton).

However, it is clear from panel (c) that the screened interaction for the interlayer exciton

is lower than for the intralayer ones, and it does not diverge for r‖ → 0. This is a simple

consequence of the finite electron-hole spatial separation, which guarantees that the electron

and the hole are separated even for r‖ = 0.

To explore the effect of spatial separation even further, we study the case of MoS2-WSe2

heterostructures intercalated with h-BN. To isolate the effect of screening, we perform the

same calculations with h-BN is substituted by vacuum. The results for the lowest intra and

inter-layer exciton binding energies are shown in panel (a) and (b) of fig. 4. Clearly the

behavior of the interlayer exciton is quite similar in the two cases, meaning that the main

effect of inserting hBN layers is to increase the electron-hole separation. In contrast, the

binding energy of the intralayer excitons increases in the case of increasing vacuum while

it remains constant when more hBN layers are inserted. This is because moving MoS2 and

WSe2 apart decreases the screening whereas inserting more hBN layers increases it, leading

to an overall compensation.

When stacking 2D layers together, the exciton binding energy is not the only quantity

that is affected. Indeed, also the band gap of each of the layers in the stack is reduced due

to the increased dielectric screening. The state of the art method for properly including the
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Figure 4: Intra and Interlayer exciton binding energy as a function of number of intercalating
vacuum (a) and h-BN (b) layers.

effect of dielectric screening in band structures is the G0W0 method.34,51–53 In this many-body

theory based approach, the information of electronic screening is contained in the dynamical

screened Coulomb potential:

W̄GG′(q, ω) =
[
ε−1
GG′(q, ω)− δGG′

] 4π

|G + q|2 . (4)

Computing W̄GG′(q, ω) is a demanding task even for simple materials and it is practically

impossible for multi-layer vdWHs. Fortunately, as described elsewhere,54 the effect of screen-

ing on the band structure of a given layer in a van der Waals stack, can be accounted for

by combining the QEH model with a standard G0W0 method at the computational cost of

a monolayer calculation. The main idea is to correct W̄GG′(q, ω) for a given layer in the

following manner:

W̄ vdWH
GG′ (q, ω) = W̄monolayer

GG′ (q, ω) + δW (q, ω)δG0δG′0 (5)

where δW (q, ω) is the correction to the head of the matrix W̄GG′ that includes the extra

screening coming from the neighboring layers. For a given layer, such a correction is efficiently
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calculated within the QEH model. Indeed, by using an expression equivalent to eq. (2), the

electron-electron interaction is calculated for the isolated layer and the layer in the vdWH,

then δW (q, ω) is obtained as the difference between the two interactions. Once corrected,

the screened potential can be used directly in a standard monolayer G0W0 calculation. With

this approach, which we refer to as G0W0-QEH, we are able to efficiently calculate the band

positions of any vdWHs and, specifically for this work, the position of the valence band

maximum and conduction band minimum of MoS2 and WSe22 for a varying number of hBN

layers. A verification of the G0W0-QEH approach for the specific MoS2/WSe2 system is

provided in the supporting information.

The level alignment for a bilayer MoS2-WSe2 obtained from the G0W0-QEH and including

spin-orbit coupling effects is shown in fig. 5 panel (a), whereas the difference in intra and

interlayer gaps with respect to the isolated layers are reported in panel (b). Although

the band gap renormalization is noticeable when going from monolayers to bilayer, the

intercalation of h-BN does not have a considerable effect. Comparing to the variation in

exciton binding energy in panel (c), we observe a similar trend for the intralayer cases

whereas for the interlayer case the trend is different. This is reasonable since, differently

from the interlayer exciton, there is not explicit dependence of the interlayer gap on MoS2-

WSe2 separation.

With the knowledge of band edges position and exciton binding energies we are now ready

to calculate the position of the excitonic photoluminescence (PL) peaks in MoS2/WSe2 based

heterostructures.

The photoluminescence signal is generated by radiative electron-hole pairs recombination.

Considering that typical radiative recombination times in TMDCs are much longer than

electron and hole thermalization times, we expect the exciton recombination to happen

from the K-point of the conduction band in MoS2 and the K-point of the valence band in

WSe2. We note that, the lattice mismatch and a non-zero alignment angle between the

two layers implies a mismatch of the first BZ of the two materials, as shown in fig. 1.
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This means that for a radiative transition to happen the momentum mismatch has to be

compensated by some other physical mechanism. Mechanisms of this kind could include

phonon assisted transition, electron-electron interaction, defect scattering or breaking of

momentum conservation induced by the exterior potential field generated by the neighboring

layers.55 Here we focus on the energetics of the process, which should not be effected by the

particular recombination mechanism. Taking into account the type-II band alignment, the

position of the pholuminescence peak of the lowest bound exciton is given by:

EPL = EIG − EInter
b (6)
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Figure 5: (a) Band alignment diagram for bilayer MoS2/WSe2 calculated within the G0W0-
QEH approximation (see text for details), along with lowest intra and inter-layer excitonic
levels for bilayer MoS2/WSe2. The shaded region and the arrow shows that the interlayer
exciton binding energy decreases with an increasing number of intercalating h-BN. Variation
in intra and interlayer gaps (b) and exciton binding energies (c) as a function of intercalated
BN layers.
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where EIG is the interlayer electronic gap and EInter
b the interlayer exciton binding energy.

The positions of the lowest energy photoluminescence peak for isolated layers, as well as for

MoS2-WSe2 based heterostructures with a varying number of intercalating hBN layers are

plotted in fig. 6 for the free standing and supported case. Experimental photoluminescence

spectra from Ref. 31 are also reported in the same figure. For the supported case we use

30 layers of hBN to simulate the effect of a substrate. The choice of hBN as a substrate is

enforced by the QEH approach which applies only to layered materials, but it is justified by

the fact that hBN has a bulk dielectric constant similar to SiO2, which is the substrate used

in the experiment. The agreement with the photoluminescence peaks for MoS2 it is good but

for WSe2 it is underestimated by around 0.15 eV. Roughly the same constant shift is seen for

the heterostructures. This indicates that the deviation is due to a too high positioning of the

WSe2 valence band by the G0W0-QEH. However, the agreement is still highly satisfactory.
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Figure 6: Comparison of the calculate position of the excitonic photoluminescence peaks
with experimental data for isolated layers (left panel) and MoS2-WSe2 based heterostructures
(right panel). The experimental data31 is reported as shaded colored curves. Inset: same as
in the main figure, but with a shift of 0.25eV , to highlight that we can well reproduce the
trend.
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Indeed shifting our values by 0.13eV we can well reproduce the data for increasing number

of intercalating layers as shown in the inset. This indicates that it is the estimated indirect

bandgap to be slightly off, but a difference of just 0.13eV is still quite accurate for our multi-

step approach. According to the experimental interpretation in Ref. 31, while the PL peak

for the bilayer without hBN shows a clear interlayer exciton peak, with the intercalation of

hBN the interlayer exciton signal is reduced and eventually covered by the WSe2 intralayer

exciton PL peak for three h-BN layers. If this is the case, it is not possible to completely

validate the trend of our ab-initio PL peaks values through the actual experimental data.

Anyways to demonstrate that using G0W0 for monolayer bands is strictly necessary, fig. 6

shows the photoluminescence peaks obtained using a band alignment from LDA and HSE

calculations. It is evident that the LDA dramatically underestimates the position of the

photoluminescence peaks for both the isolated layer and the bilayer case. The HSE improves

the band alignment significantly, but is still around 0.3 eV below the experimental values.

Furthermore even the trend of the indirect exciton peak as a function of hBN layers is

reversed by LDA. This is a consequence of the strong charge transfer predicted by LDA as

discussed earlier. Indeed, charge transfer tends to open the indirect band gap and therefore

shift the PL peaks up in energy, with a shift that decreases with increasing number of hBN

layers. This shift in energy is larger and opposite to the optical band gap reduction due

to interlayer excitons, which explains why the position of the LDA PL peaks descrease in

energy in contrast with the G0W0 results.

In conclusion, we presented a general approach to calculate band alignment and in-

terlayer excitons in incommensurate van der Waals heterostructures. For the MoS2/WSe2

heterostructure, we found that interlayer hybridization is important only around the Gamma-

point of the BZ and therefore does not influence the opto-electronic properties that are gov-

erned by states around the K-point. This implies that an accurate description of the band

edge positions can be obtained from the isolated monolayer band structures aligned relative

to a common vacuum level and renormalized by the polarization effect from neighboring
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layers. We find interlayer excitons to have significant binding energies of up to 0.3 eV and

showing monotonic decrease with the layer separation. Comparison with experimental pho-

toluminescence spectra revealed a constant redshift of the calculated lowest optical transition

of around 0.15 eV, which we ascribe to a slight overestimation of the WSe2 valence band

edge by G0W0. Our calculations show that it is possible to obtain quantitatively accurate

band- and exciton energies for rather complex vdWHs when employing proper methods, and

highlight the deficiencies of standard density functional theory for band alignment problems.

Methods

All the ab-initio calculation in this work are performed with GPAW.56,57 The band structures

of the twisted bilayers were calculated at the DFT level with an LDA exchange correlation

functional and double-zeta polarized atomic orbitals as a basis set. The HSE06 and LDA

calculations for the monolayers were performed using a plane wave basis set with a cut off

energy of 500 eV and 18×18 k-point grids. For lattice matched heterostructures modeled in a

minimal unit cell, it was checked that the atomic orbital basis yields the same band structure

as well converged plane wave calculations. For the calculation of dielectric properties of

van der Waals heterostructures we utilized dielectric building blocks available in Ref. 49.

Specifically the response function of each building block was calculated on a plane-waves basis

with 100 eV cut-off energy and 100×100 k-point mesh. In order to avoid spurious interaction

from artificial replica in the out-of-plane direction, a truncated Coulomb interaction with 20

Å of vacuum is used. The interlayer distance between the layers are taken as average of the

interlayer distance in their respective bulk form, specifically dMoS2/WSe2 = 6.51Å, dMoS2/hBN =

5.08 Å , dhBN/hBN = 3.2 Å and dWSe2/hBN = 5.28 Å. The monolayer G0W0 calculations have

been performed employing a new efficient technique58 that overcomes the problem of slow

convergence of the band structures with k-point grid and yields well converged band gaps

with 18× 18 k-points (rather than 40× 40 using standard approaches). We used an energy

17



cut-off of 150 eV for the dielectric function and sum over empty states. The G0W0 band

energies were extrapolated as 1/NG to the infinite plane wave limit.

The Mott-Wannier equation in eq. (1) was solved on a radial logarithmic grid ensuring

numerical convergence of exciton energies up to 0.002 eV.
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Effect of Hybridization and Charge-Transfer

In the main text we argued that the use of supercells is essential for a good description

of the band structure of mismatched bilayers and the main differences between the bands

of the isolated layers and the bilayers are consequence of charge transfer and hybrization

separately. In this section of the supporting information we prove these arguments for the

case of MoS2/WSe2 based structures.

We start out by demonstrating that using a supercell is unavoidable if an accurate band

structure of the MoS2/WSe2 is needed. This is shown in fig. 1, where we plot the band

structure of the strained bilayer and isolated monolayers in panel (a) and the corresponding

unstrained structures in panel (b). In both panels, the bands belonging to the isolated

layers are drawn with continuous lines while the ones for the bilayers are drawn with circles.

The unstrained bilayer is constructed using a supercell and an alignment angle of ∼ 16.1

as described in the main text, whereas for the strained bilayer we use a unit cell with the
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Figure 1: Panel (a) electronic bands for strained bilayer MoS2/WSe2 (circles) and isolated
monolayers (continuous line). Panel (b) the same as in (a) but for the unstrained structures.
For the unstrained bilayer an alignment angle of ∼ 16.1◦ is used. In the strained structures
the lattice parameter is the average of the lattice parameter of isolated MoS2 and WSe2.
The figure shows that the effect of charge transfer can be inferred from a simpler strained
calculation.

lattice parameter equal to the average of the lattice parameter of the isolated monolayers.

From the figure it is evident that straining the layers has a considerable effect both on the

curvature of the bands and on their positioning with respect to vacuum. We thus conclude

that accurate band structures cannot be obtained without employing supercells. However,

it is still possible to extract information about charge transfer and hybridization from the
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strained calculations. Indeed, we can see from fig. 1 that the relative difference between

isolated layers and bilayer, in both panels, are practically the same.

Based on this consideration we proceed the analysis of charge transfer and hybridization

using the strained calculations, which are computationally more feasible. As explained in

the main text, we observe a constant shift in energy, upwards for MoS2 and downwards

for WSe2, and a wavevector dependent variation around Γ when comparing the isolated

layers to the bilayer. While the effect of hybridization is a direct consequence of the mixing

among wavefunctions of the two layers, charge transfer results from the rearrangement of

the electrons at the bilayer interface due to the difference in band gap centers of the two

materials. From a DFT calculation point of view, it is the self-consistent procedure, in

particular the change in the Hartree potential in each loop, that allows the rearrangement

of the electrons once the two materials are put together. This means that performing a
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Figure 2: Left panel: bands for strained MoS2/WSe2 bilayer (circles) and constituent mono-
layers (continuous lines). Here the charge transfer effect manifests as constant shift in oppo-
site direction for MoS2 (in blue) and WSe2 (in red). Right panel bands for the same systems
but for the bilayer the Hartree potential is not updated self-consistently. Keeping the Hartree
potential fixed to the one of the isolated layers prevent charge transfer and therefore bilayer
and monolayers bands coincide as long as hybrization is negligible. Hybridization is present
around Γ.
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non-self-consistent DFT calculation starting from the self-consistent ground state density of

the isolated layers, would not allow for the update of the Hartree potential and consequent

electrons rearrangement. The fully self-consistent band structures (reported for comparison

from fig. 1 (a)) and the non self-consistent ones are shown in fig. 2, left and right panel

respectively. In panel (b), the isolated layers bands are now exactly on top of the bilayer

ones throughout most of the Brillouin zone and therefore it should be now clear that the

rigid shift of the bands was a signature of charge transfer. Furthermore the alteration of the

bands around the Γ point has not disappeared. This is exactly what we expected considering

that hybrization is a result of the overlap of the wavefunctions which is accounted for in the

non-self-consistent calculation.

Validity of the QEH correction on G0W0 band structure

To check the validity of our G0W0-QEH approach we perform G0W0 calculations for strained

MoS2 and WSe2 isolated layers and MoS2/WSe2 bilayers. The choice of strained structure

is obviously imposed by the feasibility of a G0W0 calculation for the bilayers. For the

following calculation plane-wave mode has been used. In the left panel of fig. 3 we report

the bands for the strained MoS2/WSe2 bilayer from a G0W0 calculation (continuous black

line) and the G0W0-QEH approach. The G0W0 bands for the isolated layers are also shown

as reference. As expected from the extra screening that each layer provides to the other, the

intra and inter layer gaps are reduced compared to the isolated layer ones and such an effect

is grasped both from the full G0W0 calculation and the G0W0-QEH method. However, the

agreement between G0W0 and G0W0-QEH is not striking. This is because the effect of charge

transfer is still present at the G0W0 level, since the Hartree potential generated by the charge

rearrangement at the interface is the same as the DFT one. Only self-consistency, indeed,

could relieve this problem. To prove that charge transfer is still there and that it is an effect

inherited from the starting LDA calculation, we evaluate the layer dependent energy shift at

4



−3.8
−3.6
−3.4
−3.2
−3.0
−2.8
−2.6
−2.4

Original C.T. corrected Extra Distance

M K Γ
−7.0
−6.8
−6.6
−6.4
−6.2
−6.0
−5.8
−5.6
−5.4

M K Γ M K Γ

BL GW

MLs GW

GWQEH

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
n

er
gy

(e
V

)

Figure 3: Comparison of the GWQEH method to G0W0 calculation for the lattice-matched
bilayer. Left panel: reference calculation. Central panel: GWQEH bands are shifted upwards
for MoS2 and downwards for WSe2 to account for the charge transfer. The values of the shifts
are extracted from the comparison between the isolated layers and bilayer LDA calculations.
Right panel: the layer separation is artificially increased by 3Å. With the extra distance
we expect the effect of charge transfer and hybridization to be completely negligible.The
isolated layer bands are reported in all the panels as reference. As usual blue is used for
MoS2 and red for WSe2.

the K-point by comparing isolated layers and bilayers bands at the LDA level and then add

these shifts to the G0W0-QEH bands. The results are shown in the central panel of fig. 3.

The agreement is nearly perfect and it supports our argument on the importance of charge

transfer. As a side note, we mention that the effect of charge transfer using plane-wave

mode, as opposed to LCAO, is a bit lower, namely we get an increase in interlayer gap of

0.11 eV compared to the 0.21 eV reported in the main text.

As a further proof of the validity of the G0W0-QEH method we repeat the G0W0 for the

bilayer adding 3 Å to interlayer distance between MoS2 and WSe2. This guarantees that

charge transfer and hybridization effects are negligible. Screening effects, on the other hand,

are still appreciable being the Coulomb coupling between the layers long range. The bands

for such a system are shown in the right panel of fig. 3 and it is clear that the G0W0-QEH
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does a good job.
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Efficient conversion of photons into electrical current in two-dimensional semiconductors requires, as a
first step, the dissociation of the strongly bound excitons into free electrons and holes. Here we calculate the
dissociation rates and energy shift of excitons in monolayer MoS2 as a function of an applied in-plane electric field.
The dissociation rates are obtained as the inverse lifetime of the resonant states of a two-dimensional hydrogenic
Hamiltonian which describes the exciton within the Mott-Wannier model. The resonances are computed using
complex scaling, and the effective masses and screened electron-hole interaction defining the hydrogenic
Hamiltonian are computed from first principles. For field strengths above 0.1 V/nm the dissociation lifetime
is shorter than 1 ps, which is below the lifetime associated with competing decay mechanisms. Interestingly,
encapsulation of the MoS2 layer in just two layers of hexagonal boron nitride (hBN), enhances the dissociation
rate by around one order of magnitude due to the increased screening. This shows that dielectric engineering is
an effective way to control exciton lifetimes in two-dimensional materials.

DOI: 10.1103/PhysRevB.94.041401

Two-dimensional (2D) semiconductors, such as single-
and few-layer transition-metal dichalcogenides, are presently
being intensively researched due to their extraordinary elec-
tronic and optical properties which include strong light-
matter interactions, spin-valley coupling, and easily tunable
electronic states [1–14]. One of the hallmarks of the 2D
semiconductors is the presence of strongly bound excitons
with binding energies reaching up to 30% of the band gap.
These large binding energies are mainly a result of the reduced
dielectric screening in two dimensions [15–19]. Although
such strongly bound excitons are highly interesting from
a fundamental point of view (for example, in the context
of Bose-Einstein condensates [20]) they are problematic for
many of the envisioned applications of 2D materials, such
as photodetectors and solar cells which rely on efficient
conversion of photons into electrical currents. This is because
the strong attraction between the electron and the hole makes
it difficult to dissociate the excitons into free carriers.

Photocurrent measurements on suspended MoS2 samples
have found that the photocurrent produced by below-band-gap
photons is strongly dependent on the applied voltage indicating
that the electric field plays an important role in the generation
of free carriers [21]. One way to increase the photoresponse
could be to embed the active 2D material into a van der Waals
heterostructure [22–24]. This embedding would enhance the
screening of the electron-hole interaction without altering the
overall shape of the band structure of the material. The effects
of this increased screening on the exciton dissociation are
studied in this Rapid Communication.

In general, rigorous calculations of exciton binding energies
require a many-body approach, such as the Bethe-Salpeter
equation (BSE) which directly finds the (real) poles of the
interacting response function, corresponding to the neutral
excitation energies of the system [25,26]. Such calculations are

computationally demanding and typically only used to study
excitations from the ground state, i.e., not in the presence of
external fields. We mention, however, that the BSE has been
used to study field-induced exciton dissociation in carbon nan-
otubes by fitting the BSE absorption spectrum to the Fano line
shape [27]. In this Rapid Communication we take a different
approach using that, under certain simplifying circumstances,
the calculation of the many-body excitonic state can be
reformulated as an effective hydrogenic Hamiltonian whose
eigenvalues and eigenstates represent the exciton binding
energies and the envelope wave function describing the relative
electron-hole motion. This is the so-called Mott-Wannier
model which has been instrumental in the description of
excitons in inorganic bulk semiconductors. A 2D version of the
Mott-Wannier model has recently been shown to yield exciton
binding energies in good agreement with BSE calculations
and experiments for both freestanding [15,16,18,19,28] and
supported [15,28,29] transition-metal dichalcogenide layers.
The dissociation rate of the exciton is then obtained by complex
scaling, which is a formally exact technique to compute
resonance energies and lifetimes. By employing a recently
developed quantum-classical method for calculating the di-
electric function of general van der Waals heterostructures,
we predict the effect of embedding the MoS2 in hBN on
the screened electron-hole interaction and exciton dissociation
rate.

When an in-plane constant electric field is applied to an
exciton, it will eventually decay into a free electron and hole.
This effect belongs to a class first studied by Keldysh [30]
and Franz [31], who examined how the optical properties of
semiconductors change in the presence of a static electric field.
The application of a constant electric field changes the exciton
from a bound state to a resonance with a finite lifetime equal
to the inverse dissociation rate.

2469-9950/2016/94(4)/041401(5) 041401-1 ©2016 American Physical Society
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The literature on resonances in quantum physics is vast,
and we will not go into the topic here but simply mention a
few important facts. First, it should be understood that even
the definition of a resonance is nontrivial. The reason for this
can be understood from Howland’s razor which states that no
satisfactory definition of a resonance can depend only on the
structure of a single operator on an abstract Hilbert space [32].
To illustrate the content of the statement consider the Stark
effect in hydrogen: Let Ĥ (ϵ) = − 1

2" − 1/r + ϵx. It can be
shown that Ĥ (ϵ) is unitarily equivalent to Ĥ (ϵ′) for all nonzero
ϵ and ϵ′s. Since we expect the properties of the resonances and,
in particular, their lifetimes to depend on field strength ϵ, this
example shows that the resonance cannot be viewed only as a
property of the operator Ĥ (ϵ). Instead the notion of resonance
is only meaningful when the real-space geometry of the given
system and relevant boundary conditions on the wave functions
are considered.

There are generally two approaches used to compute res-
onances. The so-called indirect methods identify resonances
as the poles of the scattering amplitude analytically extended
to the complex energy plane [33], whereas the direct methods
obtain the resonance states directly as eigenstates of a complex
scaled non-Hermitian Hamiltonian [34,35]. In this Rapid
Communication we will use the latter approach.

To describe excitons in a 2D semiconductor we use a Mott-
Wannier model of the form

[
− ∇2

2D

2µex
+ W (r)

]
F (r) = EbF (r), (1)

where µex is the exciton effective mass µ−1
ex = m−1

e + m−1
h ,

W is the screened electron-hole interaction, r is an in-plane
position vector, and Eb denotes the exciton binding energy. In
principle there should be an exchange term included here, but a
full ab initio solution of the BSE has shown that the exchange
term decreases the binding energy of the lowest exciton in

MoS2 by less than 4% [15], and the term can therefore be
neglected.

The screened electron-hole interaction is obtained as the
inverse Fourier transform of [ϵ2D(q)q]−1, where ϵ2D(q) is
the static dielectric function of the 2D material and 1/q is
the in-plane 2D Fourier transform of 1/r . In the small-q limit,
we can approximate ϵ as a linear function of q [16–19] so that

ϵ2D(q) = 1 + 2παq, (2)

with α being the polarizability of the material. An analytic
expression can then be obtained for the screened electron-hole
interaction [17],

W (r) = 1
4α

[Y0(x) − H0(x)]x=r/2πα, (3)

where Y0 is a Bessel function of the second kind and H0 is
a Struve function. For later use we note that both of these
functions are analytic on the entire complex plane away from
z = 0.

The expression (3) for the screened interaction relies on
a first-order expansion of ϵ2D(q) around q = 0; the validity
of this approximation has been demonstrated for a number of
freestanding 2D semiconductors [16,18,19] and recently for
MoS2 embedded in a few layers of hBN [15]. As a rule of
thumb, the linear screening approximation [Eq. (2)] remains
valid for intralayer excitons in van der Waals heterostructures
as long as the in-plane exciton radius is large compared to
the thickness of the heterostructure [15]. For thicker slabs, the
linear approximation breaks down, and the fully q-dependent
ϵ2D(q) must be used to obtain W (r). We follow the common
practice of using the static dielectric function for evaluating the
screened interaction of the Mott-Wannier model. For details
on how we calculate the dielectric functions of 2D layers and
heterostructures we refer to Ref. [29]. Using these methods,
the static dielectric function ϵ2D(q) can be calculated, and the
slope at q = 0 can be determined.
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(d) Continuum

E = ε0
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E = εR + iγ

E⃗

FIG. 1. (a)–(c) The three different structures considered in this Rapid Communication: isolated MoS2, MoS2 on a single layer of hBN, and
MoS2 sandwiched between two hBN layers. (d) Illustration of the Mott-Wannier model for monolayer MoS2 in the absence (left) and presence
(right) of an in-plane constant electric field. The exciton potential is shown in blue, the exciton wave function is sketched in green, and the
energy is shown in red. When an electric field is applied, the energy of the exciton shifts down, and the sharp energy peak is broadened due to
the coupling to the continuum of states.
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Here we have considered a MoS2 layer in three different
configurations: isolated, placed on a single layer of hBN,
and sandwiched between two hBN layers. The systems are
sketched in Figs. 1(a)–1(c). The distance between the MoS2
base plane and the hBN sheets was 5.1 Å and was chosen as
the mean of the interlayer distance in pure MoS2 and hBN.
Sensitivity testing showed that varying this distance by 20%
results in a variation in the slope of ϵ2D(q) of less than 2%.

The lattices of MoS2 and hBN are incommensurable, but
the quantum-electrostatic heterostructure model introduced
in Ref. [29] allows us to obtain the dielectric function of
the heterostructure by electrostatic coupling of the response
of the individual layers thus avoiding the issue of in-plane
lattice mismatch. Table I shows the obtained polarizabilities
and corresponding exciton binding energies. As expected,
embedding the MoS2 in hBN leads to an increase in screening
and a reduction in the binding energy with the calculated results
for the binding energy being in good agreement with ab initio
calculations [15].

Once an in-plane constant electric field is applied to the
system, the bound states of the Mott-Wannier Hamiltonian
become metastable. The situation is illustrated in Fig. 1(d). In
the model we have used, we assume that the band structure
and, in particular, the effective mass of the exciton are not
altered by the electric field.

Within the so-called direct methods, a resonance is defined
as an eigenstate of the Hamiltonian under the boundary
condition that only outgoing waves exist outside the scattering
region. Such an eigenstate must necessarily have a complex
eigenvalue E = ϵ0 − iγ and a wave function that adopts
the asymptotic form e±iKx for x → ±∞ (focusing on the
one-dimensional case for simplicity) where K = k − iκ with
k > 0 (an outgoing wave) and κ > 0. The latter condition
implies that the wave function increases exponentially away
from the scattering region. The decay rate of the resonance
state, evaluated as the rate of decay of the probability for
finding the particle in any finite region of space, is given by
γ = kκ . It can be shown that the resonance eigenvalue E is a
pole of the analytically continued scattering matrix [36].

To compute the resonance, one could in principle solve the
Schrödinger equation with the appropriate boundary condi-
tions. In practice, however, it is more convenient to perform a
“complex scaling” of the Hamiltonian, whereby the coordinate
r → eiθ r and ∇ → e−iθ∇, and then solve for the eigenstates
of the resulting (non-Hermitian) operator Ĥθ with the more
standard zero boundary conditions. For θ > tan−1(γ /k), the
complex scaled resonance wave function (that is the wave
function evaluated on the line reiθ after analytic continuation)
is an eigenstate of Ĥθ with eigenvalue E but now decaying

TABLE I. Calculated values for the polarizability (α) and exciton
binding energy (Eb) for single-layer MoS2 in the three configurations
shown in Figs. 2(a)–2(c).

Material α (a.u.) Eb (eV)

MoS2 11.1 0.62
MoS2-hBN 13.0 0.55
hBN-MoS2-hBN 16.1 0.47

exponentially as r → ±∞. The resonances thus appear as
isolated complex eigenvalues of Ĥθ with energy independent
of θ and a square integrable wave function [37]. The complex
scaled wave function of the bound states remain exponentially
decaying eigenstates of Ĥθ with real eigenvalues [34].

The unbound continuum states have a different behavior: If
the potentials involved are localized, the asymptotic form of
these states as r → ∞ is eikr with k,r ∈ R. They are thus finite
at infinity but non-normalizable. If this is to remain true after
the complex scaling is performed, the transformation r → reiθ

must be accompanied by the transformation k → ke−iθ . As
the energy of a plane wave is proportional to k2, the complex
scaling operation results in the energy of the continuum states
rotating into the complex plane at an angle of 2θ .

We mention that the complex scaling procedure cannot be
applied to any potential V (r) [35], but the class of potentials
for which the procedure works is large enough to include the
bare and the screened Coulomb potential [38] as well as a
constant electric field [39].

In Fig. 2 we show an example of the spectrum of the
complex-scaled exciton Hamiltonian for isolated MoS2 in
zero field for different values of the scaling parameter θ .
The two classes of states, bound and unbound, can clearly
be distinguished; for zero field there are no resonances.

For the systems shown in Figs. 2(a)– 2(c) we compute the
screened interaction between charges located in the MoS2 layer
using the random phase approximation (RPA) and the local
density approximation (LDA) as implemented in the GPAW
code [40,41]. The response calculations were done with a 60 ×
60 k-point grid and a 150-eV energy cutoff for G and G′.
The bandstructure obtained from the LDA calculations gives
an effective exciton mass for MoS2 of 0.27me. Once α and
µex are known, the 2D eigenvalue problem for the complex-
scaled Hamiltonian is solved on a real-space grid using radial
coordinates. In order to converge the exciton energies, a large
simulation cell is needed—significantly larger than the exciton
radius, which is around 10 Å for all of the systems considered.
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FIG. 2. The different behaviors of bound and continuum states
under the complex scaling operation for the potential corresponding
to isolated MoS2. The black dashed lines start at −0.15 eV and have
been rotated into the complex plane by −2θ for each of the complex
scaling angles. Note that the continuum starts at −0.15 eV and not 0
because of the finite size of the simulation box.
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FIG. 3. The dissociation rate of an exciton in the MoS2 layer as
a function of in-plane field strength for the three different structures.
The intrinsic decay rate spans between the defect-assisted fast decay
of the excitons of 2–5 ps (upper limit) and the much slower radiative
recombination of the excitons at room temperature (lower limit).

As the screened potential has a logarithmic singularity at r = 0
while being virtually flat at the edge of the simulation cell, a
nonlinear grid is used, which allows us to perform simulations
in a disk of radius 250 Å. The Laplacian is represented by a
finite-difference stencil. In order to avoid diagonalization of
the full Hamiltonian, we used the iterative eigensolver ARPACK.

Figure 3 shows the MoS2 exciton dissociation rate as a
function of in-plane field strength for three different structures.
As expected, larger fields lead to shorter lifetimes, and the
rate is seen to depend roughly exponentially on 1/E for
the considered field strengths. It can also be seen that the
dissociation rate can be tuned to a high degree by changing
the environment of the MoS2. When MoS2 is placed on a single
layer of boron nitride, the extra screening greatly increases the
dissociation rate, and similarly, when the MoS2 is sandwiched
between two layers of BN, the rate is even larger. This is as
expected since larger screening results in more weakly bound
excitons, which should in turn dissociate more readily. Adding
more hBN layers on either side is expected to further enhance
the screening and hence the dissociation rates, but this has not
been pursued here as the linear screening model breaks down
in this regime [15].

Along with information about the lifetime of the resonant
states, the complex eigenvalue can provide information on
the Stark shift of the resonance energy, an effect which
is directly observable in optical absorption measurements.
Figure 4 shows how the real part of the eigenvalue varies with
field strength, and as expected, for small fields we observe
a parabolic shift. The breakdown of this parabolic behavior
occurs at smallest fields for the most screened excitons.

Recently, it has been shown that excitons in 2D materials
can be described by a 2D hydrogen model with an effective di-
electric constant [28], which for the linear screening described
by Eq. (2) is given by ϵeff = 1

2 + 1
2

√
1 + 32παµ/3. Based on

this model and second-order perturbation theory, the shift can
be predicted to be

"E = −21
64

ϵ4
eff

µ3
E2. (4)

Figure 4 shows that this prediction fits well with our calcula-
tions for small fields.
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FIG. 4. The Stark shift in the MoS2 heterostructures. The inset
shows the shift for small fields, along with the shift predicted for a 2D
hydrogen atom with an effective dielectric constant ϵeff ; see Eq. (4).

In a real device, the field-induced dissociation of excitons
described here is in competition with other decay mechanisms,
such as direct radiative recombination [42], defect-assisted
recombination [43], and exciton-exciton annihilation [44]. The
relative importance of these effects is highly dependent on the
temperature of the MoS2, the presence and concentration of
defects, and the exciton density.

At very low temperatures, the direct radiative decay of
zero momentum excitons dominates with a characteristic
lifetime of ∼200 fs [42,45,46]. At room temperature, most
of the excitons have nonvanishing momenta, and the radiative
recombination lifetime is ∼1 ns [42,43]. For these systems,
defect-assisted recombination therefore becomes an important
mechanism with a characteristic lifetime of 2–5 ps [43,47,48].
Exciton-exciton annihilations become important only when
the density of excitons in a sample is large; equivalently when
the average distance between excitons is small. At a density of
1 × 1012 cm−2, the effective lifetime from annihilation is on
the order of 10 ps [44].

The calculations performed here indicate that for field
strengths larger than 0.1 V/nm, the dissociation lifetime is
shorter than 1 ps in all the systems considered. A potential
gradient of this size (0.1 V/nm) over the extent of the
exciton (around 2 nm) is realistic to achieve close to the
metal-MoS2 contact region where charge transfer and interface
dipole formation driven by Fermi-level mismatch can lead to
significant variation of the potential and band energies even in
the absence of an applied bias voltage. Under such conditions,
the field-induced dissociation is faster than any other decay
channel and should therefore dominate as indicated by the fact
that in Fig. 3, the data points all lie above the shaded region.

To summarize we have used complex scaling to compute the
lifetime of excitons in two-dimensional MoS2 and MoS2/hBN
structures under an applied static electric field. The exciton was
simulated using a 2D Mott-Wannier model which has previ-
ously been found to yield a reliable description of the lowest-
lying excitonic states in transition-metal dichalcogenides. We
found that for field strengths around 0.1 V/nm, the exciton
dissociation is larger than the intrinsic exciton decay rate in
MoS2. Moreover, encapsulation in a few layers of hBN was
found to increase the dissociation rate by an order of magnitude
for fixed field strength due to the increased screening provided
by the electrons in the hBN.
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Abstract
Photodetectors and solar cells based onmaterials with strongly bound excitons rely crucially on
field-assisted exciton ionization.We study the ionization process inmultilayer transition-metal
dichalcogenides (TMDs)within theMott-Wanniermodel incorporating fully the pronounced
anisotropy of thesematerials. Using complex scaling, we show that thefield-dependence of the
ionization process is strongly dependent on orientation. Also, wefind that direct and indirect excitons
behave qualitatively differently as a result of opposite effective anisotropy of these states. Based on
first-principlesmaterial parameters, an analysis of several important TMDs revealsWSe2 andMoSe2
to be superior for applications relying on ionization of direct and indirect excitons, respectively.

1. Introduction

Transition-metal dichalcogenides (TMDs) includingMoS2,MoSe2,WS2, andWSe2 are layered two-
dimensional semiconductors with unique electronic and optical properties. They are highly promising for
optoelectronic applications such as photodetectors [1–5], solar cells [6, 7], and light emitting diodes [8]. In their
monolayer form,MoS2,MoSe2,WS2, andWSe2 are direct bandgap semiconductors. Importantly, the low
dimensionality and reduced screening leads to highly prominent exciton effects with binding energies of several
hundredmeVs [9, 10]. Such excitons greatlymodify both linear [11] and nonlinear [12] optical properties.
Regarding applications, exciton binding energies significantly larger than the thermal energy at room
temperature (~25 meV) increase radiative electron-hole recombination and are, therefore, beneficial for
efficient light emission. In contrast, strongly bound excitonsmay reduce the efficiency of photodetectors and
solar cells because these devices require exciton ionization in order to separate electrons and holes. Thefirst
monolayer TMD-based photodetectors showed relatively low efficiencies [1]. By improvingmaterial quality and
thereby increasing carriermobility, the responsivity was subsequently greatly improved [2, 4]. These devices all
operated in the parallel collectionmode, inwhich an in-plane bias betweenmetal contacts drives the current
along themonolayer. Recently, devices based on perpendicular collection, i.e. transport between layers, have
emerged as promising alternatives. In particular, both efficient and ultrafast photoresponse has been
demonstrated forMoS2 [3] andWSe2 [5] photodetectors. Importantly, this approach allows for devices based on
stacking of appropriate two-dimensionalmaterials. Thus, contacts for carrier collection can be fabricated by
encapsulation of the photoactive semiconductor between conducting graphene sheets [3, 5].

The highly promising characteristics demonstrated in [3, 5]were obtained formultilayer samples having
thicknesses of 50 nm [3] and between 2.2 and 40 nm [5], respectively. In such samples, electron and holes are
delocalized across several layers and,moreover, screening is increased compared tomonolayers. Hence, in slabs
thicker than the bulk exciton Bohr radius, the exciton binding energy is significantly reduced. This is expected to
contribute to the high sensitivity and response rate observed experimentally. The limiting factors for the rate are
poorly understood, however. In [5], the response rate was shown to increase approximately linearly with bias
voltage between the graphene contacts while an inverse quadratic dependence on sample thickness was found.
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This suggests that out-of-plane drift is the limiting factor for the rate [5]. It is clear, however, that a full
description of the response involves several physicalmechanisms. In fact, the photoresponse itself is a combined
process consisting of (i) exciton creation upon photon absorption, (ii)field-assisted ionization of the exciton,
(iii) transport of dissociated carriers, and (iv) collection at the contacts. Hence, the applied bias performs a two-
fold function of driving both exciton ionization and carrier transport.

The process of exciton ionization is a crucial step in the photoresponse. Inmaterials with strongly bound
excitons, such as TMDs, thermal ionization is inefficient and a strong external electric field is required for
efficient carrier separation. As an estimate, the required field strength for efficient dissociation is given by the
ratio between exciton binding energy andBohr radius. A full description of the ionization process is needed,
however, tomodel the dependence of the ionization rate onfield strength.Moreover, in anisotropicmaterials,
the ionization rate will depend on the direction of the applied field. In the present paper, we study the exciton
ionization process in anisotropic TMDs using amodifiedMott-Wannier [13] approach incorporating the
material anisotropy. In this approach, bulk dielectric constants and effectivemasses lead to an exciton eigenvalue
problem that ismathematically identical to that of a hydrogen atom embedded in an anisotropicmaterial. The
material constants are calculated from first-principles density-functional theory. To describe field-assisted
ionization, an electric field is added to theMott-Wannier equation.We apply the complex scaling technique [14]
and hypergeometric resummation [15, 16] to compute ionization rates and Stark shifts of excitons in typical
TMDs. These are highly non-perturbative phenomena. In particular, the ionization rate cannot be described
using afinite-order perturbation expansion [14]. Ourwork is related to a recent work [17], inwhich the second-
order Stark shift in phosphorenewas studied. This two-dimensionalmaterial has strong in-plane anisotropy.
Also, in TMDs, the optical Stark effect, i.e. non-perturbative effects of strong laser excitation, has been
demonstrated [18, 19]. In addition, a recent study by some of the present authors has described exciton
dissociation inmonolayerMoS2, demonstrating a pronounced dependence on screening by the surroundings
[20]. Very recently [21], experimental Stark shifts due to static perpendicular fields inMoS2multilayers with
thicknesses between one andfive layers were reported. Theweak thickness dependence of the observed shift
clearly indicates that exciton effects are important. So far, however, exciton ionization due to staticfields in
multilayer TMDs has not been discussed in any quantitative theoretical work.

2. Anisotropic excitonmodel

In a truly two-dimensionalmaterial, the nonlocal wave vector dependence of the dielectric constant is important
for a correct description of screening [10]. In a three-dimensionalmaterial, however, dispersion ismuch less
pronounced and the dielectric constant can be assumed independent of wave vector, i.e. approximated by the
long-range limit e ( )q 0

G
[22]. In uniaxially anisotropic three-dimensionalmaterials such asmultilayer

TMDs, the dielectric constant is then given by a constant tensor e e e e= ( )diag , ,x x z
I

with separate elements for
the out-of-plane (z-axis) and in-plane (x-axis) values. Similarly, the effectivemasses for these directions differ.
For direct excitons, electrons and holes are located at theK point. For indirect excitons, holes reside at theΓ
point whereas electrons are located at the conduction bandminimumΣ roughlymidway betweenΓ andK. In
fact, the in-plane effectivemass depends on rotation angle in the (x, y)plane. This relatively weak in-plane
dependencewill be ignored, however. Thus, belowwe take the effective holemasses computed for the K M
andΓ→M directions for direct and indirect excitons, respectively. For electrons, the corresponding directions
are K M andΣ→M, respectively. The out-of-plane effectivemasses are determined from the dispersion
along the perpendicular lines passing through the band extrema. For the conduction band, the electron (e)
effectivemass tensor in then of the diagonal form = ( )( ) ( ) ( ) ( )m m m mdiag , ,e

x
e

x
e

z
eI

, and similarly for holes (h) in
the valence band.Moreover, the reducedmass tensor for the electron-hole pair is = ( )m m m mdiag , ,x x z

I
with

/= +( )( ) ( ) ( ) ( )m m m m m .i i
e

i
h

i
e

i
h Introducing the relative-motion coordinate = -r r reh e h

G G G
of the electron hole

pair, theMott-Wannier problem for excitons in the presence of an electric field F
G
is of the form
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with the anisotropically screened electron-hole attraction [23, 24]

/pe e e e e
=

+ +
( )

( ( ) )
( )V r

e

x y z4
. 2eh

x z eh eh x z eh

2

0
2 2 2 1 2

G

It is convenient to scale distances according to anisotropic Bohr radii e e= ( )⁎a m m ax x x z0 0 and
e e= ( )⁎a m m m az x z x z0 0 for the x- and z-directions, respectively, with m0 the free electronmass and

pe= ( )�a m e40 0
2

0
2 the hydrogenBohr radius. Similarly, we introduce the effective excitonHartree energy
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e e= ( )⁎ m mHa Hax x z0 with = ( )� m aHa 2
0 0

2 the atomicHartree. In these units, i.e. writing
= ( )⁎ ⁎ ⁎r a x a y a z, ,eh x x z

G
and = ⁎E EHa ,eh equation (1) becomes
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with the anisotropy parameter k e e= - m m1 .x x z z Wenote that the electric field �
G
is now given in effective

units so that = ( )� � � � � � �F , ,x x x y z z0

G
with /= = ⋅ -� eaHa 5.14 10 V m0 0

11 1 the characteristicfield strength
in atomic units and the anisotropic field scaling factors given by
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As illustrated infigure 1, these scaling factors are the appropriate ones for the cases of perpendicular
collection (�

G
along z) and parallel collection (�

G
along x), respectively.

In the effective exciton units, the consequences of anisotropy are entirely governed by the single parameter
k.Hence, if k = 0, thematerial is effectively isotropic. In contrast, k > 0 means that, in scaled coordinates, the
Coulomb attraction is less sensitive to the z coordinate. In fact, as k approaches unity, the z-dependence of the
interaction vanishes. Hence, for k > 0 excitons will tend to delocalize perpendicular to the layers. If k < 0,
delocalizationwithin individual layers is enhanced. These trends are illustrated by the schematic insets in
figure 2.We stress that this picture is only valid in scaled coordinates. As shown below, the sign of k differs for
direct and indirect excitons. Hence, the large effectivemasses for the z-direction for direct excitonsmean that
k > 0 for these states in TMDs. In contrast, indirect excitons have nearly isotropic effectivemasses and it is
mainly the dielectric constants that lead to anisotropy. The fact that e e>x z consequentlymeans that k < 0 for
indirect excitons.

To solve the eigenvalue problem,we introduce cylindrical polar coordinates r q{ }z, , and expand in a
Laguerre-type basis

å ååy r q r q j j= +
= = =

( ) ( ) { ( ) ( )} ( )( ) ( )z R l c z c z, , cos 5
m

M

n

N

l

L

ml mnl
s

ns mnl
p

np
0 0 0

with /j = -( ) ( ∣ ∣)z L k z e ,ns n
k z 2 /j = -( ) ( ∣ ∣)z zL k z e ,np n

k z1 2 and /r r r= r-( ) ( )R L qe .ml
l q

m
l2 2 The parameters k

and q can be optimized tominimize the exciton ground state energy.Wefind however, that = =k q 2 is very
nearly the optimal choice in all cases. For = ˆ� �z,

G
cylindrical symmetry is preserved around the z-direction and

for the exciton ground state =L 0 is sufficient in the expansion above.On the other hand, for = ˆ� �x,
G

the
symmetry is broken andwe use an expansion limited by =L 5. In this case, however, inversion symmetry along
z ismaintained and =( )c 0.mnl

p In the former case, we include 30 basis states for both r and z dependencies, i.e.
= =M N 29. Similarly, for = ˆ� �x,

G
we take = =M N 19.Hence, the size of the basis is 1800 and 2400 for the

two cases, respectively.
In the limits k = 0 and k = 1, theWannier equation describes three-dimensional and two-dimensional

excitons, respectively.We note, however, that for k = 1 the exciton state is actually completely delocalized along

Figure 1. Schematic illustration of the collectionmodes for different field orientations.
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the z-direction and the 2Dbehavior pertains to the in-plane character only. This follows from the behavior of the
potential / /k- +- -( ) ( )r z x y2 2 1 2 2 2 1 2 as the limit k = 1 is approached.Hence, the in-plane and out-of-
planemotions decouple completely leading to delocalization along z. The 2D character of the exciton in this
limit is, however, rather different from excitons inmonolayer TMDs because of differences in screening, which
has a pronounced nonlocal wave vector dependence formonolayers, as discussed above. Infigure 2, we show the
binding energy E0 of the ground state as a function of the anisotropy. As expected, the limits for k = 0 and
k = 1are /= -E 1 20 and = -E 2,0 respectively. Importantly, though, for k = 1 the ground state is, in fact,
the lower limit of a continuum reflecting the delocalized z-dependence. In contrast, the state is fully localized for
k = 0. Infigure 2, we also include the perturbation result valid for small k, i.e. formaterials that are only weakly
anisotropic, see appendix and [25].

3. Exciton ionization

Asmentioned above, field-ionization is a non-perturbative phenomenon that is not captured in anyfinite-order
perturbation expansion infield strength. In the presence of the field, the bound state energies turn into complex
resonances.Writing = D - G( )�E i 2wemay decompose such complex eigenvalues into their real and
imaginary parts. The interpretation is then that the real partD represents the Stark energy whereas the
imaginary part provides the ionization rate G.This rate can be understood as the rate of tunneling from the
bound state into the dissociated state. There are two commonly sought routes to obtaining G, both of whichwe
will pursue below. Thefirst is the purely numerical approach of complex scaling [14, 20] that immediately
provides both real and imaginary parts of the resonance. Alternatively, a semi-analytical result can be obtained
through analytical continuation and resummation of a low-order perturbation series [15, 16, 26].

In a direct bandgapmaterial, the excitation and ionization processes are conceptually simple.Hence, for
excitation by photon energies close to the fundamental exciton, the initial excitation quickly relaxes to the lowest
direct exciton. Fromhere, the state then either recombines (radiatively or non-radiatively) or becomes ionized.
In contrast, an indirect bandgapmaterial ismore complicated. Assuming again excitation by low energy photons
and ignoring phonon-assisted processes, the initial excitation is the direct exciton as the transition to the indirect
one is optically forbidden bymomentum conservation. Hence, if ionization happens sufficiently rapidly, the
dissociating species is still the direct exciton. Conversely, ionization after thermal relaxation to the indirect
excitonmeans that this species is the relevant one. It follows that a rapid ionization rate, i.e. ionization in a strong
field, pertains to the direct exciton. Slow ionization inweak fields, on the other hand, will predominantly happen
from the indirect exciton. In the present work, wewill study ionization of both species. As our focus is on strong
field ionization, however, wewillmainly illustrate results relevant for direct excitons, i.e. the k > 0 regime.

If a weak electric field is applied, the resonance is approximately » +( ) ( )� �E E E ,x z x z, 0 ,
2 2 where subscripts x

and z indicate parallel and perpendicular collection, respectively. The coefficient of the second order term
determines the exciton polarizability ax z, through a= -( )E .x z x z,

2 1

2 , More generally, if a perturbation expansion

in the electricfield is applied, the ground state energy is written å= =
¥( ) ( )� �E E .x z n x z

n n
, 0 ,

2 2 Only even powers of
the electricfield appear due to inversion symmetry of the unperturbed system in theMott-Wanniermodel. The
zeroth order term =( )E Ex z,

0
0 is the unperturbed ground state energy and obviously independent offield

Figure 2.Exciton ground state energy versus anisotropy. The horizontal black lines indicate the limiting values and the dashed line is
the first order perturbation result. The insets illustrate exciton delocalization for different signs of the effective anisotropy.
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direction.Using afinite-field approach, we solve theWannier equation equation (3) in the presence of a small
electric field ofmagnitude = -� 10 3 applying the localized bases introduced above. By subtracting the field-free
ground state energy, we obtain the direct exciton k >( )0 polarizabilities shown infigure 3. As shown in the
figure, the behavior for highly anisotropicmaterials is strongly dependent on the direction of the appliedfield.
The two curves start from a common value of 9/2 in agreementwith the exact value for the hydrogen atom
[27, 28]. For values of k approaching unity, however, their behaviors aremarkedly different. Thus, in the
perpendicular case, the polarizability diverges reflecting the completely delocalized state along the z-direction.
In contrast, in the parallel case, the polarizability remainsfinite and eventually reaches a value of
/ »21 128 0.1641 in the 2D limit [29]. Again, in the plot, we include the approximate results found by

linearizing in k as derived in the appendix, i.e. / /a k» -9 2 439 120x and / /a k» -9 2 101 60.z It is seen that
these describe the exact behavior surprisingly well even for anisotropies as large as k ~ 0.8.By solving for several
distinct (small)field strengths, the finite-field approach can be extended to provide higher order terms in the
field expansion. In this way it can be shown that linearization in k remains reasonably accurate for higher order
terms aswell.

In fact, the full asymptotic serieså =
¥ ( )�E
n x z

n n
0 ,

2 2 is highly divergent for allfinite values of thefield strength.
However, by appropriate resummation of afinite series, physicallymeaningful quantities can be obtained from
it. Traditionally, Padé approximants have been applied to this end [26]. These typically require partial
expansions of high order to be successful.We have recently shown [15, 16] that hypergeometric resummation
provides a very efficient alternative. Here, only thefirstfive non-vanishing terms - -n0 4 of the expansion
are needed tofind a highly accurate result.We have previously applied this result to the three-dimensional [15]
and low-dimensional [16] hydrogen problems, which aremathematically very similar to theWannier problem
considered here. In the appendix, the required series are provided for both collectionmodes and belowwe
demonstrate how thesemay be used to accurately describe both Stark energy and exciton ionization.

The complex scalingmethod [14] is based on a coordinate scaling jr r e .
G G

By analytically continuing into
the complex plane, the parameterj can be taken purely imaginary, i.e.j q= i with q real. In turn, the complex
scaledWannier equation reads as

/k
y y- -

-
+ ⋅ =

q q
q

- -

( )
( )�

⎧⎨⎩
⎫⎬⎭r z

r E
e

2

e
e . 6

2i
2

i

2 2 1 2
i
G G

For finitefield and rotation angle q, the eigenstates are square integrable and the eigenvalues complex, as
explained above. In fact [14], the eigenvalue is independent of the value of q as long as a finite value is adopted. In
practise, a small q-dependence is observedwhenever expansion in afinite basis is applied.We have found,
however, that this dependence is negligible if bases of the sizes discussed above are used. Below, all results will be
for q = 0.4.

Infigure 4, the solid lines show the complex scaling results for four values of the anisotropy ranging from
none k =( )0 to substantial (k = -1.0 and k = )0.8 .Moreover, both collectionmodes are analyzed. At
vanishing field strength, the Stark energy, i.e. the real part of the resonance, agrees with the results infigure 2. As
thefield is increased, the energy initially decreases quadratically with a prefactor given by the polarizability in
figure 3.However, beyond afield strength of approximately ~� 0.1, a significantly softer behavior is found. At a

Figure 3.Exact numerical polarizabilities (solid lines) and linearized approximations (dashed lines) for perpendicular (green) and
parallel (blue) collectionmodes.
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similarfield strength, the ionization rate increases dramatically before becoming approximately linear in the
field. Inweakfields, the ionization rate is dominated by an exponential G ~ -( )�cexp behavior. All of these
features agree with the analogous findings for atomic hydrogen [15]. It is observed that increased anisotropy
leads to reduced ionization,mainly as a result of the increased exciton binding energy.Moreover, in the
perpendicular collectionmode, the ionization rate in relatively largefields is only weakly sensitive to the
anisotropy, i.e. all curves share roughly the same slope. In contrast, for the parallel case, the slope decreases
markedly as k is increased. This difference relates to the delocalization behavior of the states as shown in the
insets offigure 2. Thus, as k increases, the states become increasingly delocalized in the perpendicular direction.
This, taken by itself, increases ionization in a perpendicular field but not in a parallel one.Hence, delocalization
partially counteracts the increased exciton binding for the perpendicular collectionmode.

The complex scaling results are based on diagonalization of relatively largematrices on afine grid of electric
field strengths. Such afine grid is required in order to track the evolution of a particular state as the field is
increased. This approach is therefore computationally demanding and it is of interest to compare with themuch
simpler hypergeometric resummation approach. As explained above, themethod takes the first five terms in the
asymptotic expansion of thefield dependence as input. In the appendix, the required expansions are provided.
We apply thesewithin the hypergeometric resummation approach used in [16] and thereby obtain Stark
energies and ionization rates at practically no computational cost. These are shownby the dots infigure 4. For
vanishing anisotropy, the agreement is essentially perfect, as expected [15, 16]. Remarkably, however, the
agreement is excellent even for large values of k∣ ∣.This demonstrates the power of the hypergeometric
resummation approach.We stress that, using the series provided in the appendix, accurate calculation of
resonances for any givenmaterial (within the class studied here) can bemade at a fraction of the computational
cost compared to the full complex scaling.

4. Application to TMDs

To convert any result of theWannier approach to physical quantities we require specific values of the anisotropic
dielectric constants and effectivemasses. To this end, we have performed first-principles calculations for the
important TMDsMoS2,MoSe2,WS2, andWSe2 using the RandomPhase Approximation and including spin–
orbit interaction. All calculations were performedwith the projector augmentedwave electronic structure code
GPAW [30, 31] and include local-field effects in the dielectric response. Full details on the calculations can be
found in [32]. Thefirst-principles results for direct and indirect excitons are listed in table 1 and 2, respectively.

Figure 4.Exciton Stark energy (left axes) and ionization rate (right axes) for two orientations of the electric field. Both complex scaling
(solid lines) and hypergeometric resummation results (dots) are shown.
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For direct excitons, the anisotropymanifests itself in highly different out-of-plane and in-plane effectivemasses.
As seen in table 1, thesemasses differ by nearly an order onmagnitude. Similarly, the out-of-plane dielectric
constants are less than half the in-plane values. For both sulphidesMoS2 andWS2, these values translate into an
anisotropy of k » 0.8.Thus, even if the twomaterials are obviously dissimilar, their effective anisotropy is
essentially the same. The dissimilarity reveals itself in thefield scaling factors, however, which are about twice as
large inMoS2 as inWS2 as a result of themuch larger effectivemasses of the former. Thismeans that any
normalizedfield strength infigure 4 translates into amuch smaller physical field inWS2 relative toMoS2. An
approximately similar ratio is found for the field scaling ofMoSe2 relative toWSe2. To complete the conversion
and translate the ionization rate G into physical units, the frequency scale /⁎ �Ha is applied. The converted
results for direct and indirect excitons obtained from this procedure are shown infigures 5 and 6, respectively.

In the effective exciton units, afield of unitymagnitude corresponds to a physical field of
/= = ⁎ ⁎� �F aHa ,x z x z x z, , 0 , i.e. the ratio between effectiveHartree andBohr radius for the particular field

direction. From tables 1 and 2 it is seen that the direct and indirect exciton binding energies constitute about
75% and 40%of ⁎Ha , respectively. Hence, estimating thefield strength required for efficient ionization as
/∣ ∣ ⁎E ax z0 , is equivalent to unity field strength ~� 1 in exciton units within a factor of approximately two. From

Table 1.Material parameters for direct excitons in TMDs.

Mat. /m mx 0 /m mz 0 ex ez k ⁎Ha E0 �x �z

MoS2 0.293 3.096 13.24 5.61 0.777 107 meV −83 meV 1.3 10−4 4.4 10−4

WS2 0.184 1.997 12.49 5.87 0.804 68 meV −54 meV 5.4 10−5 1.8 10−4

MoSe2 0.333 1.573 15.06 7.62 0.582 79 meV −52 meV 9.0 10−5 2.0 10−4

WSe2 0.198 1.198 13.80 7.07 0.677 55 meV −39 meV 4.1 10−5 1.0 10−4

Table 2.Material parameters for indirect excitons in TMDs.

Mat. /m mx 0 /m mz 0 ex ez k ⁎Ha E0 �x �z

MoS2 0.355 0.364 13.24 5.61 −1.302 130 meV −48 meV 2.0 10−4 2.0 10−4

WS2 0.295 0.340 12.49 5.87 −0.827 108 meV −44 meV 1.4 10−4 1.5 10−4

MoSe2 0.404 0.394 15.06 7.62 −1.027 96 meV −37 meV 1.3 10−4 1.3 10−4

WSe2 0.387 0.373 13.80 7.07 −1.025 108 meV −42 meV 1.6 10−4 1.5 10−4

Figure 5.Direct exciton ionization rates converted into physical units for different TMDs. The upper and lower panels are for
perpendicular and parallel collection, respectively.
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figure 4 it is seen that at such afield strength, ionization is well into the linear regime.Hence, using /∣ ∣ ⁎E ax z0 , as an
estimate for the ionization threshold is partly supported by our results. In fact, the transition from exponential to
linearfield-dependence infigure 4 occurs around ~� 0.1,whichmay be considered a bettermeasure for the
threshold.

For both direct and indirect excitons, themagnitude of the ionization rate reflects the exciton binding
energy.Hence, there is a simple correlation between the binding energies in tables 1 and 2, on the one hand, and
the ordering of the curves infigures 5 and 6 on the other, with strongly bound excitons leading to suppressed
ionization. The larger differences for the direct exciton binding energies lead tomore spread-out curves as
compared to the indirect ones. Overall, the best candidates for efficient ionization of direct and indirect excitons
areWSe2 andMoSe2, respectively. For the direct excitons (figure 5) theWSe2 rate is significantly higher than the
second bestmaterial, i.e.MoSe2 andWS2 for perpendicular and parallel collection, respectively. In comparison,
the differences for indirect excitons aremodest.

We end this sectionwith a brief comparison to the experimental photoresponse rate observed in [5]. In that
work, the photoresponse rate was determined using two-pulse excitationwith an adjustable delay. Hence, the
extraction time of the photogenerated carriers produced by the first pulse is probed by the second pulse. The
extraction time itself is ameasure of at least three processes occurring in series: (i) exciton ionization, (ii) drift to
the TMD/graphene interface, and (iii) transfer across the interface. Hence, importantly, themeasurement is
dominated by the slowest among these processes and the experimental rate cannot necessarily be identifiedwith
the actual ionization rate. The fastest response~ ⋅ -2 10 s11 1was seen for aWSe2 device having a slab thickness of
2.2 nm. This thickness is larger than the perpendicular exciton Bohr radius (1.1 and 1.4 nm for direct and
indirect excitons, respectively) andwe therefore expect the bulk picture in the present work to be applicable. Bias
voltages up to 1.2 Vwere applied in themeasurement and the response rate typically increasedwith applied bias.
The precise value of the internal electric field is subject to someuncertainty and depends on the geometrical
capacitance and interface charges (see [5], supplementary information). It is clear, however, that the theoretical
ionization rates computed above exceed themeasured rate by a significant factor. In fact, forfield strengths of

m -100 V m 1 and above, the converted results infigures 5 and 6 for perpendicular collection are found to be at
least ⋅ -2.2 10 s14 1 and ⋅ -3.3 10 s14 1 for direct and indirect excitons, respectively. This is obviously significantly
larger than the experimental response rate. Hence, in agreementwith [5], we conclude that exciton ionization is
not the limiting process in the observed photoresponse at this field strength. Rather, drift of the carriers to the
contacts after ionization is the probable cause of the reduction. Generally, carrier drift in the perpendicular
direction ismuch slower than in-plane drift. For instance, the ratio between parallel and perpendicular carrier
mobility for the relatedmaterialMoSe2 can be as large as 103 [33]. The limiting role of carrier drift is further
evidenced by the inverse square dependence of the rate on sample thickness [5]. Finally, a transfer time of 1 ps

Figure 6. Same asfigure 5 but for indirect exciton ionization.Note thatWS2 andWSe2 results nearly coincide.
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across the interface between graphene andWS2was recently reported [34]. Assuming a similar rate forWSe2,
this implies an upper limit of~ -10 s12 1 for themeasured photoresponse rate.

5. Summary

In summary, we have considered the process offield-assisted exciton ionization inmultilayer TMDs. By solving
an anisotropicMott-Wannier equationwe are able to extract exciton binding energies. Combinedwith complex
scaling and resummation techniques, we subsequently find exciton Stark shifts and ionization rates as a function
of externalfield strength.When applied to sulphides (MoS2 andWS2) and selenides (MoSe2 andWSe2), our
results show that, in scaled exciton units, all of thesematerials behave similarly. However, after conversion into
physical units, significant differences emerge. Thus, direct excitons in the tungsten compoundWSe2 are found
to ionize in substantially smaller fields as a result of the smaller exciton binding energy. Similarly, for the indirect
exciton, the ionization rate ofMoSe2 is the highest among the compounds considered.
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Appendix. Perturbation series

Formaterials that are onlyweakly anisotropic so that k∣ ∣ 1,� theWannier equation equation (3)may be
approximated by the linearized problem

k
y y- - - + ⋅ = ( )�

⎧⎨⎩
⎫⎬⎭r

z

r
r E

1

2

1

2
. A12

2

3

G G

Wewish tofind the perturbation series for the energy as an asymptotic series in the electric field
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2 2 In the isotropic case k = 0,well-known results for the 3Dhydrogen problem
[16, 27] readily provide the 8th order expansion
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To include afinite but small anisotropy, we now calculate thefirst order correction in k to the eigenvalue in
equation (A1)using linear perturbation theory. To this end, thewave function yk= ( )� ,0 correct to 8th order in
thefield �, is required. Fortunately, the separation in parabolic coordinates applied in [16] immediately provides
this function. If thefield is along z such that both perturbations in equation (A1) preserve the rotational
symmetry around the z-axis, the analysis is straightforward and for the total energy » + Dk=( ) ( ) ( )� � �E E Ez z0

onefinds the correction
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On the other hand, if thefield is in-plane = ˆ� �x,
G

equation (A1) is conveniently symmetrized over
directions perpendicular to thefield and reformulated as
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Hence, the isotropic Coulomb term is renormalized by a factor of + k1 .
4
A simple scaling calculation shows that

the 2n′th order field correction for the isotropic case equation (A2) acquires a factor - k( )n1 3
2
as a consequence.

The second k -dependent term in equation (A4) is the same as for the perpendicular case except for a factor
/-1 2.Adding the two contributions, it follows that for the parallel case
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The linearization in kmeans that the above results cannot be immediately applied in the experimentally
relevant range for TMDs k∣ ∣ . 0.5.We therefore fit the full k -dependence to a polynomial using (i) the exact
known limits for k = 0 and k = 1 [16], (2) the exact linear behavior equations (A3) and (A5), and (3)numerical
Stark energies for intermediate values. The results for k . 0 for the two orientations are
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= - + - + -

= - + - + - ( )

( )

( )

( )

( )

E

E

E

E

2.25 0.841 97 0.304 37 1.2014 0.917 73

55.547 62.705 46.093 107.7 92.28

4907.8 9432.1 12 285 22 899 18 157

794 240 21 796 00 38 894 00 65 712 00 47 654 00 . A7

z

z

z

z

2 2 3 4

4 2 3 4

6 2 3 4

8 2 3 4

Wedo not attempt to incorporate negative k -value into the fit but provide here the relevant expressions for
the characteristic case of k = -1

» - - - - - ⋅ +
» - - - - - ⋅ +

k

k

=-

=-

( ) ( )
( ) ( ) ( )
� � � � � �
� � � � � �

E O

E O

0.3909 4.098 236.0 49 290 19.00 10

0.3909 3.016 130.9 20 690 6.033 10 . A8
x

z

, 1
2 4 6 6 8 10

, 1
2 4 6 6 8 10
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