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Abstract

The work in this thesis is embedded in the framework of quantum metrology and explores
quantum effects in solid state emitters and optical sensing. Specifically, the thesis comprises
studies on silicon vacancy centres in nanodiamonds, phase measurements and cavity optomech-
anics utilising optical squeezed states, and a theoretical study on quantum amplifiers.

Due to its similarity to single atoms, colour centres in diamond are ideal objects for explor-
ing and exploiting quantum effects, because they are comparably easy to produce, probe and
maintain. While nitrogen vacancy centres are the most renowned colour centres, we studied the
silicon vacancy (SiV−) centre. In bulk diamond it features strong zero-phonon-line emission and,
at cryogenic temperatures, a linewidth of hundreds of MHz, but it displays a weak spin coherence
in the order of ns. To suppress the relaxation process which limits the coherence time, we util-
ised SiV− centres in nanodiamond. By means of confocal microscopy and resonant excitation at
cryogenic temperatures, we measured linewidths in recently developed nanodiamond which were
an order of magnitude smaller compared to previous studies on SiV− nanodiamonds. Further-
more, we identified spectral diffusion as the main hindrance in extending spin coherence times.
Overcoming this issue will provide a promising candidate as an emitter for quantum information.

Next, the question of how squeezed states of light can improve optical sensing was addressed.
For this purpose, a squeezed light source was designed and built from scratch, which achieved
a noise suppression of −8 dB at an optical pump power of 40 mW. The generated squeezed
light was first used to demonstrate how Gaussian states and detection can beat the shot noise
limit and Rayleigh criterion in phase measurements simultaneously. Compared to quantum
phase measurements based on single photon states, this approach is inherently deterministic. In
addition, the applied homodyne detection enables close-to-unity detection efficiencies and thereby
outperforms single photon state strategies which rely on comparably inefficient or demanding
detection techniques.

A second experiment combined squeezed light and feedback control to cool an optomechanical
system. This proof-of-principle study is the first reported squeezing enhanced optomechanical
cooling experiment. Despite losses of more than 50 % (a resulting noise suppression of −2 dB),
the mechanical resonator was cooled from room temperature to 130 K. This represents a 12 %
improvement compared to the use of a coherent state protocol.

Finally, we theoretically investigated the fundamental properties of quantum amplifiers. Such
devices can be used in information and sensing technology to amplify signals to overcome e.g.
technical detection limitations. Amplified communication channels were characterised by apply-
ing the measure of mutual information I, as it offers strict bounds on the maximum achievable
performance, which enabled a fair comparison between different applications scenarios. As a
result, we identified two peculiar configurations: A configuration where amplification does not
affect I, and a configuration where quantum correlations do not always lead to an enhanced I.

Keywords Quantum metrology, Colour centres, Diamond optics, Squeezed states, Cavity
optomechanics, Interferometry, Quantum information
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Dansk resumé

På baggrund af de sidste fem årtiers opdagelser, er vejen til kvantemekanisk forbedrede optiske
sensorer ikke kun mere tilgængelig, men også realiserbar for real-life applikationer. Grundlaget
for denne udvikling er studiet af interaktioner, især dem af kohærent natur, mellem bestanddele
i et meget grundlæggende system, bestående af stof på den ene side og lys på den anden. Denne
afhandling har til formål at benytte kvanteeffekter til at studere begge aspekter.

Til studiet af kvanteeffekter i stofbaserede sensingteknikker, er de spektrale egenskaber af
vakancecentre i diamant blevet undersøgt. På grund af deres lighed med et enkelt atom, er va-
kancecentre ideelle objekter til at udforske og udnytte kvanteeffekter, da de er relativt nemme
at producere, at måle på og at vedligeholde. Vakancecentre kommer naturligt sammen med et
allerede interessant miljø: Blandt andet kernespin af omkringliggende atomer og felter produce-
ret af overfladeladninger, som centret interagerer med. Mens nitrogen-vakancecentre, studeredet
siden 1997 som en isoleret optisk emitter, er de mest velkendte vakancecentre, koncentrerede
vi undersøgelsen omkring silicium-vakancecentre. Deres optiske egenskaber er siden 2006 blevet
undersøgt på en lignende måde som nitrogen-vakancecentret, og det anses for at være en lovende
kandidat til applikationer såsom enkelt-fotonkilder. For at udvikle forståelsen af henfaldsproces-
ser i silicium-vakancecentre og udforske potentielle anvendelser, er de spektrale egenskaber af
enkelte silicium-vakancecentre i nanodiamanter blevet undersøgt. Konkret har vi forsøgt at for-
mindske dekohærens af dets elektroniske spin. Det var muligt at opnå dette, dog karakteriserede
vi skadelige effekter.

Dernæst blev det undersøgt hvordan kvantemekaniske tilstande af lys kan forbedre optiske
måleteknikker. Til det formål blev en lyskilde af klemte tilstande designet og bygget. I mod-
sætning til en almindelig laserkilde, har en sådan kilde støjegenskaber der ikke kan opnås ved
nogen klassisk metode. Dette skyldes at korrelationer på feltexcitationsniveau gør det muligt at
overvinde almindelige støjgrænser. Denne egenskab blev anvendt eksperimentelt til at måle et
faseskift i et interferometer med højere opløsning og følsomhed. Endvidere blev den mekaniske
vibration af en mikroskopisk ringkerne undersøgt mere præcist ved hjælp af klemt lys. Oplys-
ningerne indhentet om mikro-toroidens bevægelse blev til sidst brugt til at styre den med en
feedback-mekanisme til effektivt at køle sin tilstand.

Endelig har vi teoretisk undersøgt fundamentale egenskaber af kvanteforstærkere. Sådanne
komponenter kan anvendes i informations- og måleteknologi til at forstærke signaler, eksem-
pelvis for at overvinde tekniske begrænsninger i detektoren. Vi anvendte mutual information
til karakterisering, fordi det giver strenge grænser for den maksimale opnåelige ydeevne. Dette
muliggjorde en rimelig sammenligning mellem forskellige scenarier. Som følge heraf er to ejen-
dommelige tilfælde blevet identificeret der tilbyder fordele i forhold til almindelige tilgange.
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Abbreviations, acronyms and symbols

AC / DC Alternating / direct current
APD Avalanche photodiode
AOM Acousto-optic modulator
BS Beam splitter or beam sampler
c.c. Complex conjugate
D Photodetector
EOM Electro-optic modulator
FEM Finite element method
FFM Fundamental flexural mode
FI / FR Faraday isolator / Faraday rotator
FWHM Full width half maximum
h.c. Hermitian conjugate
HD Homodyne detector
HWHM Half width half maximum
LO Local oscillator
P Piezo element
PBS Polarising beam splitter
PL(E) Photoluminescence (excitation)
PSD Power spectral density
SNR Signal-to-noise ratio
SN(L/U) Shot noise (limit / unit)
ZPL Zero-phonon-line

e Euler’s number, i.e. the outcome of
∑∞
n=0

1
n! .

ı The imaginary unit defined by ı2 = −1.
π A quarter of

∑∞
n=0

(−1)n
2n+1 .

~ Planck’s constant divided by 2π. In SI units, ~ ≈ 1.055 · 10−34 J s.
kB Boltzmann constant. In SI units, kB ≈ 1.380 · 10−23 J K−1.
ε0 The vacuum permittivity. Its unit is A2s4

kg m3 .
µ0 The vacuum permeability. Its unit is V s

A m .
c0 The speed of light in vacuum, equal to 299 792 458 m s−1.

?† The adjoint, also termed as Hermitian conjugate, of ?.
?∗ The complex conjugate of ?.
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?̂ An operator.
??? A vector quantity.
|?| The absolute value of ?.
‖?‖ The norm of ?, which is to be considered as a map to a real-valued

scalar.

1̂ A general representation of the identity, to be read as an operator
or a matrix.

|?〉 A ket vector, which is a representation of a pure state and an element
of H, a Hilbert space.

〈?| A bra vector, an element of the dual vector space of a Hilbert space.
〈?|??〉 An inner product of a ket and a bra vector.
|?〉〈??| An outer or tensor product of a ket and a bra vector.
|?, ??〉 A composite ket vector. It is an element of the Hilbert space formed

by a tensor product of the underlying Hilbert spaces, e.g. suppose
|?〉 ∈ H1, |??〉 ∈ H2, then |?, ??〉 ∈ H1 ⊗H2.

〈??|?̂|??〉 The expectation value of an operator’s (?̂) action on a state |??〉.
〈?̂〉 Same as 〈??|?̂|??〉, used if the context makes the choice of |??〉 obvious.
p(?|??) The probability to measure an eigenvalue ? of its operator ?̂ when

applied on a state |??〉. If there is no ambiguity about |??〉, it reads
p(?).

Var(?̂) The variance of an operator’s expectation value when applied on
some state. As long as the context is clear, the state will be omitted.
Otherwise it reads: Var(?̂, ??).

σ(?̂) The standard deviation of an operator’s expectation value when
applied on some state. Like for the variance, the state will only be
written out as σ(?̂, ??) if the context is ambiguous.

tr(?̂) The trace of an operator.[
?̂, ?̂?
]

The commutator of two operators.{
?̂, ?̂?
}

The anti-commutator of two operators.

X̂, Ŷ The dimensionless quadrature operators. Used for phase space rep-
resentations and can be probed via homodyne techniques.

â, â† An annihilation and a creation operator – or just the ‘ladder oper-
ators’.

n̂ A number operator. Also used as a generator for a phase shift.
Ĥ A Hamilton operator. It is the generator for time evolution.
D̂ A displacement operator, producing D̂(α)|0〉 = |α〉.
Ŝ A squeezing operator, producing Ŝ(ξ)|0〉 = |ξ〉.
|n〉 A number state, i.e. an eigenstate of the number operator. Also

referred to as Fock state.
|α〉 A coherent state resembling a classical-like electromagnetic field. It

is an eigenstate of the annihilation operator.
|ξ〉 A squeezed state exhibiting, compared to |α〉, a reduction in the

variance of a certain quadrature.
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n̄ The average photon number of a Gaussian state.
η Loss or efficiency.
ν A frequency, given in units of Hz.
ω An angular frequency, equalling 2πν.
Q Quality factor of an oscillator, defined as the ratio between the

resonance frequency to bandwidth.
V Visibility of interference fringes, defined as (vmax − vmin)/(vmax +

vmin), where vmax and vmin is the maximum and minimum of the
oscillations.

Vs, Va The degree of squeezing and anti-squeezing in units of dB.
W A Wigner function.

Selected chapter-specific symbols

C h a p t e r 2
L̂ A Lindblad superoperator used to describe dissipative effects in an

equation of motion. The notion ‘superoperator’ is used to distin-
guish it from other operators which are not acting on operators.

2Eg The ground state of the centre with an even wavefunction and a
two-fold orbital- and spin degeneracy. The orbital degeneracy is
lifted by virtue of spin-orbit coupling.

2Eu The first excited state of the centre with an odd wavefunction. Its
other features are similar to 2Eg.

T1 The energy decay or relaxation time.
T2 The total decoherence time.
T ∗2 The pure dephasing time.
γ A decay rate.

C h a p t e r 3
σ The sensitivity of a phase measurements. As it is derived from the

variance, a lower value of σ means a better sensitivity.
F The Fisher information.
Φ An estimator of the phase shift parameter. We consider unbiased

estimators, such that the estimated phase parameter approaches
asymptotically the true phase parameter.

H The quantum Fisher information.
Π̂d The operator describing the binning procedure. Also referred to as

dichotomy operator.

C h a p t e r 4
C The optomechanical cooperativity which compares optomechanical

coupling to optical and mechanical losses. An additional subscript
‘eff’ denotes the effective optomechanical cooperativity.

Q̂, P̂ The dimensionless “mechanical” position and momentum operator.
q̂, p̂ The position and momentum operator in SI units.
κ An optical loss rate given in angular frequencies.
Γm The mechanical loss rate given in angular frequencies.
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S A power spectral density.

C h a p t e r 5
g Gain of the amplifier. In case of no gain, g = 1.
I Mutual information, given in bits per channel use.

Graphs and uncertainties

The axes of graphs are labelled like a/b, where a is the quantity which is plotted and b is the
dimension of a. Thus b = 1 when a is dimensionless.

Uncertainties of measurement results are written as 1.23(40), which means that the mantissa’s
first digit is known within ±4.
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11 | Introduction

What is the motivation to enhance sensing techniques? To answer this question, we will outline
its development, that is the development of metrology.

Metrology is the science of measurement, and thus a fundamental principle of every scientific
experiment. The modern approach to it was probably formulated by N. de Condorcet during
the French revolution in 1791: According to de Condorcet, the meter is an “unité qui dans sa
détermination, ne renfermait rien ni d’arbitraire ni de particulier à la situation d’aucun peuple
sur le globe” [87], which can be translated as an ‘unit determined with neither an arbitrary
nor a specific dependence on the situation of any person on the planet’. It is very likely fair
to state that, from the perspective of people during the French revolution, the aspect of local
as well as the s o c i a l independence in this definition were of similar importance. We might
conclude that metrological studies seek to define, if necessary, and refine, if possible, units and
measurement techniques to promote a common understanding of science and the phenomena it
tries to describes.

Focussing on optical metrology, the development of the microscope and telescope can be said
to be major discoveries in the 17th century [133]. Since then, the microscope was popularised,
first by biologists and then by scientists interested in the microscopic world of animate and
inanimate objects.

Hand in hand with the popularisation, much effort has been taken to explore the boundaries
in resolution, shading light on smaller and smaller structures of the world we inhabit.

Up to the present day, a multitude of approaches surpassing the long-standing fundamental
limit of resolution, namely the diffraction limit confirmed experimentally by Ernst Abbe in 1883
[1], have been devised. The ongoing journey was just highlighted by the Nobel Prize 2014 in
chemistry for scaling up the resolution by combining the knowledge of the specimen’s energetic
states with two cleverly engineered laser beams, enabling the detection of particles of only a few
tens of nanometres. This development usually comes under the heading of ‘super resolution’,
which is also a technique studied during this thesis.

Many of the so-far applied techniques enabling super resolution employ classical states of
electromagnetic radiation, that is: The radiation employed in these techniques may have specially
engineered spatial- or temporal features. However the description of the very constituents of this
radiation – the photons – requires an at most semiclassical model. Thus, the additional degrees of
freedom quantum mechanics offer haven’t been fully utilised. Exploiting these additional degrees
leads to form the electromagnetic field itself to a state that is optimal for its purpose. One of
the advantages of quantum enhanced techniques is that the amount of photons used for sensing
is literally “a handful”, such that the influence on the (possibly animate) specimen is inherently
decreased over classical methods.

Another path towards quantum enhanced sensing focusses on the properties of the p a r -
t i c l e s emitting radiation. In 1952, E. Schrödinger argued that “we never experiment with
just one electron or atom or (small) molecule” [252]. Already thought experiments based on

4



1.1. THESIS STRUCTURE

such an individual control would entail “ridiculous consequences” [252]. Schrödinger’s prediction
turned out to be false, at least when taken literally. Outstanding experimental efforts have
enabled the extraction and control of individual atoms and molecules, and this to an extend that
atom interferometry became a common means throughout metrology and is, in some cases, close
to field application [97, 271]. However, when examining, for example, the properties of single
photon states such as their phase or field amplitude, his statement is everything else than far
fetched1.

A major challenge in the application of single atoms remains the need to acquire and control
them experimentally. What is required is some sort of environment that encapsulates that
emitter, potentially in a way that is convenient to maintain. It turned out that colour centres
in diamond pose a solution for this: Foreign atoms, such as nitrogen or silicon, combined with
vacancies in the crystal lattice of diamond create defects called ‘colour centres’ or ‘vacancy
centres’ which resemble a single atom. Such vacancy centres occur naturally in diamond, but
can also be implanted. This allows for a creation of single optical emitters to a precision of a
few nanometres [253].

So to answer – or in the attempt of – the introductory question: Improved sensing techniques
have ever since shed new light on phenomena which were either disputed or yet-to-be discovered.
And, following-up on de Condorcet, it led to conceptual changes in science. Even further, de
Condorcet’s motive of unification still applies – no longer on social aspects, but on the aspect of
a growing separation in scientific research.

The progress in the mentioned fields gave us the opportunity to study and advance techniques
of optical sensing from a broad point of view. Considering that the topics of this thesis can
be seen as individual projects, it demonstrates that technological and scientific progress allow
for both starting and conducting experiments in fields which were individually hard to access
experimentally a few years ago.

1.1 Thesis structure
The following chapters are presented in a similar and mostly self-contained way, such that a
reader may address each chapter individually without following cross-references. Each chapter
commences with a brief introduction and motivation before the main work is presented. If
required, a mathematical framework introduces the most important concepts applied for the
analysis. A summary and outlook concludes the chapter.

In the appendix, the reader will find a summary of some of the tools developed during
this thesis. The selection was based on the importance of those developments for a successful
experimental operation.

The thesis is addressed to a readership familiar with basic concepts of quantum mechanics,
classical and quantum optics. Foundation material treating these topics is available in a large
number of thesis, books and papers. References to such material are given throughout. To
provide a common ground for definitions used in later chapters, a mathematical description of
the relevant concepts of quantum optics is outlined next. As detailed derivations can be found
in the cited material, the theoretical parts are focussed on concepts and applications. Some
passages of the next section can be found in a more elaborate form elsewhere [246].

1A rather strict point-of-view took W. E. Lamb, Jr. on the use of the word ‘photon’. From his view, “there is
no such thing as a photon. Only a comedy of errors and historical accidents led to its popularity among physicists
and optical scientists” [168].
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CHAPTER 1. INTRODUCTION

1.2 A brief mathematical description of light
To describe light and its properties by classical means, Maxwell’s equations have to be solved
[34]. A common approach to achieve that is to consider the vector potential A inside a perfectly
conducting cube of volume V . In a superposition of plane waves, one can find [114]:

A = 1
2
∑

j

2∑

d=1

(
Aj,d exp

(
ı
(
kjx− ωjt

))
+ c.c.

)
ej,d, with [A] = kg m

s2A , (1.1)

where Aj,d is the j-th complex amplitude plane of a wave in one of the two directions of polar-
isation ej,d ∈ R3, with ej,1 × ej,2 = kj/|kj |. While k denotes the wave vector, x refers to a
point in space. Aj,d must be complex to provide for a local phase difference. The factor of 1/2
just cancels the factor of two due to the complex conjugate (c.c.).

Given the condition of a vanishing electric potential one may apply E = − ∂
∂tA, whereby the

electric field2 is readily derived as

E = ı

2
∑

j

2∑

d=1

(
Aj,d exp

(
ı
(
kjx− ωjt

))
− c.c.

)
ωjej,d. (1.2)

While the factor ωj introduces the proper physical unit of the electric field amplitude, the global
phase3 of ı makes the electric field to be real. One may also define the real quantities

C = 1√
2

(A+A∗) and S = ı√
2

(A−A∗), (1.3)

which are identified as the classical field quadrature. Omitting the summation over j in equation
(1.2), a single-mode plane wave reads

Ej = ı

2

2∑

d=1

(
Ad exp

(
ı(kx− ωt)

)
− c.c.

)
ωed (1.4a)

≡ 1√
2

2∑

d=1

(
Cd cos(kx− ωt)− Sd sin(kx− ωt)

)
ωed. (1.4b)

The Hamiltonian, applied to calculate the time evolution of the electromagnetic field, can be
rewritten in terms of A [114]:

H = 1
2ε0V

∑

j

2∑

d=1
ω2
jAj,dA

∗
j,d. (1.5)

This compact form emphasises that, first, a global phase term will always cancel out and, second,
that the complex field amplitude describes (under the given conditions) the electromagnetic field
entirely. To complete the discussion and compare the classical with the quantum mechanical
formulation, C and S are substituted into the latter Hamiltonian:

H = 1
4ε0V

∑

j

2∑

d=1
ω2
j

(
C2
j,d + S2

j,d

)
. (1.6)

2The magnetic part B = ∇×A of the radiation field will be neglected throughout this work, since, first, most
coupling to the matter is through the electric field [114], second, the total radiation energy can be readily written
in terms of A, and, finally, in vacuum it is just weaker by 1/c0 than the electric part.

3See Gerry and Knight for an elaborate discussion of the optical phase [114, pp. 33]. Mlak and Słociński also
treat the quantum phase operator in a concise and more technical way [198].
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1.2. A BRIEF MATHEMATICAL DESCRIPTION OF LIGHT

1.2.1 Quantisation of the electromagnetic field
By virtue of the correspondence principle [220], equation (1.6) identifies the quantities C and S
as a pair of canonical variables to quantise the electromagnetic field. Therefore, besides the fact
that the field amplitude A as well as the fields themselves become operators, all characteristics
of a quantum harmonic oscillator [86] apply equally to the electromagnetic field. The operators
correspond to their classical quantities according to

A→ âγ, A∗ → â†γ, (1.7a)

and equivalently for

C → X̂γ, S → Ŷ γ. (1.7b)

with γ =
√

2~/(ε0V ω). We will refer to X̂ as the amplitude- and Ŷ as the phase quadrature.
This choice is arbitrary, but follows the usual convention.

Most important, since it represents Heisenberg’s uncertainty principle, is the canonical com-
mutation relation [33]. For the introduced operators, it reads

[
â, â†

]
= 1̂ , (1.8a)

[
X̂, Ŷ

]
= ı1̂ , (1.8b)

whereas 1̂ denotes the identity operator. In further discussions, we will make an explicit use of
the latter only if necessary.

The quantised single-mode plane wave from equation (1.4) reads4

Êj = ı

√
~ω

2ε0V

2∑

d=1

(
âd exp

(
ı(kx− ωt)

)
− h.c.

)
ed (1.9a)

≡
√

~ω
ε0V

2∑

d=1

(
X̂d cos(kx− ωt)− Ŷd sin(kx− ωt)

)
ed, (1.9b)

where the Hermitian conjugate (h.c.) is required to maintain a Hermitian, and thus observable,
field operator. This plane wave model is a mathematical useful, but rather delicate approx-
imation: Outside the model of a perfectly conducting cube of volume V , or rather in a “free
space” cube with limV→∞, such a single-mode plane wave would show no lessening and thereby
consume an infinite amount of energy. Thus, a self-consistent model of light is always expected
to be a superposition like equation (1.9a). In the experiment, a single-mode plane wave is a
suitable model as long as the detection of light is confined time- and space-wise. More precisely,
the measurement interval should always be smaller than the change of the radiation field.

In relation to the measurement details, there is also the question of when it is allowed to treat
the radiation field as classical. Berestetskii et al. [26, eq. (5.2)] obtain the inequality

‖E‖2 � ~c0
(c0τ)2 , (1.10)

where τ is the averaging time of the measurement. The field can be treated as classical if the
inequality is true. From this, it follows that – for a valid classical treatment – a weak field has to
be averaged over a longer time compared to a strong field. However, “variable fields [that is any
variation in addition of the phase of a single-mode plane wave], if sufficiently weak, can never be
quasi-classical” [26, p. 15].

4For a time-dependent evaluation, one can readily regard â, â† as operators in the Heisenberg picture, i.e.
extract ıωt from the exponential function and recast it like â(t) = â(0) exp(−ıωt).
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CHAPTER 1. INTRODUCTION

Quantum mechanical basis states of light

Essentially, there are two different sets of quantum mechanical basis states for the description of
light or any other excitation of a harmonic oscillator:

Fock states One of them is the number state, or Fock state, basis. A Fock state can be
compared to a system containing exactly n photons, i.e. n quanta of energy. Since â†â|n〉 =
n̂|n〉 = n|n〉, n ∈ N [86], the expectation value of a “photon-counting experiment” equals n and
the variance is zero. Experiments, especially in quantum information processing, based on Fock
states are therefore said to be based on discrete variables, simply because the outcome of a
detection takes a number from a discrete set.

A special state is |0〉, referred to as the vacuum state. According to the Hamiltonian5

Ĥ =
∑

j

~ωj
(
n̂j + 1

2

)
, (1.11)

the energy eigenvalue of the j-th mode is 1/2~ωj . The expectation value of the quadrature
operators in vacuum is

〈
0
∣∣X̂j

∣∣0
〉

= 1√
2

〈
0
∣∣(â + â†)j

∣∣0
〉

= 0, which holds equally for Ŷj . The
variance yields

Var
(
X̂j , 0

)
=
〈
0
∣∣X̂2

j

∣∣0
〉
−
〈
0
∣∣X̂j

∣∣0
〉2 = Var

(
Ŷj , 0

)
= 1

2 , (1.12)

hence the signal of a quadrature measurement shows fluctuations even if the incoming field is
(on average) zero: This signal characterises the shot noise. Technically, such a measurement can
be performed via a homodyne detection [16, 114] which will be explained later.

The variance of a Fock state scales proportional with its occupation number: In a single mode
scenario, hence dropping j, Var

(
X̂, n

)
=
〈
n
∣∣n̂+ 1

2
∣∣n
〉

= n+ 1
2 . This is not true for the expectation

value, that is ∀n :
〈
n
∣∣X̂
∣∣n
〉

= 0. The latter suggests that there is no mean electromagnetic field.
A laser beam thought of a number state is hence a rather unphysical picture.

Coherent states To resemble the electromagnetic field of a laser beam in a more realistic
way, another kind of basis states is used: The coherent states, deemed to be the “‘most classical’
quantum states” [114, p. 43]. A coherent state is defined as an eigenstate of the annihilation
operator:

â|α〉 = α|α〉, likewise 〈α|â† = α∗〈α|, (1.13)

where α ∈ C is referred to as the coherent amplitude. This definition is quite peculiar, as it
implies that even a repeated annihilation of photons will not change the state. A consequence of
this can be seen when evaluating the moments of X̂ and Ŷ . From the latter equation, it follows

〈α|n̂|α〉 = |α|2 = n̄, (1.14)

thus |α|2 is the average number of photons of a coherent state.
Due to the fact that the number states form a complete set, a coherent state may be expanded

in terms of |n〉. The linear combination reads [117]

|α〉 = e− 1
2 |α|2

∞∑

n=0

αn√
n!
|n〉. (1.15)

5The Hamiltonian may be identified, via the correspondence principle, as the quantum mechanical formulation
of equation (1.5). For an ease of notation, we include the summation over the polarisation modes d in j.
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1.2. A BRIEF MATHEMATICAL DESCRIPTION OF LIGHT

From this equation, the probability to find a certain number of photons in a coherent state is

p(n|α) = e−|α|
2 |α|2n

n! . (1.16)

This is a Poisson distribution with a fractional uncertainty in the photon number of

σ(n̂)
|α|2

= 1
|α| = 1√

n̄
. (1.17)

Thus, a strong laser beam shows less relative fluctuations in the photon number than a weak
beam. From this point of view, the classical limit is lim|α|2→∞, which is in agreement with
equation (1.10). Since a beam of 1 mW and a wavelength of 800 nm contains about 1015 photons
per second, the fractional uncertainty in the photon number is ca. 3.2 · 10−6 %. The fact that
p(n) i s a Poisson distribution originates from definition (1.13): A process that obeys such a
distribution describes events which are uncorrelated [44]. This explains the “peculiar” behaviour
of |α〉 when a photon is removed from it.

Regarding the quadrature operators, one finds that the expectation values
〈
α
∣∣X̂
∣∣α
〉

= 1√
2

(α+ α∗) and
〈
α
∣∣Ŷ
∣∣α
〉

= ı√
2

(α− α∗). (1.18a)

So they are proportional to the real and imaginary part of the coherent amplitude. Moreover,
by factoring the oscillating term from equation (1.9b) into the operators, the expectation values
read

√
2<(α) cos

(
kx− ωt

)
and −

√
2=(α) sin

(
kx− ωt

)
, (1.18b)

emphasising the classical notion of light as a wave. The variance of the quadratures result to

Var
(
X̂, α

)
= 1

2 . (1.19)

The standard deviation of 1/
√

2 (which changes amongst literature) also defines a ‘shot noise unit’.
By virtue of the general uncertainty relation for two observables Ô1, Ô2 [231]

σ
(
Ô1
)
σ
(
Ô2
)
≥ 1

2

∣∣∣
〈
ψ
∣∣[Ô1, Ô2

]∣∣ψ
〉∣∣∣, (1.20)

a simultaneous measurement of the quadratures obeys the relation

σ
(
X̂
)
σ
(
Ŷ
)
≥ 1

4 . (1.21)

Coherent states therefore always show the minimum fluctuations, independent from the number
of photons in that state.

The probability distribution over the variable X can be calculated via6

〈X|α〉 = 1
4
√
π

exp
(
−1

2

(
α2 + |α|2 +X2 − αX/

√
2
))

, thus (1.22a)

p(X|α) = 1√
π

exp
(
−
(
X − 1√

2 (α+ α∗)
︸ ︷︷ ︸

=〈α|X̂|α〉

)2)
, (1.22b)

6The distribution can be calculated in various ways: Compare, e.g., Walls and Milburn [280, p. 42] with Bachor
and Ralph [16, p. 71], but the latter one with minding that equations (4.3.9) and (4.3.10) have a wrong scaling
in relation to their definitions.
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CHAPTER 1. INTRODUCTION

with X ∈ R being an eigenvalue of X̂. Probing an arbitrary quadrature of a coherent state
many times, one should expect to find a normal distribution as the outcome. Its average value
equals the mean number of photons in that state, while the standard deviation characterises the
quantum shot noise [16]. Due to the characteristics of a normal distribution, only the first and
second moment have to be known to completely describe |α〉.

As we can see, apart from the first moment, a vacuum and a coherent state have equal mo-
ments. A coherent state can be thus seen as a displaced vacuum state. The unitary displacement
operator [114, 280]

D̂(α) = exp(αâ† − h.c.) (1.23)

is thus, in analogy to â† for a Fock state, the creation operator of a coherent state.

1.2.2 Squeezed states
A coherent state exhibits an equal uncertainty in both quadratures. However, to be conform with
quantum mechanics, a state just has to obey relation (1.21). That is σ(X̂) maybe found to be
much smaller than a shot noise unit, as long as the uncertainty in the other quadrature is large
enough. The area in phase space “covered” by a coherent state is circular, if one circumscribes
it by σ(X̂) and σ(Ŷ ), such that a way to produce – at least conceptually – a state with less
uncertainty along one quadrature is simply by squeezing the circle to an ellipse. A state following
such a description is thus termed a squeezed state. When centred about the origin of phase space,
it is a squeezed vacuum state. Usually, the axes in a phase space representation are related to
the amplitude and phase of the optical field, such that the terms ‘phase squeezed’ and ‘amplitude
squeezed’ are used to specify the squeezing direction.

The unitary operator producing a squeezed state is given by [114, 280]

Ŝ(ξ) = exp
(
−1

2
(
ξ(â†)2 − h.c.

))
, (1.24)

where ξ ∈ C is the ‘squeeze’ parameter. ξ is commonly expanded as ξ = r exp(ıϕ) with r, ϕ ∈ R.
Compared to D̂, its generator is proportional to the second power of â†, which gives a hint about
two properties: First, that its phase space distribution c a n be elliptic, i.e. multivariate. Second,
that such a state has a special photon number distribution.

The latter can be directly seen when evaluating a squeezed vacuum state in the Fock basis
[114, 280]:

Ŝ(ξ)|0〉 = |ξ〉 = 1√
cosh(r)

∞∑

n=0
(−1)n eınϕ

√
(2n)!

2nn! tanh(r)n|2n〉, (1.25)

that is, a squeezed vacuum state only comes in twins, quadruplets, . . . , of photons. Even though
called v a c u u m squeezed state, it actually contains photons. Thus, to squeeze a vacuum state
(or a coherent state in general) requires energy. To obtain the expectation value of the photon
number and other properties such as the quadrature variances, the following relations can be
applied [114, 280]:

Ŝ†âŜ = cosh(r)â− sinh(r) eıϕ â†, Ŝ†â†Ŝ = cosh(r)â† − sinh(r) e−ıϕ â. (1.26)

An expansion in the form of â|ξ〉 = ŜŜ†âŜ|0〉 helps to find

〈ξ|n̂|ξ〉 = sinh(r)2, (1.27a)
Var(n̂) = sinh(r)2 cosh(r)2 = 〈n̂〉+ 〈n̂〉2 (1.27b)
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x

y

ℜ(A) ∝ C

ℑ
(A

)∝
S |A| ∝

√ C
2 + S

2

φ

(a) Classical field

Figure 1.0: Phase space representation of three different
states of light. In the simplest case, a time evolution cor-
responds to a rotation about the origin. (a) A diagram
of the classical field quadratures. Amplitude and phase
are perfectly determined, that is: Nothing prevents from
telling the position of the pointer to an arbitrary preci-
sion. (b) A coherent state in phase space calculated via
the Wigner function. Some authors apply the term “ball
and stick diagram” here [37]. The area of uncertainty is
equally distributed about the mean. Against the quad-
rature axes, a marginal distribution was plotted. Unlike
for the classical field, the uncertainty of a coherent state
is an inherent feature and not due to a limited meas-
urement precision. (c) A squeezed and displaced state,
created by D̂Ŝ|0〉. The area of uncertainty turned into
an ellipse and shows more fluctuations along the y quad-
rature. This quadrature is usually labelled as the phase
quadrature, hence this is a phase squeezed state.
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(c) Squeezed and displaced state

and

Var(X̂) = 1
2(cosh(r)2 + sinh(r)2 − 2 cos(ϕ) sinh(r) cosh(r)), (1.28a)

Var(Ŷ ) = 1
2(cosh(r)2 + sinh(r)2 + 2 cos(ϕ) sinh(r) cosh(r)). (1.28b)

The degree of squeezing is often expressed in decibel via

Vs = 10 log10

(
Var(X̂)

1/2

)
. (1.29)

A comparison of a coherent state, a squeezed state and a classical field in phase space is given
in figure 1.0.
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BS

D1

D2

â1

â
2

â
4

â3Local
oscillator

Signal
Phase shift φ

−/+

Figure 1.1: Scheme of an optical homodyne detection setup.
A strong field, the local oscillator, and a weak field, the signal,
are commonly derived from the same light source [219]. The
signal is sent into some system to be probed while the local
oscillator stays unchanged. Then, the beams are recombined
by means of a beam splitter (BS), i.e. the signal interferes
with the local oscillator. Both outputs of the beam splitter
are detected by a photodiode (D1, D2). Finally, their signals
are subtracted by a differential amplifier. Thereby classical
noise contained in both beams cancels out. A wedged plate
symbolises a relative phase shift between local oscillator and
signal. Labels for the modes are used to derive the beam
splitter transformation.

1.2.3 Homodyne detection
As described by the probability distribution (1.22), a coherent state of light may be entirely
characterised by measuring the amplitude and phase of |α〉 repeatedly, i.e. often enough to built-
up the probability distribution. We also saw that a projection on the quadrature operators
resembles this measurement. The physical measurement scheme which is able to do so is the
homodyne detection, a concept derived from electrical engineering to detect a beat frequency
between two (usually radio frequency) signals [142]. The whole detection stage consists of a beam
splitter, two photodiodes and a differential amplifier. An illustration of the setup and further
explanation can be found in figure 1.1.

For a mathematical description, the fields leaving the beam splitter have to be related to the
incoming ones first. This is done in terms of the single-mode annihilation operators â1, â2, â3, â4.
A beam splitter transformation is [114, 181]:

[
â3

â4

]
=
[
t13 r23

r14 t24

][
â1

â2

]
, (1.30)

where the indices of the coefficients of reflectivity r and transmission t indicate the “connection”
between the modes. There are two constraints the coefficients r and t have to obey [181]: Energy
conservation, which demands |r13|2 + |t23|2 = |r24|2 + |t14|2 = 1, and the commutation relation[
âi, â

†
j

]
= δij , i, j ∈ {1, 2, 3, 4}.

When parametrising the beam splitter transformation by [181, 280]

r → ı exp(ıη) sin(η), (1.31a)
t→ exp(ıη) cos(η), (1.31b)

a beam splitter may also be represented via an unitary operator. It reads

Ûb(η) = exp
(
ıη(â†1â2 + â†2â1

)
. (1.32)

and is of use when operating in the Heisenberg picture.
For our purposes, we consider the case of a balanced homodyne detection, where the moduli

of the coefficients are all equal to 1/
√

2. By demanding that the coefficients are either real or
complex valued, the matrix is found. For the (experimental) outcome however, the choice is
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1.2. A BRIEF MATHEMATICAL DESCRIPTION OF LIGHT

irrelevant [133]. Here, the real valued matrix is chosen, i.e.
[
t13 r23

r14 t24

]
= 1√

2

[
1 1
−1 1

]
(1.33)

Now the number operators, which resemble the intensity of the field [16], for the outputs are
calculated to

n̂3 = |t13|2n̂1 + t∗13r23â
†
1â2 + t13r

∗
23â
†
2â1 + |r32|2n̂2 = 1

2
(
n̂1 + â†1â2 + â†2â1 + n̂2

)
, (1.34a)

n̂4 = |r14|2n̂1 + t24r
∗
14â
†
1â2 + t∗24r14â

†
2â1 + |t24|2n̂2 = 1

2
(
n̂1 − â†1â2 − â†2â1 + n̂2

)
. (1.34b)

The difference and sum number operator results to

n̂− = n̂3 − n̂4 = â†1â2 + â†2â1, (1.35a)
n̂+ = n̂3 + n̂4 = n̂1 + n̂2. (1.35b)

Hence, the difference signal is an observable of the correlations between the incoming fields.
Switching from a differential to a summing amplifier means measuring the overall photon number,
which is proportional to the total intensity.

Next, the incoming fields are identified as the signal and local oscillator, as shown in figure
1.1. As we will see, helpful mathematical approach is to introduce the so-called noise operator
δâ first. Thereby, the field â is split up into a complex valued amplitude α and an operator
representing quantum noise (cf. figure 1.0) [16].

â1 = αL1̂ + δâL and â2 = eıφ
(
αS1̂ + δâS

)
. (1.36)

In the general case, the signal âS has an additional phase which is relative to the local oscillator.
To shorten the expressions, the unity operator will be omitted. Substituting the latter definitions
into equations (1.35) results to

n̂− = eıφ
(
α∗LαS + α∗LδâS + αSδâ

†
L +O(δ2)

)
+ h.c., (1.37a)

n̂+ = |αL|2 + α∗LδâL + αLδâ
†
L +O(δ2) + n̂S . (1.37b)

Since |αS | � |αL|,

n̂− ≈ eıφ(α∗LαS + α∗LδâS) + h.c.

= |αL|
(

eı(φ+φL) δâS + h.c.︸ ︷︷ ︸
≡
√

2δX̂S

)
+ 2|αS ||αL| cos(φ+ φL + φS), (1.37c)

n̂+ ≈ |αL|2 + |αL|
(

eı(φ+φL) δâL + h.c.︸ ︷︷ ︸
≡
√

2δX̂L

)
. (1.37d)

The action of these operators on a coherent state |αS , αL〉 yields the following expectation values
and variances:

〈n̂−〉 ≈ 2|αS ||αL| cos(φ+ φL + φS), Var
(
n̂−
)
≈ 2|αL|2 Var

(
δX̂S

)
, (1.38a)

〈n̂+〉 ≈ |αL|2, Var
(
n̂+
)
≈ 2|αL|2 Var

(
δX̂L

)
. (1.38b)
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While the expectation value of n̂+ equals approximately the intensity of the local oscillator, the
expectation value of n̂− comprises the relative phase of the signal (plus the phase terms of the
amplitudes φL, φS). Furthermore, this phase scales with the amplitude of the local oscillator:
Even if the signal is very weak, its phase can be probed with a strong local oscillator. This
characteristic scaling, or rather amplification, of the signal can also be seen in the variance of
n̂−. Here, the variance of the signal is amplified by the local oscillator’s amplitude. This shows
that a balanced homodyne detection can effectively probe the quantum noise of a vacuum state,
where αS = 0, but Var(δX̂S) = 1/2. The variance of n̂− is further used to quantify the shot
noise unit. In contrast to Var(n̂−), the variance of the summation operator will not only contain
quantum-, but also classical noise. Supposed that the electronic noise of the detector is negligible,
this variance is a test if the laser source is shot noise limited or not. In case that the radiation
is shot noise limited, Var(n̂+) = Var(n̂−). Any excess of the former variance can then be given
in terms of the shot noise unit [16].

Next to the electronic noise, another requisite of homodyne detection is that the interference
of the input fields has to be as good as possible. To achieve this, the beams need to be matched in
their frequency and spatial mode structure. Any deviation from that will decrease the visibility
of the interference and hence deteriorate the phase information. A lack in visibility is thus
equivalent to optical losses. To model these, a beam splitter transformation can be applied to
the interfered modes. Important to note is that, as it arises due to the interference between local
oscillator and signal, the visibility has to be squared when calculating the equivalent loss term
[16, eq. (8.1.12)]. As we were experimentally able to dial in visibilities of ≥ 98 %, losses due to
a low visibility were usually negligible.

Another more likely cause for a degradation in the detection of the quantities (1.38) are losses
in the signal mode. As an example, the signal beam suffers from losses when coupled in- and out
of an optical fibre. Again, losses can be modelled by a fictitious beam splitter. Using equation
(1.31), n̂− from equation (1.37c) reads

n̂− ∝ |αL|
(√

ηδX̂S +
√

1− ηX̂vac

)
, (1.39)

where the vacuum mode is represented by the operator X̂vac.
If we consider the variance of n̂− from equation (1.38a), we find that loss enters linearly:

Var(n̂−) ∝ |αL|2
(
ηVar(δX̂S) + (1− η) Var(X̂vac)

)
= |αL|2

(
ηVar(δX̂S) + (1− η)/2

)
. (1.40)

For a coherent state Var(n̂−) is independent of η, because the variance of a vacuum- and a
coherent state are equal. However, a squeezed state can not be fully detected in the presence of
losses, as the squeezed variance is effectively increased by virtue of the vacuum noise contribution.
Some more details on squeezed states and losses will be given in chapter 3.

Various authors treated the theory of homodyne detection in greater detail. To name a small
selection: Collett et al. [70] elaborate on the count distributions of the various signals, Yuen and
Chan [298] treat the nature of the noise and Kumar et al. [167] present the theory more extensive
and give a layout of a homodyne detector. A brief summary of homodyne detection on squeezed
states can be found in a review by A. I. Lvosvsky [185].

1.2.4 Wigner quasiprobability distribution
A phase space representation is a common way to describe mathematically and – if possible –
visually the configurations a physical system can take on. Such a representation thus follows
the rules for a probability distribution [44]. In classical mechanics, where the phase space was
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1.2. A BRIEF MATHEMATICAL DESCRIPTION OF LIGHT

applied in first, the coordinate system is spanned by the system’s degrees of freedom, that is
the canonical position and momentum variables [212]. As these variables are however non-
commutable in quantum mechanics – there is no sense in referring to a c e r t a i n p o i n t in
a quantum phase space –, the representation of a quantum state in phase space required novel
concepts. Several approaches have been developed to map a wavefunction ψ(x) = 〈X|ψ〉 or a
density matrix ρ̂ =

∑
i pi|ψi〉〈ψi| to phase space7 [48, 114]. It is thus common to choose a map

which is most convenient for a certain application.
For our purpose, this is the Wigner quasiprobability distribution or just ‘Wigner function’.

This is because its marginal distribution directly corresponds to a measurement technique applied
in several of our experiments: The homodyne detection described above. Like all quantum phase
space representations, the Wigner function is a q u a s iprobability distribution, as it does not
obey the definition of a common probability distribution. AWigner function for example can take
on negative values, some other representations may also be singular. Important for a coherent
treatment is to agree on the definition of the shot noise unit, since it affects also the normalisation
of the Wigner function [114, 280]. As defined previously, the shot noise unit is set to 1/

√
2. Then,

the mapping reads

W (x, y) = 1
2π

∫ ∞

−∞
ψ
(
x+ z

2

)
ψ∗
(
x− z

2

)
eıyz dz (1.41)

and can be recognised as an autocorrelation with an additional kernel. For a mixed state rep-
resented by a density operator,

W (x, y) = 1
2π

∫ ∞

−∞

〈
x+ z

2

∣∣∣ρ̂
∣∣∣x− z

2

〉
eıyz dz. (1.42)

For example, given ρ̂ =
∑2
i pi|ψi〉〈ψi|, that is a mixture of two pure states assigned to a probab-

ility pi,

W (x, y) = 1
2π

∫ ∞

−∞

(
p1ψ1

(
x+ z

2

)
ψ∗1
(
x− z

2

)
+ p2ψ2

(
x+ z

2

)
ψ∗2
(
x− z

2

))
eıyz dz. (1.43)

For a squeezed vacuum and a coherent state, the Wigner function reads

W (x, y, r, ϕ) =
1
π

exp
(
sinh(2r)((y − x)(y + x) cos(2ϕ)− 2yx sin(2ϕ))− cosh(2r)(y2 + x2)

)
,

(1.44a)

W (x, y, α) = 1
π

exp
(
−2|α|2 − y2 + ı2

√
2αy + 2

√
2(x− ıy)<(α)− x2

)
. (1.44b)

Applications for Wigner functions The previously mentioned relation between the mar-
ginal distribution probed via homodyne detection and a Wigner function is

∫ ∞

−∞
W (x, y) dy = |ψ(x)|2 = p(x) = |〈X|ψ〉|2, (1.45)

which holds equally for the other quadrature. The series of expressions just clarifies the link
between the different notations. To learn about the expectation value of a pure or mixed state,

7When starting from a density matrix, we note that all |ψi〉 must be given in the basis of coherent states for
a direct application of the following formulas.

15



CHAPTER 1. INTRODUCTION

we can apply

〈X̂〉 =
∫ ∞

−∞
xW (x, y) dx dy, (1.46)

which is a property that Wigner functions and “common” probability distributions share. The
same applies for all higher moments m:

m(X̂, i) =
∫ ∞

−∞

(
x− 〈X̂〉

)i
W (x, y) dx dy. (1.47)

Hence a quantum state, mixed or pure, can be fully described by its statistical moments in the
coherent-state basis set. To extract other characteristics such as the photon number distribution,
Wigner functions associated with the number and phase operator have been developed [275, 276].

As outlined above, a homodyne detection projects a state into a coherent-state basis: Thus
the Wigner function can be experimentally reconstructed via homodyne detection under various
phase angles8, i.e. by changing φ in figure 1.1.

The Wigner function is a convenient means for characterising quantum states. As an example,
we may consider an apparently squeezed state: If a pure, squeezed state experiences losses, e.g.
due to a propagation through a beam splitter, it becomes a mixed state – as it gets literally
mixed with the vacuum state which enters through the second input port of the beam splitter
(cf. equation (1.39)). Depending on how much loss a squeezed state experiences, the measurable
degree of squeezing lessens. A common way to quantify the losses is by comparing the marginal
distributions along the squeezed and the so-called ‘anti-squeezed’ quadrature. The squeezed and
anti-squeezed quadrature are given by the minor and major axis of the ellipse, respectively. A
pure state shows an equal amount of squeezing and anti-squeezing (e.g. ±3 dB), a mixed state
has a higher amount of the latter.

Wigner functions are also useful to propagate a state through various elements, e.g. a beam
splitter: First, the transformation of the quadrature operators are identified, then they are
substituted into the Wigner function. If more than one mode (like it is the case for a beam
splitter) is involved, the phase space needs to be expanded.

All these operations are especially simple when the transformations and the states are Gaus-
sian. The coherent state is a prominent member of Gaussian states, i.e. states which, when
described via a Wigner function, obey a multivariate normal distribution. Thus, the same holds
for squeezed states. A transformation or operation qualifies itself as Gaussian when it does not
turn a Gaussian into a non-Gaussian state. The displacement operation D̂ is an example of a
Gaussian operation: From (1.22) the quadratures are transformed according to

X̂ → X̂ −
√

2<(α), (1.48a)
Ŷ → Ŷ +

√
2=(α). (1.48b)

Thereby, a Wigner function displayed in figure 1.0(c) can be created from equation (1.44a).
For a concise and detailed description of Gaussian states in quantum optics, the reader may

refer to Ferraro et al. [99] or Weedbrook et al. [285].

8The heterodyne detection technique provides another means for a phase space reconstruction and might be
in some cases more precise than homodyne detection, as Müller et al. pointed out recently [201].
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22 | Silicon vacancy centres and
their electronic spin coherence

2.1 Introduction
One of the main precursors for quantum enhanced sensing are atomic clocks. Decades before
quantum features of light were harnessed for precision measurements, the use of electronic trans-
itions of atoms offered novel ways to measure and define time [263]. Until today, the quantum fea-
tures of atoms and ions play a major role in the improvement of sensing techniques. Even though
the advances in experimental techniques allows for the control of single atoms, the requirements
for such techniques hamper applications outside of well-controlled and isolated environments.

Over the past decades, quantum systems in solids became a promising alternative, as they
naturally come in a (potentially) controllable and stable environment. This potential can since
then be explored because of advances in nanotechnology which rendered the fabrication of single
quantum emitters in solids feasible.

An established type of solid state emitters are diamond defects. Studied as a single emitter in
1997, the best known diamond defect is the negatively charged nitrogen vacancy (NV−) centre
[90, 127]. Similar to its host material, the NV− centre offers a few unique features, such as very
good photostability and a spin coherence time of more than 1 ms at room temperature [19, 25,
162]. Used as a sensor for magnetic fields, sensitivities of ca. 4 nT/

√
Hz have been reported for a

single NV− centre1 [19]. To allow for such features, the synthesis of isotropically pure diamond
and techniques to decouple the spin from its environment are necessary [90, 131], however the
fact that room temperature experiments yield these figures is an outstanding property. Next to
various sensing applications, NV− centres served as a platform for quantum computation [15],
e.g. single photon sources and quantum memories [204], and ground-breaking loophole-free Bell
tests [137].

While in the beginning the creation process of NV− centres in synthetic diamond, e.g. via
electron irradiation and annealing [127, 258], offered little control over the transversal positioning,
novel fabrication techniques led to a change. The actual conversion from just a vacancy and a
nitrogen atom into a NV− centre can not yet be called deterministic, but fabrication techniques
now allow for a positioning of an “unconverted” defect with nanoscale precision [170, 253].

All that turns the NV− centre into a potential system for the ‘second quantum revolution’,
which denotes the transition from quantum mechanics as a description of a physical reality to
quantum mechanics as an engineering platform [92].

Apart from the NV− centre, several hundreds of other diamond defects are known2 [4, 301].

1Sensitivities as low as 0.9 pT/
√

Hz were achieved by using ensembles of NV− centres [289].
2In 1997, Gruber et al. cited a count of “over 100” [127]. Three years later, A. M. Zaitsev stated that “more

than 500” [301] luminescence centres in diamond have been recorded.
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Since a few years, the negatively charged silicon vacancy (SiV−) centre has caught attention and
is known as a promising candidate, which outperforms the NV− centre in certain applications
[208, 282]. A drawback of NV− centres is that broadband phonon interactions set the probability
of collecting ‘zero-phonon-line’ (ZPL) photons in bulk diamond to ca. 3 % [20, 124]. Photons
from the ZPL maintain optical coherence features which are otherwise lost, or at least weakened,
via phonon interactions. This loss of coherence is disadvantageous for all techniques which rely
on narrowband emission – in fact for quantum information protocols based on NV− centres
the ZPL fluorescence efficiency is usually the major figure to improve [24, 28] –, but also the
mentioned sensing techniques potentially benefit from a more pronounced ZPL in terms of a
higher signal-to-noise ratio3 [289]. With 70 % of fluorescence from the ZPL, the SiV− centre
clearly excels in this perspective [71].

To further determine the application range of SiV− centres, our study focussed on the ex-
tension of electronic spin coherence time. Two arguments motivated this endeavour: First, just
as for the NV− centre, the electronic spin coherence time is a critical figure when it comes to
efficiently sense (readout) and store spin-state information. Thus, the comparably short elec-
tronic spin coherence time of SiV− centres thus appears to be a limiting factor. Second, the
underlying decoherence mechanism had been identified recently, which gave us an indication of
the possibility to control the spin coherence time.

The study presented herein was conducted during a three-month stay at Fedor Jelezko’s group
in Ulm, Germany. Work performed without my contribution will be noted accordingly.

Chapter structure The historical development and a few important properties of the SiV−
centre will be outlined first. This leads to the introduction of the energy level scheme which is
important for the understanding of the experimental technique we applied. Next, we explain the
two main parameters of our study, which are the spin relaxation- and the dephasing time. Given
this information, the experimental scheme will be introduced before the actual experimental
setup is described. After the experimental details are given, we present the results and conclude
this chapter with a summary and outlook.

2.1.1 The silicon vacancy in diamond

It was in 1980 that the luminescent properties of silicon implanted into natural diamond were
recognised [300]. By cathodoluminescence studies a strong signal at 1.684 eV (736.25 nm) was
found, which is close to the zero-phonon-line (ZPL) signal at 1.68 eV (737 nm).

The direct identification of the emitter as a vacancy centre was provided by Clark and Dick-
erson in 1991 who implanted not only silicon atoms, but also deliberately created vacancies via
electron beam irradiation [64]. Consecutive annealing of the synthetic diamond samples at dif-
ferent temperatures led them to the conclusion that the emitter is a “silicon and vacancy” centre,
hence the name. In the following years, spectroscopic studies [65, 71, 98, 121, 149, 260] gave
Goss et al. experimentally verified support to conduct a theoretical modelling of the SiV− centre
[123]. In 2005, Goss et al. elaborated on this model and further explained the nowadays accepted
ZPL at 737 nm [122] which was verified experimentally by Edmonds et al. in 2008 [95].

3We note that sole “reshuffling” of emission into the ZPL can not enhance the SNR. The premise for a benefit
is that a more pronounced ZPL emission also implies Purcell enhancement [161], or, more generally, effects that
suppress non-radiative processes.
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Figure 2.1: Structure of the SiV− centre in a unit cell
of the diamond lattice. In between two vacancies (V)
a silicon (Si) atom rests. All other atoms are carbon.
The symmetry of the centre in Schoenflies notation reads
D3d, which means it has a three-fold rotation axis and
three two-fold axes perpendicular to the rotation axis. In
addition, there are three vertical mirror planes passing
through the two-fold axes. V

V
Si

Symmetry and spectral properties

The actual symmetry of the SiV− centre was experimentally studied in various works [45, 83,
138, 205, 261], all indicating that – as predicted by Goss et al. [123] – the D3d point group is the
correct geometrical description. A representation of the physical structure is given in figure 2.1.

By a study of the irreducible representations of symmetry operations in the D3d point group,
the electronic level scheme can be derived [270]. Four irreducible representations exists for this
group and are used to label the energy levels: A1, A2 and E, whereas all of them are allowed
to come in an even (subscript g) or odd wave (subscript u) function [270]. The latter states
have a lower energy, the same applies for A compared to E levels [123, 283]. According to the
energy hierarchy, the level scheme can be filled with the supplied electrons. Four electrons are
contributed by the silicon atom, a fifth one is donated – which results to the centre’s negative
charge. From the “dangling” carbon bonds, six electrons are supplied, which makes up for 11
electrons bound to the SiV− centre. Thereby, the ground state is found to be 2Eg characterised
by a two-fold orbital- and spin degeneracy4. To find the first excited state, an electron may be
promoted to the next level. The first excited state is also a spin- and orbital doublet, but of odd
parity, thus it reads 2Eu. Figure 2.2 shows an illustration of the level scheme for the ground-
and the first excited state.

In the illustration, the ZPL fine structure and the according transition strength is shown.
Rogers et al. concluded by polarisation measurements that the fine structure is due to spin-orbit
coupling [234]. Photoluminescence (PL) spectra resolved the individual lines, ranging between
736.4 nm to 737 nm. The spectral uniformity, stability and finally the ability to selectively
access the ZPL fine structure of SiV− centres in bulk diamond was demonstrated in a Hong–Ou–
Mandel experiment by Sipahigil et al. in 2014 [256]. Another demonstration of the uniformity was
given by Dietrich et al.: With a distribution spread over 8 GHz, the inhomogeneous broadening
of individual SiV− centres in synthetic diamond, overgrown in a chemical vapour deposition
(CVD) process, was an order of magnitude smaller than the shift of the ZPL induced by the
silicon isotope (28Si, 29Si, 30Si). Thus, Dietrich et al. were able to conclude from PL spectra
which isotope was involved in a certain SiV− centre [85].

4This contrasts the spin-triplet state of the NV− centre’s ground- and excited state. Due to zero-field splitting,
sensing magnetic fields with an NV− centre doesn’t require to initially lift a spin degeneracy.
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Figure 2.2: Energy level diagram with the
fine structure lines of the ZPL. The orbital
degeneracy is lifted by spin-orbit coupling.
An external magnetic field leads to a split-
ting of the spin states. The spin- and or-
bital relaxation times are highlighted. Ar-
rows in the electronic spin states printed
to the right of the energy levels indicate
the electron spin. The frequency differ-
ences are νg ≈ 47 GHz and νu ≈ 258 GHz
[234]. The labelling of the fine structure
lines and the electronic spin states is in ac-
cordance with Rogers et al. [233]. A vari-
ation in linewidth shall indicate the relative
PL strength.

|a〉

|b〉

|c〉

ωab
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γ

Figure 2.3: An energy level diagram following the Λ scheme. The transition
from |b〉 to |a〉 or |c〉 might be driven resonantly with a laser tuned to ωab or
ωbc. By virtue of e.g. thermal processes, the system might be initially found in
either |a〉 or |c〉. As an example, consider an energy difference between |a〉 and
|c〉 of γ = 50 GHz. According to the Boltzmann distribution the probability to
find the system in |a〉 is 30.9 % when probed at 5 K.

Electronic structure and the issue of pure dephasing

To explore the electronic spin structure of the centre, which might serve as a basis for a qubit
[126], Rogers et al. [233] applied an external magnetic field to lift the spin degeneracy. The
spin splitting introduced a so-called Λ scheme [296], exemplified in figure 2.3. To clarify the
correspondence to figure 2.2: |a〉 is |e+

g ↓〉, the excited state |b〉 is |e−u ↓〉 and |c〉 is |e−g ↑〉. With
an optical driving- and readout-pulse, each one tuned to one of the transitions, Rogers et al. could
access the spin state optically and found, at 5 K, a spin relaxation time of T spin

1 = 2.4(2) ms [233].
To deduce the spin pure dephasing time T ∗2 – which will be discussed in the following –, both
lasers continuously drove the mentioned transition which lead to ‘coherent population trapping’,
a special case of electromagnetically induced transparency [101, 233]. They found T ∗2 = 35(3) ns,
which limits the total spin coherence time T spin

2 via [2, 257]

1
T2

= 1
2T1

+ 1
T ∗2

(2.1)

to ca. 35 ns. An explanation for the short T ∗2 time was provided by a study of electron-phonon
processes: Jahnke et al. demonstrated that the orbital relaxation time is T orbit

1 ≈ 38 ns [153]. As
they stated, T orbit

1 � T spin
1 indicates the orbital relaxation process must conserve the electron

spin. However, in the process of orbital relaxation, the spin coherence is lost, which results in a
short T ∗2 time.

Motivated by the mentioned benefits of a long T ∗2 time, our goal was to increase the total
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coherence time to, if possible, a lifetime-limited (T ∗2 → ∞) case. We had strong evidence that
the orbital relaxation is the main cause of decoherence, and furthermore knew that, at cryogenic
temperatures, the silicon atom supports purely local phonon modes [85, 152]. The latter implies
that, in case of a single local phonon mode, only this mode has to be suppressed to cancel pure
dephasing. To achieve such a suppression, there are two basic possibilities:

• Operate at temperatures at which the thermal population of the corresponding mode is
negligible. The energy of the orbital splitting is, as shown in figure 2.2, about 50 GHz.
According to the Boltzmann distribution exp(∆E/(kBT )), where ∆E is the energy differ-
ence and T the temperature, it requires temperatures of less than 700 mK to decrease the
probability of populating the excited state to less that 1 %. Due to a lack of equipment
capable of reaching these temperatures, this approach was ruled out.

• Place the SiV− centre in an environment which does not support frequencies of ca. 50 GHz,
that is: Create a phononic band gap around this frequency [46]. Assuming a speed of sound
in diamond of 12 000 m s−1, the smallest cavity length that is resonant for 50 GHz is ca.
120 nm.

As we were provided with nanodiamonds containing SiV− centres, we chose the latter approach.

Studies with nanodiamonds In fact, a number of studies investigated the optical properties
of SiV− centres in nanodiamonds [202, 206, 207, 208, 302] down to a size of 1.6 nm [279]. The
interest in nanodiamonds was however spurred by other applications, such as studies of the
centre’s local environment or applications where a manual placement of the emitter is beneficial,
which applies for, e.g., micro cavities [6, 230].

So far, the reported SiV− linewidths for nanodiamonds of a few GHz deviate strongly from the
linewidths reported for bulk diamond [202, 206, 207]. At cryogenic temperatures, the linewidth
in bulk diamond was reported to range between 119 MHz to 409 MHz [232]. The issue with
linewidths on the order of GHz is that strong magnetic fields are required to individually address
the spin states. As reported by Rogers et al. [233], 450 mT is required to lift the spin degeneracy
by ca. 6 GHz. Because the SiV− nanodiamonds provided by our collaborators were fabricated by
a technique which is known to also yield high optical qualities for NV− centres [80], investigation
of the linewidth of SiV− PL posed a second aspect of our study.

Experimental scheme

As stated previously, we aimed to extend T ∗2 , and eventually the total coherence time T spin
2 , by

increasing T orbit
1 . To verify this link between T ∗2 and T orbit

1 , we planned to initially measure
T orbit

1 before using coherent population trapping to deduce T ∗2 . The experimental scheme to
measure T orbit

1 is sketched in figure 2.4 and can be summarised as follows:

1. A laser pulse resonantly excites the SiV− centre. As an example, we assume to drive
transition D in figure 2.2. The resonant excitation will prepare the state in the lowest
branch of the level diagram. To drive a single transition, the experiment needs to be
conducted at ca. 5 K. Neglecting Zeeman splitting, the system can be seen as a Λ scheme
like in figure 2.3, where |a〉 and |c〉 represent the orbital states in 2Eg and |b〉 is the lower
state in 2Eu.

2. After a short waiting time, another laser pulse drives the same transition. At the same
time, the fluorescence is recorded. If the phonon mode at ca. 50 GHz is inhibited, the
probability of finding the system in the upper branch of 2Eg will remain low. Thus, the
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Figure 2.4: T orbit
1 measurement scheme. The

blocks on the upper time axis represent the
switching of laser pulses to drive resonant
PL. The first block initialises the system in
a “dark” state, which is not accessed by the
laser pulse. After a certain waiting time τ1,
another laser pulse is sent. At the same time,
the PL intensity is recorded. Given that the
system is still in the dark state prepared by
the first pulse, the detected signal only con-
tains technical noise. As the waiting time in-
creases, the system equilibrates and the prob-
ability to find it in a state resonant to the
laser pulse will eventually yield PL. Repeat-
ing this scheme numerous times to build up
reliable statistics results in signals similar to
the ones sketched in the middle graph. The
analysis of the detected signal is exemplified
in the bottom graph.

detected signal may contain technical noise, but the chance to detect resonance fluorescence
is very low.

3. The second step is repeated and the waiting time might be slightly increased. Over time,
relaxation processes eventually re-populate the upper branch of 2Eg. If this happens,
resonance fluorescence will be detected. As the expected count rates are very low, the
whole process has to be iterated several million times.

4. Finally, by analysing the recorded PL, T orbit
1 can be derived. This can be achieved by

integrating over a certain fraction of the PL signals recorded for different waiting times.
The integrated area is highlighted in figure 2.2. Commonly, also a fraction of the last part
of each signal is integrated and used for normalisation.

To be able to resolve and thus address the individual orbital states, cryogenic temperatures are
required. The experimental realisation of this scheme will be explained in a following section.

Concept of the T1, T2 and T ∗2 time

Before continuing with the experimental details, we outline the two key concepts of our study:
That is relaxation and decoherence. For the purpose of explanation, we will develop the equation
of motion of a two-level model system and discuss its solution. A rigorous derivation may be
found elsewhere [29, 247, 257].

The most general equation governing the evolution of a quantum system is the von Neumann
equation [43, 247]

d
dt ρ̂t = ı

~
[
ρ̂t, Ĥt

]
, (2.2)

where ρ̂t is the density matrix of the total system and Ĥt its Hamiltonian. Here ‘total’ means
that Ĥt is comprised of a ‘system’ – in our case the qubit –, a ‘(thermal) bath’ and the coupling
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between the the two. The von Neumann describes a closed system, i.e. by solving it one is able
to study the evolution of the qubit and the bath. No information can be lost. However, usually
one is neither interested in keeping track of the bath’s evolution, nor able to actually do so,
because the degrees of freedom are to numerous to handle. By virtue of certain approximations5,
the Lindblad master equation can be derived from equation (2.2) [119, 178]. In the process of
derivation, the bath is traced out of the total system, such that, during the evolution of the
remaining system, information may get lost. Thus, a Lindblad master equation is the equation
of motion of an open quantum system. Setting ~ to unity, it reads

d
dt ρ̂ = ı

[
ρ̂, Ĥ

]
+ L̂(γ, ρ̂, ô), (2.3)

where ρ̂ is the reduced density matrix describing only the system and L̂ denotes a Lindblad
superoperator acting on ρ̂ and an operator ô. At a rate γ, the latter is influenced by the bath
which establishes a bath-system coupling. The Lindblad superoperator takes the form [43, 247,
288]

L̂(γ, ô, ρ̂) = γ

(
ôρ̂ô† − 1

2
{
ô†ô, ρ̂

})
(2.4)

and governs the non-unitary part of the equation of motion.
To outline the effects of relaxation and decoherence, we consider a simple qubit (spin 1/2)

system with a Hamiltonian of

Ĥ = ωz ŝz, (2.5)

where ŝz is a spin operator and ωz the associated frequency. The ŝz spin operator is an observable
with two eigenvalues, ± 1

2 , and represents a spin measurement in the z direction [86]. Along with
the other two spin operators [26, 114]

ŝx = 1
2

(
0 1
1 0

)
and ŝy = 1

2

(
0 ı

−ı 0

)
, (2.6a)

it is given by

ŝz = 1
2

(
1 0
0 −1

)
. (2.6b)

As we will see next, ŝz causes a rotation about the z axis. When defining the + 1
2 eigenstate of

ŝz as the excited state |e〉 and the − 1
2 eigenstate as the ground state |g〉, another representation

of ŝz is

ŝz = 1
2(|e〉〈e| − |g〉〈g|), (2.7)

5Three approximations are implied in a master equation in Lindblad form: (1) The Born approximation,
which requires that the bath does not become entangled with the system, i.e. bath and system are separable.
This also requires that the bath is not changing its state caused by the interaction. (2) The Markov approx-
imation, demanding a memoryless bath, at least compared to the time scale of the system. (3) Finally, the
secular approximation, which, in simple terms, assumes that decay rates of excited states are much smaller than
transition frequencies and thus justifies the omission of terms with fast oscillations. For closed systems, a similar
approximation is known: The rotating-wave approximation. A detailed derivation and application of the Lindblad
and other master equations is given by G. Schaller [247].
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Figure 2.5: Bloch sphere representation of a qubit (spin 1/2) system evolving in time. The
axes represent the ground- and excited state, and the superposition states |ζ±〉 = 1/

√
2(|e〉 ± |g〉),

|ψ±〉 = 1/
√

2(|e〉 ± ı|g〉). We note that 〈ψ+|ψ−〉 = 〈ζ+|ζ−〉 = 〈g|e〉 = 0. Points represent the state
in terms of (〈ŝx〉, 〈ŝy〉, 〈ŝz〉) each time the equation of motion was solved. A red arrow points to
the last step of the evaluation. If γ1 = γ∗2 = 0, the qubit will evolve according to equation (2.5)
and spin thereby around the centre while remaining on the Bloch sphere’s shell.

which is why ŝz is also called inversion operator [114]. Important to notice is that ŝz only
“queries” the system’s energy without changing it.

Next, we add two Lindblad superoperators to model a relaxation (T1) process and a pure
dephasing (T ∗2 ) process. This is achieved by including [29, 268]

L̂(γ1, ŝ−, ρ̂) (2.8a)

and

L̂(γ∗2/2, ŝz, ρ̂), (2.8b)

where ŝ− is the system’s annihilation operator equal to |g〉〈e| and the dissipation rates are
denoted by γ1,2∗ = (T1,2∗)−1.

To point out the difference between the two processes, we can solve the equation of motion for
a system subject either to a T ∗2 or a T1 process. The system is initially prepared in a superposition
state

|ζ+〉 = 1√
2

(|e〉+ |g〉) (2.9)

and then evolved numerically for 6 s in 200 time steps [157]. The results are visualised for
ωz = 2πHz in figure 2.5. Using a Bloch sphere representation, we can directly follow the time
evolution of the state. After each time step, the expectation values of ŝz, ŝy and ŝx are evaluated
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Figure 2.6: Additional illustration of the qubit
shown in figure 2.5. The purity of the state is plot-
ted in the upper graph. In the T1 process, the final
state is |g〉, thus the purity recovers asymptotic-
ally. In case of pure dephasing, purity is gradually
lost (1 ≤ tr(ρ̂2) ≤ 1/d, where d is the dimension
of ρ̂). The middle and lower graph show the spin
variance for the T1 and T ∗2 process, respectively.
Apart from the different decay rate, one can see
that the variance oscillates at twice the frequency
ωz. We note that the expectation values of ŝx,y
decay according to 1/2 exp(−t(γ1 + γ∗2/2)/2), while
the envelope of 〈ŝz〉 follows 1/2(−1 + exp(−tγ1)).
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ô)

/
1 ŝx
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ŝz

1/4(1 − e−tγ1)
0

1/4

Va
r(
ô)
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and marked as a point on (or in) the Bloch sphere. Figure 2.5(a) shows that the T1 process
leads to a decay from |ζ+〉 to |g〉. Eventually the coherence is lost as well, as |g〉 can not carry
a (relative) phase. This just emphasises equation (2.1): Relaxation causes decoherence. In the
T ∗2 processes presented in 2.5(b), the state remains on the “equator”, but is spiralling inwards
over time. Thus, the energy is unperturbed in the course of the process, but the coherence, i.e.
the information about the relative phase of the superposition, becomes less and less determined.
Another way of relating the coherence of a system to the Bloch sphere representation is the norm
of the vector pointing to a state: If the state is located on the shell of the Bloch sphere, it is
a pure state, while mixed states are found on the inside [114]. The time evolution of purity, as
well as the variance for each spin operator, is presented in figure 2.6.

2.2 Experiment
This section begins with a presentation of experimental details. These entail the optical setup
and sample characteristics. Next we discuss off- and on-resonant spectra of SiV− nanodiamonds
at cryogenic temperatures. The results achieved during the period of the stay are summarised,
before we conclude this chapter with an outlook.

2.2.1 Experimental setup
The implementation of the scheme outlined on page 21 was based on confocal microscopy [195,
214]. This technique allows to resolve, according to Abbe’s criterion [133], structures with a
radius of d = λ/(2NA), where λ denotes the wavelength and NA is the objective’s numerical
aperture. An overview of the experimental setup, which was re-built at the beginning to improve
efficiency and stability, is given by figure 2.7. More information on the experimental equipment
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Diamond
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Figure 2.7: Scheme of the con-
focal microscope setup includ-
ing the most important compon-
ents. A polarisation maintaining
photonic crystal fibre (PM-PCF)
was used to prepare both beams
in a similar spatial mode. The
objective inside the flow cryostat
was mounted on a 3D piezo scan-
ner.

is listed in table 2.1. To excite the SiV− centres in our sample, two laser sources were used: A
532 nm diode laser to drive off-resonant PL and a titanium-sapphire (Ti:Sa) laser for resonant
excitation.

The Ti:Sa laser was tunable from 700 nm to 780 nm and was stabilised to an external Fabry–
Pérot cavity to yield a linewidth limit of 50 kHz. A small fraction of the Ti:Sa laser beam was
coupled to a wavemeter. Its absolute accuracy was 30 MHz. By synchronising the wavemeter
with our recording software [273], PL excitation (PLE) spectra could be recorded. An acousto-
optical modulator (AOM) with a rise and fall time of ca. 60 ns was placed in the beam path
of the Ti:Sa laser to prepare pulses. Both lasers were coupled with an efficiency of 63 % into a
polarisation maintaining photonic crystal fibre. The fact that both laser beams shared the same
fibre mode facilitated the alignment of the confocal microscope. After outcoupling the light, a
750 nm short-pass filter limited fluorescence caused by scattering effects in the fibre. Next, half
wave plate (HWP) / polarising beam splitter (PBS) combination was used to adjust the optical
power. The reflected beam was recorded to monitor power drifts.

A beam sampler (BS) directed a fraction of the incident beam into the microscope objective
mounted in a helium flow cryostat. The objective was mounted on a piezo scanner which enabled
a translation of the focal spot through the diamond sample. The sample was moulded into a
coin-sized indium chip and then fixed to the cold finger of the cryostat. Even though the latter
reached a temperature of ca. 4.2 K, heat flow from surrounding elements increased the sample’s
temperature to ca. 5 K. A vacuum pump provided a pressure of 10−7 mbar.

Fluorescence of the sample was collected by the objective. Given the incident beam was
focussed onto a SiV− centre, the emitted fluorescence left the objective collimated. It passed
through the anti-reflection coated side of the BS and a band-pass filter. To detect the whole
spectrum of the SiV− centre, a 750/40 filter was placed in the beam path. When measuring PLE
spectra, a 780/60 filter was used to block laser light. Information about the state of the centre
was thereby read off from fluorescence with a wavelength larger than 750 nm, which is, as it will
be also shown, emission associated to the phononic sideband [153].
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Table 2.1: Components involved
in the experiment.

Component Company Model (Specifications)
Ti:Sa laser Sirah Matisse TS, MOS-1
Diode laser Laser Quantum gem 532
Wavemeter High Finesse WS Ultimate 30

AOM Crystal Technology
Inc. AOMO 3200-146

PM-PCF NKT Photonics LMA-PM-10
BS Thorlabs BSF20-B

Objective Olympus UMPlan Fl (100×, 0.95 NA)

Piezo scanner Physik Instrumente
GmbH & Co. KG

P-562.6CD PIMars (3D
travel range: 200 µm)

Flow cryostat CryoVac KONTI (mod., He)

Spectrometer Princeton Instruments Acton SP2500 (1200 L/mm,
Pixis 100 Model 7515-0015)

Counting card Fast ComTec MCS6A-2T2
APD Excelitas Technologies SPCM-AQRH 14

To complete the confocal microscope, the beam was focussed through a 25 µm pinhole. After
collimating the beam again, it was directed either to a spectrometer or to one or two avalanche
photodiodes (APDs). Two APDs were used to record second order correlations g(2) [114, 181].

2.2.2 Nanodiamond preparation and characteristics
The nanodiamonds used for this experiment were provided by Davydov et al. who employed a
technique similar to the high-pressure high-temperature (HPHT) technique [80]. HPHT tech-
niques are known to yield low crystal distortion and thereby more uniform optical features
compared to other techniques to synthetically grow nanodiamonds [72, 205]. During the growth
process, Davydov et al. introduced SiH4 compounds which enabled a formation of SiV− centres.
According to their report, the nanodiamond size range from nm to µm. Thus it was important
to dilute and spread the nanodiamonds evenly over a substrate.

As substrate, a synthetic type-IIa diamond slide was used. In addition to very low fluores-
cence, its thermal conductivity is five time higher than the one of copper [284], which leveraged
an effective cooling of the sample in our cryostat. Before spin-coating the nanodiamonds onto
the diamond substrate, a H2O2 / H2SO4 (1:3) acid mix was prepared to remove compounds
which might cause fluorescence. Next, ca. 1 µL of the beforehand diluted nanodiamond solution
and held in an ultra-sonic bath to mitigate agglutination. Immediately after taking the diluted
solution out of the ultra-sonic bath, it was spin-coated on the substrate.

To characterise the nanodiamond size, several substrates were prepared and examined under a
scanning electron microscope (SEM). A SEM image is shown 2.8 and verifies that nanodiamonds
smaller than 100 nm could be found. However, we also detected nanodiamonds of a few µm
and agglutinated nanodiamonds. Because the resolution of our confocal microscope was limited
to ca. 300 nm, smaller particles were not distinguishable. Thus, we decided to embed markers
into the diamond substrate via focussed ion beam (FIB) milling. Such markers allow to localise
appropriately sized nanodiamonds via SEM imaging first and identify the same site by confocal
microscopy. The FIB process was carried out by U. Jantzen. Marked substrates were utilised
after my stay.
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Figure 2.8: SEM image of SiV− nanodiamonds on plat-
inum coated type-IIa diamond substrate. The imaged
nanodiamonds have a size of ca. 80 nm. While the upper
particle is a single nanodiamond, the lower one is formed
of agglutinated nanodiamonds. Paul Walther, head of
the electron microscopy institute at the University of
Ulm, granted us access to the SEM and gave advice for
its use.
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Figure 2.9: EDXA of SiV− nanodiamond on type-IIa
diamond substrate. The sample was not coated with
conducting components prior to the analysis, because we
did not intend to take high resolution SEM images. The
electron beam was focussed on nanodiamonds similar to
the ones shown in figure 2.8. Elements with low masses
(atomic number less than 11) can not be routinely char-
acterised via EDXA [118]. The first two strong peaks
stem probably from carbon and oxygen (0.5 keV).

In addition to SEM, energy-dispersive X-ray spectroscopy (EDXA) was utilised for an ele-
mental analysis of the sample. As the results in figure 2.9 proof, silicon was found in the
nanodiamonds. Besides silicon, sulphur and sodium were detected in the spectrum. We assumed
that sulphur and sodium stem from buffer solutions to stabilise the pH value of the original
nanodiamond solution.

2.2.3 Spectral properties of SiV− nanodiamonds at cryogenic temper-
atures

Off-resonant excitation

Spectral properties at cryogenic temperatures were first investigated via off-resonant excitation
to study the full spectrum of SiV− emission. After localising bright and diffraction limited spots,
the 532 nm laser was used to excite PL. Fluorescence was recorded with the optical spectrometer.
A typical spectrum is presented in figure 2.10. Here, the characteristics of a SiV− PL spectrum
for bulk diamond can be seen: Pronounced ZPL emission and a phonon sideband of ca. 20 nm
width. To characterise the spectral distribution of our SiV− nanodiamonds, ten PL spectra of
different nanodiamonds were recorded and averaged. The averaged spectrum, shown in figure
2.11, was fitted to the Lorentz distribution

f(λ) = a+ b
`2

(λ− λ0)2 + `2
, (2.10)
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Figure 2.10: PL spectrum of a nanodiamond containing
SiV− centres, recorded at 5 K with 25 µW optical pump
power at 532 nm. Optical power was measured in front
of the microscope objective. The spectrum was acquired
over 100 s and corrected for dark counts. A 750/40 band-
pass filter was placed in front of the detection stage.
Most noticeable is the peak at the ZPL. The peaks at
longer wavelengths stem from the phonon sideband.
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Figure 2.11: Averaged PL spectrum of ten SiV− nan-
odiamonds. Individual spectra were excited with 532 nm
light. The solid line is derived from a fit to equation
(2.10). Parameters were estimated to a = 0.074(3),
b = 0.87(1), λ0 = 737.89(1) nm and ` = 0.53(1) nm.
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where ` is the half-width-half-maximum (HWHM) linewidth, λ0 is the median of the distribution
and a, b are parameters to correct for data offset. From the fit, we found λ0 = 737.89(1) nm,
and ` = 0.53(1) nm. The linewidth is broader than for SiV− centres in low-strain bulk diamond,
but almost five-times more narrow than for previous ensemble-studies on SiV− nanodiamond
[11]. This indicates that the fabrication technique applied by Davydov et al. yields more uniform
optical properties.

In a consecutive study by A. B. Kurz and U. Jantzen, the actual number of SiV− centres
contained in nanodiamonds was estimated via g(2) intensity autocorrelation [114]. It was found
that at least six centres contributed to PL [154]. However, the PL from most SiV− nanodiamonds
did not yield a g(2) signal which exhibited single-photon characteristics, implying that much more
SiV− centres contributed to the emission.

Resonant excitation

By using a resonant excitation instead and probing PLE spectra, we were able to resolve in-
dividual lines in the fluorescence of SiV− nanodiamonds. Despite the fact that multiple SiV−
centres were contained in nanodiamond, resonant excitation allows for addressing individual emit-
ters assuming that the individual emission lines of the centres are not overlapping and broader
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Figure 2.12: (a) Low-pass filtered PLE spectrum of SiV− nanodiamond. To mitigate power
broadening, the optical excitation power was set to less than 50 nW [152, 232]. The laser fre-
quency was swept at a rate of 100 MHz s−1 over the shown spectrum. (b) The raw PLE spectrum
in terms of a relative frequency shift. The solid line is derived from a fit to the Lorentz distribu-
tion (2.10) with a = 2.38(12), b = 9.80(16), ν0 = 6.7(19) MHz and δν = 127.0(44) MHz, where
ν0 is the frequency shift from the null position (406.763 THz ≡ 737 020.5 pm) and δν the HWHM
linewidth.

than the excitation linewidth. The latter assumption certainly applied for our measurement,
as the Ti:Sa laser had a linewidth of ca. 50 kHz. To distinguish between scattered laser light
and SiV− PL, we used a 780/50 band-pass filter and thus detected emission from the phonon
sideband. Figure 2.12 illustrates a typical PLE spectrum. Two features are prominent in the
spectrum: A clear peak in the centre and other less defined peaks. In figure 2.12(b), the linewidth
δν of the central peak is shown and estimated to 127.0(44) MHz. Compared with the smallest
SiV− linewidth in bulk diamond, δν is about two-times wider and underlines thereby the prom-
ising features of the novel fabrication technique. The other peaks, such as the spike to the right,
were found to blink strongly, i.e. switching on and off, over time. Thus, the less defined peaks
just partly uncover their actual spectrum. In fact, we found that none of the recorded PLE
spectra exhibit a temporal stability. This instability can be seen in figure 2.13. The plot shows
a PLE spectrum where the laser frequency was manually scanned six times. As it can be seen,
the PLE spectrum shifts in a range of ca. 5 pm. In addition, the PLE intensity and line shape
changed.

By switching to off-resonant excitation at 532 nm between the scans, we investigated whether
it was possible to initialise the SiV− state. This method did however not yield any observable
difference.

After my colleagues automatised the laser-frequency tuning to cover in each scan the same
frequency range, PLE spectra of different SiV− nanodiamonds were recorded in this fashion. We
interpreted the line shift as spectral diffusion, so they shifted each scan block and averaged them.
It was found that the averaged linewidth was around 350 MHz [154] and hence consistent with
the herein presented results.

The nature behind the observed spectral diffusion, which is strong compared to SiV− in bulk
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Figure 2.13: Six consecutively recorded PLE spec-
tra of a SiV− nanodiamond covering a wavelength
range of 25 pm. Each horizontal block is a spec-
trum similar to spectrum 2.12(a). After a block
was recorded, the laser frequency was swept in the
other direction. The recording took 600 s, i.e. on
average 100 s per block. As the change of laser
frequency was controlled manually, the frequency
range and offset was not kept constant.
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diamond, and blinking effects has not been understood yet. A hypothesis for blinking is that,
in analogy to the NV− / NV0 system, photo-ionisation transfers the SiV− centre to its neutral
charge state SiV0. The SiV0 centre is known and associated with a ZPL at 946 nm [199]. As
the SiV0 ZPL is furthermore only weakly fluorescent, we could not check for its presence in our
setup.

Another hypothesis, which also explains the observed spectral diffusion, comes from the fact
that multiple SiV− centres were contained in a nanodiamond and thus interact with each other.
A similar reasoning is that other photo-activated effects interact with the SiV− centre. In bulk,
SiV− centres are known to be comparably insensitive to electric field and strain perturbations,
but by virtue of the close proximity to the enlarged effective surface area, the centre might
become more susceptible to such effects [232, 256]. The footprint of sulphur and potassium
found via EDXA (cf. figure 2.9) poses a potential reason for surface effects causing an electric
field perturbation. In summary, an improved control over the nanodiamond growth process seems
to be required to harness the potential of SiV− centres in nanodiamond.

2.2.4 Extended orbital relaxation time
Due to the spectral shifting and blinking, the prospects of measuring an extended orbital re-
laxation time were rather modest. However, as the experimental scheme described on page 21
relies on numerous repetitions, we conducted the experiment – given that the spectral instabil-
ities occur randomly and at rates faster than the measurement, an extended T orbit

1 could still be
measurable.

The pulse scheme sketched in figure 2.4 was implemented as a series of 30 pulses. Each laser
/ detection pulse was 1 µs long and repeated after a pause time incremented in steps of 0.1 µs.
Thus, a complete pulse sequence took 30 · 1 µs +

∑29
i=0 0.1 µs(1 + i) = 76.5 µs and was sampled

every 0.8 ns. This provides to an effective T orbit
1 “detection range” of approximately 4 µs to 70 µs.

At a laser power of 30(3) nW, which was chosen to mitigate power broadening effects, more than
120 · 106 pulse sequences were acquired in 5.3 h. Every 60 s, an automatised process mapped out
the PL over a volume of 0.83 µm3. The centroid of the PL intensity map was estimated and
used to re-focus the microscope objective. The largest drift was measured in the longitudinal
direction. Over the measurement time, the focal spot was re-adjusted by ca. 10 µm.

To analyse the acquired data according to our scheme, each pulse had to be extracted first.
Instead of manually selecting each pulse, we picked the first pulse and used it to calculate a cross-
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Figure 2.14: The lower plot shows the first
detected pulse. It was manually selected and
then used to calculate a cross-correlation with
the acquired data. Filled areas highlight the
sums used in the analysis shown next.
The upper plot presents the cross-correlation
between the shown pulse and the complete
acquired data. Hatched areas label regions
where each pulse was, according to our pulse
pattern, known to be found. To localise a
pulse, the maximum in each region was ex-
tracted.

correlation with the whole sequence. The result can be seen in figure 2.14. Next, the maxima in
the cross-correlation were extracted, which provided an exact localisation of each pulse.

Finally, the counts in the leading peak of every pulse were summed. To provide a normal-
isation measure, counts in the pulse tail were summed as well. As it can be observed in figure
2.15, the ratio of the two latter sums does not correspond to the expected behaviour which is
illustrated in the lower panel of figure 2.4. In fact, the ratio develops somewhat opposite to our
expectation. Only looking at the ratio, one might conclude that a process with a characteristic
time of less than 5 µs governs the evolution. However, the summed counts in the last bins, shown
in the middle plot, stress that this can not be the sole process: The dip of ca. 3 % at 10 µs
recovers with a characteristic time of another 10 µs.

Due to the long recording time, the stability of the setup and the individual normalisation of
each pulse we have no evident suspicion that the observed features stem form technical issues.
The features might indicate that the basic Λ scheme is insufficient to describe the physical system
properly. As of today, the experiment has not been repeated, such that no additional evidence
could vindicate this assumption.

2.3 Conclusion and outlook
In this study, spectral properties of SiV− centres in nanodiamond were investigated. The initial
goal to extend the spin decoherence T ∗2 by suppressing phonon vibrations at 50 GHz using SiV−
nanodiamond was not reached, however we identified limiting factors and furthermore promising
features. First, we have measured a spectral distribution of the SiV− ZPL across several nanodia-
monds of 1.06 nm (FWHM). Second, via resonant excitation, transition linewidths of 350 MHz
were demonstrated. Both features have not been reported for SiV− nanodiamond before and
thus highlight that the novel nanodiamond fabrication technique yields improved crystal qual-
ities. Due to spectral diffusion and blinking effects which are likely caused by the interaction
with near-by defects or surface effects, the direct application of SiV− nanodiamond is limited.
Yet, this issue is not unique for the utilised SiV− nanodiamonds and is expected to be tackled
by surface treatment.

Given that advances in nano fabrication can solve the reported challenges, the narrow optical
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Figure 2.15: Data analysis of the T orbit
1 meas-

urement. A green circle corresponds to the
‘off’ detection pulse in figure 2.15. The upper
figure shows the sum of the counts in the first
80 bins, which contained the important lead-
ing edge feature. The middle figure shows the
count-sum of the last 400 bins. The normal-
ised ratio of the sums is presented in the last
plot.
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linewidth qualify SiV− nanodiamond as highly attractive emitters for use in quantum optics.
The ability to move and place nanodiamonds manually led already to experiments where NV−
nanodiamonds in micro cavities were used to demonstrate Purcell enhancement and narrowband
single photon sources [6, 160]. The use of SiV−- instead of NV− nanodiamonds offers certain
benefits. First, the inherently stronger ZPL allows for higher quantum efficiency and, second,
the fact that the SiV− ZPL is ca. 100 nm above the NV− ZPL (637 nm) makes the fabrication of
high finesse micro cavities less demanding, because detrimental scattering effects scale as ∼ 1/λ.
The ability to fabricate high finesse micro cavities6 is the main challenge to enter the strong
coupling regime, which enables the study of fundamental aspects and applications in quantum
optics, e.g. triggered single photon sources and such fascinating phenomena as photon blockade
[30, 42, 277].

6The prospects for optical micro cavities have also motivated us to initialise cavity experiments. During the
thesis, an automatised interferometer and a special assembly required for the storage and coating of optical
elements was designed and built from scratch. Details about these projects can be found in appendix A.4.
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33 | Quantum enhanced phase
measurements

3.1 Introduction
Phase measurements by optical interferometry is a ubiquitous tool, with applications ranging
from biological studies [266], over profiling surfaces [187], to sensing gravitational waves for
fundamental research [177]. Optical interferometry gained success quickly after A. A. Michelson’s
invention of a setup now known as the Michelson interferometer [192]. The Michelson–Morley
experiment performed in 1887 to probe “the relative motion of the Earth and the luminiferous
ether” [193] yielded a negative result, in that the predicted relative motion was not measurable.
However, it supported earlier experimental findings by H. Fizeau that caused controversy about
luminiferous (meaning light-bearing) ether theories [259]. And it stirred up the search for new
theories about the relationship between space and time – which eventually led to the special
theory of relativity.

A cornerstone in interferometry, and metrology in general, was then set by quantum mech-
anics: Due to Heisenberg’s uncertainty relation, a definite limit of the measurement’s certainty
was found. The name giver of this relation himself put forth a thought experiment [134], now
known as Heisenberg’s microscope. It pedagogically depicts the constraint of knowing a particle’s
position when probed by photons. Even though the original explanation showed to be misleading
[237], an extension of his picture vindicates the usage of it [47]. In retrospective, this thought
experiment was challenged in various ways ever since, either by preparing the probe state in ways
only accessible by quantum mechanics, or by measuring the state after the interaction.

Achievements of these attempts are techniques which enhance the sensing of phase changes,
referred to as super sensitivity and super resolution. From an experimental point of view, the
limits which have to be surpassed to qualify a measurement of being super sensitive or -resolved is
set by an interferometer configuration which employs the “‘most classical’ quantum state” [114,
p. 43], namely a coherent state, and whose output is probed in the “most classical” way, which is
realised by directly monitoring the beam’s power as it leaves the device. In this configuration, the
interaction between photons and sample can be pictured as a passing of individual, uncorrelated,
photons through the sample. To achieve an enhanced sensing, one might change either the
properties of the input state or the detection process, which comprises a physical detection, i.e.
absorption of photons, and a processing of the acquired data.

Even though our study is restricted to sensing a phase shift in an optical interferometer,
we note that the general concept of overcoming ‘classical limits’ by harnessing quantum effects
applies to other types of interferometry, such as atom interferometers [76], and further also
spatial resolution concepts such as the Rayleigh criterion [34, 133] which may find application
in, amongst others, lithography [36]. From another point of view, phase measurements and
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quantum computation are on equal footing. This connection is based on the insight that quantum
algorithms can be related back to estimating the phase of the quantum bit as it’s tracing through
the quantum computer’s clockwork [96]. New results in either field might thereby influence each
other and help to harness the resources for quantum computation most effectively.

Chapter structure We will specify the resolution and sensitivity criteria further and name
experimental concepts to meet those criteria. Based on the challenges faced by the latter, a
motivation of our approach will be given. Before analysing the technique we applied, an intro-
duction to phase estimation and the concept of Fisher information starts the theoretical part.
The reader will also find a short summary of squeezed states of light, as it is an essential element
of the experiment. Next, the experimental section starts with a description of the generation of
squeezed light before explaining the actual interferometer setup. A summary of the results and
an outlook concludes this chapter.

3.1.1 Motivation of our measurement scheme
In a standard single-pass interferometer, as depicted in figure 3.1(a), the interference effect arising
from the coherence of electromagnetic waves creates a fringe pattern with a periodicity set by
half of the wavelength [133]. The full width half maximum (FWHM) of the fringe determines the
resolution. When attained by classical means, the resulting FWHM is commonly referred to as
the Rayleigh criterion. Figure 3.1(b) visualises this measure. Overcoming the Rayleigh criterion
is termed as super resolution and was achieved with entangled photons created by spontaneous
parametric down-conversion [197, 227], post-selection techniques [197, 228] and a post-processing
technique put forth by Distante et al. [88]. It is an extension of the latter technique our approach
is based on.

Next to the fringe resolution, the quantum shot noise limit (SNL) is another boundary of
interferometry, setting the sensitivity of the measurement. Unlike the resolution feature, this
boundary can not be termed as classical any more, as the SNL is due to quantum fluctuations
[114, 181]. Thus, to visualise this characteristic, figure 3.1 needs to be redrawn: A “quantum
picture” can be seen in figure 3.2 and 3.3 on page 37 and will be theoretically elaborated in a
next section. Beating the SNL qualifies the measurement for being super sensitive. According to
quantum estimation theory [136], the quantum Cramér–Rao bound, or equally the Heisenberg
limit introduced in the following section, constitutes the ultimate bound of the sensitivity, which
can be saturated by, e.g., squeezed input states [55, 116].

Combining both super sensitive and super resolving features is known to be achievable via
“NOON” states [240], defined as a coherent superposition of n photons passing through either
arm of the interferometer:

|ψ〉 = 1√
2

(|n, 0〉 − |0, n〉). (3.1)

We will shortly see what the reasoning behind this is. Another proposal was put forth by
Anisimov et al. It is based on parity detection [10], where one needs to tell apart an even from
an odd photon number state.

The fundamental drawback of using NOON states is their susceptibility to losses [115, 145]. A
number of detailed studies investigated the influence of losses mathematically and experimentally
[79, 82, 91, 159]. Photon losses can occur in the setup itself, e.g. due to absorption at optics.
The largest contribution to losses can however usually be attributed to detection efficiencies:
Depending on the wavelength, standard single photon counting detectors offer efficiencies in the
range of 20 % to 40 %. State of the art photon counting detectors can have efficiencies of 95 %,
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Figure 3.1: (a) A scheme of a single pass Mach–Zehnder interferometer from a classical point of
view. ‘Single pass’ means that the phase shifting element is passed only once. A laser beam is
sent into the upper mode. The second input mode is left unused. A phase shift is imparted on
the mode travelling through the upper arm. It can be realised by various means: As depicted, by
a wedged glass plate, or, more generally, a sample with a variation in refractive index. Another
means is to actuate one of the four mirrors between the two beam splitters by a piezoelectric
device. At the output, two photodetectors, D1 and D2, record the intensity.
(b) The observed fringe pattern, assuming that the in- and output is treated as classical. The
recorded intensity is normed to the input intensity. Given a perfect alignment, and unity trans-
mission and detection efficiencies, the fringe visibility is 100 %, that is the relative intensity is
modulated between zero and one. The full width half maximum (FWHM) marks the attainable
resolution.
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Figure 3.2: Indexing of modes and
Wigner functions in a Mach–Zehnder
interferometer applied for a quantum
mechanical treatment. The modes are
denoted by annihilation operators â.
To visualise the in- and output modes,
Wigner functions W are used.
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(b) W2: Vacuum state
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(c) W7: Output mode undergoing a phase change
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Figure 3.3: (a) Wigner function of the input state in mode 1. The indexing is in accordance
with figure 3.2. The amplitude of the displacement (section 1.2.1 introduces the terminology) is
c =
√

2<(α) with α = 10.
(b) Wigner function of the second input mode. As it is left unused in this configuration, it shows
the vacuum state.
(c) Wigner function of the output mode 7 under a change of the phase φ. Eight “snapshots”
visualise the Wigner function at φ = n

4π, n ∈ {0, . . . , 7}. At φ = 0, W2 is mapped directly to
W7. At φ = π, W1 can be detected in this mode. For mode 6, the opposite applies, however
with an additional sign change. That is the whole distribution of W6 is displaced by c along the
amplitude quadrature.
(d) The marginal distribution along the amplitude quadrature normed to c. It recreates the
behaviour shown in figure 3.1(b) in terms of resolution, but now shot noise is imprinted on the
signal. When normed to c, the standard deviation is, according to equation (1.17), 1/

√
〈n̂〉.
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but an operation at 100 mK is required to reach this value [179]. In addition, to fully characterise
NOON states, i.e. to perform a state tomography, one can either attempt to perform a homodyne
detection or to resolve the actual photon number [150]. On the one hand, technical difficulties
render a homodyne detection on single photon states inefficient: Lvovsky et al. reported 55 %
for a single photon state |1〉 [5, 186]. On the other, photon number resolving detectors can reach
efficiencies of 43 % and also rely on an operation at cryogenic temperatures [50]. This issue of
detection (in)efficiencies applies for the proposal of Anisimov et al. as well, since it requires parity
detection.

Finally, schemes employing NOON states, or, more general, states with a discrete photon
number, require a reliable and preferably on-demand single photon source.

To overcome the named hurdles, post-processing techniques are commonly applied to omit
those events where a photon was lost or the creation of the input state failed [156, 197]. This
implies that the sample which causes the phase shift in the interferometer was subject to more
photons than taken into account. It not only poses a concern in scenarios where the input power
has to be minimal to prevent from optical damage, which applies when examining the phase shift
induced by a biological samples [266, 267], it is also a fundamental issue: As we will see, the
sensitivity is derived from the number of photons which experience a phase shift. If those are
omitted which get lost after a phase shift was imprinted on them, the sensitivity is artificially
increased.

Our motivation was to experimentally achieve super resolution and super sensitivity and to
address the mentioned issue by harnessing the advantages of Gaussian states and detection tech-
niques1. Due to the continuous nature of Gaussian states, this should yield a fully deterministic
approach. Furthermore, the detection of such states via the homodyne technique, described on
page 7, allows for efficiencies larger than 98 % without requiring cooling or otherwise expensive
components [16, 94]. On top of that, a homodyne setup has shown to be optimal in terms of
sensing – when used for the coherent state in particular, but also for Gaussian states in general
[200].

3.2 Theoretical framework
The theoretical analysis starts by describing the special challenges met when measuring a phase
shift. Next the transformation of quadratures due to a phase shift will be derived. To be
able to quantify phase measurement techniques, the Fisher information is discussed. Then the
relation between Fisher information and the measure of sensitivity is given. By these means, a
few interferometer configurations are compared. Thereby readers familiar with one or the other
concept can relate the experimental results to the respective measure.

Based on the introduced operations and measures, our approach is finally treated.
The emphasis in the theoretical section is put on concepts and fundamental properties of

phase measurements, rather than technical details. Readers unfamiliar with this topic might
find thereby an easier access to it, as the works we refer to usually assume an understanding of
such concepts and properties.

3.2.1 Challenges of phase measurements
This section describes how information of a phase s h i f t on a quantum state can be gained.

1These states and detection strategies can be represented by Gaussian operators, which are defined as operators
that transform Gaussian states only in Gaussian states [99]. Refer also to page 15.
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Most often for reasons of convenience, the suffix ‘shift’ is omitted in literature and unless an
ambiguous understanding might occur, it will be dropped herein as well. Nonetheless, we would
like to remind that the measurement of the phase is inherently connected with delicate issues:
One of the obvious problems is the periodicity of the phase; without any other (arbitrary) static
reference the outcome is rendered meaningless. From an experimental point of view, the need
for a reference already implies that only by means of an interferometer a phase can be measured.
This problem is not inherently a quantum mechanical one, but it brings forth trouble when
“looking” for a Hermitian phase operator and its complementary observable. For a comparison
of different approaches towards a Hermitian phase operator, the reader may refer to Gerry and
Knight [114].

The obstacles of defining a Hermitian phase operator are however not a hurdle when dealing
with the estimation of a phase shift as a p a r a m e t e r. Here, one does not seek to realise an
apparatus that measures an eigenvalue of the phase operator, but rather utilises an estimator
which finally relates another (accessible) quantity to the parameter – the phase φ. The design
of the estimator constraints how much information we can infer about φ. On the baseline of
an estimator is a function which tells how probable it is to have measured a certain quantity,
given a certain value of φ. For a meaningful estimation, the measured quantity hence needs
to be correlated to the phase. Figure 3.3(d) shows clearly that an interferometer probed via
homodyne detection is a way to gather information about φ. So the question an estimator in
this case answers is: How probable is it to measure p(x)/c = 1 given φ = 0?

From what is stated above – and in dependence of the terminological standpoint –, the notion
of phase m e a s u r e m e n t might be misleading. The term ‘phase measurement by inference’
is certainly less ambiguous. Due to its length (and common practice) we will stick with the short
form and mind that knowledge about the phase is only gained indirectly.

3.2.2 Operator representation of a phase shift transformation
When trying to learn something about a phase, the first question might be: How does one model
the phase shift? An answer can be given in the Heisenberg picture, by describing the interaction
in terms of a transformation of the ladder operators â and â† which are introduced on page 7.
Assuming a lossless case, one can understand the interaction as an annihilation of the incoming
photon followed by the creation of a photon with its phase shifted by φ. This is the single-mode
analogue of a beam splitter transformation (cf. equation (1.32)). Thus the unitary operator reads

Ûφ = exp
(
ıφâ†â

)
= exp(ıφn̂). (3.2)

The dependence on n̂ is the reason why NOON states achieve super resolution: A |n, 0〉 state
launched into the interferometer in figure 3.2 makes a NOON state after the first beam splitter.
As the phase shift in the sensing arm is of the given form, the state in front of the second beam
splitter reads

|ψ〉 = 1√
2
(
|n, 0〉+ eıφn|0, n〉

)
, (3.3)

that is, a set of n photons picks up a phase shift n times2.
To discuss different (experimental) realisations that infer something about φ, a convenient

way is to work with Wigner functions introduced in section 1.2.4. Starting from a known Wigner
2To achieve this with a classical interferometer, a laser with half the wavelength can be employed. This suggests

that the energy deposited by a NOON states increase in the same way as doubling the frequency does.
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function at the interferometer’s input, the Wigner function at the output is found by transforming
the conjugate quadrature operators X̂ and Ŷ , i.e. by a transformation of the initial coordinate
system [53, 285]. This simple recipe only applies when Gaussian operations are to be handled,
so operations that do not send a Gaussian to a non-Gaussian state. To figure out how the
quadratures are transformed by (3.2), we need to find Û†φX̂Ûφ. For X̂, this reads

eıφn̂ X̂ e−ıφn̂ . (3.4)

The Baker–Campbell–Hausdorff lemma [239]

eıϑÂ B̂ e−ıϑÂ = B̂ + ıϑ[Â, B̂] + (ıϑ)2

2! [Â, [Â, B̂]] + (ıϑ)3

3! [Â, [Â, [Â, B̂]]] + · · · (3.5)

may be applied to find the solution. With the commutator relation (1.8a) and

X̂ = â+ â†√
2
, (3.6a)

Ŷ = â− â†
ı
√

2
, (3.6b)

we arrive at
[
n̂, X̂

]
= â† − â√

2
= −ıŶ , (3.7a)

[
n̂, Ŷ

]
= −â

† − â
ı
√

2
= −1

ı
X̂. (3.7b)

Checking for the “second order” nesting of the commutator returns the initial quadratures:
[
n̂,−ıŶ

]
= X̂, (3.8a)

[
n̂,−X̂/ı

]
= Ŷ . (3.8b)

Next these results are arranged according to their power:

Û†φX̂Ûφ = X̂ + ıφ
(
−ıŶ

)
+
(
−φ

2

2! X̂
)

+
(
−ıφ

3

3!

)(
−ıŶ

)
+
(
φ4

4! X̂
)

+ · · ·

=
∞∑

j=0

φ2j

(2j)! (−1)jX̂ +
∞∑

j=0

φ2j+1

(2j + 1)! (−1)j Ŷ

= cos(φ)X̂ + sin(φ)Ŷ , (3.9a)

similarly we find

Û†φŶ Ûφ = cos(φ)Ŷ − sin(φ)X̂. (3.9b)

Thus the original coordinate system is undergoing a rotation. As an example, φ = π/2 leads to
X̂ 7→ Ŷ and Ŷ 7→ −X̂.

3.2.3 Estimation of the phase shift and the Fisher information
As outlined, we can not access the phase directly, so another means has to be employed. This
means is a statistical estimator Φ, i.e. a measure that relates a quantity we k n o w to the phase,
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which is the quantity we w a n t to know. Such a “knowable” quantity is, e.g., the amplitude
|α|2, that is the average photon number 〈n̂〉 = n̄ of a coherent state which leaves one of the
interferometer’s outputs.

The relation an estimator Φ builds is then described as follows: First, we assume to measure
n̄ photons given a phase of φ. We write the condition as ‘n̄|φ’. Since this measurement must come
with an uncertainty – due to statistical and systematic uncertainties, and finally non-commuting
operators–, a repeated measurement reveals the probability of n̄|φ, which we write as p(n̄|φ).
Second, the way to infer knowledge from p(n̄|φ) defines the estimator Φ(n̄). This could be, e.g.,
the mean of p(n̄|φ). Finally, the estimator returns an estimate of the phase: Φ(n̄) = φ̃.

When the estimator is set, a vital question is how well it performs in telling us φ. A good
estimator should react quickly to a small change in the phase, so one asks how much p(n̄|φ)
changes to p(n̄|φ + δφ). To quantify the change, it is common to take the derivative of the
logarithm of the conditional probability, i.e. ∂

∂φ ln p(n̄|φ) [44]. Using the chain rule, ∂
∂φ ln p(n̄|φ) =

1/ p(n̄|φ) ∂
∂φ p(n̄|φ), which makes the interpretation easier: The result, in statistics known as the

score, is a “normalised sensitivity”.
To arrive at positive values for the score, it is squared. Then weighting the squared score by

p(n̄|φ) and summing over all n̄ defines the Fisher information [75]:

F (φ) =
∑

n̄

p(n̄|φ)
(
∂

∂φ
ln p(n̄|φ)

)2
=
∑

n̄

1
p(n̄|φ)

(
∂

∂φ
p(n̄|φ)

)2
(3.10)

Changing from a summation to an integration, this definition equally applies for continuous
variables. The Fisher information quantifies the information content that n̄ carries about the
(unknown) parameter φ.

3.2.4 Bounds of the estimation process
An important property of the Fisher information is that it provides the lower bound on the
uncertainty of an estimator under a given probability function p, that is [75]

Var(Φ) ≥ 1
F (φ) . (3.11)

There might be another p that performs better, thus puts less uncertainty on the estimated
parameter. The lowest reachable, in that sense optimal, constraint is named the Crámer–Rao
bound, in reminiscence of the mathematicians who proved the inequality [75]. One way to derive
it is by means of the Cauchy–Schwartz inequality [44] |〈x, y〉| ≤ ‖x‖ · ‖y‖.

Var(Φ) = ‖x‖ =
∑

n̄

p(n̄|φ)(Φ(n̄)− φ)2
, (3.12a)

F (φ) = ‖y‖ =
∑

n̄

1
p(n̄|φ)

(
∂

∂φ
p(n̄|φ)

)2
, (3.12b)

and so for the cross term

|〈x, y〉| =
∑

n̄

(Φ(n̄)− φ)
(
∂

∂φ
p(n̄|φ)

)
= ∂

∂φ

∑

n̄

Φ(n̄) p(n̄|φ), (3.12c)

which equals φ for an u n b i a s e d estimator, as the sum converges to 1. Assembling the last
three equations yields equation (3.11).
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In an experimental realisation one will probably measure n̄ repeatedly. This is certainly true
for a phase measurement, where a repetition means: Send i uncorrelated photons through the
phase shifting element, i.e. the sample. To account for a repetition, the additivity of F has to
be investigated. To derive it, we write out the Fisher information as

Fa,b(φ) =
∑

a,b

p(a, b|φ)
(
∂

∂φ
ln p(a, b|φ)

)2
. (3.13)

For statistically independent variables, p(a, b|φ) = p(a|φ) p(b|φ). Substituting it, we find

Fa,b(φ) =
∑

a,b

p(a, b|φ)
(
∂

∂φ
ln p(a, b|φ)

)2

=
∑

a,b

p(a|φ) p(b|φ)
(
∂

∂φ
ln(p(a|φ) p(b|φ))

)2
, (3.14a)

and by introducing p(n|φ) = pn, ∂
∂φpn = p′n, and using the chain rule again,

=
∑

a,b

papb

(
∂

∂φ
(ln pa + ln pb)

)2

=
∑

a,b

papb

((
p′a
pa

)2
+ 2p′ap′b

papb
+
(
p′b
pb

)2
)

=
∑

a,b

pb
pa
p′2a + 2p′ap′b + pa

pb
p′2b . (3.14b)

Comparison to equation (3.10) and the completeness
∑
i pi = 1 yields

= Fa(φ) +
∑

a,b

2p′ap′b + Fb(φ). (3.14c)

Finally, the point symmetry of p′i makes the middle term disappear, such that

Fa,b(φ) = Fa(φ) + Fb(φ). (3.14d)

The implication of the additivity is best exemplified by an interferometer with a certain
configuration: Assuming a single photon input and a “photon or no photon” (known as ‘click’)
detection, we find F (φ) = 1. Sending in a second photon – uncorrelated to the first one – yields
F (φ) = 2, and so forth. Thus, dividing by the number of attempts is necessary when comparing
the scaling of equation (3.11) for different input states. From another point of view, using a
quantum state with uncorrelated photons, i.e. a coherent state with 〈n̂〉 = n̄, this finding already
suggests that Var(Φ) ∝ 1/n̄.

3.2.5 Quantum Fisher information and the Heisenberg limit
The Fisher information is a measure derived from classical probability distributions. Also in
quantum mechanics, as Born’s rule tells [35], any direct measurement outcome will follow such a
distribution. Thus, in any case, F is a perfectly valid concept. However, the issue with F applied
on quantum parameter estimation is that F does not cover all the available information on the
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parameter, as it does not account for non-classical correlations. The extractable information of
φ might be higher than it appears, thus F will no longer be a lower bound.

To account for this, a quantum version of F has been derived, called the quantum Fisher
information H. The concept is to follow equation (3.10) and apply Born’s rule

p(x|φ) = |〈x|ψ〉|2 = tr
(
ρ̂Π̂x

)
, (3.15)

where Π̂x = |x〉〈x| are elements of a positive-operator valued measure describing the measurement
process of the quantum state represented by a density matrix ρ̂ [23]. The reason for choosing the
latter representation is because it applies to both mixed and pure states and general detection
strategies.

The right hand side of equation (3.15) may then be substituted into equation (3.10). G. W.
Helstrom employed the symmetric logarithmic derivative [135]

∂

∂φ
ρ̂ = 1

2

(
Λ̂ρ̂+ ρ̂Λ̂

)
(3.16)

to substitute the derivative in equation (3.10) with quantum operators. Solving for Λ̂ yields

Λ̂ = 2ı(ρ̂n̂− n̂ρ̂). (3.17)

By virtue of two inequalities, Helstrom arrived at

H(φ) = tr
(
ρ̂Λ̂2). (3.18)

This finding is important, as it is not, in comparison to F , dependent on the measurement process
any more. The bound H constitutes reads

Var(Φ) ≥ 1
F (φ) ≥

1
H(φ) (3.19)

and is referred to as the quantum Cramér–Rao bound. In general, one can only show whether or
not this bound is saturated. It does not provide the means to determine the measurement itself.

The homodyne detection technique introduced in section 1.2.3 in combination with coherent
states has shown to achieve the Cramér–Rao bound [144], while the use of squeezed vacuum
states yields a saturation of the quantum Cramér–Rao bound [200]. As outlined, we based
the experiment on Gaussian states and detection techniques, such that these features played
an important role for our approach. Neglecting the experimental difficulties outlined in the
introduction of this chapter, the same can be reached with NOON states defined in equation
(3.1) and photon counting detectors [115].

A calculation of H for pure states, which satisfy ρ̂ = ρ̂2, yields

H(φ) = 4 Var(n̂), (3.20)

and is thus independent of φ. More general cases of thermal states have been analysed by,
amongst others, A. A. Berni [27]. Considering a Mach–Zehnder interferometer as shown in figure
3.2, the photon number variance Var(n̂) has to be evaluated for the s e n s i n g arm. Taking the
NOON state as an example, one will find H(φ) = 4n2

4 = n2. Substitution into equation (3.19)
and taking the square root reads

σ(Φ)HL ∝ 1/n, (3.21)
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which is known as the Heisenberg limit. For coherent states with a mean excitation of n̄ in the
sensing arm, one can achieve at best the shot noise limit

σ(Φ)SNL ∝ 1/(2
√
n̄). (3.22)

For a squeezed vacuum state, characterised in section 1.2.2,

σ(Φ)ξ ∝ 1/(2
√

2
√
n̄+ n̄2). (3.23)

The proportionality sign in the last three equations reminds that the number of measurement
repetitions has to be accounted for.

We note that the Heisenberg limit is usually understood as a scaling rather than a limit,
such as the quantum Cramér–Rao bound. That is, equation (3.23) reaches asymptotically the
Heisenberg limit, but a squeezed vacuum state and a homodyne detection can, for all n̄, saturate
the quantum Cramér–Rao bound.

3.2.6 Fisher information and sensitivity
Next to the Fisher information another measure to quantify a parameter estimation is by means
of a common tool in data analysis, namely the method of uncertainty propagation. This approach
yields an estimate on the uncertainty σ(a) of a parameter a given a model of the measurement,
that is a functional f(b) = a, where b is the set of i parameters influencing measurement. To
estimate the uncertainty on a, the uncertainty propagation [44]

σ(a) =
∑

i

∣∣∣∣
∂f(b)
∂bi

∣∣∣∣σ(bi) (3.24)

can be employed. The method is a sum of the the first derivatives of the model with respect to
a parameter bi multiplied by the a priori knowledge of its uncertainty σ(bi).

To apply this method for our study, equation (3.24) has to be solved for σ(bi), because we
know σ(a) – namely the standard deviation of the homodyne measurement – and seek to know
the uncertainty of the estimated phase parameter Φ(x). This yields

σ(Φ) =
√

Var(p(x|φ))∣∣∣ ∂∂φ 〈p(x|φ)〉
∣∣∣
. (3.25)

Given that 〈p(x|φ)〉 is only punctually vanishing, both the latter expression and
√

1/F are
equivalent [60, 75]. From here on we will adopt the common practice and refer to the result
of equation (3.25) as the sensitivity. Whether sensitivity or F is used to evaluate a phase
measurement differs amongst authors. It appears to be easier to read off the shot noise limit in
a sensitivity plot, thus we prefer the latter.

3.2.7 Comparing Fock with Gaussian states in a Mach–Zehnder inter-
ferometer

From the viewpoint of a “quantum mechanic”, a natural test case for a measurement is to use a
single photon as the input state. The other input mode of the interferometer is left free, thus we
have |1, 0〉. As another case, we send |1, 1〉 into the interferometer drawn in figure 3.2. Finally a
coherent state input |α, β〉 and a squeezed vacuum state |ξ〉 formed the input state.
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To compare those cases, the Fisher information and the sensitivity were calculated for the
output modes 6 and 7, that is the modes leaving the second beam splitter in the assembly. As
the measurement strategy, a homodyne technique was applied to all scenarios. This is the best
choice for a Gaussian state scenario, but for the Fock state this is rather unusual, and as such
an interesting technique to explore.

The Wigner function, as summarised on page 15, was applied to solve for F and the sensitivity
σ. By virtue of equation (3.9) and the beam splitter transformation (1.30), p(x|φ) was computed
via

p(x|φ) =
∫∞
−∞W (x′′′, y′′′, φ) dy′′′

∫∞
−∞W (x′′′, y′′′, φ) dx′′′ dy′′′

, (3.26)

where W (x′′′, y′′′, φ) denotes the Wigner function after three transformations: (a) The first
beam splitter, (b) the phase shift in one mode, (c) the last beam splitter. The result was then
substituted into equation (3.25) and, to arrive at F directly, the integral form of equation (3.10).

For the Gaussian states, this approach delivered a symbolic expression for F . In the case of
|1〉|0〉, symbolic expressions have been found as well. For the double photon input |1〉|1〉, complex
analysis was required to extract a symbolic expression in F for one of the two output modes.
As it was however always feasible to calculate a symbolic expression for the integration kernel of
(3.10), numerical integration was found to be convenient for higher order photon number states.
The results are presented in figure 3.4. Appendix A.5 summarises the expression evaluated for
the different input states.

3.2.8 Approach to deterministic super resolution and super sensitivity
Building on the fundamental concepts presented in the preceding section, we will next elaborate
on our approach to combine super resolution and super sensitivity. The approach is based on an
experimental verification of super resolution by Distante et al. [88]. Using coherent states and
a Mach–Zehnder interferometer, a post-processing technique of the data acquired via homodyne
detection led to fringes narrowed by a factor of 12. However, their configuration prevented
from surpassing the shot noise limit. By combining a coherent- with a squeezed vacuum state
and extending their mathematical model, this limit could be surpassed. The idea of sending a
squeezed vacuum state in the second input mode of an interferometer goes back to a proposal of
C. M. Caves [55]. It is thus fair to state that our approach is of an eclectic nature.

Super resolution with parity detection

At the very bottom of the post-processing technique we applied is the idea to measure a NOON
state, instead of generating it. This somewhat reflects the time-reversal symmetry of quantum
mechanics [228]. Gao et al. elaborated on this idea and developed a proposal based on coherent
states and photon number resolving detectors3 [108]. The reasoning here is as follows: We
consider |α, 0〉 as the input state. By propagating the state through the first beam splitter using
equation (1.30) and the phase shifting element,

|ψ〉 =
∣∣∣∣eıφ

α√
2
,
α√
2

〉
= e−n̄/2

∞∑

i

∞∑

j

(
eıφ
√
n̄/2

)i(√
n̄/2

)j
√
i!j!

|i, j〉 (3.27)

is found. A constant phase offset due to the beam splitter interaction was added to φ. The
expansion in the Fock state basis (1.15) makes it explicit that eıiφ|i, 0〉 + |0, i〉 states as well as

3In fact, Gao et al. considered that a parity detection might be sufficient to establish super resolution.
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Figure 3.4: (a) Fisher information for three input states. Modes are numbered in accordance to
figure 3.2. The coherent state amplitudes are α = 1/

√
2, β = −ı/

√
2. Only for the latter, F also

exists in mode 5 – it’s F5 = F6 +F7. For Fock states F5 = 0, which reveals the (missing) feature
of a single photon state, namely a phase. By interfering mode 5 with the bypassing mode 3, φ
becomes measurable. Lines which can not be identified directly are covered by another line; this
applies for |1, 1〉 and |α, β〉. An apparent feature is the asymmetry of F for |1, 0〉: Depending on
the working point, probing one of the modes would be thus preferential. The doubled periodicity
of |1, 1〉 corresponds to the finding that fringe spacing can be decreased by correlated photons.
(b) Fisher information and sensitivity compared in one graph. The results stem from |α, β〉. The
shot noise limit (SNL) is given by equation (3.22). The quantum Cramér–Rao bound can not
be reached with this configuration. (c) Fisher information for a squeezed state under variation
of the squeezing parameters r and ϕ. A lossy transmission (η = 1/2), yields the same F as if
r = 1/2. As a reference, the quantum Cramér–Rao bound is depicted as a solid line. The fact
that this bound can always be reached at some ϕ led to the idea of combining phase estimation
with feedback control [27]. (d) The sensitivity of the cases shown in graph (c). Dotted lines
present the sensitivities reached by coherent states with n̄ = sinh(r)2.
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eıiφ|i, j〉+ eıjφ|j, i〉 are present in the sum – both exhibit super resolution [148, 155]. Thus, the
task is to realise a measurement described by

π̂ =
∞∑

i,j

|i, j〉〈j, i|. (3.28)

The solution provides the parity operator

Π̂± = (−1)n̂ = exp(ıπn̂), (3.29)

which clearly resembles the phase operator (3.2), but with a fixed phase. As Π̂± has only two
eigenvalues, it performs a dichotomy of the state it is applied on.

First, we note that the state in equation (3.27) is found before the second beam splitter. To
reach super resolution, π̂ should be applied to it at this stage. Second, motivated by a comparison
to the phase shift operator, Π̂± is propagated from the output of the second beam splitter to
where |ψ〉 is known. This yields

〈ψ|π̂|ψ〉 =
〈
α, 0

∣∣Û†b (Ûφ ⊗ 1̂ )†π̂(Ûφ ⊗ 1̂ )Ûb
∣∣α, 0

〉
=
〈
α, 0

∣∣Û†b (Π̂± ⊗ 1̂ )Ûb
∣∣α, 0

〉
(3.30)

and shows that a parity detection at the interferometer’s output is equivalent to applying π̂
inside, i.e. before the second beam splitter. The result Gao et al. found reads 〈ψ|π̂|ψ〉 =
exp(−2n̄ sin(φ/2)2), hence achieves a fringe narrowing dependent on the average photon number
n̄.

This finding raised the question whether a similar ‘dichotomy technique’ can be applied for
homodyne detection, which is (at least at the present status quo) technically more efficient than
the various types of single photon detectors.

A processing of the detected signal which mimics the ‘dichotomy operation’ of Π̂± has been
found and originates from a theoretical study of Wigner functions and the parity operator. In
1977, A. Royer proofed a relation between Π̂± and the Wigner function [236]. Specifically, he
showed that 〈Π̂±〉 = π

2W (0, 0).
To utilise this relation via homodyne detection is simple: The acquired signal is, as shown

in figure 3.3(d), a projection on one of the quadratures. Let us assume to measure p(y, φ = π)
for mode 7, that is the X̂ quadrature is traced out and the output is a vacuum state. To finally
arrive at an information about W (0, 0), the acquired signal p(y) has to be sorted into two bins:
p(y = 0) and p(y 6= 0).

To cast this idea in equations, the Wigner formalism, outlined in section 1.2.4, can be used
to propagate a coherent state |α, β〉 through the interferometer. At the output, one finds

W (x6, y6, x7, y7) =

1
π2 exp

(
1
2

(
e−ıφ

(
− eıφ

(
4|β|2 + 2

√
2<(β)(x6 − x7 − ıy6 + ıy7) +

2x2
6 −
√

2αx6 + 2(x2
7 + y2

6 + y2
7) +

√
2(αx7 − ı(α− 2β)(y6 − y7))

)
+

√
2(α+ β)∗(x6 + x7 − ı(y6 + y7)) +

√
2 e2ıφ(α+ β)(x6 + x7 + ı(y6 + y7))

)
+

α∗(−4α +
√

2x6 −
√

2x7 − ı
√

2y6 + ı
√

2y7)
))

. (3.31)
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Figure 3.5: The result of equation (3.32). The dashed
line follows a cos-function to compare the acquired sig-
nal with a standard detection scheme. For this simula-
tion, α = 10. The response differs between the measured
quadrature: This behaviour stems from the way the state
revolves about its centre in phase space, as it can be seen
in figure 3.3(c).

Then by tracing out mode 6 and β = 0, the measurable probability distributions are

p(x7 = 0, φ) = 1√
π

exp
(
−1

8 e−2ıφ(−1 + eıφ)2(α∗ − α eıφ)2
)
, (3.32a)

p(y7 = 0, φ) = 1√
π

exp
(

1
8 e−2ıφ(−1 + eıφ)2(α∗ + α eıφ)2

)
. (3.32b)

Figure 3.5 presents the outcome and shows the super resolving features of this detection strategy.

Dichotomy strategy widened

The problem with this strategy however is that such a dichotomy would take forever, as strictly
speaking the chance to only measure at y = 0 takes an infinite amount of resources. Another way
to look at this impossibility is that this measurement is a projection on the eigenstate |y = 0〉
which is a projection onto an infinitely squeezed state. As such a state is not physical4 the
binning has to be relaxed. This measurement strategy can be described by two projectors [88]

Π̂0 =
∫ a

−a
|y〉〈y| dy, (3.33a)

and its complement

Π̂1 = 1̂ − Π̂0. (3.33b)

to fulfil

Π̂p = c2Π̂0 + c1Π̂1 = 1̂ , (3.34)

where c1 and c2 are the eigenvalues of the operators. To find the eigenvalues, one calcu-
lates the expectation value 〈0|Π̂0|0〉 for a vacuum state. The integration to be solved is thus∫ a
−a
∫∞
−∞〈07|y〉〈y|07〉 dx dy, where |07〉 is the vacuum state in mode 7. It is a basic Gaussian

integral and yields c1 = erf(a)−1, c2 = 0. Care has to be taken for these values, as they depend
on the normalisation of the state. Distante et al. preferred a shot noise unit of 1/2, which leads
to c1 = erf(

√
2a)−1. Normalising the results to shot noise units makes however both definitions

equal. The smaller a, the more narrow the fringes becomes, eventually recovering the result
(3.32). However, the drawback is that, as analysed by Distante et al., the sensitivity drops with

4According to equation (1.27) an infinitely squeezed state has an infinite amount of photons.
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Figure 3.6: The evolution of the state in mode 7 visual-
ised by a combination of Wigner functions. In compar-
ison to figure 3.3(c), the vacuum state found at φ = π
is replaced by a phase squeezed vacuum state. The di-
chotomy strategy is represented by their operators Π̂0
and Π̂1, while a marks the bound set for Π̂0. As in the
previous plot, c =

√
2<(α). The squeezing parameters

are r = 1 (equivalent to −8.7 dB) and ϕ = π/2.
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a small a. To reach the shot noise limit, a → ∞, but then the resolution feature disappears
obviously.

Thus, in any case, the restriction to a coherent state input prevents super sensitive measure-
ments. So, following the mentioned proposal of C. M. Caves [55] which achieves super sensitivity,
our configuration and detection strategy looks as depicted in figure 3.6.

Extension of the approach with squeezed vacuum states

To analyse and provide the model to post-process the data, the approach follows the scheme
presented above: Determine the Wigner function at the output of the interferometer first. Then,
apply the projection (3.33). Calculating 〈Π̂p〉 and Var(Π̂p) yields the finally sensitivity.

To simplify the calculations, the Wigner function model was modified: According to figure
3.6, the coherent state is amplitude modulated, such that α ∈ R. Next, when experimentally
generating a squeezed vacuum state, it suffers from losses. These losses, as motivated in in-
troduction 1.2.3 and 1.2.4, lead to anti-squeezing, such that the degree of squeezing is different
along the conjugate quadratures. As an example, one might find −3 dB of noise reduction and
6 dB of noise increase. Furthermore, the squeezing ellipse should be oriented such that the noise
is reduced in the phase quadrature.

The Wigner functions which account for this are

W (x, y, α) = 1
π

exp
(
−
(
y2 + (x− α)2)), (3.35a)

W (x, y, ℘, ς) = ℘

π
exp
(
−
(
y2

ς2
+ ℘2ς2x2

))
, (3.35b)

where ς = e−r, and {℘ ∈ R | 0 < ℘ ≤ 1}. The parameter ℘ determines the purity of the state.
The degree of squeezing (which we rewrite here from equation (1.29)) and anti-squeezing are

Vs = 10 log10(ς2), (3.36a)
Va = 10 log10

(
1/(ς℘)2), (3.36b)

respectively. How Va and Vs are affected by losses is presented in figure 3.7. The average photon
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Figure 3.7: Influence of optical loss η on the degree of
(anti-)squeezing. Dashed lines refer to the degree of anti-
squeezing Va. The loss dependence can be readily de-
rived from equation (1.40). 18 values from ± 1/2 dB to
± 9 dB are plotted. Most important is the finding that
losses have a more pronounced effect on squeezing than
on anti-squeezing. This effect becomes the stronger the
higher the initial degree of squeezing is and somewhat il-
lustrates the fragility of quantum correlations compared
to thermal excitations (found in the anti-squeezed quad-
rature).

number of the input state represented by the Wigner functions is

n̄ = |α|4 + 1/4(−2 + (℘ς)−2 + ς2). (3.37)

Propagating the Wigner functions (3.35) through the interferometer and tracing out mode 6, the
function reads

W (x7, y7, α, ℘, ς, φ) = 2℘ς exp(fn)
fd

(3.38)

with

fd = π
√

cos(2φ)(1− ℘2ς4) + ℘2ς4 − 4(ς2 − 1) cos(φ) + 4ς2 + 3×
√

((ς2 − 1) cos(φ)− ς2 − 1)(cos(φ)(℘2ς2 − 1) + ℘2ς2 + 1)
cos(2φ)(℘2ς4 − 1)− ℘2ς4 + 4(ς2 − 1) cos(φ)− 4ς2 − 3 , (3.39a)

fn =
(

4 cos(φ)
(
y2

7
(
℘2ς2 − 1

)
− ℘2ς2(−α+ ςx7 + x7)(α+ (ς − 1)x7)

)
+

y2
7
(
℘2(ς2 + 4

)
ς2 + 3

)
+ cos(2φ)×

(
−(y7 − x7)(y7 + x7)

(
℘2ς4 − 1

)
+ α2(℘2ς2 − 1

)
− 2αx7

(
℘2ς2 − 1

))
+

4y7 sin(φ)
(
α+ x7

(
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Next the exception value 〈Π̂d〉 and the sensitivity can be calculated. After some algebra, this
yields

〈Π̂d〉(a, ς, ℘, φ, α) = f1

2 erf
(√

2a/ς
) , (3.40)
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with the abbreviations

f1 = erf
(
f−
√

2/f2

)
+ erf

(
f+
√

2/f2

)
, (3.41a)

f2 =
℘2ς2

(
ς2(1 + cos(φ))2 + 2(1− cos(φ))

)
− cos(φ)2 + 1

4℘2ς2
, (3.41b)

f± = a± |α| sin(φ)/2. (3.41c)

Solving for equation (3.25) returns a sensitivity of

σ(a, ς, ℘, φ, α) =∣∣∣∣∣
f

3/2
2
√

(2− f1)f1π/2
exp
(
−2f2

−/f2
)
(f ′2f− + αf2 cos(φ)) + exp

(
−2f2

+/f2
)
(f ′2f+ − αf2 cos(φ))

∣∣∣∣∣ (3.42)

with

f ′2 = ∂

∂φ
f2 =

2 cos(φ) sin(φ) + ℘2ς2
(
2 sin(φ)− 2ς2(1 + cos(φ)) sin(φ)

)

4℘2ς2
. (3.43)

Figure 3.8 illustrates 〈Π̂d〉 and σ for various parameter settings. In general, both the resolution
and sensitivity profit from an increase of |α|. The resolution feature scales, for finite a, always
proportional to 1/|α|. In addition, a smaller a yields higher resolution. This does not hold for
the sensitivity, as the examples in figure 3.8(b) proof. Hence one might focus on the optimisation
of the sensitivity under variation of ς and a. It was found that for |α| = 10, already more than
−13 dB of squeezing are required5. Under realistic constrains, it is thus sensible to set the degree
of squeezing constant and optimise for a. It can be found that the optimum of a changes only
slightly with |α| and was ≈ 1/2, thus we fixed a to 1/2 for processing the experimental data. In
fact, this choice also showed to be preferable for the experiment of Distante el al. which did not
exploit squeezed states [88].

The limit of phase sensitivity of our input configuration is set by the proposal of C. M.
Caves [55] and can be recovered by a → ∞ and a pure state ℘ = 1. For a squeezing parameter
r = 1/4 ln

(
1 + 4|α|2

)
the optimum sensitivity for Cave’s proposal is achieved. It reads

σCL ∝

√√√√
√

1 + 4|α|2 − 1
2

1
|α|2

(3.44)

and scales as 1/|n̄|3/4 in the limit of large n̄.
For an analysis of the experimentally acquired data, all properties and models are hereby

stated. Before going over to the experimental section, the process of generating squeezed vacuum
states will be outlined next.

3.2.9 Generating squeezed states of light
Firstly treated in the framework of quantum optics in the 1970s [262, 299], the generation of
squeezed states of light attracted much attention. This was caused be the (back-then predicted)
impact of squeezed states on metrology and information technology [59, 293]. In principle any

5As of today, the highest degree of squeezing recorded is −12.7 dB [94].
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Figure 3.8: (a) Expectation value of the post-processing technique with a coherent- and squeezed
state input, and a single coherent state input, denoted by |α, ξ〉 and |α, 0〉, respectively. The
parameters are α = 5, ς = 0.5, ℘ = 0.7, that is Vs = −6 dB and Va = 9.1 dB. A cos-function
(dashed light yellow line) is shown for visual comparison. The FWHM of it defines the Rayleigh
criterion which is set by the standard interferometer configuration. For the value of a = 1/2,
a coherent state scenario was added. Apart from the latter case, the central fringe shows an
increased resolution, while the next fringes are less resolved. A qualitative reasoning can be
given by the evolution in phase space plotted in figure 3.6: The response of Π̂0 becomes affected
by the amplitude noise of the phase squeezed state. This noise is represented by the elongation
of the squeezing ellipse which is rotated by 90° just before the state enters the region covered
by Π̂0. A general statement can be given on the value of a: Lowering a leads, in any case, to a
higher fringe resolution.
(b) Sensitivity for the parameters used in figure (a). The SNL set by equation (3.22) shows the
limit reachable by |α, 0〉. Compared to the resolution, the value of a can be used to optimise the
sensitivity. Its optimum value is close to 1/2 and changes only slightly with respect to α and
ς. For a → ∞, the |α, 0〉 input reaches the SNL, while for |α, ξ〉 the ‘Caves limit’ (3.44) can be
achieved.
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kind of Hamiltonian which exhibits higher order terms in the creation and annihilation operators
can lead to a “squeezed feature”. That is, apart from the single-mode squeezed state depicted
above and refereed to herein, the concept of squeezing can be applied on any kind of canonical
system of non-commutable variables [114].

To generate single-mode squeezed vacuum states we used the process of spontaneous para-
metric down-conversion [183, 255, 294], as its Hamiltonian is the generator of equation (1.24)
with a quadratic term of â† and â†. There are various approaches, or better to say starting
points, for explaining the actual physical process that leads to the features of squeezed light
summarised in section 1.2.2. Here we start from the classical equations of motion for what will
be termed as the signal and idler fields. This approach does not cover all aspects of our exper-
imental realisation, but it grants an understanding of the underlying physical process. In fact,
the generation of squeezed states of light is described extensively by various authors, such that
we refer the interested reader to the early publications of Collet and Gardiner [68], and Collet
and Loudon [69], the book of Gardiner and Zoller [110], or review articles from Andersen et al.
[8] and A. W. Lvovsky [185] whose work we based the following discussion on.

The main “ingredient” for our approach to generate squeezed light is a crystal with a second-
order nonlinear susceptibility χ2

eff [38, 255]. We use the subscript to remind that the susceptibility
is a tensor, so the ‘effective’ component of it is determined by the orientation of the incident
light and its polarisation. The coefficient χ2

eff characterises the response of an optical medium
to an incident field of frequency 2ω, i.e. it characterises E(2ω) ∝ χ2

effE(ω)E(ω). Exactly this
behaviour of generating two photons (with frequency ω) from a single ‘pump’ photon (at 2ω) is
what is demanded to provide a Hamiltonian with second order terms6.

For our purpose the incident field of frequency 2ω is referred to as pump field. For a general
description, the field oscillating at half the frequency (that is where ‘down-conversion’ comes
from) is split into an idler and signal field. To facilitate the model, we approximate the situation
as follows:

1. All fields Ep, Ei and Es are continuous in time and travel along z.

2. Only the amplitude of Ei and Es are allowed change when propagating through the crystal
of length l, which implies there is no effect of pump depletion. Also |Ep| � |Ei,s|, such
that the pump field can be treated as classical.

3. There is some means provided to match the phase between the fields. This is usually less
trivial than it sounds, as the material’s refractive index n may be frequency dependent.
It will cause the fields to propagate at different velocities, which deteriorates the down-
conversion efficiency. A simple means is to use a crystal short enough to prevent from a
dispersion, however the longer the crystal the higher the yield of signal and idler photons.

4. Ei and Es are spatially degenerate. This will lead to single-mode squeezing. However they
oscillate at ω ± $ with $ � ω. The energy scheme associated to a down-conversion or
second harmonic process may be described by a transition between virtual energy levels,
thus in principle “everything is allowed” as long as the model is conform with energy and
momentum conservation.

5. The slowly varying envelop approximation applies [12]. When dealing with electromagnetic
waves which are frequency-wise and spatially well defined, this approximation facilitates
the wave equation greatly.

6In 1961, a landmark experiment by Franken et al. verified that the opposite also holds: The nonlinear
susceptibility can also be used to generate light at twice the frequency of the pump field [104], an effect known as
second harmonic generation. An extensive study of nonlinear optics is given by R. W. Boyd [38].
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Following these points, the classical equation of motion for Ei and Es read [38]

∂

∂z
Ei,s = ı

ω ±$
2ε0nc0

Pnl(ω ±$), (3.45)

where the nonlinear polarisation amplitude

Pnl(ω ±$) = 2ε0χ2
effEpE

∗
i,s(z) (3.46)

was introduced. ε0 denotes the vacuum permittivity given in units of A2s4

kg m3 . Under the given
assumptions, we may find

Es(l) = Es(0) cosh(r) + E∗i (0) sinh(r), (3.47a)
Ei(l) = Ei(0) cosh(r) + E∗s (0) sinh(r), (3.47b)

where

r = χeffω

nc0
|Ep|l. (3.47c)

A quantisation of the field as in equation (1.7) leads to a result which resembles equation (1.26)
on page 10:

âs,i(l) = âω±$(l) = âω±$(0) cosh(r) + â†ω±$(0) sinh(r). (3.48)

However, the difference here is that two modes are present, i.e. if the signal and idler mode are in
a vacuum state before the crystal, they leave as an entangled-, also known as two-mode squeezed-,
state [58]. The entanglement can be found between the sidebands at ±$ of the carrier frequency.
This feature of entangled sidebands was in fact demonstrated by Huntington et al. [146]. To
detect this type of two-mode squeezing, they employed homodyne detection and measured the
detector’s photocurrent with an electronic spectrum analyser. Prior to this measurement, the
optical field had to be separated spatially such that the sidebands could be addressed individually
via two homodyne detectors. Otherwise, this common frequency-domain measurement technique
rules out the distinction between symmetric sidebands, because the analyser probes the mean
squared power of the detector’s photocurrent [16, 37].

If one decides to measure the temporal behaviour of squeezed light instead, e.g. by just record-
ing the photocurrent with an oscilloscope, it turns out that the m a t h e m a t i c a l description
of such process leads to a single-mode picture. This was concisely pointed out by A. W. Lvovsky
[185], who described the measurement by introducing a temporally limited version of â. Such a
limited duration mode âld may be derived via a transformation of â with a filter kernel f(t) ∈ R
summarising physical and technical causes for a limited duration as

∫∞
−∞ â(t)f(t) dt. Under

certain constrains, the limited duration mode operator reads [185]

âld(l) = âld(0) cosh(r) + â†ld(0) sinh(r), (3.49)

which is in the familiar form of a single-mode squeezed field.
We emphasise that the outlined approach to generate squeezed light corresponds to a ‘single-

pass configuration’, where all fields propagate through the nonlinear crystal only once. To
enhance the generation of squeezed light, it is common to built an optical cavity around the
crystal. Such a configuration is known as optical parametric oscillator and has been realised in
our experiment. The theoretical description of optical parametric oscillators used for squeezed
light generation has been developed by Savage and Gardiner [111].
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3.3 Experiment
This section begins with a description of the squeezed light source built for the experiment. Next,
a report of the actual phase measurement setup will be given, before the results are presented.

3.3.1 Squeezed light source
The design and implementation of a source for squeezed states posed the main experimental
challenge for our demonstration of quantum enhanced phase measurements. Basic requirements
for a high degree of squeezing and stable operation are clean conditions to mitigate optical
losses and mechanically stable mounts for various optical elements. To meet those demands and
provide access to squeezed light also for future experiments, the laboratory was rebuilt from
scratch and equipped with flow modules and rack assemblies similar to the enclosure illustrated
in the appendix A.4.

Figure 3.9 illustrates the actual setup of all optical and electro-optical components. The
electronic components involved in the control of cavity and phase locks are shown in figure 3.10.
Details omitted in the following text are given in the figure caption.

A Nd:YAG laser (Innolight GmbH Diabolo) with an emission at 1064 nm and a spectral
linewidth of ca. 1 kHz served as the main light source. An internal module for second harmonic
generation provided 532 nm radiation used as a pump for the generation of squeezed light.

First, we describe the path of the pump beam with a wavelength of 532 nm, before we describe
the ‘squeezer’, and finally follow the infrared ‘steering’ beam.

Pump beam A Faraday isolator (FI) acting as an optical diode prevented from back reflection
into the laser cavity. The pump light was filtered spatially and frequency-wise by means of a
mode cleaning cavity with a finesse of 230. Figure 3.11 illustrates and explains this measure. To
stabilise the cavity, a Pound–Drever–Hall lock [31, 93, 106] was applied. A phase modulation at
12 MHz, generated inside the laser module, served as the electronic local oscillator for this lock.
Photodetector D2 picked up the reflection from the first mirror of the cavity. We implemented an
internal electronic mixer, such that all electronics necessary for the generation of an error signal
were contained in the detector housing. Figure 3.12 illustrates a typical transmission spectrum
and error signal. As for all other locks, the servomechanism described in appendix A.3 was
applied to control the feedback system. Detector D1 was used to monitor the transmission of
the cavity. A lens configuration was designed to shape the spatial profile of the mode leaving the
cavity to match the spatial mode of the “squeezer” cavity. For tasks which required a precise
knowledge of the transversal beam profile and its propagation properties, such as the design of
telescopes, a software had been written capable of analysing the profile recorded with a camera
in real-time. Details about the software are given in appendix A.1. Next we focus on the key
component of the setup:

Squeezer module The squeezer is an assembly of a Fabry–Pérot cavity containing a 10 mm
long periodically poled potassium titanyl phosphate (ppKTP, Raicol) crystal. Its nonlinear
optical properties lead to the process described in section 3.2.9. One of the crystal’s flat end
facets was coated with an anti-reflective coating for 1064 nm and 532 nm. A high-reflection
coating for both wavelengths was applied to the other facet. To form a cavity, a mirror with a
reflectivity of 90 % and 20 % for 1064 nm and 532 nm, respectively, was mounted 13 mm away
from the crystal. The figure on page 157 presents the architecture of the squeezer module. The
coating yielded a bandwidth of about 80 MHz at a finesse of ca. 80. A piezo actuator between
the crystal and the mirror was controlled by means of another Pound–Drever–Hall lock. Here,
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Figure 3.9: Complete optical setup of the squeezed light source. The scheme is drawn to scale:
The long side measures 1.5 m. All cubes represent polarising beam splitters. Only half wave
plates were used. The letter P labels piezoelectric devices which actuate mirrors. Mirrors in
dashed lines are removable. The dichroic beam splitter (DBS) reflects infrared light only.
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Figure 3.10: Conceptual schematic of the electronic stages used for controlling the mode cleaning
cavity, the squeezer cavity and the pump phase lock. The upper scheme refers to the mode
cleaning cavity lock. First, the photocurrent of detector D2 was down-mixed with a 12 MHz
signal derived from the laser module. Thereby an error signal was provided which was sent into
a servomechanism (PID). Then, to drive the piezo element P2 actuating a mirror of the cavity,
the signal of the PID was amplified by means of a high voltage amplifier.
The lower scheme refers to the locking scheme for the squeezer. Here, the signal from photo-
detector D3 was split up first. One half was processed in the same sense as it was done for
signal D2. This part provided a Pound–Drever–Hall lock for the squeezer cavity. A frequency
generator, developed in-house and based on an Analog Devices AD9959 digital synthesizer, set
to 37.22 MHz drove an electro-optic modulator (EOM) to generate sidebands necessary for this
scheme. The same generator provided the local oscillator for the down-mixing process. The
second half was phase shifted by 90° before a similar processing. This part was employed to
control the relative phase shift between the pump- and the infrared steering beam. By inverting
the phase of the signal generated by the PID, we could effectively control whether phase- or
amplitude squeezed light was generated.
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Figure 3.11: Simulated transmission spectrum of a
Fabry–Pérot cavity to illustrate the measure ‘finesse’.
The formula to describe the spectrum may be found in
various literature on optics. We assumed a cavity length
of 3.99 cm and changed the reflectivity of the cavity mir-
ror to achieve a low and a high finesse. The higher the
reflectivity, the more narrow the peaks and the higher
the finesse. The horizontal axis is given in relation to
532 nm and shows the absolute shift between the trans-
mission peaks. ∆λ is usually referred to as the free spec-
tral range, δλ is the bandwidth. The finesse F is then
defined as ∆λ/δλ. As a comparison, the Q factor is
given by λ/∆λ. Experimentally, F is readily measured
by shifting the cavity length linearly and recording the
transmission signal over time. To resolve also narrow
peaks of a high finesse cavity, the speed at which the
cavity length is changed may be adjusted. The finesse
can then be read off from the recorded signal.
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Figure 3.12: A transmission spectrum and error sig-
nal from the mode cleaning cavity. To ease the iden-
tification, the error signal was shifted by −0.5 V. The
transmission signal was picked up by photodetector D1,
while the error signal was derived as shown in figure
3.10. To record this spectrum, the cavity mirror was
displaced by piezo P2, which was itself driven with a
high voltage amplifier. A triangular signal moved the
piezo in a linear fashion back and forth. A close inspec-
tion of the transmission shows a “bump” around 0.7 ms
which stems from the second polarisation mode of the
ingoing beam. Even smaller irregularities arise due to a
mismatch between the mode determined by the cavity
and the ingoing beam. The experimentalists task is to
optimise the mode matching to provide for a maximum
power throughput. When moving over a resonance, the
error signal becomes strongly sloped. This enables (a)
a sensitive control, as a small fluctuation results in a
large change and, due to zero-crossing on resonance, (b)
a “which-way” information, which is not provided by the
peak itself.
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the reference signal was generated with an external electro-optic modulator7 (EOM) driven at
37.22 MHz. An overview and explosion view of the squeezer can be found in appendix A.4, page
156. To establish a phase-match condition between the pump- and the infrared steering beam,
the crystal’s temperature was actively stabilised with a servomechanism (Wavelength Electronics
LFI3751), temperature sensor and a Peltier element. Another common type of cavities used for
the generation of squeezed light are ‘bow-tie’ (as it resembles the mirror placement) cavities.
Due to the presence of four instead of two mirrors, this type offers more flexibility and an
easier access to the crystal. On the other hand, a linear Fabry–Pérot cavity requires less space
and is, due to the smaller number of components, less prone to optical losses and mechanical
instabilities. It requires, however, a precise alignment as little room for adjustments is given by
this approach, especially when saving the second mirror by coating the crystal itself. To pump
the crystal efficiently, the spatial mode of the pump beam has to match the mode given by the
squeezer cavity geometry. We achieved this by the mentioned lens configuration. For a precise
alignment, we set the infrared steering beam (entering the squeezer from the right in figure 3.9)
to 50 mW. This optical power was sufficient to generate the second harmonic at 532 nm, which
was then back-seeded into the mode cleaning cavity and finally detected at detector D6. For the
stable generation of phase- or amplitude squeezed light, the phase between the pump- and the
steering beam had to be locked8. By displacing a mirror via piezo P3, the phase of the pump
beam was changed. A fast actuation of the mirror was necessary to counteract disturbances
over a large frequency range, hence special care had to be taken about the mirror’s housing. A
mechanical drawing in appendix A.4 illustrates our solution. The phase relation between pump-
and steering beam basically determines the orientation of the squeezing ellipse relative to the
steering beam and enables a controlled detection for later experiments. Depending on the phase
relation, the steering beam was either amplified or de-amplified [255, 294]. De-amplification is
defined to generate amplitude squeezing, while amplification leads to phase squeezing. The lock
itself is based on the same Pound–Drever–Hall technique also employed for the other two locks.
However, this type of lock does commonly not provide any phase information. To generate an
error signal, the photocurrent from photodetector D3, which was also used to lock the squeezer
cavity, was phase shifted by 90°. This allowed for detecting a change in the sidebands modulated
at 37.22 MHz due to the (de-)amplification in the nonlinear crystal. Furthermore, it effectively
reduced the amount of electronics by one photodetector. The design of detector D3 is based on
a schematic developed by Gehring and Steinlechner [112]. Figure 3.13 exemplifies the reaction
of the error signal when changing the pump beam’s phase.

A drawback of this technique, documented by B. Hage [130], is that we could effectively lock
only to phase or amplitude squeezing; for an arbitrary squeezing angle another reference signal
would be required. This can be provided by an acousto-optical modulator (AOM) in combination
with another detector (D4) and a phase shifter (P1). All parts are included in the design, but
they have not been fully implemented during our work.

Steering beam The infrared steering beam was used, as its name suggests, as a means to steer
the generated squeezed vacuum state. It can be seen as a DC field or carrier of the squeezed
state. From previous works, it is known that the employed laser works at the quantum shot
noise limit above ca. 2 MHz [27, 130]. A polarising beam splitter (PBS) / half wave plate (HWP)

7A New Focus 4004 had been modified with a passive network resonant at the driving frequency. Thereby
the required power to generate a sufficiently strong phase modulation decreased, and we could use a home-built
digital frequency generator with an output of 6 dBm without additional amplification.

8Squeezed light will also be generated without a stable phase relation, but, as a consequence, the (anti-)squeezed
quadrature follows stochastic fluctuations caused by, e.g., microscopic mechanical vibrations. Assuming that the
fluctuations are faster than the detection rate, the squeezed- and the anti-squeezed variance will be averaged. At
best (if the squeezed state is pure), the detected variance would look like as if it came from a coherent state.
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Figure 3.13: Examples of the error- and transmission
signals of the squeezer. Arrows indicate the vertical axis
the signal is referred to. For this recording, the mode
cleaning cavity as well as the squeezer cavity was locked,
while piezo P3 was displaced linearly via a high voltage
“triangle” signal. The transmission signal was picked up
by detector D5. Both error signals were derived from D3.
Depending on the pump phase, the signal was amplified
or de-amplified. Switching off the pump beam decreased
the transmission signal to ca. 55 mV. As can be observed
from the ‘Error cavity’ signal, the servomechanism did
not respond to a phase shift of the pump. This was
important to lock the cavity and the pump phase indi-
vidually. The ‘Error phase’ signal shows a direct corres-
pondence to the amplification of the transmission: Each
time this error signal crosses zero, the transmission is
either minimal or maximal. Depending on the settings
of the pump phase servomechanism, we operated at de-
amplification or amplification.

combination controlled the optical power sent to the squeezer and other experiments. Two lenses
shaped the beam’s mode for a low-loss propagation through the previously mentioned EOM.
HWPs controlled the polarisation of the beam to prevent unwanted modulations of the beam’s
amplitude9. A Faraday rotator (FR) in combination with a PBS and HWP enabled a separation
between the beam entering and leaving the squeezer, such that detector D3 probed the reflected
beam and provided the signal for the cavity and phase lock. Finally, the steering beam was
focussed into the squeezer. Due to the hemispherical cavity, the waist of the incident beam had
to be positioned at the flat surface of the crystal. The geometry of the cavity led to a waist size10
of 43(1) µm. A dichroic beam splitter (DBS) reflected only infrared light such that 532 nm light
did not propagate to consecutive experiments. For monitoring purposes, photodetector D5 was
placed after a removable mirror.

Performance of the squeezer

We will present selected properties of the squeezer to characterise stability and the attainable
degree of squeezing.

Mechanical stability For successful experiments, the most important feature of the squeezer
(and similar optical cavities) is mechanical stability. As described – and further elaborated in
appendix A.2 –, we designed, built and optimised feedback control systems to stabilise the devices.
An inherently stable mechanical design however can facilitate the operation significantly. The
more unstable the passive component is, the more difficult it is to guarantee a stable operation11.
Computer simulations of the mechanical design and comparison with other approaches to Fabry–

9If the polarisation vector of the beam does not match with the crystal axis, the EOM effectively modulates
the phase and amplitude of the polarisation vector parallel and perpendicular to the crystal axis.

10Figure A.2 on page 131 illustrates the waist size and other properties of a laser beam.
11A stable operation here means that the respective device can be actively controlled on a certain bias point

under normal disturbances, such as vibrations and human interferences.
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Figure 3.14: Allan deviation applied to a
transmission signal of the locked squeezer
cavity. The signal was picked up by detector
D5 in figure 3.9. The thin solid line follows
1/τ and matches approximately the slope of
the measurement. The kink at the very last
data point is a numerical artefact. A C pro-
gram was used for data processing [244].
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Pérot cavities [112, 130] led to the design shown in appendix A.4. To characterise the stability
of the squeezer cavity, we employed the Allan variance σy(τ)2 which is a measure of frequency
stability in oscillators, especially clocks [7, 22]. Mathematically, the Allan variance (or sometimes
Allan deviation σy(τ)) for a continuous signal is defined by [7]

σy(τ)2 = 1
2

〈
(ȳ(t+ τ)− ȳ(t))2

〉
, (3.50)

where τ is the binning time and ȳ(t) is the average frequency deviation given by

ȳ(t) = 1
τ

∫ t+τ

t

y(t′) dt′. (3.51)

Care has to be taken when translating it to a time series, that is, a signal which is not originally
recorded as a frequency. An algorithm for discrete data which may also be applied to data
in time deviation is illustrated by L. Galleani [107]. A translation into a C program can be
found elsewhere [244]. The Allan variance is a useful tool to visually identify different types of
noise [143, 188]: Depending on the slope of σy(τ)2, random noise and technical noise can be
differentiated. What we were looking for is whether or not σy(τ) follows the 1/τ power law,
as it implies that the noise stems from random processes. To explain this behaviour: If σy(τ)
continuous to decrease over the binning time τ , then the noise source must be random (‘white’),
because averaging a random signal results in a lower and lower deviation. To compute σy(τ), we
locked the squeezer cavity on resonance and recorded the output of photodetector D5. As it can
be observed in figure 3.14, the Allan deviation follows approximately 1/τ over five decades. The
slightly increased slope can be attributed to technical noise.

First gain measurements and homodyne tomography After the squeezer had been as-
sembled, we measured the gain of the (de-)amplification as it is an indication of the achievable
degree of squeezing [218, 286]. For this purpose, the steering beam was set to 800 µW and the
output was monitored at D5 for different pump powers. By shifting the pump phase, the steering
beam was either de-amplified or amplified. The gain of this parametric amplification process was
measured via

gmax, min = vmax, min/v0, (3.52)
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Figure 3.15: Parametric amplification of the
steering beam for five pump powers. The sig-
nal shown here was picked up by photode-
tector D5 from figure 3.9. A frequency gen-
erator produced a triangular wave at 40 Hz
to displace the mirror mounted to P3. Due
to the high power of the transmitted beam, a
filter was placed in front of the diode. Its ab-
sorption was taken into account by rescaling
the vertical axis. Compared to a sinusoidal
curve, a slight asymmetry already appears
at 103 mW, suggesting that the threshold of
the spontaneous down-conversion was close
to be reached. At more than 109 mW of pump
power, the squeezer worked as an optical
parametric oscillator above threshold [255].

Power gmax gmin

97 mW 104(2) 0.09(3)
100 mW 133(2) 0.09(4)
103 mW 160(6) 0.09(6)
106 mW 256(10) 0.09(6)

Table 3.1: Gain values derived from the measurement shown in
figure 3.15. The distance between the crystal and cavity mirror was
here set to 14 mm which corresponds to a beam waist of ca. 39 µm.
We note the increase of the uncertainty for high pump powers which
rendered a reliable prediction of squeezing parameters impossible.

where v0 is the transmission signal in absence of pump light. The amplified output for different
pump powers is presented in figure 3.15. Values for gmax, min are documented in table 3.1. We
note that, in principle, the degree of squeezing and anti-squeezing can be derived from the gain
measures [286]: The degree of squeezing is Vs = 10 log10

(√
gmaxgmin + gmin − 1

)
. That is, if

gmaxgmin = 1, Vs is maximal. As we were operating at very high gmax, a precise estimation
of gmin was necessary but eventually limited by the resolution of our instruments. At 109 mW,
the threshold of the spontaneous down-conversion process was reached, and the squeezer cavity
started lasing. An actual homodyne tomography of the squeezed state was not performed, as the
spatial output mode exhibited an ellipticity of ca. 1.8. Thus we decided to decrease the air gap
between the crystal and mirror by 1 mm to finally 13 mm. In this way, the beam waist of the
cavity mode increased from 39 µm to 42 µm which in turn reduced the demand for high focussing
power. In the end, a circular beam profile was achieved. Due to the increased beam waist and
thereby reduced intensity at a given pump power, the threshold increased to 135 mW.

The initially high gain values were a promising indication of high degrees of squeezing. After
a readjustment of the focussing optics, a ‘homodyne tomography’ was performed. Homodyne
tomography refers to performing a homodyne detection while sweeping the local oscillator’s phase
and recording the detected photocurrent with an electronic spectrum analyser (cf. section 1.2.3).
The homodyne detector was built from scratch, based on a design published by T. Gehring [112].
It featured a direct subtraction of the individual photocurrents, which is a concept developed
earlier to improve the common mode rejection ratio [167]. This ratio tells the detector’s capability
of removing unwanted classical noise from the local oscillator [242]. The employed indium-
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Figure 3.16: Homodyne tomo-
graphy of the squeezed state im-
mediately after the source. The
local oscillator power was set to
12 mW, which yielded an elec-
tronic noise clearance of more
than 13 dB. Electronic noise
was subtracted for this visualisa-
tion. The data was acquired at
5.5 MHz with a resolution band-
width of 300 kHz and video band-
width of 3 kHz. The interference
visibility V between local oscil-
lator and squeezed beam meas-
ured to 98.8 %, which is equival-
ent to a mode matching efficiency
of 97.6 %. −12
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gallium-arsenide photodiodes12 had a quantum efficiency of ηqe > 99 %. At a pump power of
40 mW and a mode matching efficiency, introduced in section 1.2.3, between local oscillator and
squeezed beam of ηvis = 97.6 %, we recorded Vs = −8.2(2) dB and Va = 11.0(2) dB. The signal,
recorded by an electronic spectrum analyser (Agilent N9000A CXA), is shown in figure 3.16.

As of today, six months past recording 3.16, the squeezer is operational and used for various
experiments. During the alignment process of a later experiment, infrared light was sent into the
squeezer from the opposite direction (thereby detecting it on photodetector D7). Afterwards,
a drop in the degree of squeezing was measurable; the initial value of −8.2(2) dB at 40 mW
decreased to −6.0(2) dB. We attribute the decrease to intra-cavity losses: The gap between the
cavity mirror and the nonlinear crystal is created by a PMMA (known as acrylic glass) spacer
with a circular cut-out for the beam to pass13. Hitting the edge of the cut out with the tightly
focussed, and thus intense, beam might have caused evaporation of the spacer. Due to the small
volume of the squeezer cavity, it is likely that the condensing material settled on either of the
optics. After the assembly of a second cavity of the same design, it was found that the PMMA
spacer can be replaced with an aluminium version, while still maintaining the crystal temperature
at more than 38 ◦C. With the present status of the squeezer we conclude this section and turn
to the experimental setup of the quantum enhanced phase measurement.

3.3.2 Interferometer setup
To perform the quantum enhanced phase measurement scheme presented in the theoretical sec-
tion 3.2, a Mach–Zehnder interferometer had to be built. Instead of using the standard configur-
ation shown, e.g. on page 36, we implemented a polarisation based Mach–Zehnder interferometer
where the two spatial modes are replaced by orthogonal polarisation modes. This means that only
one spatial mode comprises the to-be-interfered beams and inherently increases the mechanical
stability, as demonstrated experimentally in similar interferometers [194].

12Purchased in 2011 from Laser Components. Unlabelled and packaged in a SOT9 head. Its protection window
was removed.

13For more details, we refer the reader to appendix A.4.
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Figure 3.17: To-scale schematic of the optical setup. The short side measures 0.75 m, the long
side 1.5 m. All cubes represent polarising beam splitters. If not labelled otherwise, HWPs were
used. The HWP labelled by ∆φ was mounted in a remote-controlled rotation stage. Both the
squeezed beam as well as the beam launched into the fibre were derived from the setup illustrated
in figure 4.6 on page 90. The corresponding incoupling stage can be found in a central position of
figure 4.6. Detector D1 was used to check the power and the polarisation of the local oscillator.
The interference between a fraction of the coherent- and the squeezed beam was measured by
detector D2. Its signal was part of a feedback loop to establish a stable phase stabilisation
between the the squeezed- and the coherent state. Detector D2 of the same design as detector
D2 used to lock the mode cleaning cavity shown in figure 3.9 and originally developed by Gehring
and Steinlechner [112]. A mechanical drawing of the mirror mounts containing piezo elements
P1 and P2 can be taken from appendix A.4, page 155.

Figure 3.17 illustrates a scaled version of the optical setup. The electronic components
involved to stabilise the measurement are shown in figure 3.18. A specification of the commercial
components is given in table 3.2.

It is convenient to separate the description into three parts: The beam representing the
squeezed state (drawn in red), the one representing the coherent state (green) and finally the
local oscillator (blue).

The local oscillator and the coherent state were derived from the infrared beam which was
coupled into a polarisation maintaining single-mode fibre (PM-SMF). The corresponding in-
coupling stage can be found in the centre of figure 4.6. A fibre-based beam splitter sent 90 %
of the power directly to a fibre collimator. To control optical power and polarisation properties,
photodetector D1 was placed after a removable mirror and a HWP / PBS combination. The
interference visibility between local oscillator and signal beam, i.e. the combination of a squeezed
and a coherent state, was optimised by means of a telescope. For the measurement run, the vis-
ibility read 97 %, mainly limited by the large beam waist of 3.4 mm of the signal beam due to a
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Figure 3.18: Diagram of the electronics applied in the experiment. The external frequencies were
generated by a digital synthesiser based on a Analog Devices AD9959 chip. All shown devices
were built in-house. The photocurrent from D2 was mixed with an electronic oscillator at the
same frequency as was used for the phase modulation of the steering beam. Thereby we could
reference the coherent state and the steering beam containing the squeezed state to the beam
providing the local oscillator. This applies, as the steering beam and local oscillator were derived
from the same source. The AC-coupled output of the homodyne photocurrent was split in two:
The first half was mixed with a sinusoidal signal at 5 MHz and low-pass filtered. This scheme
mimics a spectrum analyser set to 5 MHz. After down-mixing the signal, it was acquired by
a 14-bit data acquisition (DAQ) card. To match the bandwidth of the card, a low-pass filter
of 100 kHz was connected between the output of the homodyne detector and the DAQ card.
The second half served for locking the homodyne detection on the amplitude quadrature. It
guaranteed a stable measurement of the amplitude quadrature via a feedback loop.
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Component Company Model (Specifications)
Fibre patch cable Thorlabs P3-1064PM-FC-2
Fibre 90:10 PBS Thorlabs PBC1064SM-APC
Fibre collimator Thorlabs TC12APC-1064

Fibre EOM Photline NIR-MPX-LN-0.1-P-P-FA-FA
(phase modulator)

Rotation stage Thorlabs K10CR1/M (USB interface)

PBS Bernhard Halle Rs > 99.9 % at 1064 nm (facets
anti-reflection coated)

Data acquisition GaGe
CSE8384 (14 bit digitiser, eight
channels, 50 MS/s, 100 MHz
bandwidth, PCI Express)

Turning mirrors Layertec 100717 (R > 99.9 %)

Table 3.2: Commercial compon-
ents involved in the experiment.

propagation length of ca. 6.5 m measured from the squeezer cavity14. Piezo P2 actuated a mirror
to control the local oscillator’s phase. A HWP set the local oscillator power before combining
it spatially with the signal beam. The next HWP in conjunction with a PBS rotated both the
local oscillator’s and the signal beam’s polarisation state, thereby splitting up the two beams into
equal halves. Finally, a homodyne detector turned the interference signal into a photocurrent.
Following the discussion in the theoretical section 3.2, the amplitude quadrature of the signal
beam had to be detected. Hence, the local oscillator and signal beam had to be locked at a fringe
maximum or minimum15. For locking at this interference point, we implemented an electronic
mixer to detected the interference at 37.22 MHz, which was the modulation frequency of the
steering beam’s phase. This technique is usually referred to as ‘AC lock’, whereas a stabilisation
on a mid fringe position can be achieved without an electronic mixer and is hence termed ‘DC
lock’ [106].

The smaller fraction of light split by the fibre-based PBS travelled through an electro-optical
modulator (EOM) driven at 5 MHz before coupled out by a fibre collimator. The EOMmodulated
the phase of the field, such that we prepared, at the given frequency, a coherent state in the phase
quadrature [51, 196]. In terms of a Wigner functionW (x, y), whose axes are defined with respect
to the local oscillator of the homodyne detection, it means that the state is displaced along the y
axis. This contrasts the concept illustrated in figure 3.6, where an amplitude-displaced coherent
state enters the interferometer. In fact, as we prepared an amplitude squeezed state, also the
squeezed state does not correspond to the configuration in figure 3.6. Hence, the phase of
both input states had to be rotated by 90° to match the configuration. Similar to the locking
technique outlined in the previous paragraph, a rotation of the relative phase can be achieved
by implementing either a DC or an AC lock. To provide the shift of 90° relative to the local
oscillator, an AC lock had to be used. Equal to the homodyne detection lock, the reference signal

14A large beam waist is beneficial to decrease the divergence of a beam, however it renders the localisation of
the waist difficult. The less precise the waist and its localisation is known, the more adjustment is required to
match such a beam to a second beam. In principle, the use of a telescope in the signal beam path could have
decreased the waist to a smaller size, but to reduce the optical losses we tried to maintain a low count of optics.

15The basic idea behind this reasoning is: If the output of an interferometer is initially null, which is the position
between minimum and maximum called ‘mid fringe’, and it changes, the only cause of this change is a p h a s e
shift. On its minimum or maximum, where the slope of the output signal vanishes, the a m p l i t u d e of one of
the interfering beams has to change to alter the output. To stabilise an interferometer at a ‘mid fringe’ is readily
accomplished, as the signal’s slope at this point already provides a “which-way” information. To stabilise on a
maximum, however, requires a technique such as the described ‘AC lock’.
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Table 3.3: Parameter values set or
measured during the experiment.
The visibility V was measured for
the inference between the local os-
cillator (LO) and beam for the co-
herent state (|α〉) and squeezed
state (|ξ〉). The degree of (anti-
)squeezing and purity ℘ was char-
acterised via a fit to a homodyne
tomography.

Set Measured
Parameter Value Parameter Value

Crystal temperature 36.2 ◦C Dark noise clearance 18 dB
Pump power 45 mW V(LO→ |α〉) 99 %

Steering beam power 400 µW V(LO→ |ξ〉) 97 %
Local oscillator power 5 mW Vs −6.4(1) dB
Down-mix frequency 5 MHz Va 11.1(1) dB

EOM driving frequency 5 MHz ℘ 0.582(1)

was provided by the phase modulation at 37.22 MHz of the steering beam. The interference
visibility with the local oscillator measured 99 % at the homodyne detector. Depending on the
amplitude of the applied modulation signal, the coherent state’s average photon number was
controlled. To calibrate the voltage-to-photon-number conversion, a homodyne tomography was
performed.

Next, we turn to the beam transferring the squeezed state, which we term “squeezed beam”.
As mentioned above, the squeezer was operated at amplitude squeezing. This operation is
beneficial to the noise features of the steering beam, as an operation at amplification also leads
to an increase of technical noise from the laser source [130]. Furthermore, the decreased power
prevented saturation of the homodyne detector. The crystal temperature for phase matching was
36.6 ◦C. In front of the squeezer cavity, the optical power of the steering beam measured 400 µW.
The pump beam at 532 nm had a power of 45 mW. To split a small fraction from the squeezed
beam for interference with the “coherent beam” at detector D2, a HWP was placed in front of
the PBS which combined the two beams spatially. After this PBS, the squeezed beam is in s
polarisation, orthogonal to the p polarisation of the coherent beam. However, they share the same
spatial mode, which was guaranteed by a visibility of 99 % at detector D2. In this situation, the
two polarisation modes constitute the interferometer arms. To delay one mode with respect to
the other, i.e. create the phase shift, a HWP was used. Mounted in a remote-controlled rotation
stage, we could control the experiment from a PC. To exactly mimic a common Mach–Zehnder
interferometer, the relative phase shifts from reflections at beam splitters have to copied to our
polarisation interferometer. An analysis be means of the Jones formalism [133, 255] shows that
an additional quarter wave plate is required to mimic the spatial Mach–Zehnder configuration.
Its polarisation axis should be oriented parallel to either of the beams.

The important experimental parameters are summarised in table 3.3.

Electronics and data processing

Here we will summarise details on the photodetectors and the data acquisition.
The photodetector D2 with a built-in circuit for error signal generation was based on the

same schematic as detector D2 in figure 3.9 and originally designed by Gehring and Steinlechner
[112].

The homodyne detector was, as mentioned on page 62, a direct photocurrent subtraction
design and photodiodes with a quantum efficiency of ηqe > 99 %. The detector circuit featured
three outputs: A DC output with a bandwidth of 330 kHz, an AC output with a high-pass
filter of 1 MHz and an output of a signal created by mixing the AC signal with an electronic
oscillator. The latter signal was low-pass filtered at 500 kHz to provide a down-mixed signal
for data acquisition. In this way, the data was recorded on a PC without using an electronic
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spectrum analyser. The coherent state was prepared by means of the EOM driven at a frequency
of 5 MHz. Accordingly, the electronic local oscillator was set to the same frequency. To minimise
the required electrical power for the mixing process, the input for the electronic local oscillator
was equipped with a resonant filter.

A digital oscilloscope with a PCIe interface (GaGe CSE8384) sampled the data from the
homodyne detector. It featured a bandwidth of 100 kHz at a sampling rate of 50 MS/s and
resolution of 14 bit. Per measurement point, 106 samples were acquired. A measurement point
was defined by the setting of the motorised HWP. Centred about the null phase, 57 points
were recorded every 0.9° (15.7 mrad). Beyond this central region, 40 points were taken with an
increment of 2°. These points were used to validate the response of the stage actuating the HWP.
The overall procedure was repeated for seven different coherent state amplitudes.

The actual data processing was done as follows:

1. Characterise the squeezed- and coherent state individually via homodyne tomography.

2. Null the data for a correct zero phase. This step is important for further processing, as it
symmetrises the data such that the 0° setting implies detecting a squeezed state.

3. Choose a value for a and sort the data of each measurement point according to equation
(3.34). As mentioned on page 51, a was set to 1/2. This step yields 〈Π̂d〉.

4. Fit the function 〈Π̂d〉, given by equation (3.40), to the experimental results.

5. Calculate the variance at each data point. With an analytic expression of 〈Π̂d〉, the de-
rivative in equation (3.25) may be calculated. Given the variance and derivative at each
data point, the sensitivity is computed. From the fit to 〈Π̂d〉 from the previous step, a
comparison to an analytic expression can be derived.

3.3.3 Results

In our demonstration of quantum enhanced phase measurements we combined a coherent and
squeezed vacuum state in a polarisation dependent Mach–Zehnder interferometer. With a fixed
−6.4 dB of squeezing, seven coherent states with a different amplitudes were used to investigate
the sensitivity and resolution feature. By virtue of homodyne detection the output of the inter-
ferometer was monitored. The digitised signal was sorted according to the strategy presented in
section 3.2. From the output of the binning, the resolution and sensitivity were derived. Figure
3.19 shows the results for an input state with an average photon number of n̄ ≈ 357.8, calculated
according to equation (3.37). Here, we beat the Rayleigh criterion by a factor of 11.6 and the
shot noise limit by a factor of 1.7. From the fit to the experimental data, it can be seen that the
measurement matches well with the theoretical prediction. This is furthermore verified by figure
3.20, where all results are summarised and compared to our and other approaches to quantum
enhanced phase measurements. For all coherent state excitations, we attained super resolution
and super sensitivity. The resolution is compared to the Rayleigh criterion, while the sensitivity
feature is compared with three different limits: The shot noise, the Heisenberg and the Caves
limit. The SNL was clearly beaten by our measurements. As expected, the Heisenberg- as well
as the Caves limit were not in reach for our scenario. The limitation for much higher average
photon numbers arose due to saturation effects of the detector when the relative phase reached
π.
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Figure 3.19: Results achieved for an input state with |α|2 = 355 and a total of n̄ ≈ 357.8. (a)
The fringe after applying the dichotomy operator Π̂d. A dashed line describes the resolution of
a standard interferometer. Its FWHM is 11.6 larger compared to our result. (b) The sensitivity
derived from the experimental data. In a range of about ±0.1 rad, the SNL was surpassed by a
factor of 1.7. The uncertainty of each data point is well within the � symbol. We attribute the
symmetric deviations at the wings to a systematic anomaly in the set phase-shift controlled by
the HWP.
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Figure 3.20: (a) The FWHM under variation of the total average photon number of the input
state. For comparison, the theoretically predicted FWHM is shown as well and proofs the stable
performance of the setup. (b) A comparison to three sensitivity limits. As for the resolution,
the theoretical prediction affirms our experimental results. The Caves limit corresponds to the
case where a→∞, thus it does not achieve super resolution.
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3.4 Conclusion and outlook
By operating a polarisation based Mach–Zehnder interferometer with a squeezed- and a coherent
state input, combined with a post-processed homodyne detection scheme, we demonstrated that
phase measurements can overcome Rayleigh’s resolution criterion and beat the quantum shot
noise limit simultaneously.

With more than −6 dB of squeezing and a coherent state with mean photon number of
427, the shot noise limit and the Rayleigh criterion were surpassed by a factor of 1.7 and 23.3,
respectively. To achieve these results, a squeezed light source had been designed and implemented
from scratch.

Our approach relies only on Gaussian states and detection, and is furthermore fully determ-
inistic. Compared to the discussed technical intricacies in phase measurements based on NOON
states, we believe that the features of our approach render it favourable for practical applications.

Depending on the application and the accessible resources, the experimental parameters can
be varied continuously: Probing e.g. light-sensitive samples puts an upper bound on the number
of photons, thus a low photon number is demanded. This can be achieved by simply changing
the coherent-state amplitude. When being confronted with an unknown sample a higher fringe
resolution might be advantageous over higher sensitivity. For detectors working on a bias point,
the shot noise limit might be more important to beat. Both latter points can be covered easily
by varying the post-processing scheme without re-running the experiment.

As the experimental execution could be done in a stable and repeatable manner, our approach
can be implemented in more complex scenarios, such as actual microscopes. Another test case
is a multi-pass interferometer to evaluate especially the loss performance and to compare with
classical multi-pass configuration which naturally yield a higher fringe count.

With respect to direct enhancements of our approach, we aim to extend our theoretical model
to a “multi-fringe” theory, which can be accomplished by adding more selection windows to the
post-processing. This is a concept applied by Distante et al. for a coherent state input [88] and
sketched in figure 3.21. Due to the increase in model parameters, the mathematical modelling
for our input configuration gains in complexity.

Finally, with a future experiment we’d like to draw the attention to the benefits of squeezed
vacuum states: When sent directly through a phase shifting sample, a comparison of the at-
tainable sensitivities suggests that squeezed vacuum states are capable of outperforming NOON
states. This is observed from a comparison of the quantum Fisher information (equation (3.21)
and (3.23)). For a significant improvement, the average photon number of the squeezed vacuum
state should be larger than 1, i.e. Vs < −7.7 dB. To achieve this performance, we intend to
further enhance and characterise the squeezed light source.

It appears to us that this advantage of squeezed vacuum states is commonly overlooked. This
is probably justified by the comparison of a NOON state in a Mach–Zehnder interferometer with a
squeezed vacuum state sent i n t o a Mach–Zehnder interferometer. As can be seen from Caves’
limit (3.44), sending a vacuum squeezed state into a Mach–Zehnder type interferometer does not
reach the absolute sensitivity of a NOON state. While this two-mode configuration is necessary
for a NOON state to exist, it is not for a squeezed vacuum state. Because the local oscillator in a
homodyne detection provides a phase reference, a squeezed vacuum state can sense a phase shift
without relying on a common two-mode interferometer.

70



3.4. CONCLUSION AND OUTLOOK

0.3

0.2

0.1

0

y

20

b1

b0

b−1

−20

x

50c250

Π̂b−1

Π̂b1

Π̂b0

(a) Phase space picture of multi fringe theory

〈Π̂
p
〉/

1

φ / rad

0

0.5

1

−π 0 π

(b) Multiple super resolved fringes

Figure 3.21: (a) Phase space representation of the multi fringe post-processing technique using
only a coherent state. Instead of a single window, this technique uses multiple 2a-sized windows
centred at bi. An experimental verification for up to 20 fringes is given by Distante et al. [88].
(b) Simulation of the super resolved fringes. The parameters are |α| = 30 (c = <(α)

√
2),

b1 = b−1 = 10, a = 1/2 and correspond exactly to the phase space presentation. We aim to
further expand this model to cover also squeezed states for achieving multiple fringes which beat
the shot noise limit.

71



44 | Sensing and feedback cooling
of a micro resonator

4.1 Introduction
How massless photons interact with massive objects is the central question of quantum optomech-
anics. At least from our human perception, this already implies the need for very delicate objects,
as we expect the momentum of light to be rather subtle. The probably most popular attempt
to utilise and study this interaction dates back to 1873 and is credited to Sir William Crookes:
The so-called light mill. Crookes explained the movement of the vanes by radiation pressure –
which was eventually proved wrong [77]. However, it took a rather long standing debate, and
the involvement of prominent persons such as J. C. Maxwell, A. Einstein and O. Reynolds [180,
229]. Their contributions to experiments and theoretical considerations finally led to the right
conclusion about the vane’s movement [291]. Almost 30 years later, E. F. Nichols and G. F. Hull
conceived an apparatus to observe radiation pressure [209].

The step towards exploring – and eventually utilising – optomechanical effects was to realise
that the assembly of an optical cavity around the mechanical object greatly enhance the coup-
ling between the optical field and mechanics. The first works in this field, now known as cavity
optomechanics, were motivated by an experimental study which has been shown to be very suc-
cessful just recently, namely the observation of gravitational waves using optical interferometers
[177]. To reach the required sensitivity, a study of various noise sources was and is still under-
taken [21]. This has led to the finding that radiation pressure has in fact a detrimental effect on
the sensitivity of the mentioned experiment [39, 40, 56].

Since then, the attempts to actually enhance optomechanical effects seem to have out-
numbered the occasions where its effect ought to be decreased: This can be attributed to the
promise of testing predictions of quantum mechanics on ‘macroscopic’ objects, i.e. mechanical
systems that consist of a large number of atoms. How such systems decohere [191, 210, 235], if
they can deliver insight into quantum gravity [222], what role they will play in quantum com-
putation [63, 303] and how they can be used for metrology [17, 81, 278] are, amongst others,
questions that attracted much attention.

Chapter structure First, we start with a motivation of our study and a description of the
experimental system to focus the proceeding study. A brief introduction to the theoretical
framework of cavity optomechanics and feedback control can be found next. It provides the
reader with necessary details for the analysis; readers who are interest in a rigorous mathematical
study are kindly referred to the work of Bowen and Milburn [37], Wiseman and Milburn [288],
Jacobs [151], or a comprehensive review by Aspelmeyer et al. [14]. The main section on the
experimental setup follows next and presents measurements and calibration details. The chapter
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closes with a summary of the results and an outlook to motivate further investigations.

4.1.1 Motivation towards the cooling scheme
We have investigated one aspect which is often considered as a prerequisite for most of the
previously named applications of optomechanical systems [14]: Cooling the mechanical object,
better-to-say mechanical oscillator, by means of an active control scheme. Usually, the intention
of cooling schemes is to prepare the mechanical oscillator in its motional ground state. The
subject of this work was to combine various concepts of quantum optics and apply them in
the field of cavity optomechanics: Rather than cooling the mechanical oscillator to its lowest
temperature, which has been demonstrated by others, we demonstrated experimentally a novel
aspect feedback cooling.

Depending on the system parameters, different methods towards cooling the mechanical os-
cillator have been devised [14, 113, 295]. Feedback cooling [189], the method we applied, can
be itself implemented in various ways: Radiation pressure force was shown to be usable [67,
165, 287], although it is rather weak; its effectiveness is limited by the optical power required
to actuate the mechanical oscillator – the beam used for cooling will eventually lead to excess-
ive heating. Several non-optical schemes had been devised, for example piezo driven cantilevers
[224], optical tweezers [173], coil actuators [73, 176], and the use of dielectric gradient forces [169,
274]. Motivated by its feasibility and strong influence, our study is based on a feedback scheme
using the last named dielectric gradient forces.

The cooling efficiency is first of all limited by the ability to probe the mechanical oscillator
with high sensitivity, thus it is of special interest to increase this ability. As for gravitational
wave detectors, an increased power to probe the oscillator does increase the sensitivity, but it also
increases the afflicted noise due to radiation pressure and additional detrimental effects due to
absorption [251] and nonlinear effects [250, 272]. To be able to probe the mechanical oscillator’s
movement more efficiently, we combine a feedback technique with an optical squeezed-state probe.
The fact that squeezed light, introduced briefly on page 10, can be employed to enhance laser
cooling of atoms was proposed already in the early 1990s [62, 125]. An experiment of a cooling
scheme based on squeezed light and dielectric gradient force feedback had, to our knowledge, not
been realised.

4.1.2 Overview of the optomechanical system
The actual optomechanical system of our study is sketched in figure 4.1. An optical fibre, tapered
to ca. 1 µm, provides coupling of light into and out of the optical cavity. The latter is formed
by a silica microtoroid. Due to its shape, this type of optical cavity is also referred to as a
whispering gallery mode resonator. To fix the microtoroid mechanically, a pillar of silicon is
fabricated onto a chip of the same material. A thin disc-like region in the centre of the toroid
serves to combine the latter with the silicon pillar. The silicon chip itself only serves as a basis
of the overall fabrication process.

The silica microtoroid also constitutes a mechanical oscillator; silica’s high elastic module in
combination with a mass on the order of a few micro gram yields mechanical frequencies on the
order of 106 Hz to 108 Hz [52, 248, 249].

An electrode placed in close vicinity above the microtoroid provides the dielectric gradient
force, controlled with a real-time feedback by detecting the output of the tapered fibre. Common
sewing needles were used as electrodes.

As the fabrication of the fibre and the microtoroid were not part part of our study, details can
be found elsewhere [13, 18, 250]. The toroid fabrication was undertaken within the Queensland
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Node of the Australian Nanofabrication Facility, while the fibre tapering was carried out in W.
P. Bowen’s group at the University of Queensland. Similar devices had been used in previous
experiments [141, 163].

4.2 Theoretical framework
For a correct analysis and description of the experimental finding, two subjects are treated next:
How the motion of the mechanical oscillator can be sensed with an optical probe, and how this
information can be used to cool the mechanics. A broader theoretical study of cooling techniques
and their fundamental boundaries was carried out by, amongst others, H. Kerdoncuff [163] and
Genes et al. [113].

In terms of notation, we will adopt the usage of hats to mark quantum operators; classical
quantities come with them. As one means to facilitate the shift between the classical and quantum
description, it is common to split an operator Ô into an amplitude O ∈ C and a so-called noise
operator δÔ [16, 37]:

Ô → O + δÔ (4.1)

4.2.1 Sensing the mechanical motion via an optical probe
Before applying information from the mechanical motion to eventually control it, the motion has
to be sensed. The probe which reads out this information is an optical field sent into the tapered
fibre, as depicted in figure 4.1. To understand the process of optomechanical sensing, a sketch
of the interaction will be given next. A concise introduction into quantum mechanics applied to
optical and mechanical systems can be found in the review of Aspelmeyer et al. [14] and a book
chapter of G. S. Agarwal [3]. As previously cited, the work of Bowen and Milburn [37] provides
an extensive treatment of quantum optomechanics.

Dynamics of the optomechanical system

To describe the time evolution of a generic cavity optomechanical system, we first gather the
energy terms for the Hamiltonian:

Ĥ = Ĥc + Ĥm + Ĥi. (4.2)

It is comprised of the energy in the optical cavity c, the mechanical oscillator m, and the inter-
action i between them. The notation introduced below corresponds to the quantities visualised
in figure 4.1.

Using the position and momentum operator, q̂ and p̂, respectively, and the optical ladder
operators â† and â, we find1 [37, 114, 181]

Ĥ = 1
2

(
p̂2

meff
+meffΩ2

mq̂
2
)

+ ~ωc
(
â†â+ 1

2

)
+ Ĥi, (4.3)

where meff symbolises the effective mass of the optomechanical system. The concept of effective
mass will be explained later; in general terms it is the mass of the mechanical oscillator which is
both in motion and in interaction with the optical mode.

Similar to the electromagnetic field (cf. equation (1.7)), ladder operators can also be intro-
duced for the mechanical oscillator. Furthermore, it is convenient to use a dimensionless set of

1Identity operators in the form of â⊗ 1̂ or 1̂ ⊗ b̂ to complete the Hilbert space will be omitted.
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(b̂, Ωm, Γm)

Optical losses (ŝl, κl)

Figure 4.1: Illustration of the effects and physical parts constituting the experiment. Although
a scaling of the various parts was not the primary aim, the drawing captures the most important
dimensions. As an indication, the width of the pillar is about 20 µm at its thinnest part. After
accomplishing the desired coupling between the optical cavity- and the tapered fibre mode via
evanescent coupling, an electrode tip was brought a few micrometres above the microtoroid.
A probe beam with a frequency ωd was injected into the fibre, described by the operator ŝin.
At a rate of κex, an optical field was excited inside the cavity, represented by the annihilation
operator â. The frequency ωc of the mode is set by the refractive index n and the geometry of
the microtoroid, approximately given by c0/(nr), where r denotes the toroid’s radius. Optical
losses at a rate of κl, caused by irregularities on the facet and absorption, broadened the effective
cavity width to κc = κl + κex. To describe the mode of the losses, we denoted it as ŝl. The
mechanical excitation – always present as the experiment was conducted at room temperature
– is described by the annihilation operator b̂. A consequence of the mechanical excitation at a
frequency of Ωm is a length change of the optical cavity. Γm specifies the width of the mechanical
resonance. Induced by the changing length, the outgoing optical field features a phase shift. This
is equivalent to say that sidebands are modulated onto the carrier signal. We will mathematically
describe this effect and the readout in a following section. The sideband modulation can be
also be pictured as a Raman-like scattering process where Stokes and anti-Stokes sidebands are
populated by photons bouncing on the mechanical oscillator [14, 37].
The readout of the mechanical state is visualised by the two plots of the Wigner functionW (x, y)
(for an introduction see page 15), inset at the bottom: On the left side, the state of the probe field
is shown – at the sideband frequency Ωm – before the interaction. By virtue of optomechanical
coupling, the state of the mechanical oscillator is transduced to the probe field. On the right side,
we see that the vacuum state was populated and forms now a thermal state. The information
drawn from probing the optical mode at the output yields information about the oscillator’s
motion, which was used as the control signal in the feedback loop. To close the feedback loop, a
voltage was applied over the microtoroid by an electrode. The electric ground was formed by a
conductive baseplate.
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operators. The conversion between the mechanical oscillator ladder operators, the dimensionless-,
and the “standard” position and momentum operators reads

1√
2

(
b̂† + b̂

)
= Q̂ = q̂√

2qzpf
, (4.4a)

ı√
2

(
b̂† + b̂

)
= P̂ = p̂√

2pzpf
, (4.4b)

and directly resembles the optical quadrature operators X̂ and Ŷ introduced on page 7. In terms
of the commutation relation, the optical and mechanical quadratures are equal: [Q̂, P̂ ] = ı. The
quantities qzpf and pzpf are the vacuum state standard deviations (often referred to as ‘zero-point
fluctuations’) of the respective operator. Their values may be derived from equation (4.3) and
read

qzpf =
√

~
2meffΩm

, (4.5a)

pzpf =
√

~meffΩm
2 . (4.5b)

Thus a high mechanical frequency increases the position fluctuation amplitude qzpf, which is
eventually convenient to increase if one aims to be (at least theoretically) able to resolve zero-
point fluctuations. The challenge is that usually high frequencies are associated with very light
systems, and as mass and frequency are on equal footing here, there is no gain in aiming only
at high frequencies. This challenge has attracted scientists to design intricate optomechanical
systems, some of which may be found in a review article by Aspelmeyer et al. [14].

What is missing yet is the description of the interaction between the optical field in the cavity
and the mechanical oscillator. However, looking at drawing 4.1, we can recognise the mechanical
oscillation as a deformation of the optical cavity. Thus ωc in equation (4.3) is not static, but a
function of q̂. The actual function of ωc(q̂) depends on the cavity geometry and can be complex
to derive analytically, especially for a microtoroid. Approximate solutions for simple geometries
have been found [147], but for length shifts smaller than the cavity length l, a truncated Taylor
expansion also provides a good approximation. Such an approximation yields

ωc(q̂) ≈ ωc(1 + q̂/l). (4.6)

By substitution the latter into the equation (4.3), the Hamiltonian reads

Ĥ = 1
2

(
p̂2

m
+meffΩ2

mq̂
2
)

+ ~ωc
(

1 + q̂

l

)(
â†â+ 1

2

)
. (4.7)

The interaction Hamiltonian Ĥi thereby is ~ωcq̂
(
â†â+ 1

2
)
/l, that is linearly depended on the

position q̂. Next, we can replace q̂ and p̂ by virtue of equation (4.4) with the mechanical ladder
operators to arrive at

Ĥ = ~ωcâ†â+ ~Ωmb̂†b̂+ ~g0â
†â
(
b̂† + b̂

)
. (4.8)

First, all constant terms are removed, as they do not contribute to the evolution of the system.
Second, the vacuum optomechanical coupling rate

g0 = ωcqzpf/l (4.9)
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has been introduced. It is a fundamental parameters in cavity quantum electrodynamics as
it determines how fast â and b̂ interchange energy [281]. For our system, it both tells how
the mechanical displacement shift the optical frequency and how a single photon “kicks” the
mechanical oscillator.

For a simulation of the latter Hamiltonian, we would have to take into account a large time
span from mechanical to optical rates. To facilitate the (numerical) treatment, the Hamiltonian
can be transformed into a frame rotating at the laser frequency ωd used to drive or probe the
system. The transformation is done by Ĥ → Û†ĤÛ− V̂ , where the generator of Û is V̂ = ~ωdâ†â
[114]. Applying the transformation to equation (4.8) changes

ωcâ
†â→ (ωc − ωd)â†â = ∆â†â, (4.10)

whereas ∆ denotes the detuning between the input field, oscillating at ωd, and the cavity field.
For g0 to have a significant effect on the dynamics of the system, the decay rates κ and

Γm have to be at least on equal footing. Otherwise a coherence between â and b̂ will quickly
dissipate. To enhance the coupling, the optical cavity can be driven with an external coherent
optical field. It is readily introduced into to the Hamiltonian, assuming the drive field is unitary,
via

Ĥ = ~∆â†â+ ~Ωmb̂†b̂+ ~g0â
†â
(
b̂† + b̂

)
+ ~d

(
â† + â

)
. (4.11)

Here d symbolises the rate at which the optical field is populated. By this Hamiltonian, the
unitary evolution of an arbitrary optomechanical system can be described. It is a valid description
for a single optical and mechanical mode, if the shift in cavity length is much shorter than its
length “at rest”.

Relation between the cavity- and input field

While the optical field in the cavity â is obviously important for the optomechanical interaction,
it can be more interesting to derive it from the input field. Experimentally, we have direct access
to the latter and the output; for the intracavity field this does not apply. Thus, it is of importance
to built a relation between what leaves and enters the cavity. This is achieved by means of the
input-output formalism [109] and can account for additive dissipative, i.e. non-unitary, effects.
In contrast to the previously description in terms of Hamiltonian, i.e. following the Heisenberg
picture, the input-output formalism grounds on the Schrödinger picture where the dynamics are
associated to the operators, not the state. Especially steady state conditions can be developed
easier by this means. Next, we will apply the input-output formalism to draw a connection
between the mechanical oscillation and its optical detection.

First, energy conservation requires

ŝout = ŝin −
√
κexâ, (4.12)

that is: The output field is what is left from the input, because ŝin couples at a rate of κex to
the optical cavity2. An illustration of the quantities is given by figure 4.1. The dynamics of the

2We adopted the convention of treating the in- and output field observable ŝ†inŝin and ŝ†outŝout, respectively, in
the dimension of a flux, while the corresponding observable â†â of the intracavity field is a number. To recognise
the difference, we prefer to use ŝout over âout.
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cavity field amplitude, by virtue of the input-output formalism, reads [3, 37, 109]

dâ
dt = −

(
ı∆ + ı

√
2g0Q̂+ κ

2

)
â+√κexŝin +√κlŝl, (4.13a)

dQ̂
dt = ΩmP̂ , (4.13b)

dP̂
dt = −ΩmQ̂+

√
2qzpf
~

F̂th − ΓmP̂ −
√

2g0â
†â. (4.13c)

At a rate of √κl, photons can leak out of the cavity. It has to be noted that also an addition
to the cavity population can enter via this port, e.g. due to the thermal bath the cavity is
situated in. At optical frequencies, the latter is negligible even at room temperature. However,
at mechanical frequencies in the range of kHz to GHz, stochastic fluctuations generating a force
Fth will certainly affect the motion.

Semiclassical evaluation and identification of system parameters In general, the set
(4.13) of equations is difficult to solve. In the attempt of gaining more insight into the coupling,
one can constrain the dynamics to a semiclassical picture. Instead of evaluating the complete
statistics of the operators, the expectation values can be taken. This implies, with the reasoning
given above, 〈ŝl〉 = 〈F̂th〉 = 0. In addition, all correlations between the operators are neglected,
such that 〈Ô1Ô2〉 = 〈Ô1〉〈Ô2〉. Applying the expansion of Ô1 according to equation (4.1) yields〈
(O1 + δÔ1)(O2 + δÔ2)

〉
, and helps to check the validity of the latter simplification: Only if

the correlations
〈
δÔ1δÔ2

〉
are smaller compared to the amplitudes, the simplification is sound.

This holds when dealing with an optomechanical system probed with a laser beam, such that the
intracavity photon number is on the order of 106, and no other process3 amplify the fluctuations.

Finally, the given assumptions reduces the set (4.13) to

d〈â〉
dt = −

(
ı∆ + ı

√
2g0〈Q̂〉+ κ

2

)
〈â〉+√κex〈ŝin〉, (4.14a)

d〈Q̂〉
dt = Ωm〈P̂ 〉, (4.14b)

d〈P̂ 〉
dt = −Ωm〈Q̂〉 − Γm〈P̂ 〉 −

√
2g0〈â†â〉. (4.14c)

Considering a coherent input field 〈ŝin〉 = sin, 〈â〉 equals a coherent amplitude α. Thereby we
identify g0|α|2 in equation (4.14c) as the optomechanical coupling rate enhanced by the number
of photons in the cavity, defined as

g = g0|α|2 = g0nc. (4.15)

This leads to the introduction of another derived quantity of optomechanical systems: The
cooperativity4

C = 4g2
0nc

κΓm
. (4.16)

A large cooperativity implies that the coherent interaction between the optical and the mechan-
ical mode is faster than their decay. Thereby it also tells how strong optical shot noise heats the

3Driving the optomechanical system at an instability, the quantum fluctuations can amplified and rule out the
discussed simplification [292].

4It has to be noted that the numerical factor in the cooperativity differs amongst authors, compare for example
Bowen and Milburn [37], with Aspelmeyer et al. [14].
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mechanical oscillator. We also note that C depends on the intracavity photon number nc, i.e. it
scales quadratically with the input power.

Equation (4.14a) offers additional insight into two aspects of our experiment.

Optical cavity without mechanical coupling First, the equation (4.14a) is solved for
an optical system without coupling to a mechanical oscillator, that is g0 = 0. With the initial
condition of an empty cavity, we find

|α|2 = s2
in

4κex e−tκ
(
−2 eκt2 cos(t∆) + eκt +1

)

κ2 + 4∆2 , (4.17a)

arg(α) = arg
(

1− e− 1
2 t(κ+2ı∆)

κ+ 2ı∆

)
, (4.17b)

|α|2t→∞ = s2
in

4κex
4∆2 + κ2 , (4.17c)

arg(α)t→∞ = arg
(

1
2ı∆ + κ

)
. (4.17d)

By virtue of equation (4.12), the amplitude and phase of α can further be related to the output5.
Analysing the behaviour of the steady state solutions, the optical coupling efficiency defined as

ηc = κex/κ (4.18)

is of importance for sensing of the mechanical motion, as we will shortly see. Three different
optical coupling regimes can be considered. Figure 4.2 visualises all regimes.

1. The overcoupled regime where η > 1/2. Energy exchanges at a faster rate than it decays
via losses. Light enters the cavity at a high rate, but it also leaves it in the same way. Thus,
the intracavity field won’t reach its maximum. Tuning over the resonance, the phase shift
of the outgoing filed is maximal: 2π. We will shortly see in detail that the microtoroid’s
mechanical motion causes a phase modulation of the optical field. From this point of view,
an operation in the overcoupled regime seems to be optimal, as it yields the strongest phase
shift and hence extracts most of the information.

2. The undercoupled regime where η < 1/2. Light that enters the cavity is more likely to
get lost than coupled out. Accordingly, the intracavity amplitude again won’t reach its
maximum, and it might be even lower than the output field. This applies for the case
ηc = 0.13 shown in the middle amplitude plot in figure 4.2, for slightly higher ηc it is no
longer true. On resonance, the phase shift imprinted on the output field is always the
smallest compared to the other regimes.

3. When η = 1/2 the cavity is said to be critically coupled or ‘impedance matched’. The
loss- and energy exchange rate are equal: κl = κex. This allows for the maximal intensity
built-up inside the cavity. The phase shift experienced by the output field spans π. On
resonance (∆ = 0), the transmitted field vanishes. As our experimental approach relied on
detecting a transmitted field, the critically coupled regime was avoided.

5We remind that |α|2 is the mean number of photons and |sout|2 a flux. In an experimental setting, the
power Pout = ~ωd|sout|2 instead of the field amplitude can be accessed directly. For the intracavity power,
Pc = ~ωd|α|2/τc, where τc is the round trip time for a photon. In the analysis however, we will stick to |α|2 and
|sout|2 without loss of generality.
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Even though the properties of the undercoupled regime appear to be disadvantageous, it is useful
to operate in it when quantum noise features of the input field are tried to be preserved: By
the analysis of homodyne detection on page 12, illustrated also in figure 3.7 on page 50, it can
be told that the presence of losses degrades the noise suppression due to squeezed light, which
is our means of enhanced sensing. Surprisingly, it was proofed theoretically that the arguments
for and against one of two coupling regimes are balanced, such that the choice is irrelevant [163,
164]. However, in relation to the experiment, it is more convenient to work in the undercoupled
regime: It is realised by widening the gap between the fibre taper and the toroid, thereby it is
less likely to contact the former with the latter.

Regardless of the coupling regime, a detuning leads to a phase shift of the outgoing field. By
virtue of the optomechanical coupling (described by the Hamiltonian (4.11)) mechanical motion
causes detuning. Thus we can expect to sense this motion by detecting the phase shift imprinted
on the light leaving the cavity.

Optical cavity with a mechanical oscillation To check how exactly the described
mechanically-induced phase shift affects the cavity field, we will conclude the study by adding a
harmonic mechanical displacement in equation (4.14a). Thus we substitute 〈Q̂〉 = Q sin(Ωmt),
but leave the momentum and position uncoupled. The full solution reads

α(t) = sin
√
κex exp

(
ı

(√
2g0Q

Ωm
cos(tΩm)−∆t

)
− κt

2

)
×

(∫ 1

0
exp
(
−ı
(√

2g0Q

Ωm
cos(τΩm) + ∆τ

)
+ κτ

2

)
dτ +

∫ t

1
exp
(
−ı
(√

2g0Q

Ωm
cos(τΩm) + ∆τ

)
+ κτ

2

)
dτ
)

(4.19)

The first integral yields a constant factor. That the second integral converges, in case all paramet-
ers are real, can be seen by factoring-in the term exp

(
−κt2

)
of the prefactor. What is important

to notice is the modulation ı cos(tΩm), driven with a strength of d =
√

2g0Q/Ωm. This is a char-
acteristic of phase modulation which is often studied in the context of devices like electro-optical
modulators [31]. In case of small d� 1 and t� 1/κ, such that a steady state regime has been
reached, a Taylor expansion yields (cf. H. Kerdoncuff’s thesis [163, p. 62])

α(t) ≈ |α|2 e−ı∆t
(

1 + Ωm
κ− 2ı(∆ + Ωm)d e−ıΩmt + Ωm

κ− 2ı(∆− Ωm)d eıΩmt
)
. (4.20)

The terms oscillating at −Ωm and +Ωm represent the anti-Stokes and Stokes sidebands, respect-
ively [255]. Figure 4.3 illustrates the behaviour of the exact solution (4.19) to justify the validity
of the approximation.

In conclusion, equation (4.20) tells quantitatively how a mechanical oscillation modulates
the intracavity field. By virtue of equation (4.12) it is readily connected to the output field.
To measure the transduced mechanical motion, a standard homodyne detection, introduced in
section 1.2.3, can be employed to meter the phase fluctuation. Based on these finding, it will be
outlined how the knowledge about the oscillator’s motion can be employed to control its state.

4.2.2 Controlling and feedback cooling the mechanical oscillator
For cooling the mechanical oscillator, two main approaches can be taken: Feedback cooling, also
termed as cold damping, or sideband cooling, sometimes referred to as cavity-assisted cooling [14,
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Figure 4.2: Amplitude and phase
diagram for three cavity-coupling
regimes. From top to bottom:
Overcoupled, undercoupled, im-
pedance matched. The horizontal
axis represents the detuning ∆ =
ωc − ωd normalised to the cavity
decay κ = κex + κl. This way the
loss rate κl is set by the choice of
ηc. The phase exhibits a discon-
tinuity as the output of the arg
function is wrapped in the interval
(−π, π). To compare the steady-
state field amplitudes directly, all
other parameters were set to unity
such that the quantities are effect-
ively normalised.
Considering a Fabry–Pérot cavity
instead, the notion of ‘out’ has to
be reversed, as it corresponds to
the field reflected from the incoup-
ling mirror [106, 255].
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Figure 4.3: Numerical solution of equation (4.19). For
the sake of readability, the vertical axes are scaled by a
factor of 100. The parameters are sin = 1,

√
2g0Q =

1/10 Hz, Ωm = 10 Hz, ∆ = 0 Hz, κ = 100 Hz, and
κex = 20 Hz. Thus the system is qualified as under-
coupled and probed on resonance which resembles our
experimental configuration. After a time of about 1/κ,
the amplitude reaches almost a steady state behaviour.
It is only almost, as a close inspection exhibits an oscil-
lation at a rate of κex. This feature is lost in the ap-
proximation (4.20). The phase evolution however shows
a very pronounced oscillation with a periodicity of 1/Ωm
and justifies the approximation.

295]. Which of these is more suitable depends on whether or not the sidebands at Ωm transduced
onto the optical carrier are larger or smaller than κ. The two regimes this comparison constitutes
are called resolved- or unresolved sideband regime for which Ωm � κ and Ωm � κ, respectively.

What this intuitively means is that an operation in the resolved sideband regime requires a
fast mechanical oscillator or a “good” optical cavity. What an operation in that regime leads
to is that the information transduced onto the optical field lessens, the more the sidebands are
resolved, i.e. the greater Ωm compared to κ is. However, probing an optomechanical system in
this regime with a red detuned laser has shown to achieve ground state cooling [61].

Feedback cooling, also termed as cold damping, utilises the imprint of information on the
optical probe, thus operates in the unresolved sideband regime. As for our system Ωm < κ, we
will focus on the feedback cooling approach further on.

A classical analogy By metering the mechanical oscillator’s position q̂, a negative feedback
force F̂Fb proportional to the velocity d

dt q̂ can be applied to dampen the motion of the mechanical
oscillator [189]. A transfer function model of the interactions can be found in figure 4.4. We
sketch the idea by a classical description of the evolution of a mechanical oscillator subject to an
external force F :

m
d2

dt2 q +mΓm
d
dtq +mΩ2

mq = F (4.21)

The generic mass m was factored out to explicitly show the mechanical frequency and damping
rate. When F is periodic, a convenient way to solve the differential equation is via a Fourier
transformation. In frequency space,

q(Ω) = 1
m(Ω2 − Ω2

m − ıΩΓm)F (Ω) = χm(Ω)
m

F (Ω), (4.22)

where χm denotes the mechanical susceptibility. Exerting a force on resonance, such that Ω ≈
Ωm, χm becomes maximal and arg(χm) = π/2. The time-frequency relation F ( d

dty) = ıΩy(Ω)
of the Fourier transformation F [44] lets us conclude that, as stated above, the feedback force
can be set proportional to the velocity of the mechanical oscillator. We also identified the phase
delay which is required to impose a viscous damping.
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Forces ± Mechanical
oscillator Transduction b Position

estimate

Measurement backaction noise

F q α

Figure 4.4: Block diagram of an optomechanical feedback control. Physical dimensions are placed
above the connecting lines to denote the transformation caused by the individual block. F is
a force, q a mechanical displacement (or equally position) and α an optical amplitude. The
effects that contribute to the feedback path are the force controlled by, e.g., electromechanical
components and quantum noise due to the measurement.

External force terms Next, we consider a mechanical oscillator and the external forces it
can be subject to in more detail:

• Thermal Brownian force F̂th(Ω) due to the ambient environment,

• a radiation pressure backaction force F̂ba(Ω) associated with coupling of the oscillator to
an optical probe field,

• and finally the feedback actuation force F̂Fb(Ω).

For the microtoroid system we studied, the radiation pressure force is much weaker than the
thermal Brownian force and remains hidden below the measurement noise. Thus, this contribu-
tion will henceforth be neglected. The effect of backaction force has only recently been observed
in state-of-the-art experiments on macroscopic oscillators [221, 226, 238] and is challenging to
achieve, as contribution to the mechanic’s occupancy from the thermal bath and the radiation
pressure shot noise have to be at least on equal footing.

The measurement backaction noise itself is not only given by the measurement outcome;
quantum mechanics tells us that the measurement process perturbs the probed system. We
account for the disturbance by adding a stochastic noise operator q̂N as

F̂Fb(Ω) = meffK(Ω)(q̂(Ω) + q̂N (Ω)). (4.23)

The imprecision noise q̂N (Ω) of the displacement measurement includes all noise sources in the
feedback loop, e.g. optical shot noise, detection- and electronic noise. The prefactor is composed
of an effective mass, previously introduced as meff and to be explained shortly, and a transfer
function K ∈ C, characterising gain and phase lag of the feedback loop. K is, in analogy to χm in
equation (4.22), the mechanical susceptibility to a feedback force. To achieve the optimal cooling
via feedback cooling, the injected measurement noise has to be minimal and the amplification of
the feedback signal not constraint by technical saturation effects. As we will see, the larger the
signal from the mechanical oscillator, the higher the feedback gain is required to be for reaching
the minimal temperature.

Concept of effective mass The concept of an effective mass is of importance in our study;
as we will see, it determines the calibration of the mechanical oscillator and finally the inference
of the temperature. It is used to distinguish between

• the actual mass of the physical object,
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• the displaced mass, which is, for the microtoroid, approximately proportional to the volume
of the torus, and

• the effective mass which is moving and guiding the optical mode. It is, so to speak, the
mass we can extract information from via the optical probe. As the displaced mass changes
for each mechanical mode, and the mechanical mode shape itself might have an impact on
the optical mode, meff is dependent on the mechanical frequency Ω.

A formal way to describe the effective mass is given by Pinard et al. [223]. In a theoretical study
they derive the effective mass term and highlight its influence on the optomechanical coupling.
To motivate a formal description of meff, we will outline their study.

First, the time-dependent mechanical displacement of the resonator is expanded as a series
of eigenmodes un via

u(x, t) =
∑

n

cn(t)un(x), (4.24)

where cn(t) is the time-dependent amplitude of the n-th mode. cn is formally given by the scalar
product 1

V

∫∫∫
V
u(x, t)un(x) d3x, evaluated over the volume V of the resonator. Regions of the

resonator which are not displaced in any of the n eigenmodes do not contribute to cn, such that
V can be seen as the “displaced volume”.

Next, the moving mass mn associated to un is introduced by describing the potential energy
of the resonator as a series of eigenfrequencies:

U(t) = 1
2
∑

n

mnΩ2
ncn(t)2. (4.25)

The frequency of an eigenmode is denoted as Ωn. Knowing un and the resonator material’s
density ρ, the moving mass can be evaluated via ρ

∫∫∫
V
‖un(x)‖2 d3x.

For an optomechanical quantum system, where the light field plays the split role of a probe
and a disturbance, the physical mass of the mechanical oscillator is of minor importance – it is
the displaced mass interacting with the optical field which forms the actual system.

To describe the mass which is both displaced and interacting with light one may introduce
the spatial overlap

sn = 1
V

∫∫∫

V

v2(x)un(x) d3x (4.26)

between un and the spatial amplitude distribution v of the electric field6. We may then associate
an effective mass to each mechanical mode via

meff,n = mn

s2
n

. (4.27)

As pointed out by Pinard et al., the effective mass can take on, depending on sn, values which
are less by more than order of magnitude compared the mechanical oscillator’s physical mass,
thereby enhancing the optomechanical coupling and optical noise spectra.

In our experimental study we address only a singly mechanical mode, such that for the
following we omit the subscript n for meff.

6To give an example of v(x): Pinard et al. study the effective mass of a Fabry–Pérot cavity, whereas one of the
two mirrors acts as a spring and its deformation is considered. In this case, both v and un are well approximated
by scalar functions over cylindrical coordinates. Specifically, v takes a Gaussian- and un Laguerre–Gaussian form,
such that closed expressions for sn may be found.
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Controlling the mechanical displacement Combining the contributions to the force which
determines the mechanical displacement, we arrive at

q̂(Ω) = m−1
eff χm(Ω)

(
F̂th(Ω) + F̂Fb(Ω)

)

= m−1
eff χm(Ω)

(
F̂th(Ω) +meffK(Ω)(q̂(Ω) + q̂N (Ω))

)

= m−1
eff χeff(Ω)

(
F̂th(Ω) +meffK(Ω)q̂N (Ω)

)
, (4.28)

where we have introduced an effective susceptibility:

χeff(Ω) = χm(Ω)
1−K(Ω)χm(Ω)

=
(

Ω2 − Ω2
m −<(K(Ω))− ıΩΓm

(
1 + =(K(Ω))

ΩΓm

))−1
. (4.29)

The real part of K contributes to the spring constant of the mechanical oscillator, resulting in a
modified resonance frequency

Ω2
Fb = Ω2

m −<(K(Ω)). (4.30)

The dissipation of the mechanical oscillator is altered by the imaginary part of K, leading to a
feedback induced damping rate

ΓFb = Γm(1 +GFb), (4.31a)

with

GFb = =(K(Ω))
ΩΓm

. (4.31b)

Manipulating K thus allows for stiffening or softening the spring our mechanical oscillator
forms. More interesting, it can affect the dissipative coupling to its environment, which is the
essence of feedback cooling.

Starting from a representation of the feedback transfer function [184] in Laplace space7, we
can express

K = GFb(Ω)ΩΓm exp(−ıΩτFb) (4.32)

where τFb is the delay of the feedback loop. The exponential term represents a time shift, while
the amplitude expresses the filter characteristics of the transfer function. In a following section,
an experimental characterisation of the transfer function will be shown. It justifies that, for a
further treatment, we can assume ΩτFb = π/2 +n2π, n ∈ N, corresponding to an ideal dissipative
feedback force.

4.2.3 Displacement spectrum of the feedback actuated resonator
The power spectral density (PSD) for an operator Ô is generally defined as8 [37]

SÔ(Ω) =
∫ ∞

−∞
〈Ô(t)Ô(0)〉 eıΩt dt. (4.33)

7Since we assume a linear and constant, i.e. time invariant, behaviour of K, a representation in Laplace space
is valid.

8To explicitly show that the PSD is an autocorrelation, authors often denote it as SÔÔ(Ω). In this treatment,
no crosscorrelation spectrum will be used, thus we will omit the second index for convenience.
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In Fourier space

Ô(Ω, τ) = 1√
2τ

∫ τ

−τ
Ô(t) eıΩt dt = 〈|Ô(Ω, τ)|2〉, (4.34a)

which relates to the PSD as

SÔ(Ω) = lim
τ→∞

〈|Ô(Ω, τ)|2〉. (4.34b)

Under the assumption that the observation time τ is much larger than the relevant time scales
of Ô, we associate

SÔ(Ω) = 〈|Ô(Ω)|2〉. (4.35)

Using equation (4.28) and assuming that the noise terms are uncorrelated, the mechanical
displacement PSD is given by

Sq̂(Ω) = 〈|q̂(Ω)|2〉 = |χeff(Ω)|2
m2

eff

(
SF̂th

(Ω) +m2
eff|K|2Sq̂N (Ω)

)
. (4.36)

Substitution of equation (4.29) and (4.32) into the latter yields the following PSD for the mech-
anical displacement subject to feedback (cf. Poggio et al. [224]):

Sq̂(Ω) = 1/m2
eff

(Ω2 − Ω2
m)2 + (1 +GFb)2(ΩmΩ/Qm)2SF̂th

(Ω)

+ (ΩGFbΩm/Qm)2

(Ω2 − Ω2
m)2 + (1 +GFb)2(ΩmΩ/Qm)2Sq̂N (Ω). (4.37)

Here, the first term represents driving of the mechanical oscillator by thermal Brownian noise,
while the second term accounts for the mechanical position uncertainty introduced by imprecision
noise in the feedback loop being fed back onto the oscillator. The mechanical quality factor is
denoted as

Qm = Ωm
Γm

. (4.38)

Equation (4.37) evaluates the actual displacement of the feedback actuated oscillator, that is
the displacement as it would be revealed by an ideal out-of-loop measurement.

An in-loop measurement, on the other hand, includes additional measurement imprecision
noise. It is thus given by q̂(Ω) + q̂N (Ω). Gathering the terms from (4.28) and (4.37), the PSD
reads

Smeas
q̂ (Ω) = 1/m2

eff

(Ω2 − Ω2
m)2 + (1 +GFb)2(ΩmΩ/Qm)2SF̂th

(Ω)

+ (Ω2 − Ω2
m)2 + (ΩΩm/Qm)2

(Ω2 − Ω2
m)2 + (1 +GFb)2(ΩmΩ/Qm)2Sq̂N (Ω). (4.39)

It is important to distinguish the out-of-loop and in-loop measurement spectra as they suggest
vastly different behaviour of the mechanical oscillator as function of GFb. To realise an out-of-
loop measurement, two independent transduction measurements, e.g. detuned laser sources, can
be used for feedback actuation and displacement spectrum characterisation [169]. Thereby the
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actual displacement of the cooled oscillator and hence its temperature can be inferred. For the in-
loop measurement, however, only one transduction measurement is used both for characterisation
and generation of the feedback force. As the feedback gain is increased, the oscillator motion
is progressively correlated with the inevitable imprecision noise of the measurement, resulting
in an artificial noise suppression – called ‘squashing’ – in the measured displacement spectrum.
For sufficiently large gain values the measured in-loop spectrum even suggests a mechanical
noise below the measurement noise level. This effect will be shown and briefly discussed in the
following experimental section.

Next, we will outline that the temperature of the mechanical mode is related to the integral
of the displacement spectrum. In the presence of noise squashing this leads to inference of
negative temperatures, which is obviously unphysical. Care should thus be taken when inferring
the feedback cooled oscillator temperature from in-loop measurements. With the knowledge of
equation (4.39), one can account for the noise contribution from the measurement and thereby
infer the temperature even under the presence of squashing correctly.

4.2.4 Effective temperature of the feedback actuated resonator
According to the fluctuation-dissipation theorem [174] we can define an effective temperature
from the PSD of the mechanical position fluctuations. The effective temperature TFb of a mech-
anical oscillator subject to a feedback actuation force can be calibrated relative to the effective
temperature T0 of the same oscillator in thermal equilibrium with its environment [37].

Assuming that the PSD of the position fluctuations under feedback actuation retains a Lorent-
zian profile with effective resonance frequency ΩFb and damping rate ΓFb, the effective temper-
ature of the oscillator is given by

TFb
T0

=
∫∞
−∞
〈
|q̂(Ω)|2

〉
dΩ

∫∞
−∞
〈
|q̂(Ω)|2

〉
GFb=0 dΩ

=
ΓFb

〈
|q̂(ΩFb)|2

〉

Γm
〈
|q̂(Ωm)|2

〉
GFb=0

. (4.40)

Substituting equation (4.28) into equation (4.40), the effective temperature can be expressed
in terms of experimentally accessible quantities as

TFb
T0

=
(

1 + G2
Fb

SNR

)
1

1 +GFb
, (4.41)

where we have introduced the signal-to-noise ratio (SNR) as the level of the on-resonance mech-
anical position noise relative to the off-resonance measurement noise level:

SNR =
〈|δq̂(Ωm)|2〉GFb=0

〈|δq̂N (Ωm)|2〉GFb=0
, (4.42)

The SNR can be determined directly from the PSD of the measured cavity output field fluctu-
ations.

If the mechanical setup and the optical detection is unchanged such that the SNR is stable
over the measurement, the lowest achievable temperature by cold damping is limited to

Tmin = 2T0

√
1 + SNR − 1

SNR , (4.43)

for an optimised feedback gain of GFb =
√

1 + SNR − 1. When GFb >
√

1 + SNR − 1, the
influence of the measurement noise overwhelms the position noise signal, which eventually leads
to an increased effective temperature of the mechanical oscillator. Finally we note that to
maximise the cooling efficiency, the SNR has to be increased.
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Improving the detection efficiency by amplitude squeezing

In the backaction dominated regime (C � nth), the minimum achievable mechanical quadrature
variances VarQ̂,VarP̂ is directly given by the transduction signal detection efficiency η, as [37]

VarQ̂ = VarP̂ = 1
2√η . (4.44a)

This condition also implies a minimum thermal state occupancy of

nmin + 1/2 = 1
2√η , (4.44b)

which highlights the importance of achieving close to unity detection efficiency. Achieving high
detection efficiencies has shown to be a major challenge in recent optomechanics experiments
[287]. However, through a slightly unconventional use of squeezing, the effect of losses can
be mitigated and high e f f e c t i v e detection efficiencies reached. We start by considering
the transduction of a mechanical oscillation mode with measurement noise variance VarN and
signal variance VarS , both determined in the absence of losses, resulting in a total variance of
Var = VarS + VarN . For unity detection efficiency the corresponding SNR is given by

SNR0 = VarS
VarN

. (4.45)

The effect of signal loss can be modelled as an effective beam splitter with transmission efficiency
η (introduced on page 12 and equation (1.40)), leading to

Var→ η(VarS + VarN ) + 1− η
2 = ηVarS +ηVarN +1− η

2 , (4.46)

and correspondingly, the finite efficiency SNR is given by:

SNRη = ηVarS
ηVarN +(1− η)/2 . (4.47)

Defining an effective detection efficiency as the ratio of the finite and unity efficiency SNR, we
find

ηeff = SNRη

SNR0
= ηVarN
ηVarN +(1− η)/2 = 1

1 + 1−η
2ηVarN

, (4.48)

which approaches unity for VarN � 1−η
2η . Using an amplitude-, rather than a phase-, squeezed

probe beam this condition can be approximately fulfilled resulting in an effective enhancement of
the detection efficiency. At the same time, the squeezed amplitude fluctuations lead to reduced
heating of the oscillator due to less quantum backaction.

A rather figurative explanation for this effect is that the additional noise in the phase quad-
rature acts as a “buffer layer” and thereby protects the information from losses. Figure 4.5
presents the variation of ηeff for different degrees of squeezing.

4.3 Experiment
The experimental demonstration of quantum enhanced cooling outlined in the introduction was
performed with the squeezed-light source described on page 56. In this section we will describe
further parts and techniques applied in the experiment. We conclude by presenting the achieved
cooling before summarising the project outcomes in the final section.
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Figure 4.5: The effective detection efficiency in depend-
ence of the efficiency set by a coherent-state scenario. Six
lines represent different degrees of anti-squeezing given
by 10 log10(VarN /(1/2)).
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4.3.1 Experimental setup
A scaled schematic of the experimental setup is shown in figure 4.6 containing all optical and
optoelectronic parts.

The optical source was a continuous-wave Nd:YAG laser (Innolight GmbH Diabolo) delivering
an output beam at 1064 nm and a secondary beam at 532 nm produced by second harmonic
generation from the fundamental wavelength. The fundamental beam was split into two, one
serving as a seed for generation of bright squeezed probe states, the other, most intense part,
was used as local oscillator for homodyne detection. Figure 3.9 on page 56 indicates where the
local oscillator was split up from the laser.

Next to providing the local oscillator, the beam sent into the ‘LO’ port served two other
purposes: First, to have a non-squeezed probe available. The power of the probe was conveniently
adjusted via a combination of a half wave plate and a polarising beam splitter. Second, to match
the spatial mode leaving the squeezer cavity to the spatial mode of the fibre coupler of the tapered
fibre. This path is depicted by the dashed beam that is transmitted through the polarising beams
splitter combining the signal and local oscillator beam before the detection stage.

For improved homodyne visibility the local oscillator was coupled into a polarisation main-
taining single-mode fibre (PM-SMF) and recoupled into free space before being interfered with
the probe field. Using equal lenses (Thorlabs C240TME-1064) for the outcoupling stages, a vis-
ibility of 99 % was achieved without additional telescopes in the signal and local oscillator path
after outcoupling.

To allow for evanescent optical coupling to the microtoroidal resonator, the bright squeezed
state was coupled into an adiabatically tapered single-mode fibre with a diameter at the taper
waist of < 1 µm. For better mechanical stability and high coupling efficiency, the fibre was
manually terminated with a FC/APC9 connector on each side. The angled cut of the connector
further prevents from standing waves, i.e. parasitic cavity effects. It was thereby easily feasible to
determine the transmission through the tapered fibre without measuring the coupling efficiency
by mating the tapered fibre with another patch cable. As mentioned above, the mode matching
from free space to fibre was measured by back-seeding the tapered fibre and matching the output
to the squeezing cavity. This yielded a mode matching efficiency of ηmm = 98.5 %.

9The name FC/APC is an acronym for “Ferrule Connector / Angled Physical Contact”. The improved coupling
efficiency stems not only from the mentioned mechanical stability, but also from the polishing of the connector’s
tip which is involved in the manual termination.
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Figure 4.6: A schematic of the actual experimental setup. The schematic corresponds to the real
placement; the short side of the setup measures 1.5 m, the long side 3 m. Dashed mirror symbols
depict removable mirrors. Wave plates which are not labelled represent half wave plates. Dashed
beams are paths that were used for alignment or calibration purposes. All beam splitters are
polarising. The photo was taken by one of two microscope assemblies inside a clean enclosure
containing the microtoroid.
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Table 4.1: Overview of measured effi-
ciencies and their notation.
aFor cooling experiment only. Stronger
coupling has been used for measure-
ments as shown in figure 4.13.

Notation Meaning Value
ηc Optomechanical coupling 2.8(1) %a

ηtaper Transmission through the tapered fibre 54.0(5) %
ηtrans Power transmission between squeezer

output and detection stage input
without optomechanical coupling

48.0(5) %

ηmm Mode matching to the fibre coupler 98.5(2) %
ηqe Quantum efficiency of photodiodes > 99 %
ηvis Mode matching between probe- and

local oscillator beam at the homodyne
detector

98.8(1) %

The transmittance through the fibre was measured to be 64 %. Contaminations of the tapered
region were visible in the form of scattering effects and were deemed to be the cause of the losses.
An overview of all measured efficiencies can be found in table 4.1.

The tapered fibre was kept at a fixed position while the microtoroid was held on a three-axes
piezo stage (Thorlabs NanoMax MAX311D/M) providing control of the relative taper-to-toroid
separation with nanometre resolution. The coupling efficiency to the microtoroid was controlled
by changing

• the relative position between the tapered fibre and the micro-toroid,

• the polarisation of the incoupled beam, and

• the temperature of the toroid.

The toroid’s temperature was actuated by means of a Peltier element underneath the chip, and
stabilised using a controller (Wavelength Electronics LFI3751). For coarse and fast temperature
tuning, the intensity of an incandescent lamp built into the microscope assembly was changed.

To detect the signal, the probe field was superimposed with the local oscillator beam on a half
wave plate and polarising beam splitter. This combination was used to mimic a beam splitter with
an accurately variable splitting ratio. The interference visibility V was measured to be 99.4 %,
corresponding to a mode matching efficiency introduced in section 1.2.3 of ηvis = V2 = 98.8 %.
Two indium-gallium-arsenide photodiodes with ηqe > 99 % quantum efficiency (specified on page
63, footnote 12) were built into the homodyne detector, such that the overall losses were given
by the transmission through the tapered fibre.

As the measurement required a stable phase quadrature measurement, the DC part of the
homodyne detector (HD) photocurrent was used as error signal. The signal provided the input
for a feedback loop controlling the phase of the local oscillator by means of piezo actuated mirror
(P1). Details about the controller can be found in appendix on page 144.

For calibration purposes, a tunable diode laser was also launched into the setup. To prevent
from back reflection into the laser cavity, a Faraday isolator (FI) was placed right after the laser
module which is marked by ‘Tune’ in figure 4.6.

Electronic feedback circuit

Figure 4.7 illustrates the electronic circuit used for feedback actuation of the mechanical res-
onator. First, the AC component of the homodyne photocurrent was band-pass filtered, before
splitting it into feedback and monitor / acquisition signals. The feedback signal was subsequently
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amplified in two stages providing 10 and 30 dB gain, respectively. A variable signal delay was
used to introduce the crucial 90° delay of the feedback force with respect to the mechanical
motion. Two variable 10 dB attenuators set the electrical feedback gain. In principle, the Femto
amplifier shown in figure 4.7 features a variable gain, however it was found that the phase is also
affected by the gain setting. To prevent from varying the phase delay when changing the gain,
attenuators were employed and the gain of the Femto amplifier set to 30 dB. Finally, a bias tee,
modified to accept up to 300 V DC input, was used to add a bias voltage to the feedback elec-
trode. This bias polarised the microtoroid to yield an improved electromechanical susceptibility
[163].

Circuit characterisation Ideally, a flat frequency response of the feedback circuit is desired
in the frequency band covering the mechanical resonance. To confirm that this was the case
the transfer function of the employed combination of filters and amplifiers was measured using
an electronic network analyser (Agilent E5061B). Figure 4.8 shows the measured S21 transfer
function of the total feedback circuit.

Data acquisition

The data presented in the figures was recorded by sampling the AC coupled and band-pass
filtered homodyne photocurrent using a digital sampling oscilloscope (LeCroy HDO6034). The
signal was sampled at a rate of 50 MS/s yielding a Nyquist frequency of 25 MHz well above all
relevant frequencies. For each measurement run the total sampling time was 100 ms resulting in
5 · 106 points per data set. In a subsequent post-processing step the data was binned and the
corresponding power spectra were derived by a digital Fourier transformation.

Squeezing efficiency after fibre transmission

To characterise the efficiency of the squeezed light source, homodyne tomography of the generated
state was performed. Without coupling the squeezed state into a fibre, a reduction of the shot
noise level by −8 dB was observed. A free space measurement indicating this reduction is shown
on page 63. Coupling to the microtoroid via the tapered fibre led to a reduction to −2 dB, as
shown in figure 4.9. In the absence of coupling to the microtoroid, the total transmission efficiency
through the tapered fibre was measured to be 54 %, including 4 % reflection (‘Fresnel’) loss from
each of the uncoated fibre facets. At the fibre-to-microtoroid coupling strength used for both
cooling experiments and the stated squeezing characterisation, the measured total transmission
through the various optical elements and the tapered fibre was ηtrans = 48 %. By virtue of
equation (1.40)10, the corresponding loss-reduced degree of squeezing is given by

Varout = ηtrans Varin +(1− ηtrans), (4.49)

resulting in Vout = −2.25 dB for Vin = −8 dB, consistent with the experimentally measured value.

4.3.2 Characterisation of the microtoroidal resonator
To detect mechanical resonances, the optical mode of the microtoroid had to be matched first to
the probe laser frequency. When successfully matched, the mechanical spectrum was read out
after adjusting for the required optomechanical coupling. All inferred system parameters can be
found in table 4.2.

10We derived here the influence of losses on homodyne detection from the beam splitter transformation.
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Figure 4.7: The electronic parts constituting the feedback circuit. The signal supplied by the
homodyne detector was filtered by a low- and high-pass filter, before sending it to a power
splitter. A delay circuit in between two amplifiers was used to accomplish a negative feedback.
The amplifiers were set to a constant amplification, as it showed out that the amplification affects
also the delay. To control the amplitude of the feedback signal, a set of attenuators was used.
A bias tee combined a DC voltage with the actual feedback signal sent to the electrode. An
aluminium plate underneath the silicon chip fixing the toroid served as ground. An electronic
spectrum analyser (Agilent N9000A CXA) or an oscilloscope was connected to the monitor
output for measuring the in-loop signal.

Table 4.2: Parameters
of the optomechanical
system.
a This value stems
from the increased in-
put power to measure
the spectrum shown in
figure 4.13(b).

Mechanical Optical System
Symbol Value Symbol Value Symbol Value
Ωm/2π 6.132(1) MHz ωc/2π 281.8317(3) THz T0 295.0(1) K
Γm/2π 14.625(5) kHz κuc/2π 94.4(2) MHz C 2.50(5) · 10−5

meff 10(1) µg κcc/2π 203.6(2) MHz Ca 5.20(5) · 10−4

nth(T0) 1.0028(4) · 106 Quc
c 1.38(5) · 106

Qm 419.0(4) Qcc
c 2.99(5) · 106
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Figure 4.9: Homodyne tomo-
graphy of the squeezed state after
transmission through the tapered
fibre and coupling to the micro-
toroid. For the measurement, the
power of the local oscillator beam
was set to 4.25 mW. The elec-
tronic noise, more than 13 dB be-
low the shot noise level, had been
subtracted. Data acquisition was
done with a RBW of 300 kHz and
a VBW of 3 kHz. Traces were re-
corded five times when averaging
was applied. The ‘Locked’ trace
was recorded by stabilising the
local oscillator’s phase with re-
spect to the phase of the probe
beam.
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Figure 4.10: Transmission spectra
of the optical resonance of the mi-
crotoroidal resonator in the case
of critical- and under-coupling.
The laser-frequency (νd) depend-
ent modulation observed in the
off-resonant parts of the spectra
were attributed to parasitic cav-
ity effects in the setup, most likely
the tunable laser [297]. Con-
tribution to this effect from the
tapered fibre was mitigated by
using FC/APC connectors. The
optical signal was picked up by
a photodetector. Inferring the
resonance frequency ωc from the
measurement is straight forward;
due to temperature changes af-
fecting the microtoroid a calibra-
tion was repeated for every meas-
urement run.
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To characterise the optical mode of the microtoroid, we employed an external-cavity diode laser
(Newport Velocity TLB-6721), tunable from 1050 nm to 1067 nm. Based on a Littman–Metcalf
configuration [255] the laser frequency was controlled by means of piezo-electric tuning of the ex-
ternal cavity feedback mirror. Using the laser module’s control-voltage input, the laser frequency
was tuned by 10 GHz V−1. The frequency-swept laser was coupled to the microtoroid optical res-
onance by means of the tapered fibre. A direct detection using a photodiode (D1 in figure 4.6)
recorded the transmission spectrum. Examples of transmission spectra for two different coup-
lings to the optical resonance at ωc/2π = 281.8317 THz are shown in figure 4.10. At near-critical
coupling a Lorentzian fit to the transmission spectrum resulted in a FWHM resonance linewidth
of κcc/2π = 204 MHz. In the strongly undercoupled case, relevant to the cooling experiments,
the resulting linewidth is κuc/2π = 94.4 MHz. For the undercoupled regime, κuc ≈ κl as the con-
tribution of the coupling rate κex becomes negligible. The corresponding optical quality factors
are Qcc

c = 1.38 · 106 and Quc
c = 2.99 · 106, respectively.

For the actual feedback cooling experiments the quoted Nd:YAG laser with noise character-
istics superior to the tunable diode laser was used. However, the Nd:YAG laser had a limited
frequency tuning range of ±200 MHz, insufficient to cover the > 1 THz free spectral range of the
microtoroid’s optical mode spectrum. To compensate for this, the microtoroid was mounted on a
Peltier element to enable thermal tuning of its optical resonance frequency into the range of the
Nd:YAG laser. The mentioned controllable incandescent light source in the microscope assembly
enabled further temperature tuning, thereby a fast means of localising the optical resonance.
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Figure 4.11: Spectrum of the transduced mechanical modes with resonance frequencies below
100 MHz. The fundamental flexural mode used for cooling appears at a frequency of 6.13 MHz.
Dark noise was subtracted from the recording. The shot noise power spectral density was taken
as the reference level.

Mechanical mode spectrum

The transduced mechanical motion, imprinted on the optical probe field as a phase modulation in
the case of resonant probing, was recorded by homodyne detection of the probe field. A typical
spectrum of the transduced mechanical motion for the particular micro-toroidal resonator is
plotted in figure 4.11, showing a number of resonances in the frequency range from 1 MHz
to 100 MHz. The strongest resonance, which, from mechanical finite element method (FEM)
simulations of the microtoroid, can be identified as the fundamental flexural mode (FFM), was
chosen for the feedback cooling experiments.

In order to calibrate the measured spectrum in terms of absolute mechanical displacement,
we utilised that – in the unresolved sideband regime11 and in the limit of negligible radiation
pressure backaction heating12 – the absolute position-measurement noise level Sq̂det is related to
the optomechanical cooperativity C as [37, p. 76]:

Sq̂det = 2q2
zpfSdet = 2q2

zpf

(
1

8ηΓm|Ceff|
+ 2Γm|χm|2|Ceff|

)
≈

q2
zpf

4ηΓmC
, (4.50)

where

η = ηtrans · ηc · ηqe · ηvis (4.51)

is the total optical detection efficiency and qzpf the mechanical zero-point fluctuation amplitude
from equation (4.5a). Sdet introduces the normalised13 detection noise PSD due to measurement
and backaction effects. The last missing parameter is the effective cooperativity; it reads [37]

Ceff = C

(1− 2ıΩ/κ)2 (4.52)

11As a reminder, this regime is characterised by κ � Ωm and κ � g0, that is the cavity field decays much
faster than a mechanics oscillates and a single photon couples to the mechanics, respectively. What this leads
to is an adiabatic elimination of optical cavity modes, that is the optical quadrature operators can be treated as
stationary [37].

12This assumption is valid as the contribution of radiation pressure shot noise to the mechanical oscillator’s
mean occupancy was more than six orders of magnitude below the contribution from the thermal bath.

13It is normalised such that the dimension of Sdet is Hz−1
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and can be approximately, as κ� Ω on resonance, set equal to C. Another useful equation which
yields the (effective) cooperative can be found in the limit of negligible radiation pressure heating
and with an on-resonance optical probe field, which applies for our measurement. According to
Bowen and Milburn [37, eq. (A.17)]

Ceff = 1
8η
Shomo
i − 1/2
nth + 1/2 . (4.53)

Shomo
i denotes the normalised power spectral density of the homodyne photocurrent i measured

at Ωm. The PSD comprises all noise sources and is normalised to the detection bandwidth and
shot noise level, i.e. it is dimensionless. nth is the thermal occupancy of the mechanical mode
which, in the high temperature limit, is given by [37, 174]

nth = 1
2 coth

(
~Ω

2kBT

)
≈ kBT

~Ωm
, (4.54)

The latter equation can be reformulated into

Ceff = SNR Vardet
8ηnth

= C, (4.55)

whereas Vardet denotes the variance of the detected degree squeezing14. Thus a relation between
the SNR and the cooperativity is established which allows a straight forward experimental de-
termination. Furthermore, substitution of the latter formula into equation (4.41) yields

TFb =
(

1 + Vardet
8ηnthC

G2
Fb

)
1

1 +GFb
T0, (4.56)

to relate the effective temperature with actual system parameters.

Estimation of the effective mass The value of the effective mass meff in equation (4.5a)
was determined via FEM simulations and a validation via equation (4.39):

First, the geometry of the microtoroid was estimated by previous microscopic studies [163]
to compile a virtual model for the simulation. Assigning the material properties to model, the
modes shown in figure 4.12 were found. Iterating the simulation for different geometries led to
a matching between the simulated and measured mechanical spectrum. The frequency of the
degenerate modes was assumed to be in between the modes shown depicted in figure 4.12. From
the simulation, the moving mass was calculated. Then, via previously done optical simulations
[163], the effective mass was inferred.

Second, the equations (4.39) and (4.50) were used as a validation. At the resonance peak,
Sq̂det SNR = Smeas

q̂ . By manipulating the formula, one may find that meff and Sq̂N from equation
(4.39) are free parameters. The isoline where the solution Sq̂det SNR = Smeas

q̂ can be found is
hyperbolic, such that the set of solutions is open. However, as Sq̂N changes rapidly over meff
(e.g. for meff = 5 µg, Sq̂N > 2000 am2 Hz−1), we can conclude that the value found via the FEM
simulation is reasonable. An alternative of calibrating the effective mass is via a modulation of
the optical probe field [120]. The drawback of this approach are the optical losses introduced
to the probe beam, in case it is a squeezed state, the degree of squeezing degrades according to
equation (4.46).

14According to our definition of the shot noise unit, Vardet = 1/2 if no squeezing is present.
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(a) First crown mode (b) Fundamental flexural mode (c) Second crown mode

Figure 4.12: Results of a FEM simulation of the microtoroid’s mechanical eigenmodes. The
first three modes are shown, with an increased eigenfrequency from (a) to (c). Mode (b) is
the fundamental flexural mode we selected for cooling. The modes (a) and (c) are, due to
their rotational symmetry, degenerate. Irregularities in the geometry cause a splitting of those
modes. As asymmetries were optically visible on all tested microtoroids, we concluded that the
transduced spectrum in figure 4.13(a) corresponds to the eigenmodes shown here. A detailed
study of the mechanical modes was carried out by, amongst others, Schliesser et al. [248].
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Figure 4.13: (a) Uncalibrated, transduced
spectrum of the mechanical modes within
the filter window (cf. figure 4.8). The probe
power and coupling efficiency do not corres-
pond to the settings used for feedback cool-
ing: For the latter, less power and a lower
coupling was set to circumvent an immedi-
ate overlap between the modes when cooling.
The letters correspond to the labels in figure
4.12. (b) Calibrated linear spectral density√
Sq̂det of the mechanical fundamental flex-

ural mode used for feedback cooling calib-
rated to the actual mechanical displacement
amplitude.
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Calibration summary Using the numerical values stated above, the SNR from figure 4.11 of
22.4 dB, and an effective mass for the FFM of meff = 10 µg, we find: qzpf = 11.6 am, nth = 106,
C = 2.5 · 10−5, and η = 0.019. Then, we arrive at a mechanical displacement sensitivity of

√
Sq̂det =

√
2q2

zpfSdet = 14.6 am/
√

Hz. (4.57)

For an overview of the quoted values including uncertainty estimates, we refer to table 4.2 The
correspondingly calibrated transduction spectrum for the FFM is plotted in figure 4.13.

Feedback gain calibration and effective temperature inference

Theoretically, the effect of the implemented feedback cooling technique is varied by the feedback
gain GFb, cf. equation (4.43). However, experimentally, the controlled quantity is the electric
gain given by the implementation of the feedback circuit. When the delay of the feedback signal
is appropriately set for generating a dissipative cooling force, the feedback gain is related to the
cooled mechanical resonator linewidth ΓFb by (cf. equation (4.31a))

GFb = ΓFb
Γm
− 1, (4.58)

which allows to deduce GFb from the transduced mechanical spectra as a function of the applied
electric gain. The relation between the feedback gain and the electric gain is thus assumed to be
linear. However, this approach breaks down for flat spectra, as ΓFb takes on very large values.
Instead, we fit the measured spectra to the model equation (4.39), where the gain GFb, the
resonance frequency Ωm and the measurement noise Sq̂N are taken as fit parameters. Given
these parameters, the integral of the spectrum equation (4.37) can be used to determine the
effective temperature. This relation is set by the fluctuation-dissipation theorem [37, 224]:

TFb = meffΩ2
m

kB2π

∫
Sq̂(Ω) dΩ. (4.59)

As a complementary information, figure 4.14 shows the inferred feedback gain as a function
of the applied electric gain. The conversion was not used as a calibration, but it stresses the
behaviour of the electronic circuit under increasing gain.

Uncertainty propagation on the temperature estimate

To infer the out-of-loop temperature TFb shown in figure 4.18 on page 104, we evaluated equation
(4.59) as explained above. The SNR was determined from the linear spectral density

√
Sq̂det when

no feedback was applied. More precise, the SNR was derived by a fit to the data, using

f(ν) = 2πa+ (2π)2bν + 2πc (Γ/(4π))2

(ν − Ω/(2π))2 + (Γ/(4π))2 , (4.60)

i.e. the Cauchy (“Lorentzian”) probability density function with a linear term as an offset. The
function is defined such that Γ yields the FWHM.

In total, seven parameters a, b, c,Γm,Ωm, GFb, Sq̂N , extracted by a nonlinear fit, determined
the effective temperature. Furthermore, we assumed an uncertainty of 10 % on the knowledge of
the effective mass and an uncertainty of 0.1 K on the initial temperature. From the fit routine,
uncertainties on the previously named parameters were estimated. Upon these results, the
standard deviation of the temperature estimate has been calculated according to

∆TFb(Γm,∆Γm,Ωm,∆Ωm, . . . ) =

√(
∂T

∂Γm

)2
∆Γ2

m +
(
∂T

∂Ωm

)2
∆Ω2

m + · · ·, (4.61)
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Figure 4.14: Feedback gain GFb as a func-
tion of the set electric gain for both probe
states. Higher gain settings were chosen for
the squeezed probe, as more gain is required
to reach the optimal temperature at a higher
initial SNR. Applying gain settings beyond
the point leads to squashing, which is a re-
gime where the correlations between the elec-
tronic noise and the mechanics dominate the
system. The clearly visible nonlinear beha-
viour was caused by the influence of neigh-
bouring mechanical modes: At high gain,
those modes experienced a phase shift (cf. fig-
ure 4.8) different to the FFM, which eventu-
ally led to heating those modes. The positive
feedback consequently saturated the amplifi-
ers. A shading around the solid lines repres-
ents the 95 % confidence level of the predic-
tion band.

where a prepended ‘∆’ denotes the uncertainty estimate of the respective quantity.

4.3.3 Results
In a first experiment, we implemented feedback cooling using a coherent probe state with a
power of 8.5 µW. The results are illustrated in figure 4.15, where we cooled from ambient
temperature down to the limit set by the imprecision noise corresponding to the quantum noise
of a coherent state. By means of attenuation measurements and balanced detection we verified
the quantum origin of the noise [16], i.e. identified it as pure vacuum noise. As the feedback gain
was increased, the effective temperature of the mechanical mode decreased to 149 K. Increasing
the gain further led to heating of the mechanical oscillator, as the shot noise of the probing field
eventually dominates the control. This feedback effect is known as squashing and was discussed
in a quantum mechanical framework by Shapiro et al. [254]. An experimental verification can be
found in various later publications [169, 224] and in figure 4.16.

The demonstration of squeezed light enhanced cooling is presented in figure 4.15. Here,
we used the same coherent excitation as for the coherent state cooling experiment, but the
quantum fluctuations of the probe beam were suppressed below vacuum noise. The detected
noise suppression of the generated squeezed state was −1.9 dB, limited by evanescent coupling
and propagation losses in the tapered fibre. An overview of the named factors is given in section
4.3.2.

Despite the losses an increase in measurement rate15 of µsqz/µcoh = 1.55 was achieved, and
by applying the electronic feedback a clear suppression of the thermally excited mechanical dis-
placement fluctuations was observed, ultimately reaching the squeezed noise level 1.9 dB below
shot noise. As a result of employing quantum-enhanced feedback cooling, the mechanical mode

15The measurement rate characterises the rate at which the information about the mechanical position is
transferred to the optical phase output. It is given by [37] µ = Γm|Ceff|2. According to the definition, µ vanishes
in the sideband resolved regime.
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Figure 4.15: Evolution of the mechanical resonance under different gain settings. Left: Coherent
state probe. Right: Squeezed state probe. Spectra were corrected for detector dark noise. A
grey plane represents the optical shot noise level. The spectra are arranged proportional to the
electronic gain that was set for the recording. Solid black lines represent fits to a Lorentzian
distribution (4.60) and were used to infer the bandwidth and central frequency.

was cooled to an effective temperature of 130 K, more than 12 % lower than the minimum tem-
perature achieved using coherent light.

A complementary characterisation of the demonstrated cooling scheme is provided by ex-
amining the time-domain phase space trajectory of the mechanical oscillator. Due to the large
bandwidth of the homodyne detector compared to the mechanical dissipation rate Γm, this could
be monitored in real-time [37, 129]. For this a simultaneous down-mixing of the homodyne pho-
tocurrent with two in-quadrature signals and subsequent low-pass filtering16 at a frequency of
Γm was applied to the digitalised data. The recorded thermal trajectories are visualised in figure
4.17(a). Both probing strategies result in a significant confinement of the oscillator’s random
excursions in phase space when subject to feedback cooling. While the enhancement by us-
ing squeezed light is not directly obvious from the phase space trajectories the effect is more
pronounced by considering the marginal quadrature distributions depicted in figure 4.17(b), re-
vealing a 12.6 % reduction in the variance of the cooled oscillator’s position for the squeezed light
probe, which is in good agreement with the temperature reduction.

The resulting temperature estimates as function of inferred feedback gain are presented in
figure 4.18. A clear cooling improvement is observed for increasing gain until the thermal noise
spectrum reaches the measurement imprecision noise level, after which the mechanical oscillator
begins to heat up due to measurement noise being imprinted on its motion. As theoretically
predicted, the reduced imprecision noise of the squeezed probe shifts the onset of heating towards
larger feedback gain values, enabled quantum enhanced cooling to temperatures below the limit

16A finite impulse response filter, a top hat filter and a first order low pass had been applied to the data with
corner frequencies around Γm. As the recording’s SNR is rather low, a larger bandwidth immediately means more
noise, while a smaller bandwidth is equivalent to smoothing the data. Both effects have been studied by Harris
et al. [132].
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set by shot noise.

Enhanced robustness via anti-squeezing

We already motivated the use of anti-squeezing for increasing the robustness of a displacement
measurement on page 88. To support the idea, an example will be given on recent experimental
implementation.

It was stated that the requirement of achieving high efficiencies for detecting the probe
beam presents a serious constraint for quantum feedback control experiments. Indeed, with
the experimentally realised efficiency reported by Wilson et al. [287] of η = 23 %, even when
achieving a cooperativity C � nth, the minimum mechanical occupancy that could be achieved
with coherent light is limited to, as given in equation (4.44b),

nmin = 1
2
√

0.23
− 1/2 ≈ 0.5. (4.62)

If amplitude- rather than phase squeezing is used, the contribution of vacuum noise entering
the phase quadrature due to inefficiencies is suppressed relative to the amplified noise of the
phase quadrature. This results in a higher effective efficiency for feedback control experiments
of

ηeff = 1
1 + 1−η

2ηVarc
, (4.63)

where Varc = (2 Vardet +η − 1)/(2η) denotes the intracavity variance of the optical field. We see
that when Varc � (1− η)/2η, ηeff approaches unity.

As an example, assuming an intracavity phase anti-squeezing variance 9 dB above shot noise,
the effective cooling efficiency of Wilson et al. could be increased to ηeff = 0.7, allowing, in
principle, cooling to an occupancy of nmin = 0.1.
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Figure 4.17: (a) Phase space trajectory of the mechanical oscillator’s position, normalised to
shot noise units (SNU). The position operator Q̂ has been decomposed into the quadratures
cos(Ωmt)X̂m + sin(Ωmt)Ŷm [37, p. 157] to span the phase space. As the bandwidth of the
detector is much larger than the mechanical dissipation rate, it was possible to monitor the
thermal evolution of the oscillator in real-time. |α〉 and |ξ〉 refer to the coherent and squeezed
state probe, respectively. Thin red circles represent the standard deviation of the distribution
recorded with |α〉, green circles visualise the same quantity when the mechanical mode is probed
with |ξ〉. (b) The histogram shows the marginal distribution along the X̂m quadrature of the
cooled mechanical mode, comparing the squeezed (green) and the coherent (red) probe. Solid
lines represent fits to the data, assuming a normal distribution, such that the vertical axis is
scaled to be a probability density function (PDF), with the same normalisation to unity as in
the phase space plots.
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Figure 4.18: (a) Temperature ratio between the cooled
and uncooled mechanical resonances (left axis) and the
absolute effective temperatures TFb (right axis) versus
the feedback gain GFb. Without feedback cooling, the
temperature was 295 K. The effective temperature was
determined, in accordance to the fluctuation-dissipation
theorem, by integrating the spectral density of the os-
cillator’s displacement. Error bars were derived from
a standard uncertainty propagation method, given by
equation (4.61). Solid lines calculated via equation
(4.41). (b) A zoom into the region framed by a dashed
rectangle in the upper plot. For higher gain settings, a
squashing effect was observed, as shown in figure 4.16.
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4.4 Conclusion and outlook
We demonstrated a feedback cooling scheme based on the use of a non-classical optical probe
field for controlling a mechanical oscillator in the unresolved sideband regime. The combination
of a squeezed state probe field and real-time feedback improved the cooling efficiency by more
than 12 %, compared with a coherent probe field, to an effective temperature of 130 K.

Our results pave the way for quantum feedback control schemes that can enable an efficient
interface for quantum information networks [100], and allow the standard quantum limit of force
measurements to be surpassed via squeezing-enhanced measurements [175].

The absolute cooling achieved in the present demonstration is only modest compared to state-
of-the-art [287], the main limitations being the relatively poor optomechanical cooperativity
provided by the flexural mode and the requirement for operating in the under-coupled regime to
preserve squeezing.

To improve the absolute cooling performance, an optomechanical system with enhanced co-
operativity, and a realisation of a higher coupling and detection efficiencies for the squeezed mode
are suggested. For instance, operating the system of Wilson et al. [287]

• in the undercoupled regime (C/nc = 0.62 at a coupling efficiency of ηc = 0.028, where nc
is the intracavity photon number of 104) so that the injected squeezed light reflects from
the cavity with high efficiency,

• with unity detection efficiency, and

• starting from 650 mK,

enables cooling to an occupation number nth = 1.7 phonons. Using an amplitude squeezed probe
with an input squeezing of −9 dB, the occupation number could be lowered to nth = 0.4. This
increases the chance of finding the system in ground state from ca. 31 % to 52 %.

We anticipate that the full benefit of squeezing-enhanced feedback cooling could be harnessed
using recently developed tethered membrane mechanical oscillators [213] in conjunction with a
high quality optical cavity, or alternatively, by implementation in state-of-the-art optomechanical
systems in the microwave regime [66].

Besides the demonstrated cooling effect, our demonstration lays the foundation for more
advanced schemes including squeezing-enhanced quantum backaction evasion17 which in turn can
be used to prepare mechanically squeezed states in the weak coupling regime and for generation
of non-Gaussian mechanical quantum states. As an example, combining an optical input state
squeezed by −10 dB with active feedback in a pulsed backaction evading scheme [140], it is
possible to squeeze the mechanical oscillator by −10 dB for an interaction strength of χ =
4g0
√
nc/κ = 1, while for a coherent state input, χ ≥

√
10 is required to squeeze the mechanics

by the same amount.
More immediately, the squeezing-enhanced sensing can improve techniques such as magneto-

metry based on microtoroids [102]. Here, a magnetostrictive material is embedded into the
microtoroid, thereby coupling external magnetic fields to the mechanics.

17Backaction evasion is also referred to as quantum non-demolition measurements. The underlying idea is to
gather information about, e.g., a particle’s momentum without altering its further evolution. From a mathematical
point of view, such a measurement can be identified via the Hamiltonian Ĥ: If an operator, observable by some
coupling to a detector, can be identified to commute with Ĥ, this operator is a backaction free observable. The
concept of backaction evasion was proposed in the 1970s, again in the context of gravitational wave interferometers,
by Thorne et al. [269] and Braginskǐı et al. [41].
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55 | Phase insensitive quantum
amplifiers in Gaussian channels

5.1 Introduction
At the end of every sensing protocol, the acquired information is extracted by some detection
scheme. Such a scheme is technically limited by, e.g., electronic dark noise or, for a homodyne-like
technique, the maximal local oscillator power. In a broader sense, this is an issue encountered
in communication technology: Communication nowadays relies on the use of light, at least when
it comes to transmission speed and information density. Regardless of the actual media which
is guiding the light, propagation losses constrain the named quantities [139, 241]. Therefore the
signal has to be amplified along the transmission channel to sent information over distances of
hundredths of kilometres.

To simply increase the ingoing signal power is inappropriate from two perspectives: First, with
an increasing demand of information exchange, the demanded power will increase, eventually to
a point where technical and economical bounds are reached. Second, with the emerging field
of quantum communication, especially quantum cryptography, the signal power is required to
be on the order of the shot noise [243]. Any additional technical noise, that is noise which is
not demanded to fulfil the laws of quantum mechanics, can constrain the benefits of quantum
communication. Thus optical amplifiers have to be designed and used to accommodate for the
challenges posed by it.

Apart from technical applications, the amplification of quantum states has been of interest
to study fundamental aspects of quantum mechanics. To highlight those aspects, the problem
of cloning quantum states, so-to-say the essence of amplification [84, 241, 290], is outlined: We
start with a source of entangled particles, both carrying a spin, as depicted in figure 5.1, such
that |ψ〉 = 1/

√
2(|↑A, ↑B〉+ |↓A, ↓B〉). One particle is sent to Alice, the other one to Bob. Alice

measures the spin of the particle in a coordinate system of her choice, thereby collapsing the
wavefunction, e.g. |ψ〉 → |↑A, ↑B〉. Before Bob measures the spin of the particle sent to him, let
us assume he is able to clone the particle. This enables him to determine the spin of the particle
and thus the alignment of Alice’ measurement apparatus with more and more certainty, the more
clones he created. In conclusion, Bob and Alice could communicate information without being
bound by the speed of light. According to special relativity, it is safe to call such a conclusion
unphysical.

The research on quantum amplifiers attracted attention shortly after the invention of the
laser: Theoretical studies proofed that a phase-preserving, linear amplifier inevitably adds noise
to the signal [54, 57, 182]. For optical amplifiers, this limitation was verified experimentally in
1993 [172]. The cause for the additional noise is that a quantum description of an amplifier
requires a second input mode, next to the signal mode, which itself must have at least zero-point
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Figure 5.1: A sketch to explain the problem of cloning
quantum states. Alice detects the particle in an orient-
ation of her choice. Then, Bob produces a number of
clones of the particle sent to him. Finally, he performs a
Stern–Gerlach experiment under different angles θ. By
doing so, he can determine the orientation of Alice’s
setup. Given a long enough separation, this would al-
low for superluminal communication.

Source of
entangled
particles

b

b

↓
↓

Cloner
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apparatus
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y
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fluctuations. Mathematically, the need of a second input mode – and consequently a second
output mode – is readily explained: The naïve definition of âout = gâin, where g is the gain
factor of the amplifier, can not maintain the commutation relation and is thus consistent with
unitarity. To overcome this issue, a second mode has to be added [57]. In figure 5.3, a model
of the amplifier is depicted. Assuming a phase insensitive amplifier void of technical noise and
a single coherent input state, the best performance at high gain is found to be a halving of the
signal-to-noise ratio [57, 158, 172].

We conducted a theoretical analysis of an amplified channel with the motivation of improving
the transmission of information by introducing classical or quantum correlations between the
two input modes. As the comparison between classical and quantum correlations resulted in
promising findings, we studied additional cases of signal generation and detection schemes in
channels with phase insensitive amplifiers.

In contrast to the mentioned phase i nsensitive amplifiers, where a phase change of the input
does not alter the transformation, phase sensitive amplifiers are not restricted by the no-cloning
theorem and have been used for e.g. noise reduction and optical cloning experiments [166, 171,
172]. In this analysis, we focus on phase insensitive amplifiers. Unless necessary for clarity, the
qualifier ‘phase insensitive’ will be omitted from here on.

Chapter structure This chapter starts with a delineation of the analysis to motivate its key
concept, which is the application of mutual information. It is followed by general definitions,
which are then applied in the case study to various channel configurations. Next, the cases are
compared visually and we conclude the study with a summary of the main results.

5.2 Approach of the analysis
To compare the performance of different input states and uses of an amplifier, the mutual in-
formation of the channel is evaluated. The advantage of this measure over others, such as the
signal-to-noise ratio, is that mutual information has been studied in the context of information
processing extensively and offers strict bounds on the maximum achievable performance.

The mutual information quantifies the relation between two random variables A and B; in our
scenario these variables represent the in- and output of a communication channel. In a noiseless
channel, A maps to B. Generally, the transmission through a physical channel is noisy, and we
learn from the conditional probability pB|A(b|a) how likely it is to get a specific outcome b from
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A

Z

+ B

Figure 5.2: Model of a Gaussian channel. The letters A, B, Z
refer to random variables and follow a Gaussian distribution.

a specific a. Given a physical channel, pB|A is fixed, so the game is to tailor pA to maximise the
“usability”, i.e. the bits per channel use, of that channel.

For discrete variables, the mutual information is defined as [74]

I(A;B) =
∑

a∈A

∑

b∈B
p(a, b) log

(
p(a, b)

p(a) p(b)

)
. (5.1)

While p(a, b) is the joint distribution1, p(a) is the marginal one. With a given Wigner distribution
W introduced on page 15, this definition can be applied to quantum states via

p(x) =
∫
W (x, y) dy. (5.2)

Looking at the definition (5.1), the mutual information vanishes the more independent the mar-
ginal distributions are, as in the limiting case of complete independence p(a, b) = p(a) p(b).

The supremum of the mutual information is denoted by the channel capacity C. It is

C = sup
pA(a)

I(A;B), (5.3)

where pA(a) is the input distribution. The notation of the supremum instead of maximum is not
found in all definitions, but the set of pA might only have a supremum.

In case of Gaussian channels, which will be defined below, the mutual information is given
by [74]

I = 1
2 log

(
1 + S

N

)
, (5.4)

with S is the signal power (or simply signal) and N the noise of the channel. Further, it is

〈B2〉 = 〈(A+ Z)2〉 = S +N, (5.5)

where the noise variable Z, in accordance to Cover and Thomas [74], was introduced. The model
is shown in figure 5.2. Regarding the dimension of I, the base of the logarithm tells the measure.
Using the base 2, the unit is bit; in base e, the conversion 1 bit = loge 2 nat can be used.

5.3 General mathematical definitions
The scheme of the amplifier is outlined in figure 5.3. First, we collect all necessary transformations
and operators to perform the calculations.

1p(a, b) is given by pB|A(b|a) pA(a) [44].
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Figure 5.3: Mapping of the in- and outputs
of a quantum amplifier. Two in- and outputs
are required to maintain unitarity. The index
notation is used in subsequent calculations.
An i abbreviates initial. Green lines indicate
direct in- and output modes, while dashed
lines follow modes created by interfering the
original ones on a beam splitter.
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Amp
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(X̂, Ŷ )4

(X̂, Ŷ )+

(X̂, Ŷ )−

5.3.1 Transformations and quantum operators
Here, the fundamental transformation and operators introduced in section 1.2.1 are summarised
to prevent from too many cross-references.

• The 50 : 50 beam splitter is introduced as

M1/2 = 1√
2

[
1 1
−1 1

]
. (5.6)

Its diagonal represents the transmitted mode.

• A variable beam splitter is employed to model losses. We define it as

Mη =
[ √

η
√
η − 1

−√η − 1 √
η

]
. (5.7)

The lossless case is given by η = 1.

• The electromagnetic field quadrature operators are

X̂ = â+ â†√
2
, Ŷ = â− â†

ı
√

2
, (5.8a)

[X̂, Ŷ ] = ı, (5.8b)

and the according ladder operators read

â = X̂ + ıŶ√
2

, â† = X̂ − ıŶ√
2

, (5.9a)

[â, â†] = 1. (5.9b)

Only in ambiguous cases, an explicit unity operator is added to equations, such that com-
mutator relations appear to carry only a scalar on the right hand side. Substituting the
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field operators in the number operator,

n̂ = â†â = 1
2(X̂ − ıŶ )(X̂ + ıŶ )

= 1
2(X̂2 + Ŷ 2 − 1). (5.10)

Conversely,

X̂2 = 1
2
(
â2 + â†2 + 2â†â+ 1

)
, (5.11a)

Ŷ 2 = −1
2
(
â2 + â†2 − 2â†â− 1

)
. (5.11b)

• The quadratures after the first beam splitter in figure 5.3 read:

X̂±i = 1√
2

(
X̂1 ± X̂2

)
(5.12a)

Ŷ ±i = 1√
2

(
Ŷ1 ± Ŷ2

)
(5.12b)

Superscripts denote one of the two output ports. For the second order, we have

(X̂±i )2 = 1
2

(
X̂2

1 + X̂2
2 ± 2X̂1X̂2

)
, (5.13a)

(Ŷ ±i )2 = 1
2

(
Ŷ 2

1 + Ŷ 2
2 ± 2Ŷ1Ŷ2

)
. (5.13b)

The number operators are:

n̂±i = n̂1 + n̂2
2 ± 1

4

(
{X̂1, X̂2}+ {Ŷ1, Ŷ2}+ ı[X̂1, Ŷ2] + ı[X̂2, Ŷ1]

)
. (5.14)

A pair of curly brackets denotes the anti-commutator.

• The modes after the phase insensitive amplifier read [54, 57]:

â3 = √gâ1 +
√
g − 1â†2, (5.15a)

â4 = √gâ2 +
√
g − 1â†1. (5.15b)

After the amplifier, the quadratures read:

X̂3 = √gX̂1 +
√
g − 1X̂2, X̂4 = √gX̂2 +

√
g − 1X̂1, (5.16a)

Ŷ3 = √gŶ1 −
√
g − 1Ŷ2, Ŷ4 = √gŶ2 −

√
g − 1Ŷ1. (5.16b)

A negative sign in the Ŷ quadrature comes from the relation equation (5.15); it is lost
when (erroneously) just propagating X̂ and Ŷ instead of the field operators. For the
second orders:

X̂2
3 = gX̂2

1 + (g − 1)X̂2
2 + 2

√
g2 − gX̂1X̂2, (5.17a)

X̂2
4 = gX̂2

2 + (g − 1)X̂2
1 + 2

√
g2 − gX̂1X̂2, (5.17b)

Ŷ 2
3 = gŶ 2

1 + (g − 1)Ŷ 2
2 − 2

√
g2 − gŶ1Ŷ2, (5.17c)

Ŷ 2
4 = gŶ 2

2 + (g − 1)Ŷ 2
1 − 2

√
g2 − gŶ1Ŷ2. (5.17d)
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• Placing a beam splitter after the amplifier leads to:

ξ± = √g ±
√
g − 1, (5.18a)

X̂± = ξ±X̂±i , (5.18b)
Ŷ ± = ξ∓Ŷ ±i . (5.18c)

For the second orders:

Ξ± = (ξ±)2 = 2g − 1± 2
√
g2 − g, (5.19a)

(X̂±)2 = Ξ±(X̂±i )2
, (5.19b)

(Ŷ ±)2 = Ξ∓(Ŷ ±i )2
. (5.19c)

Equipped with the basic operators and transformation, the actual channel properties are treated
next. From this, we know how to extract the mutual information of a specific channel configur-
ation.

5.3.2 Channel properties
Next to the operators, we define the properties of the channel. Figure 5.2 outlines the in- and
outputs.

• As mentioned, we deal with Gaussian channels. The noise and losses are Gaussian, as is
the modulation. Also, we draw the alphabet from a such distribution. In phase space,
this can be envisioned as a normal distribution of coherent states. The signal state is thus
described as

ρ̂ =
∑

i

fi|αi〉〈αi|, (5.20)

whereas fi is drawn from a multivariate Gaussian distribution.

• The signal power S is given by the variance [74], i.e. “size”, of the alphabet. In turn, we
start by writing

Var ρ̂ = tr(ρ̂X̂2) + tr(ρ̂Ŷ 2)− tr(ρ̂X̂)2 − tr(ρ̂Ŷ )2 (5.21)

for a two dimensional modulation. The variance is the constraint for the choice of the
modulation, and for comparison it is useful to express it in terms of the photon number.
This connection is drawn from equation (5.10):

〈n̂〉 = 1
2

(
tr(ρ̂X̂2) + tr(ρ̂Ŷ 2)− 1

)

= 1
2

(
Var X̂ + 〈X̂2〉+ Var Ŷ + 〈Ŷ 2〉 − 1

)
. (5.22)

The employed alphabet can be defined to be centred about the phase space origin, such
that

〈n̂〉 = 1
2

(
Var X̂ + Var Ŷ − 1

)
. (5.23)

Finally, we remember that to follow equation (5.5), one has to differentiate between a signal
S and a noise part N of the total input first. Hence the shot noise needs to be subtracted
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from (5.23). This way, the power put into the modulation can be expressed in terms of the
photon number. Conversely, the variance of the quantum fluctuations are separated from
the classical fluctuations generated by the sender Alice:

〈n̂〉 = 1
2

(
VarXS + Var X̂N + VarYS + Var ŶN − 1

)
. (5.24)

• Throughout the chapter, quantum and classical operators are distinguished by hats. Sub-
scripts define whether the variance stems from noise (N) or the signal (S). We can also
separate 〈n̂〉 into a signal and noise part as

〈nS〉 = 1
2(VarXS + VarYS) (5.25a)

and

〈n̂N 〉 = 1
2

(
Var X̂N + Var ŶN − 1

)
. (5.25b)

The difference in measuring I in terms of 〈n̂〉 – the total photon number – or 〈nS〉 – the
photons used for signal modulation – will become clear when squeezed states, i.e. states
with variable noise characteristics, are used.

5.4 Study of different communication channels
Equipped with the definitions, different cases to compare the mutual information are calculated
to determine the optimal usage of the amplified channel.

5.4.1 Direct detection
1D modulation, homodyne detection The most simple case is when the modulation is
along one quadrature, there are no losses in the channel, and the detection happens along the
same quadrature. To apply equation (5.4), we need to identify the signal S and noise N . Given
a coherent input state and, in accordance with the definition of X̂ and Ŷ ,

N = 〈α|X̂2
N |α〉 = 1

2 . (5.26)

S is expressed by the variance of the alphabet, i.e. VarXS = 〈X2
S〉. Equation (5.24) is used to

formulate the result in terms of photon numbers, so we have

I1,m = 1
2 log

(
1 + 〈X

2
S〉

1/2

)

= 1
2 log

(
1 + 2〈X2

S〉
)
,

with 〈n̂〉 = 1
2
(
〈X2

S〉+ 2× 1
2 − 1

)
⇔ 〈X2

S〉 = 2〈n̂〉,

= 1
2 log(1 + 4〈n̂〉). (5.27)

In terms of 〈nS〉, the result is the same, as, according to equation (5.25b), 〈n̂N 〉 = 1
2 ( 1

2 + 1
2 − 1),

so 〈n̂N 〉 vanishes.
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2D modulation, heterodyne detection In this case, a modulation of the field is applied to
both quadratures. Accordingly, a heterodyne scheme is applied to detect the signal. This implies
that the quadratures are measured independently, i.e.

I2,t =
∑

O∈{XS ,YS}

1
2 log

(
1 + 〈O

2〉
1/2

)
. (5.28)

N is still 1/2, as the shot noise is not changed due to the beam splitter in front of the individual
detections. The signal is however attenuated by the beam splitter transformation. Equations
(5.13) tells how the transformation reads. Similar to the one dimensional case, the quadratures
are split into a classical signal and a quantum noise part, the former indicated with a S subscript.
On the example of the X̂ quadrature,

〈X̂2〉 = 1
2 〈X̂

2
1 + X̂2

2 〉

⇔ 〈X2
S〉 = 1

2 〈X
2
1S〉, (5.29)

where X̂1 is the ingoing signal and X̂2 the vacuum port of the beam splitter. The calculation
for 〈Y 2

S 〉 is equivalent. In sum,

I2,t =
∑

O∈{XS ,YS}

1
2 log(1 + 2〈n̂O〉). (5.30)

To make this result comparable to the one dimensional case, we have to decide how many
photons are “put” into the signals of X̂ and Ŷ . By realising that the maximum of the function
log x + log y is found when x = y, the best combination is placing an equal amount of photons
in both quadratures. Thus, for a subsequent visual comparison

I2,t = log(1 + 〈n̂〉). (5.31)

is used. Just as in the previous case, the result is the same in terms of 〈nS〉.

1D modulation, single-mode squeezing, homodyne detection Changing from a coherent
to a “proper” quantum state, we calculate I for a squeezed state input. For a brief introduction
to squeezed states, the reader may refer to page 10. All necessary mathematical properties are
summarised next.

Equivalent to the previous cases, the information is encoded as a Gaussian modulation. To
make best use of resources, the squeezed quadrature is the same as the modulated (and detected)
one – X̂. So for the noise,

〈X̂2
N 〉 = 1

2 e−2r (5.32)

To relate the squeezing parameter r to the photons constituting the state, we use [114]

Ŝ†(γ) = Ŝ(−γ), (5.33a)
Ŝ†âŜ = cosh(r)â− sinh(r)â†, Ŝ†â†Ŝ = cosh(r)â† − sinh(r)â, (5.33b)

to arrive at

〈n̂〉 = sinh(r)2. (5.34)
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Substituting 〈n̂〉 in equation (5.32),

〈X̂2
N 〉 = 1

2
(√
〈n̂γ〉+

√
1 + 〈n̂γ〉

)2 , (5.35)

where the squeezing photon number 〈n̂γ〉 was introduced to differentiate between the resources
used for squeezing and the actual signal modulation.

The signal is given by

〈n̂〉 = 1
2

(
〈X2

S〉+ 1
2
(
e−2r + e2r)− 1

)

⇔ 〈X2
S〉 = 2〈n̂〉 − cosh(2r) + 1.

Converting r into a photon number,

〈X2
S〉 = 2〈n̂〉 − (1 + 2〈n̂γ〉) + 1

= 2(〈n̂〉 − 〈n̂γ〉). (5.36)

But here, 〈n̂〉 6= 〈nS〉, because

〈n̂N 〉 = 1
2(cosh(2r)− 1) = 〈n̂γ〉. (5.37)

Gathering the signal and noise terms results into

I1,m,γ = 1
2 log

(
1 + 4(〈n̂〉 − 〈n̂γ〉)

(√
〈n̂γ〉+

√
1 + 〈n̂γ〉

)2
)

(5.38a)

= 1
2 log

(
1 + 4〈nS〉

(√
〈n̂γ〉+

√
1 + 〈n̂γ〉

)2
)
. (5.38b)

A later section will treat the optimal combination of signal-versus-squeezing photons.

5.4.2 Lossy channel
For a more realistic scenario, channel losses are introduced. This is modelled by a variable-beam-
splitter transformation given by equation (5.7).

1D modulation, homodyne detection As done in the previous case, we transform the X̂
quadrature and arrive at

〈X̂2〉 = 〈ηX̂2
1 + (1− η)X̂2

2 〉
⇔ 〈X2

S〉 = η〈X2
1S〉 with 0 ≤ η ≤ 1. (5.39)

With the same argument as in the previous analysis, N = 1/2. Substitution into the mutual
information yields

I1,m,η = 1
2 log(1 + η4〈n̂〉). (5.40)
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Figure 5.4: Scheme of a Gaussian channel with an one
dimensional signal modulation D̂, amplification and ho-
modyne detection of the modulated quadrature. This
scheme represents the common approach of quantum
amplifiers, where one in- and one output mode are not
accessible. These modes are due to, e.g., phononic excit-
ations in a fibre based amplifier [158].

|0〉

|0〉

Amp
g

D̂X

〈X|

2D modulation, heterodyne detection Combining the two preceding cases,

I2,t,η =
∑

O∈{XS ,YS}

1
2 log(1 + η2〈n̂O〉). (5.41)

Again, the best information is achieved when the size of the alphabet is the same in both
quadratures, which yields

I2,t,η = log(1 + η〈n̂〉). (5.42)

5.4.3 Amplified channel
Now we turn to the question how an amplification affects the mutual information.

1D modulation, homodyne detection In the first case, input mode 1 is used for sending in
a one dimensional signal. Accordingly, one output is used and probed via homodyne detection.
Figure 5.4 illustrates this case. For exemplification, the analytic solutions of the Wigner functions
for all four modes are shown in figure 5.5.

Starting with the noise, equation (5.17) yields

〈X̂2
N 〉 = g

2 + 1
2(g − 1) = g − 1

2 . (5.43)

For XS = X̂ − X̂N it is

〈X2
S〉+ g − 1

2 = g〈X2
1S〉+ g

2 + 1
2(g − 1)

⇔ 〈X2
S〉 = g〈X2

1S〉. (5.44)

So the mutual information is

I1,m,g = 1
2 log

(
1 + g2〈n̂〉

g − 1/2

)
. (5.45)

For the high gain limit,

I1,m,∞ = 1
2 log(1 + 2〈n̂〉), (5.46)

equivalent to a transmission through a channel with 50 % losses.
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(a) Input, mode 1
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(b) Input, mode 2
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(c) Output, mode 3
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(d) Output, mode 4

Figure 5.5: Wigner functions W (x, y) for the input and output modes of the case depicted in
figure 5.4. The gain set for the calculation is 5. To map in- to output, relations (5.16) are used.
Modes 3 and 4 show an amplification, but at the cost of an increased noise. Quantitatively,
this is expressed by equation (5.45). The state’s amplitude is α1 = 1 + ı (cf. equation (1.48))
corresponding to a t w o dimensional modulation. It is chosen only to highlight the difference
between the two output modes.
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Figure 5.6: Extension of the scheme presented in figure
5.4: Here, a two dimensional signal modulation and de-
tection protocol is applied. |0〉

|0〉
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D̂X D̂Y

〈X|

〈Y |

2D modulation, heterodyne detection Extending the modulation into Ŷ and performing,
as shown in figure 5.6 a heterodyne detection instead, the previous results are combined to

I2,t,g = log
(

1 + g/2〈n̂〉
g/2

)
= log(1 + 〈n̂〉) (5.47)

Surprisingly, the amplification cancels out, implying that the noise added by the amplification
does not grow faster than the actual displacement of the input state.

1D modulation, single-mode squeezing, homodyne detection Following the standard
procedure, we have

〈X̂2
N 〉 = g

2 e−2r +1
2(g − 1) (5.48a)

= g

2
(√
〈n̂γ〉+

√
1 + 〈n̂γ〉

)2 + 1
2(g − 1), (5.48b)

and, from equation (5.36),

〈X2
S〉 = g(2〈n̂〉 − cosh(2r) + 1)

= g2(〈n̂〉 − 〈n̂γ〉). (5.49)

This yields

I1,m,γ,g = 1
2 log


1 + 4g(〈n̂〉 − 〈n̂γ〉)

g − 1 + g
(√
〈n̂γ〉+

√
1 + 〈n̂γ〉

)−2


 (5.50a)

= 1
2 log


1 + 4g〈nS〉

g − 1 + g
(√
〈n̂γ〉+

√
1 + 〈n̂γ〉

)−2


. (5.50b)

As now two photon numbers are describing the mutual information, it is natural to ask for the
optimum. In a next section, this optimum will be determined and a visual comparison for the
maximum achievable I given.
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Figure 5.7: Scheme of Gaussian channel
with a two-mode squeezer, entangling
the input modes. After modulating the
signal, the state is amplified. Before de-
tecting, the outputs are combined on a
beam splitter to form a Bell-type detec-
tion scheme [114].

2D modulation, two-mode squeezing, Bell-type detection One way to use the amplifier
in a better way, compared to what is presented above, is to feed the amplifier with a two-mode
squeezed state [8, 185]. The signal is then modulated as in the previous examples, that is as a
displacement of one of the two modes. Experiments using this state in combination with optical
amplifiers have been conducted recently [128, 166], however the authors did not evaluate their
findings in terms of the mutual information.

First, let the quadrature operators be introduced as [114, 181]

X̂ = â1 + â†1 + â2 + â†2
2 = 1√

2

(
X̂1 + X̂2

)
, (5.51a)

Ŷ = â1 − â†1 + â2 − â†2
ı2 = 1√

2

(
Ŷ1 + Ŷ2

)
(5.51b)

to fulfil [X̂, Ŷ ] = ı. This also results in maintaining the shot noise unit of 1/2. The variances
read

Var X̂ = 1
2 e−2r, Var Ŷ = 1

2 e2r (5.52)

for squeezing along the X̂ quadrature, which is true for both single and two-mode squeezing.
The photon number in both modes is, again equal to single-mode squeezing,

〈n̂1〉 = 〈n̂2〉 = sinh(r)2. (5.53)

For the following equations, and indexing of the field operators, mind that the squeezing operator
Ŝ acts on both modes. The result of equation (5.53) can be recovered via

〈γ|n̂|γ〉 = 〈0|Ŝ†â†âŜ|0〉 (5.54)

and reminding that, in addition to equation (5.33),

Ŝ†â1Ŝ = cosh(r)â1 − sinh(r)â†2, (5.55a)
Ŝ†â2Ŝ = cosh(r)â2 − sinh(r)â†1. (5.55b)

To measure the signal, the X̂+ and Ŷ − quadratures are probed. For the noise,

〈X̂2
N 〉 = Ξ+ 1

2

(
〈X̂2

1 〉+ 〈X̂2
2 〉+ 2〈X̂1X̂2〉

)

= Ξ+ 1
2 e−2r (5.56a)
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and

〈Ŷ 2
N 〉 = Ξ+ 1

2

(
〈Ŷ 2

1 〉+ 〈Ŷ 2
2 〉 − 2〈Ŷ1Ŷ2〉

)

= Ξ+ 1
2 e−2r . (5.56b)

Note that the signs in the exponent are equal. The sign change between the quadratures, as in
equation (5.52), would be recovered when measuring Ŷ + instead of Ŷ −. Let us convert r into
photon numbers next, remembering equation (5.53): That each of the modes contains sinh(r)2

photons. Then,

e−2r = e−2 arcsinh
(√
〈n̂γ〉/2

)
= 2
(√
〈n̂γ〉+

√
2 + 〈n̂γ〉

)2 . (5.57)

For the signal,

〈X2
S〉 = Ξ+ 1

2 〈X
2
1S〉 (5.58a)

and

〈Y 2
S 〉 = Ξ+ 1

2 〈Y
2
1S〉. (5.58b)

In which mode (number 1 or 2) the signal modulation takes place is of no matter.
Substituting the signal and noise terms into equation (5.4) yields

I2,b,g,γ =
∑

O∈{XS ,YS}

1
2 log

(
1 + 〈O2〉

Ξ+ exp(−2r)/2

)

=
∑

O∈{XS ,YS}

1
2 log

(
1 + (〈n̂O〉 − 〈n̂N 〉)

(√
〈n̂γ〉+

√
2 + 〈n̂γ〉

)2
)

=
∑

O∈{XS ,YS}

1
2 log

(
1 +

(
〈n̂O〉 −

〈n̂γ〉
2

)(√
〈n̂γ〉+

√
2 + 〈n̂γ〉

)2
)

(5.59a)

=
∑

O∈{XS ,YS}

1
2 log

(
1 + 〈nO〉

(√
〈n̂γ〉+

√
2 + 〈n̂γ〉

)2
)
, (5.59b)

where the squeezing photon number 〈n̂γ〉 and equation (5.36) are applied. If no squeezing is
used, the mutual information is the same as for case I2,t (2D modulation, heterodyne detection),
that is the amplification cancels out. For an equal modulation of both quadratures,

I2,b,g,γ = log
(

1 + 1
2

(
〈n̂O〉 −

〈n̂γ〉
2

)(√
〈n̂γ〉+

√
2 + 〈n̂γ〉

)2
)

(5.60a)

= log
(

1 + 〈nS〉2

(√
〈n̂γ〉+

√
2 + 〈n̂γ〉

)2
)
. (5.60b)

The optimal balance of 〈nS〉 and 〈n̂γ〉 is calculated in a later later section.
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Figure 5.8: Further extension of the scheme presen-
ted in figure 5.4: The signal is modulated in both
input modes equally, but with a conjugation of the
phase quadrature. As in the previous example in
figure 5.7, a Bell-type detection scheme is employed
to extract the information.
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Figure 5.9: Wigner functionsW (x, y) for the in- and output modes of the case shown in figure 5.8.
As in figure 5.5, g = 5. The signal amplitude is halved compared to what is shown in graph 5.5(a)
to provide a fair comparison. For output +: 〈X̂〉 =

√
18 + 8

√
5, 〈Ŷ 〉 = 0, Var X̂ = 9/2 + 2

√
5

and Var Ŷ = 9/2− 2
√

5, equalling a squeezing degree of Vs = 10 log10(Var Ŷ / 1
2 ) ≈ −12.5 dB.
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Classically correlated input, Bell-type detection Here we examine the case where the
input state is |α1, α

∗
2〉, i.e. the quadrature a m p l i t u d e s of the state are correlated, but there

are no quantum correlations involved. As obvious this is to point out, as important it is for the
analysis. An illustration of this case can be found in figure 5.8.

We use the X̂+, Ŷ − quadratures to probe the correlations. Starting with the noise, one finds
that (similar to equation (5.56))

〈X̂2
N 〉 = Ξ+ 1

2

(
〈X̂2

1 〉+ 〈X̂2
2 〉+ 2〈X̂1X̂2〉

)

= Ξ+ 1
2

(
1 + 2

(
〈X1SX2S〉+ 〈X1SX̂2N 〉+ 〈X̂1NX2S〉+ 〈X̂1N X̂2N 〉

))

= Ξ+

2

(
= g − 1

2 +
√
g2 − g

)
(5.61a)

and

〈Ŷ 2
N 〉 = Ξ+

2 . (5.61b)

Expectation values of first and second order For the signal, let us list the expectation
values first. We introduce 〈Ô〉 as a short hand notation for 〈β2, α1|Ô|α1, β2〉.

• The expectation values in front of the amplifier are:

〈X̂1〉 =
√

2<(α), 〈X̂2〉 =
√

2<(β), (5.62a)
〈Ŷ1〉 =

√
2=(α), 〈Ŷ2〉 =

√
2=(β), (5.62b)

〈X̂±i 〉 = <(α)±<(β), (5.62c)
〈Ŷ ±i 〉 = =(α)±=(β). (5.62d)

For all operators Ô in equations (5.62):

Var(Ô) = 1/2. (5.63)

• The expectation values directly after the amplifier read:

〈X̂3〉 = √g〈X̂1〉+
√
g − 1〈X̂2〉, 〈X̂4〉 = √g〈X̂2〉+

√
g − 1〈X̂1〉, (5.64a)

〈Ŷ3〉 = √g〈Ŷ1〉 −
√
g − 1〈Ŷ2〉, 〈Ŷ4〉 = √g〈Ŷ2〉 −

√
g − 1〈Ŷ1〉, (5.64b)

and after re-combination at a beam splitter

〈X̂±〉 = ξ±〈X̂±i 〉, (5.65a)
〈Ŷ ±〉 = ξ∓〈Ŷ ±i 〉. (5.65b)

For the operators Ô in equations (5.64)

Var(Ô) = g − 1/2, (5.66)

and for the operators in equations (5.65)

Var X̂± = Ξ±/2, (5.67a)
Var Ŷ ± = Ξ∓/2. (5.67b)
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• For completeness, we check the noise figure [78]

SNRo
SNRi

= 〈Ôo〉2〈Ô2
i 〉 − 〈Ôi〉2〈Ôo〉2

〈Ôi〉2〈Ô2
o〉 − 〈Ôi〉2〈Ôo〉2

, (5.68)

where Ôi refers to some input- and Ôo to an output quadrature. The SNR is defined as
〈Ô〉2/Var Ô. Evaluating the noise figure for any combination of the quadratures (X̂, Ŷ )±
from figure 5.3, it turns out that the noise figure is always unity regardless of the amplific-
ation, which rephrases finding (5.47).

Evaluating the signal for the mutual information The signal we are able to measure
in the respective modes are the sum and differences of the real and imaginary parts of the state
amplitude.

〈X2
S〉+ 〈X̂2

N 〉 = Ξ+ 1
2

(
〈X̂2

1 〉+ 〈X̂2
2 〉+ 2〈X̂1X̂2〉

)

= Ξ+ 1
2
(
〈X2

1S〉+ 〈X2
S2〉+ 1 + 2〈X1SX2S〉

)
(5.69a)

〈Y 2
S 〉+ 〈Ŷ 2

N 〉 = Ξ+ 1
2
(
〈Y 2

1S〉+ 〈Y 2
S2〉+ 1− 2〈Y1SY2S〉

)
. (5.69b)

For

〈α∗, α|X̂1X̂2|α, α∗〉 = 2<(α)2, (5.70a)
〈α∗, α|Ŷ1Ŷ2|α, α∗〉 = −2=(α)2, (5.70b)

but, to stress it, there are only classical correlations involved in the signal modulation. Thus

〈X2
S〉 = Ξ+ 1

2
(
〈X2

1S〉+ 〈X2
S2〉+ 2〈X1SX2S〉

)
, (5.71a)

〈Y 2
S 〉 = Ξ+ 1

2
(
〈Y 2

1S〉+ 〈Y 2
S2〉 − 2〈Y1SY2S〉

)
(5.71b)

are the simplified expressions. Now we insert the correlations and arrive at

〈X2
S〉 = Ξ+2〈X2

1S〉, (5.72a)
〈Y 2
S 〉 = Ξ+2〈Y 2

1S〉, (5.72b)

where the index 1 was kept, however it would read the same for the other index. Substitution of
the noise and signal power into the mutual information yields

I2,b,g,cc =
∑

O∈{XS ,YS}

1
2 log

(
1 + 4Ξ+〈n̂O〉

Ξ+/2

)

=
∑

O∈{XS ,YS}

1
2 log(1 + 8〈n̂O〉). (5.73)

Just as for the noise figure, the gain of the amplifier does not enter the expression for the mutual
information. Assuming an equal modulation of both quadratures and an equal distribution of
photons into the two inputs,

I2,b,g,cc = log(1 + 2〈n̂〉). (5.74)
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Classically correlated input, two-mode squeezing, Bell-type detection Combining the
results from the last two cases, the mutual information is now evaluated for two-mode squeezing
carrying a classically correlated signal.

The noise is equal to case I2,b,g,γ , given in equation (5.56).
For the signal, the result is given already in equation (5.73), as all non-classical noise terms

cancel.
In total, we have

I2,b,g,cc,γ =
∑

O∈{XS ,YS}

1
2 log

(
1 + 〈O2〉

Ξ+ e−2r /2

)

=
∑

O∈{XS ,YS}

1
2 log

(
1 + 4

(
〈n̂O〉 −

〈n̂γ〉
2

)
e2r
)

(5.75a)

=
∑

O∈{XS ,YS}

1
2 log

(
1 + 4〈nS〉 e2r). (5.75b)

For a modulation scheme equal in both quadratures and modes,

I2,b,g,cc,γ = log
(

1 + 2
(
〈n̂O〉 −

〈n̂γ〉
2

)
e2r
)

(5.76a)

= log
(
1 + 2〈nS〉 e2r). (5.76b)

Converting the squeezing parameter into a photon number, we use equation (5.57). Substitution
yields

I2,b,g,cc,γ = log
(

1 +
(
〈n̂O〉 −

〈n̂γ〉
2

)(√
〈n̂γ〉+

√
2 + 〈n̂γ〉

)2
)

(5.77a)

= log
(

1 + 〈nS〉
(√
〈n̂γ〉+

√
2 + 〈n̂γ〉

)2
)
. (5.77b)

The optimal I in terms of 〈nS〉 and 〈n̂γ〉 is treated next.

5.4.4 Optimal photon number distribution
For input states exhibiting quantum correlations, additional resources are required. These re-
sources can be measured in terms of photon numbers and have to be taken into account when
comparing I. The question of how to distribute the photons into the actual signal modulation
and squeezing generation will be answered. The approach is given in depth for the case of
single-mode squeezing and is then applied to the other two.

Single-mode squeezing, direct detection

First of all, we note that equation (5.38a) is monotonously growing in both dimensions. To
arrive at a meaningful answer for the question of how to distribute the photons, we have to set
a condition under which 〈nS〉 and 〈n̂γ〉 are shuffled around to maximise I. A natural choice of
the condition, with a being the upper bound, is

0 < 〈nS〉+ 〈n̂γ〉 ≤ a. (5.78)
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The optimisation respects a linear combination of the photon numbers as an upper bound for
the usable channel power.

Starting with the fact that the function is growing monotonously, the optimal photon number
distribution has to be found on that bound. Thus, we substitute

I(〈nS〉, 〈n̂γ〉) = I(〈nS〉, a− 〈nS〉) (5.79)

for the optimisation. Next I is differentiated with respect to 〈nS〉 to locate the maximum of
I(〈nS〉, a− 〈nS〉), yielding

〈nS〉 = a(1 + a)
1 + 2a (5.80a)

and, repeating the procedure for 〈n̂γ〉,

〈n̂γ〉 = a2

1 + 2a (5.80b)

for the optimal balance under the linear constraint (5.78). The results are shown in figure 5.10.

Two-mode squeezing, amplification, Bell-type detection

Following the same approach as above, the optimal balance can be calculated for the case on
page 118. The assumption is that the modulation is distributed equally in both quadratures;
otherwise the mutual information would not reach the same level as argued in the referenced
section. The balance under a linear constraint is given by

〈nS〉 = a(2 + a)
2 + 2a (5.81a)

and, conversely for 〈n̂γ〉,

〈n̂γ〉 = a2

2 + 2a (5.81b)

Two-mode squeezing, classically correlated inputs, amplification, Bell-type detection

Finally the case on page 123 is checked for its optimal distribution of photons. It is found that
the same condition as in equation (5.81).

5.4.5 Visual comparison
Figures 5.11 and 5.12 summarise the preceding results. The interpretation of the index notation
is repeated in table 5.1.

5.5 Conclusion
Our study on phase insensitive quantum amplifiers in Gaussian channels revealed two particular
features:

First, when using a two dimensional signal modulation in one input mode and, as depicted in
figure 5.6, a heterodyne detection after the amplifier, the additional noise due to the amplification
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Figure 5.10: Mutual information of a
Gaussian channel with a single-mode
squeezed state, in the absence of losses,
and homodyne detection. The axes rep-
resent the photons invested into squeez-
ing and signal modulation. Dashed
lines represent the boundary condition
(5.78) under which the optimal balance
has been computed. Four examples of
different total photon number bounds
are shown. The solid line corresponds
to the optimal balance found by the op-
timisation.
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Table 5.1: Examples of the notation ab-
breviating the different cases treated in
this chapter.

Notation Case
I1,m,g 1D modulation, homodyne detection, gain.
I1,m,γ 1D modulation, homodyne detection, single-mode

squeezing.
I2,t,η 2D modulation, heterodyne detection, losses.
I2,b,g,γ 2D modulation, Bell-type detection, gain, two-

mode squeezing.
I2,b,g,cc 2D modulation, Bell-type detection, gain, classical

correlations.
I2,b,g,cc,γ Combination of I2,b,g,γ and I2,b,g,cc.

Figure 5.11: A comparison of the mu-
tual information for a 1D modulation
with homodyne-, and a 2D modula-
tion scheme with heterodyne detection.
Blue to green coloured lines represent
homodyne-, orange symbolises hetero-
dyne detection. Dashed lines repres-
ent a lossy-channel model, with η =
50 %. The higher the gain setting, the
stronger the shift to a green colour for
I1,m,g, reaching its maximum at g = 12.
I2,t,g is omitted as it equals I2,m (cf.
equation (5.47).) In general, the 2D
modulation wins for a larger number of
photons. A circle labels the point when
both schemes perform equally.
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Figure 5.12: Additional comparison of
the mutual information for given cases.
Cases I1,m and I2,t are equal to fig-
ure 5.11 and shown again as a bench-
mark. For cases that involve squeez-
ing, the optimal distribution of 〈n̂γ〉
and 〈nS〉 is used. Taking into account
both resources, the single-mode squeez-
ing case I1,m,γ performs equal to the co-
herent state scheme, which was found
in the context of channel capacity by
Takeoka and Guha [265]. The circle de-
notes the point when the use of a two-
mode squeezer instead of classical cor-
relations is advantageous. Having up
to four photons available, using only
classical correlations is preferable. Fi-
nally, the case of combining classical
and quantum correlations is shown and
yields the best mutual information.

process has no effect on the mutual information. This effect can be appreciated by considering
the effect of the two dimensional modulation in combination with the phase insensitivity: The
noise caused by the amplification is distributed equally over the state, such that the two dimen-
sional signal modulation “suffers” shares the noise contribution. Next, the beam splitter in the
heterodyne detection causes a halving of the signal, but that equally applies to the amplified
noise. In total, the noise grows as fast as the signal, such that g cancels in equation (5.47).

Comparing this case with a one dimensional signal modulation and homodyne detection, the
latter is outperformed latest, i.e. for g = 0 at 〈n̂〉 = 2, which can also be observed in figure
5.11. From an experimental point of view, the implementation, at least on a small scale, of a two
dimensional modulation and heterodyne detection is rather quick to realise: A second modulator
and a second detector is necessary. However, the fact that this finding has not been applied
before might indicate conceptual difficulties that need to be ruled out first.

Second, a classically correlated signal generation can yield a higher mutual information than
a two-mode squeezed input, i.e. a state exhibiting quantum correlations. Depicted in figure
5.12, the total photon number in the channel has to be larger than four to arrive at a better
performance using a two-mode squeezer. Given this four-photon bound, the finding means an
experimental advantage as the resources for a two-mode squeezer are considerably higher than
for a classical correlation, where the signal modulators have to be only electronically connected.
An application for our finding are protocols where low photon numbers are usually encountered,
such as a teleportation protocol combing discrete and continuous variable regimes [9]. Even
though we restricted this analysis to phase insensitive amplifiers, it is important to note that
the mutual information of the classically correlated case can be also achieved with two phase
sensitive amplifiers: This type of amplifier acts like a squeezer and does not add noise to an input
state [54, 57], if the input signal is in the appropriate field quadrature. This equality can also
be understood by figure 5.9: The output modes are squeezed only along the quadrature axes,
thereby mimicking two individual single-mode squeezers. An experimental verification of this
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result can be attempted by using a two-mode squeezer2 as the amplifier, as here both input and
output modes are accessible easily.

2Such a device can be realised via spontaneous parametric down-conversion of type II. Instead of using a
crystal made for a type I down-conversion, where the emitted photons share the same polarisation, a type II
down-conversion process generates photon pairs with perpendicular polarisations. These polarisations represent
the two output modes [8, 294].
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A.1. LASER BEAM PROFILER

A.1 Laser beam profiler
Regardless of the actual purpose, the most crucial task of an optics experiment is the beam
alignment. Next to the direction, the transversal profile of the laser beam is the key to, amongst
others, high coupling efficiencies into optical fibres and high visibilities in interferograms. As
commercial beam profilers are rather expensive and standard charge-coupled device (CCD) cam-
eras were available in the group, a program has been written to meet the demands of a fast
and user-friendly beam profiler. The source code was published online under the GNU General
Public License 3 [245].

This section outlines the program’s functionality and features.

Design
The beam profiling software is an assembly of six parts:

1. A nonlinear fit routine. It is not restricted to a profiling task, but optimised by tuning the
routine’s parameters. By combining a local [190] and a global [203] optimisation method,
the confidence in the result is improved over one-way approaches1. At the end of the
routine, the Hessian of the function under minimisation is inverted to estimate the stand-
ard deviation of the parameters. The model applied here assumes that each data point
(i.e. pixel) contributes equally to the uncertainty of the fit, and that these measurement
uncertainties, governed by a Gaussian model, are furthermore independent of each other.
Under these assumptions, the estimated standard deviation reads [225]

δaj =
√
f(x,afit)
P −N︸ ︷︷ ︸
s

√
|Cj,j |

1
aj
. (A.1)

The value f is the minimum value, i.e. the minimum sum of squares. N is the number of
parameters that are to be fitted. |Cj,j | is an absolute entry in the inverted Hessian. aj is
the parameter for which the error is to be estimated, with P being the total number of
data points. The denominator of P −N takes into account that f is a sum of P residuals.
N accounts approximately for the fact that N parameters are fit to the data. Omitting
the −N means underestimating s. A typical output of the fit routine can be seen in figure
A.6 on page 135

2. The next part is a 3D visualisation using OpenGL [216] as an interface to the graphics
card. To support various operating systems, freeglut [105] is used as an additional interface
between the actual program and OpenGL. As the visualisation is written entirely for the
purpose of handling 3D data, this approach is both very fast and portable. P o r t a b l e,
as the visualisation comes without making use of other libraries and non-ISO C++ calls.
Four (non)typical recorded beam shapes are presented in figure A.8.

3. A class that deals with managing the two former parts and estimating the beam parameters
when a new image is acquired. This class can be seen as the backbone of the software
and makes use of OpenMP [217], OpenCV [215] and the C++11 thread model. Figure
A.1 illustrates the threads and their communication channels. Exploiting the speed of a
compiled language, a live beam profiling along image manipulation and thread handling is

1During my Bachelor thesis at the Max Planck Institute for gravitational physics in Hannover, PD Dr. Gerhard
Heinzel introduced me into the art of fitting. The fit routines used in this program are a progression of what he
showed me during my stay.
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igyba4fingers

grabber

copy viewer minime

Figure A.1: An overview of the threads used in the soft-
ware. The main thread igyba4fingers handles the GUI
and the communication between the grabber thread,
which main purpose is the communication to the hard-
ware. grabber also sends information to the GUI, e.g.
hardware statistics. Three threads process the data re-
ceived by grabber: minime is called when the user de-
cides to do start a nonlinear fit routine to estimate the
beam parameters. viewer visualises the data via an
OpenGL interface. Finally, the copy thread takes im-
age data from grabber and pushes it into the memory
of viewer. copy thus acts as a buffer between the visu-
alisation and frame grabbing thread, such that both
grabber and viewer don’t have to wait for each other.
Dashed lines in the communication diagram depict chan-
nels which only communicate signal states, e.g. to signal
that a certain process has finished.

realised by this class. At a resolution of 1280 × 1024 pixel, five images per second can be
analysed and displayed on a standard office PC. By selecting an area of interest, this rate
can be increased easily.

4. A camera handler. At the time of writing, only a class for Thorlabs cameras was written.
However, other camera models can be included easily, as the class structure can be inherited
by other hardware.

5. A graphical user interface (GUI). wxWidgets [103] was chosen as the interface, as it supports
many operating system, is lightweight and, compared to some other GUIs, fully open source.
Figure A.7 on page 136 presents one panel of the GUI.

Introduction to the physics of beam profiling
The purpose of this introduction is to give a coherent picture of the program, not a full treatment
of laser beam profiles. Figure A.2 depicts and summarises all parameters and the propagation
of a Gaussian laser beam. More information about the theory of Gaussian beams can be found
in a number of excellent books [133, 255, 294].

The starting point is a multivariate normal distribution, as it is the most general form to
describe a Gaussian laser beam. Physically, this means that the beam’s wavefront is, in general,
elliptical. Hermite- or Laguerre Gaussian modes of such a multivariate beam have been studied
theoretically [49], but due to the increase of parameters they are more complex to handle.

Multivariate normal distribution formalism
The most concise notation of the model reads

f(r) = 1√
(2π)2 det Σ

exp
(
−1

2(r − µ)T · Σ−1 · (r − µ)
)
, (A.2)
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Figure A.2: A model of the propagation of a Gaussian laser beam. The propagation is calculated
for a wavelength of λ = 809 nm and a waist of 0.8 mm. The radius w(z) of the beam is given
at a drop of the intensity by e−2 ≈ 86.5 %. w0 denotes the beam waist. The Rayleigh range
zR = πw2

0/λ is the position where the waist is widened by a factor of
√

2. R(z) is the radius of
curvature of the beam’s wavefront. An additional phase shift is due to focussing the beam and
called the Gouy phase, here denoted as η(z). A dashed line visualises what the effect of this phase
shift is. The far field angle θ is measured with respect to the radius (and not the full opening
angle). The beam radius at some position z is fixed by knowing the Rayleigh range zR and the
beam waist w0. Along the direction of propagation, the evolution reads w(z) = w0

√
1 + (z/zR)2.

The propagation length is ±6.5 m.
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where Σ is a real symmetric 2 × 2 positive-definite matrix – the covariance matrix –, µ is a
real valued two dimensional vector, called the centroid or first moment, and r is the point
where the distribution is to be evaluated. The power of two in the factor of 2π comes from the
dimensionality of our problem. To extract the describing parameters of the distribution, two
formulas have to be solved:

1. Calculate the first moment to get µ. Letting r be parametrised by x, y, we can write

µi =
∫∫

if(r) dx dy∫∫
f(r) dx dy (A.3)

for the centroid µ along the i ∈ {x, y} direction. The norm has to be calculated for this
expression and should be stored for the next step when working it out numerically.

2. Compute the second moment to retrieve the covariance matrix Σ. The expression

σij =
∫∫

(i− µi)(j − µj)f(r) dx dy∫∫
f(r) dx dy (A.4)

results in three scalars when evaluating it for the different combinations of i, j ∈ {x, y}.
The diagonal entries satisfy σii ≥ 0, while σxy < ±√σxxσyy.

Expression (A.2) a l m o s t holds for the amplitude of a Gaussian laser beam. The difference
is that the variance of a Gaussian beam with a r a d i u s of w is w2/2. If it would follow the
definition of a ‘normal’ normal distribution, it had read simply w2. As we are concerned about
the intensity, an additional scaling factor has to be taken into account, leaving us with a variance
of w2/4.

The impact of the rescaling on the normalisation factor in equation (A.2) is easy to remember:
The factor of 2 in the denominator is lifted to the numerator.

These scaling factors in combination are found to be a source of confusion, but I regard
the explicit comparison to a multivariate normal distribution as an appropriate approach for a
coherent description.

Example of an elliptical Gaussian beam
As a simple example, a specific expression of equation (A.2) – applied to the Gaussian beam
formalism – might read

f(x, y) = 2
πwxwy

exp
(
−2
(

(x/wx)2 + (y/wy)2
))

(A.5)

with wi denoting the beam radius in the direction of i. In this example, we have

µ =
(

0
0

)
, (A.6a)

Σ =
(
σxx σxy

σxy σyy

)
=
(
w2
x/4 0
0 w2

y/4

)
. (A.6b)

Making it explicit, the results from substituting expression (A.5) in equation (A.4) thus have to
be multiplied by 4 to get the square of the respective beam radius.
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Figure A.3: The value set of υ± for σxx =
1, σyy = 4 under variation of the correla-
tion, defined in equation (A.10). In general,
υ± > 0, as Σ is positive-definite, also leading
to |ζ| < 1.
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Adding rotation to the beam
When adding a rotation of the ellipse circumscribing the beam, things get a bit more interesting.
The result is that the covariance matrix won’t be diagonal any longer. By evaluating the second
moment, we arrive at measures that tell about the beam radius along the axes of – and in 45°
to – the g l o b a l coordinate system. The global system is in this case given by the orientation
of the camera used to record the beam. Using it as a reference might be fine, but it could be of
interest to know about the minor and major axes of the ellipse, plus the angle of rotation of the
ellipse.

In the source code and herein, I refer to the minor and major axes as the m a i n axes in
contrast to the aforementioned global axes. So to get the measures along the main axes, either
an explicit rotation of the ellipse is computed or the eigenvalues υ± of Σ are calculated. The
latter approach is less expensive and thus pursued. Refer to figure A.3 for an example of their
value set. Explicitly evaluating the eigenvalues of

Σ =
(
σxx σxy

σxy σyy

)
(A.7)

yields

υ± = 1
2

(
σxx + σyy ±

√
σ2
xx + 4σ2

xy − 2σxxσyy + σ2
yy

)
, (A.8)

visualised in figure A.4. If, instead of the covariance matrix, the beam radii wx and wy are known
at the point of evaluating the eigenvalues, we just have to transform them according to:

σxx = w2
x/4 (A.9a)

σyy = w2
y/4 (A.9b)

σxy = wxy/4 = wxwyζ/4. (A.9c)

Here, the correlation ζ ∈ R,−1 < ζ < 1 was introduced. It has to be calculated when evaluating
the second moment as it is defined as

ζ = σxy√
σxxσyy

. (A.10)
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Figure A.4: The characteristic parameters of an el-
lipse. Axes x, y correspond to what I call the global
coordinate system (given by the camera sensor)
while x′, y′ is the main coordinate system, oriented
towards the ellipse’ major and minor axis.

The advantage of displaying the correlations instead of σxy is that its interpretation appears to
be more intuitive, a bit easier, as it is a normed value. The case |ζ| = 1 corresponds to a infinitely
stretched out ellipse and can be used as a sanity check. ζ’s sign finally tells about the rotation
of the ellipse.

Additional information of the shape
Other values that are convenient to display are

ϕ = 1
2 arctan

(
2σxy

σxx − σyy

)
(A.11a)

θ = arctan
(
b′

a′

)
(A.11b)

where ϕ is the angle between the main and the global coordinate system, as depicted in figure
A.4. To express the eccentricity of the ellipse, θ might be used. In terms of readability, I prefer
to use

θ
def=





√
1− υ+

υ−
if υ− > υ+√

1− υ−
υ+

else
(A.12)

as a figure of the eccentricity. Figure A.5 highlights the reasoning: It vanishes when the eigen-
values are equal.
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Figure A.5: Comparing the definitions of the
eccentricity. Variable names are in accord-
ance to figure A.4. υ+ is set to 2.
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(c) Difference

Figure A.6: Plots automatically generated by the fit
routine. (a) Recorded beam profile. (b) Fit of equation
(A.2) to the recorded profile. (c) Difference between the
input and fit model.
Next to the results printed in the heading of the fit res-
ult, statistical data is written to a text file. The ripples
visible in the difference between the input and the data
fit stem from interference effects caused by a cover slide
fixed to the sensor chip.

(a) Input

(b) Data fit
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Figure A.7: Part of the graphical user interface of
the beam profiler. Shown here is the image ma-
nipulation module to smooth the acquired image
and correct for noise. On the left, the area of in-
terest can be changed to analyse only a part of the
acquired data.
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(a) Camera output and real-time analysis (b) 3D view of the acquired image

(c) 3D view of a Laguerre Gaussian ‘11’ beam (d) 2D view with cross section

Figure A.8: Different examples of the visualisation capabilities of the beam profiler software. For
the purpose of a homogeneous presentation, the images are colour inverted.
Image (a) shows an example of a higher order mode of a mode cleaning cavity. The yellow
rectangle is the area of interest selected by the user. A green ellipse represents the real-time
analysis of the beam radius, which is, in the case for higher order modes, not particularly
meaningful. Figure (b) shows the same data but represented in 3D and in false colours. The
view point can be manipulated by the user. Just as the analysis, the 3D view is updated in real
time to monitor the dynamics of the beam detected by the camera. Figure (c) shows a similar
case, while figure (d) highlights another feature of the visualisation module: The data is shown
on a map, and the user can select a point on it to display cross sections.
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A.2 Probing transfer functions of closed loop systems
Herein the measurement of open loop transfer functions is derived when the system under in-
vestigation can only be operated as a closed loop. For our purpose the best example is an optical
cavity locked to a certain transmission or reflection, that is: It is locked to a certain cavity length.
The system is defined as to behave linearly around this bias (or lock) point. Mandatory for the
presented scheme to work is thus an at least somewhat working control loop; this contrasts the
common approach of probing the open loop transfer function b e f o r e operating in a closed
loop mode2. However, the measurement will enable the characterisation and consequently an
optimisation of the system, consisting of a servomechanism, a piezo with a voltage supply and
finally a photodetector.

Transfer function
The fundamental equation for modelling systems depicted in figure A.9 is an input-output relation
as

G = xout
xin

. (A.13)

G is understood as the transfer function, it propagates an input xin to an output xout. The

xin G xout
t t

Figure A.9: Scheme of the input-output relation of a transfer function G. The insets represent
a typical transient response. The vertical axes might have different dimensions as G’s dimension
doesn’t have to be unity.

space of G is given by the space where the Laplace transform (L (x(t)) =
∫∞

0 x(t) exp(−st) dt
with s ∈ C) converges and yields analytic functions [44]. To arrive at the transient description,
an inverse Laplace transform has to be performed on G. Before going on, I’d like to note that,
even though the mathematical handling of transfer function using the ‘Laplace formalism’ turns
out to be very convenient, it is only applicable when a linear model exists. Nonlinear models
have to be either linearised (like it is done for the locked cavity case) or other methods have
to be applied. The second assumption is that the system is time invariant, that is the system
behaviour doesn’t change overnight.

Describing a closed loop system is done by accounting for the different contributions shown
in figure A.10, such that

xout = G1xin −G1G2xout

= G1
1 +G1G2

xin. (A.14)

The fraction can be now regarded as the overall transfer function G. In addition, we
2Self-oscillation due to positive feedback in closed loop systems can lead to damaging involved components.

To prevent from self-oscillation, the system is preferably characterised in an open loop configuration. From this
characterisation, all system parameters can be derived and used to set the optimal control parameters [184].
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xin − G1 b xout

G2

Figure A.10: Block diagram of a system operated as a closed loop. The first node subtracts the
respective inputs, giving rise to a negative feedback operation. The dot in front of the output
represents a pick-up node.

xin − C P b xout

D

Error xδ Plant input

Measurement

Figure A.11: Extended model of a (negative) feedback loop system. First, a desired value is set
by the user, then subtracted from the measured value and subsequently amplified by a controller.
The signal is then send to the plant which eventually closes the loop.

• G1 the forward,

• G2 the backward,

• G1G2 the open loop transfer function G0.

A bit more realism
From the generic model presented above, a specification is done by identifying the individual
transfer functions G1, G2, . . . with certain entities: The controller C, the plant P and the detector
D. In between these constituents, a conversion of the dimension is usually implicated, e.g. the
detector converts optical power (Watt) to an electrical potential (Volt).

A controller is the device regarded as the one to be tuneable, it is the operator’s task to
optimise its transfer function to accommodate for stability and speed of the control loop. We
commonly refer to it as the servo (short for servomechanism). The detector is the device that
picks up the plant’s action and sends it back to the controller. If the detector’s response is
much faster than the plant to a stimulus, one can neglect its transfer function to decrease the
complexity of the analysis. Finally, the plant is the part which is to be controlled and so its
transfer function is regarded to be constant. Knowing the plant’s transfer function is the key for
a proper actuation of the system. Figure A.11 comprising the aforementioned elements.

The model is, so far, somewhat ideal as it assumes that the only input into the system is
our target value. To account for disturbances, e.g. temperature drifts biasing a certain point
in the system, more nodes have to be added to the model. A block diagram of a system with
two “disturbance inputs” is shown figure A.12. There’s no point in stopping from adding more
disturbance along the other links – apart from the convenience of drawing only what’s necessary
for the following explanations.
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xin −

z1

+ C

z2

+ P b xout

D

xδ

Figure A.12: An extension of the block diagram in figure A.11. Two disturbance variables z1
and z2 have been added to it.

xin − b

T z

+ b

R

C P b xout

D

Figure A.13: Block diagram which shows how to probe the open loop transfer function. The pick-
up nodes T and R refer to the inputs of a network analyser. Labels might differ, of importance
is that the mode is set to display ‘T/R’. z is the stimulus from the analyser’s function generator
assumed to be known.

Transfer functions in closed loop operation
As motivated in the beginning, we apply the definitions to probe the open loop and the plant’s
transfer function in a closed loop operation.

Open loop transfer function

We start with the open loop measurement. To perform this measurement on a “text-book
system”, the feedback connection has simply to be broken up. In a system with a bias point such
as an optical cavity, we have to mimic this by breaking the system virtually. A scheme which is
able to achieve this is given in figure A.13. By using the network analyser’s capability of probing
two points of a system at a time and displaying the fraction of these points, a given circuit can
by virtually broken in two. The analysis of the full circuit is

xout = xinGCGP − xoutGCGPGD︸ ︷︷ ︸
G0

+zGCGP

⇔ xout(1 +G0) = zGCGP + xinGCGP

⇔ xout = (z + xin)GCGP
1 +G0

(A.15)

As expected, it carries the structure of equation (A.14). Checking for the pick-up nodes T and
R, we find

xT = xin − zG0 − xoutGD (A.16a)
xR = xin + z − xoutGD. (A.16b)
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xin − b

T z

+ b

R

C P b xout

D

Figure A.14: Block diagram which shows how to measure the plant and detector transfer function.

To single out G0, the signals have to be subtract from each other. The disturbance z is then
cancelled as it is generated by the network analyser.

A network analyser commonly offers an option to display the fraction – instead of the sub-
traction – of T and R. However, the use of a gain and phase analysis, usually in terms of a Bode
plot, will yield to the result since multiplicative complex transfer function are additive in this
representation: The amplitudes are additive using logarithmic scales, the phase add naturally.

Plant and detector transfer function

When breaking up the system as shown in figure A.14, one singles out the controller. The pick-up
nodes will then read

xT = xin − zGPGD − xoutGD (A.17a)
xR = xinGC + z − xoutGDGC. (A.17b)

Reminding that the probing only works for an already locked system with a fixed bias point,
and furthermore a vanishing influence of the detector, the terms involving xin and xout can be
neglected, leaving us with the middle term. Then, the argument runs as in the previous probing
of G0.

Application notes
When measuring the transfer function as described, special care should be taken regarding the
amplitude of z. Especially the measurement of G0 requires some attention, as the amplitude can
easily drive the plant (i.e. the piezo actuator) out of its bias point.

In section A.3, schematics for the required electronics can be found. The electronics were
tested and found to behave linearly in the small signal regime (35 mV at 50 Ω) up to 200 kHz.

Example
To optimise the stability of a mode cleaning cavity or phase shifter locked by a servo, the transfer
function of GDGP, according to figure A.14, should be measured first. An example of such a
recording is shown in figure A.15. It was taken for the mode cleaning cavity built for the pump
beam of the squeezed state source. As can be seen, the system is stable up to about 6 kHz.
Afterwards, several resonances prevent from a stable operation of the cavity. Thus, we can’t
expect to compensate fluctuations at higher frequencies, but we can however optimise the servo:
First, to make sure that the gain of the servo is low at the resonances to prevent from positive
feedback (i.e. to provide a high gain margin [184]), and second to have a enough gain at lower
frequencies to compensate also weak disturbances.
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Figure A.15: A plant and de-
tector transfer function recorded
according to scheme A.14. The
probed system is the mode clean-
ing cavity shown in figure 3.9
used for the squeezed state exper-
iments. An Agilent E5061B elec-
tronic network analyser was em-
ployed for the measurement.

The open loop transfer function G0 tells how the servo “handles” the response GDGP. Figure
A.16 contains three curves: A first measurement was taken with the standard servo design (refer
to section A.3 for a schematic). The gain was set such that the resonance just below 10 kHz is
not, or barely, amplified. As the resonance was quite pronounced, the overall gain was required
to be set to a rather low level, in turn limiting the servo’s bandwidth to 3 kHz. This can be
seen from the fact that the amplitude is below 0 dB above 3 kHz. Next, a transfer function
was calculated to enhance the performance of the servo. The strong resonance at 10 kHz was
compensated with a notch filter. Resonances beyond that frequency were damped with a low-
pass filter. An integrator with a corner frequency of 1 kHz in combination with an overall gain
of 6 dB provided a high sensitivity at lower frequencies.
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Figure A.16: Open loop trans-
fer function for the same system
as in figure A.15. The trans-
fer function before and after op-
timisation, along with the inten-
ded behaviour, is shown. The
model parts and parameters are:
Integrator frequency 1 kHz, low-
pass corner frequency 8 kHz with
Q = 0.8, and a notch filter at
9 kHz with Q = 800.
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A.3 Electronics
Not only due to special requirements such as noise performance and tunability, but also for
practical reasons as size and a global cable management, several electronics have been developed
during this thesis. Especially the usage of differential signals [142] showed to decrease the noise
in error signals of phase- and cavity locks, such that the required signal power to overcome the
noise floor dropped: The required optical signal power to lock the squeezer cavity dropped from
4 mW by more than a factor of 10.

Two schematics, developed together with Tobias Gehring, proved to be helpful for various
applications and are appended in the following. The circuits were printed on a surface-mount
device (SMD) board. Ruben Grigoryan gave helpful advice for the board design, test boards
have been made by Anders Poulsen.

Servomechanism schematic
The first device is a servomechanism (or short servo) to control cavity and phase locks, fitted
onto an euro card with SMD components.

• The servo features

– adjustable gain,
– two twin-T notch filters,
– two universal integrator / differentiator circuits with analogue integrated-circuit (IC)

switches,
– one second order Sallen–Key low-pass filter.

• Additional features are

– a ramp generator with additional trigger output, adjustable frequency and amplitude.
– an adjustable offset.
– an inverter with analogue IC switch.
– a differential (symmetric) in- and output.
– a single ended output.
– a monitor output.

The standard procedure is to equip the circuits with standard components and optimise filters
and the controllers by measuring transfer functions of the device which is to be controlled. The
necessary circuit for probing such transfer functions is shown in the next section A.3.
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Adder schematic
To probe open loop transfer functions of systems which can not be accessed without being
actually closed, the system’s circuit has to be broken virtually. Details can be found in section
A.2. To do so, the following schematic was developed. Two version have been devised, to be
usable for both single ended and differential signals. They feature:

• Addition of two signals, whereas

– one is differential- (symmetric) and one single ended (pseudosymmetric), or,
– both are single ended. A copy of the schematic is found on page 150 and 151.

• Two buffer outputs.

• A differential- and a single ended output.

• A buffer circuit for a differential input with a differential- and a single ended output.

Printed next is the single ended version.
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A.4 Mechanical drawings
For different experiments, special mechanical solutions have been devised and realised either
because ready-made components were not available or too expensive. Poul Erik Andersen and
Erik Hansen from the department’s machine shop processed the various parts. In this section,
the idea and an overview schematic of a selection of realised designs is presented. Following
solutions were crucial for our projects:

• Page 154 shows a portable interferometer for white and coherent light interferometry. The
device is used to profile fibre tips with an indentation to form a micro cavity [89]. In
contrast to the other designs, the assembly consists entirely of off-the-shelf parts which are
given in the parts list3.
A Visual-C++ program was written to analyse the interferograms recorded by a CCD
camera and actuate the piezo-driven stage simultaneously. Various approaches for the
analysis had been compared: A Fourier transform based approach [264] and two phase
shift based techniques. The advantage of the former is that no moving parts are required.
However to increase the transversal resolution, a close fringe spacing is necessary. This
can be accomplished by tilting the sample, which also leads to a decreased signal-to-noise
ratio. Phase shift based techniques rely on a precise control of the sample, but overcome
the mentioned issues. Amongst those techniques, the Carré and Hariharan algorithm, a
four- and a five-step based technique, respectively, had been tested [187]. The Hariharan
algorithm was finally chosen as the additional image improves the robustness and provides
simple means to evaluate a ‘quality map’ to judge the spatial uncertainty of the result.
For all of these techniques, a phase unwrapping algorithm has to be applied on its output.
This was solved via processing the wrapped phase data with a fast Fourier transform
method [32]. For a final evaluation of the reconstructed sample profile, a fit to Zernike
polynomials [211], common in optical metrology, via singular value decomposition [225]
had been implemented.
The assembly features a footprint of 250 mm × 300 mm and is stable enough to perform
white light interferometry. For coherent light interferometry, the fibre coupler (part 15) is
used in combination with an appropriate mirror in the reference arm (mounted on part 22).
For white light interferometry, an incandescent light source was coupled via a flexible house
directly to the beam splitter cube (part 19). When profiling glass surfaces, an uncoated,
wedged glass flat was mounted in the reference arm to enhance the fringe visibility by
matching the reflectivity to the fibre tip and to mitigate multiple reflections.

• Page 155 shows a mirror mount with a piezo-electric actuator. A high resonance frequency
and a large clearance for the beam were the main requirements. The first feature enables
a fast actuation of the mirror and thereby the phase of the reflected light, while the latter
is important to ease the alignment. However, both requirements play against each other
to a certain extend, as a large mirror support allows for high stiffness thus a high pressure
in the cut-out region while narrowing down the clearance for the light. This was solved by
two additional cut-outs. The structure was optimised via a finite element analysis and the
resonances are damped with the wedged back plate.

• Pages 156 to 157 illustrates the assembly constructed for the squeezed light experiments.
A compact design, high mechanical stability, thermal insulation, minimal expenditure in
manufacturing and an easy alignment were the set points. Apart from the thermal insula-
tion, which was realised by a proper choice of materials, the other features are implemented

3The data for the models was published and is available from the manufacturing company.
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Figure A.17: Power spectral density
(PSD) of an interferometric measure-
ment conducted under the flow mod-
ule. A Michelson interferometer with
an arm length of 50 cm was construc-
ted on the table under the flow module
to test for vibrations and inhomogen-
eous air flow. A significant influence
was found to occur only at the max-
imum air speed. The measurement was
corrected for dark noise.
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by the construction: The cavity length can be changed by replacing a spacer (part 13),
deviations of ±0.6 mm from the designated transversal position of the mirror (part 7) can
be adjusted by set screws (part 23). For cost effectiveness, the spacer and the back plate
(part 11) were made from PMMA instead of glass, as stated in the parts list.

• Page 158 illustrates an assembly designed for shipping optical fibres and glass flats to
optical coating companies and maintaining the parts during the respective coating process.
The fibres (part 8) are mounted into blocks (part 1) with an alignment tool (not shown)
to be flush with the remaining components. The assembly can be mounted with 42 fibres
and 3 optical flats. A monitor flat can be mounted as well to control the coating process.
Caps (part 35) protect the mounted fibre tips during alignment runs necessary to adjust
the process. An outer barrel (not shown) is mounted around the assembly to protect fibres
during shipping, as cleanness is the top-most requirement for a high yield.

• Page 159 illustrates a housing constructed for various experiments requiring a clean en-
vironment. An optical table is shown in the drawing as a reference. The windows are
stabilised with counter weights on the ceiling. The flow module (part 5) is mounted on
the ceiling as well to minimise mechanical vibrations. Set-up in a basement room without
special air filters (ISO 9), the clean room class was measured to be ISO 5 (according to ISO
14644-1 clean room standards). Figure A.17 further shows the outcome of an interferomet-
ric measurement inside the housing when the flow module is switched on. Inhomogeneities
in the air flow and mechanical vibrations between the two arms of the interferometer could
be tested this way. It was found that, apart from the highest setting, the influence of the
flow module on this test was negligible.
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APPENDIX

A.5 Calculation of Fisher information for phase measure-
ments

The expression evaluated for figure 3.4 are summarised below.
Regardless of the state, the Fisher information is derived by propagating the input state’s

Wigner function through the interferometer. Two transformations are sufficient to accomplish the
propagation: The phase shift transformation (3.9) and the variable-beam-splitter transformation
(5.7). The transformed Wigner function is then substituted into equation equation (3.26) to yield
p(x|φ). Finally, one may calculate the integral form of equation (3.10), i.e.

F (φ) =
∫

x

p(x|φ)
(
∂

∂φ
ln p(x|φ)

)2
dx. (A.18)

For a coherent state input |α, β〉 described the by Wigner function

W (x1, y1, x2, y2, α, β) = 1
π2×

exp
(
−2|α|2 − x2

1 − y2
1 + 2ı

√
2αy1 + 2

√
2(x1 − ıy1)<(α)

)
×

exp
(
−2|β|2 − x2

2 − y2
2 + 2ı

√
2βy2 + 2

√
2(x2 − ıy2)<(β)

)
, (A.19)

the Fisher information of the output modes (cf. figure 3.2) reads

F6(φ, α, β) = F7(φ, α, β) = −1
4 e−2ıφ(− e2ıφ(α+ β) + α∗ + β∗

)2
. (A.20)

To calculate F for |1, 0〉, we start with the Wigner function

W (x1, y1, x2, y2) = 1
π2
(
2y2

1 + 2x2
1 − 1

)
e−(y2

1+y2
2+x2

1+x2
2) (A.21)

and arrive at

F6(φ) =
sin(φ)2

(√
2π e 1

2 tan(φ/2)2
(
|c(φ)|2 + 1

)2(
erf
(

1√
2|c(φ)|

)
− 1
)

+ 4|c(φ)|3
cos(φ)+1

)

4(cos(φ)− 1)|c(φ)|5
, (A.22a)

F7(φ) =
(

erfc
(

1√
2|tan(φ/2)|

)√
2π e 1

2 c(φ)2

cos(φ) + 1 − |tan(φ/2)|
)
|tan(φ/2)|−3

, (A.22b)

where c(φ) = cot(φ/2). The numerator of F6(φ) contains terms which are quickly diverging for
φ → π, thus a numerical evaluation for φ & π − 1/4 requires an increase in numerical precision
(compared to standard machine precision) or a rewriting of the expression.

The Wigner function for |1, 1〉 is

W (x1, y1, x2, y2) = 1
π2
(
2y2

1 + 2x2
1 − 1

)(
2y2

2 + 2x2
2 − 1

)
e−(y2

1+y2
2+x2

1+x2
2) . (A.23)

Complex analysis helps to find a closed expression for

F6(φ) = F7(φ) = 1
2
√
π

∫ ∞

−∞

e−x2(4x4 − 12x2 + 3
)2 sin(2φ)2

(−4x4 + 12x2 − 3) cos(2φ) + 4(x4 + x2) + 3 dx, (A.24)
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A.5. CALCULATION OF FISHER INFORMATION FOR PHASE MEASUREMENTS

however a numerical evaluation of the integral showed to be faster.
Finally, for a single-mode squeezed state |ξ〉, we consider a “single mode interferometer”, i.e.

the state is directly subject to a phase shift without splitting it into two modes. As a squeezed
state carries, compared to Fock states, already a defined phase information, the interference
with a local oscillator in a homodyne detection is sufficient to provide a frame of reference to
measure the Fisher information (and even more generally, perform a state tomography). Since
we saw that squeezed states are susceptible to losses, a variable beam splitter transformation
was included into the analysis. Compared to the previous Fock state cases, the integrals are all
Gaussian such that one arrives at a less complex expression:

F (φ, r, η, ϕ) = 2
(

η sinh(2r) sin(2φ− 2ϕ)
1− η − η sinh(2r) cos(2φ− 2ϕ) + η cosh(2r)

)2
. (A.25)
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