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– a truly classic couple with whom I am deeply entangled.





Integrated quantum optics – experiments towards integrated quantum-light sources
and quantum-enhanced sensing.

Abstract The work presented in this thesis is focused on experimental application
and generation of continuous variable quantum correlated states of light in inte-
grated dielectric structures. Squeezed states are among the most exploited continu-
ous variable optical states for free-space quantum-enhanced sensing and communica-
tion protocols, but for these developments to be applicable for future technologies
they must be transformed to an integrated architecture compatible with current
electro-optical technology. So far only little work has been done in this direction,
but two such contributions are made in this thesis: Firstly, we present proof-of-
principle demonstration of interfacing squeezed light with an on-chip optomechan-
ical resonator, demonstrating a quantum-enhanced sensitivity to the vibrations of
the micromechanical object. Secondly, work on developing an integrated source of
squeezed light is presented and an optimized device design is proposed. The de-
vices have been fabricated and tested optically and preliminary interrogations of
the output quantum noise have been performed.

Integreret kvanteoptik – eksperimentelle studier med henblik på generering og an-
vendelse af kvanteoptiske tilstande i integrerede strukturer.

Dansk resumé Denne afhandling har fokus på eksperimentelle anvendelser og
generering af kvantekorrelerede lystilstande i integrerede dielektriske strukturer.
Kvantestøjsreducerede tilstande er blandt de hyppigst anvendte til kvanteforstærkede
måleteknikker og kommunikationsprotokoller, men en praktisk implementering af
sådanne teknikker i kommende teknologi fordrer, at de realiseres i en integreret
platform kompatibel med den gængse elektro-optiske fabrikationslinje. Antallet
af arbejder med dette fokus er sparsomt, men to sådanne bidrag er indeholdt i
nærværende afhandling: Vi har for første gang koblet kvantestøjsreducerede op-
tiske tilstande til en integreret optomekanisk ræsonator, resulterende i en kvante-
forstærket måling af et mikromekanisk objekts termisk eksiterede vibrationer. I
et særskilt forskningsprojekt har vi arbejdet mod at udvikle en integreret kilde
til kvantestøjsreduceret lys, og vi har på baggrund af et omfattende numerisk og
teoretisk arbejde fremsat et optimeret design. Optiske mikroræsonatorer er blevet
fabrikeret i henhold til designet, og indledende undersøgeler af strukturernes fak-
tiske anvendelighed som kilder til kvantestøjsreducerede optiske tilstande er blevet
udført. Dette arbejde er endnu ikke afsluttet.
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Preface

The work presented in this thesis has been conducted within the research field of
quantum optics, with a particular focus on application and generation of continu-
ous variable squeezed states of light in integrated structures. The work has been
divided over two separate research projects, which will be introduced separately
in the corresponding Parts II and III of the thesis. Part I constitutes a general
introduction to theoretical and experimental concepts in quantum optics, relevant
to both projects.

Quantum sensing with cavity optomechanics
The optomechanics experiment was established and the presented work carried out
during the first third of my PhD studies. This was primarily done in collaboration
with Glen I. Harris (visiting PhD student, Univerversity of Queensland, Brisbane)
and Hugo Kerdoncuff (PhD student). Lars S. Madsen (PhD student) assisted on
operation of the squeezed light source and Mikael Ø. Lassen (postdoc) and Bo M.
Nielsen (postdoc) provided daily supervision of the laboratory work.
The work is presented in Part II and covers the developed theoretical model for

squeezing enhanced transduction, the established experimental setup for squeezed-
light interfacing of microtoroidal resonators, and obtained proof-of-principle results.

Integrated source of single-mode quadrature squeezed light
The work on establishing the experiment for integrated squeezed light generation
covered the last two thirds of my PhD studies, and the first year of work was done
in collaboration with Bo M. Nielsen, while Ying-Wei Lu (postdoc) worked on the
microfabricational aspect of the project. In the latter part of the work, Tobias
Gehring (postdoc) was instrumental in developing detection and servo electronics
and Timur Iskhakov (postdoc) made contributions to the optical setup.
The work is presented in Part III and covers basic considerations on the investi-

gated integrated structure, an in-depth numerical and theoretical feasibility study
and design identification, experimental characterization of device properties, and a
discussion of various quantum optical detection schemes by which the integrated
source has been interrogated.
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Overview

The present Part I of this thesis serves as an introduction to central theoretical
and experimental aspects of continuous variable quantum optics, the framework
in which the experimental efforts on cavity optomechanics (Part II) and on-chip
squeezed light generation (Part III) have been carried out.
Noise is a central topic throughout the thesis and in Chapter 1 we start by briefly

discussing the fundamental difference between classical and quantum noise and the
implications of noise on measurements in the two realms of physics in general. Tak-
ing a more specialized point of view, we then focus our attention on the optical
domain. First, the classical description of light is reviewed and we briefly cover
the mechanism of optical guiding in dielectric structures, the nonlinear optical Kerr
effect, optical modulation, and the concept of sidebands which is central for continu-
ous variable quantum optics. Finally, a discussion of the quantized electromagnetic
field is provided, and the field quadratures, which will be our preferred representa-
tion of the optical field state throughout this thesis, are introduced.
Chapter 2 introduces a selection of concepts and methods essential for the ex-

perimental work presented in later chapters. A particular focus is on description of
the various detection techniques for interrogation of optical quantum noise which
has been implemented in the experimental setups. Also, the effect of optical loss is
discussed, as it presents one of the main challenges to be overcome in conducting
experiments with squeezed light and quantum correlated continuous variable states
of light in general.
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Theoretical concepts 1
And God said: “[a, a†] = 1. Go forth, be fruitful, and multiply (but
don’t commute)”. And there was light, and quantum noise...

– R. Schoelkopf
in Noise and Quantum Measurement [114]

1.1 Classical and quantum noise
Quantum mechanics is often accused of being confusing, counter intuitive, impossi-
ble to grasp... and maybe there is something to it? At least many of the predictions
and consequences of quantum mechanics are in contrast to our everyday perception
of Nature, adequately described by classical Newtonian physics. One such point of
clear distinction between classical and quantum physics is the role of noise, which
is central to the work presented in this thesis. To highlight the contrast we start
by briefly reviewing a number of underlying principles of classical and quantum
measurements.

1.1.1 Classical measurement
Classically, a physical system S can be represented by a set of system variables
{A,B,C, ...}, generally dependent on time and/or other system parameters. The
state of the system, representing the observes knowledge, is defined by a set of
probability distributions p(a) = Pr[A = a], describing the probability that variable
A has value a. By performing measurements of the system variables the observer
gradually improves his knowledge, and conditioned on the measurement outcomes
the system state is correspondingly updated via Bayesian inference. In principle,
all system variables can be measured simultaneously and with arbitrary precision.
And in the case of an ideal measurement the outcome is exactly the value of A,
say a′, leaving the system in a state of maximal knowledge p(a) = δa,a′ (in case
of a discrete variable) about this variable. Performing a set of ideal measurements
of all system variables results in complete knowledge about the system. Since in
Newtonian physics the evolution of the system, and the whole Universe for that
matter, is governed by a set of deterministic equations of motion, complete knowl-
edge about the system at one instant in time can be propagated in time to predict,
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1 Theoretical concepts

with certainty, the state of the system at any future time. Thus, complete know-
ledge at one time entails complete knowledge at all times. From an experimental
point of view, any measurement of a system variable A inevitably involves coupling
some sort of apparatus or meterM to the system and thereby, through a tailored
physical process, establishing a correlation between the meter variable Y and the
particular system variable. In practice, we are thus limited to indirect measure-
ments of A through observation of the meter variable. Furthermore, the meter is
generally prone to technical noise which will introduce uncertainty on the measure-
ment outcome, allowing ideal measurements to be performed only in the academic
limit of a perfectly noiseless meter. It is important to note, however, that there
is no fundamental limit to the measurement precision and how well the state of a
system can be determined. Uncertainties are only introduced through the limited
technical abilities of the observer.

1.1.2 Quantum measurement
According to the canonical quantization procedure of Dirac [36], the transition from
classical to quantum description of a system is made by replacing the classical rep-
resentation of observable quantities as canonical conjugate variables {Xi, Pj} = δij,
by conjugate Hermitian Hilbert space operators obeying the canonical commutation
relation [X̂i, P̂j] = i~δij. Also, system states are represented by vectors in Hilbert
space |φ〉, termed kets, which are quantum states of maximal knowledge. Due to
their Hermitian property, each observable has a complete set of eigenstates {|ψi〉}
enabling spectral decomposition into a diagonal form

Â =
∑
i

aiΠ̂i, (1.1)

where Π̂i = |ψi〉〈ψi| is the projector onto the ai-eigenspace of Â. The spectrum of
eigenvalues {ai} – discrete or continuous – are the possible outcomes of a measure-
ment of Â and the corresponding measurements are described by the collection of
projectors {Π̂i}. For an arbitrary a priori state |Ψ〉 measurement of Â will yield
the result ai with probability

Pr(ai) = 〈Ψ|Π̂i|Ψ〉, (1.2)

projecting the system into the conditional a posteriori state

|Ψ′〉 = Π̂i|Ψ〉√
〈Ψ|Π̂i|Ψ〉

. (1.3)

Since any arbitrary state can be expanded on the full set of eigenstates of Â as
|Ψ〉 = ∑

i λi|ψi〉 with normalization ∑
i |λi|2 = 1, the probability of measuring ai

is equivalently given by Pr(ai) = |λi|2. This highlights the inherent probabilistic
structure of quantum mechanics, embodied in Born’s rule, which is in sharp contrast
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1.1 Classical and quantum noise

to classical physics. Quantum mechanics does not allow us to predict with certainty
the result of a measurement event but only the probabilities with which a number of
possible outcomes will occur. The fact that predictions can only be of a probabilistic
character means that questions regarding the outcome of particular measurement
events are not allowed. Is it only meaningful to consider probabilities for ensembles
of measurements performed on identically prepared systems. Even when the system
is prepared in a pure quantum state of maximal knowledge is the outcome of a
measurement not uniquely defined in general. This is only the case when the system
is prepared in an eigenstate of the measured observable. In all other cases the system
is randomly projected into one of the eigenstates of the measured observable – this
is commonly termed the projection postulate of quantum mechanics.
Knowing the outcome probability (Eq. 1.2) the statistical properties of measure-

ments of Â can be characterized further by calculating the first and second moments,
which in case of Gaussian states provides full characterization. The first and second
momenta, mean value and variance, respectively, are given by

〈Â〉 =
∑
i

aiPr(ai) =
∑
i

ai〈ψ|Π̂i|ψ〉 = 〈ψ|Â|ψ〉 (1.4)

Var(Â) = 〈(Â− 〈Â〉)2〉 = 〈Â2〉 − 〈Â〉2. (1.5)
Using the spectral decomposition of Â and the Cauchy-Schwarz inequality it is
straightforward to show that 〈ψ|Â2|ψ〉 ≥ 〈ψ|Â|ψ〉2 meaning that in general, Var(Â) ≥
0, even for a state of maximal knowledge. This is a truly quantum feature, known
as projection noise or quantum noise, clearly in contrast to classical physics.

1.1.3 The Heisenberg uncertainty relation
A related and very important aspect of quantum measurements is the simultaneous
measurability of observables. In order for two observables Â and B̂ to be simultane-
ously measurable for a given state |ψ〉 the a posteriori state should be independent
of the order in which the measurements are performed, meaning that the condi-
tional state should be a common eigenstate for the two observables, for all possible
measurement outcomes. This is equivalent to the requirement that there exist an
orthonormal basis with respect to which both Â and B̂ are diagonal, for which a
necessary and sufficient condition is that the two observables commute, [Â, B̂] = 0.
In general, simultaneous measurements are constrained by the relation [94]

|〈ψ|[Â, B̂]|ψ〉|2 ≤ 4〈ψ|Â2|ψ〉〈ψ|B̂2|ψ〉 (1.6)

To clarify the impact of this constraint on the fluctuations of measurement out-
comes, we substitute the observables by their fluctuation parts, δÂ = Â − 〈Â〉.
Using the above expression for the variance and the fact that the mean values are
classical commuting quantities leads to the familiar form of Heisenberg’s uncertainty
relation

Var(Â) · Var(B̂) ≥ |〈[Â, B̂]〉|2
4 , (1.7)
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quantifying the ultimate precision for simultaneous measurements of non-commuting
observables.

1.2 Classical description of light
Taking a step back, we will in the following review the classical description of light
propagation in dielectric media. Well aware that the contents of this Section is
already covered in much finer detail in a broad range of textbooks, e. g. [64, 22, 90],
it has been included, nevertheless, motivated by the intension of making the present
thesis a self-contained presentation of the field within which the work has been
conducted.

1.2.1 Maxwell’s equations
The classical description of light, and propagating electromagnetic fields in general,
is fully captured by Maxwell’s equations. In the present thesis we will only be
concerned with light propagation in vacuum and dielectric media, containing no
free charges and no free currents, and furthermore, we assume that the materials
are non-magnetic. In this case Maxwell’s equations take the simplified form:

∇× E = −∂B
∂t
, ∇×H = ∂D

∂t
, (1.8)

∇ ·D = 0, ∇ ·B = 0, (1.9)
where E and H are the electric and magnetic field amplitude vectors, and D and B
are the electric and magnetic flux densities. The field amplitudes and flux densities
are related by the constitutive equations

D = ε0E + P, B = µ0H, (1.10)
where P is the induced electric polarization, ε0 the vacuum permittivity, and µ0
the magnetic permeability of free space. The polarization captures the response
of a medium to the applied electric field, and we will return to that shortly. For
now, however, it will suffice to say that the polarization vector consists of parts
both linear and nonlinear in the applied field strength, and that the two can be
conveniently separated by invoking the lumped notation P = P(1) + PNL. Here
P(1) = ε0χ

(1)E(t) is the linear contribution and the higher-order terms are denoted
by the collective quantity PNL. In the following, we will only be concerned with
fields propagating in a linear medium, and we further assume the medium to be
isotropic and lossless such that the permittivity can be regarded as a scalar quantity,
ε(ω) ∈ R. By including the frequency dependence we allow for dispersion in the
material. In this case D = ε0εr(ω)E.
The electric and magnetic fields can be determined by a vector potential A(r, t)

as

B = ∇×A, E = −∂A
∂t
. (1.11)
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1.2 Classical description of light

Invoking the Coulomb gauge condition ∇ · A = 0, it is straightforward1 to show
that the vector potential satisfies the wave equation

∇2A− n2(ω)
c2

∂2A
∂t2

= 0, (1.12)

where we have defined the speed of light in vacuum c = 1/√ε0µ0 and used that
the refractive index is given by n(ω) =

√
εr(ω) =

√
1 + χ(1)(ω). Following [90] the

vector potential can be Fourier expanded in terms of plane wave modes as

A(r, t) = A0
∑

k
αk(t)eik·r, (1.13)

where αk(t) is a dimensionless amplitude, A0 = (ε0n2(ωk)V )−1/2 a normalization
constant, and V the expansion volume. Also, we have defined the wavevector |k| =
n(ωk) ·ωk/c = 2π/λ, where λ is the wavelength in the medium. Inserting (1.13) into
(1.12) we find that the plane wave amplitudes are given by the harmonic oscillator
equation [

∂2

∂t2
+ ω2

k

]
αk(t) = 0, (1.14)

which has solution

αk(t) =
2∑
s=1

pk,s
[
αk,se

−iωkt + α∗−k,se
iωkt

]
. (1.15)

The vector part of the amplitude is decomposed in terms of unit polarization vectors
pk,s (s = 1, 2) forming an orthonormal basis, pk,s · pk,s′ = δss′ , and satisfying the
transversality condition k · pk,s = 0. Substituting (1.15) into (1.13) we get the
expansion

A(r, t) = A0
∑

k

2∑
s=1

pk,s
[
αk,se

i(k·r−ωkt) + α∗k,se
−i(k·r−ωkt)

]
. (1.16)

Using (1.11) the multimode plane wave expansion of the electric field is given by

E(r, t) = iE0
∑

k

2∑
s=1

pk,s
[
αk,se

i(k·r−ωkt) − α∗k,se−i(k·r−ωkt)
]
, (1.17)

and from the determining relation for B in (1.11) a similar expression for the mag-
netic field can be derived. Since the light-matter interactions of relevance to the
present thesis exclusively involves coupling through the electric field, we will not

1It deserves mentioning that in deriving (1.12) we have also assumed that ε is homogeneous, or
more specifically that ∇ε = 0. For a guided wave, as will be discussed in the following, this
is obviously not true, since it is exactly the spatial variation in ε that provides the guiding
mechanism.
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devote further attention to the magnetic field and henceforth we will describe light
solely in terms of the electric field vector.
In continuous wave (cw) experiments, as we are concerned with in this thesis, the

optical field is commonly described by a monochromatic single mode with frequency
ωk′ , given by just a single term in the k-sum in (1.17). The amplitude αk,s describes
the spectral envelope of the mode, and in the case of a strictly monochromatic wave
it reduces to αk,s = δ(ωk−ωk′). This is of course unphysical, as the Fourier transform
time-bandwidth relation requires such a wave to have an infinite duration, but
nonetheless it is good approximation that conveniently simplifies the description.

1.2.2 Spatial modes and guided-wave propagation
According to (1.17) the energy of the light field is generally distributed over a
number of spatially distinct modes described by mode functions uk,s(r) = E0pk,se

ik·r.
From an experimental point of view, it is of great importance to know and control
the number of involved modes and most often it is desired to constrain the field to
just a single mode – usually the fundamental one. This is so because unintentional
coupling to higher-order modes is associated with optical loss.
Inserting (1.16) into (1.12) it is readily seen that each mode function satisfies the

Helmholtz equation [
∇2 + k2

0n
2(ωk)

]
uk,s(r) = 0, (1.18)

where k0 = 2π/λ0 is the free-space wave number. In a homogeneous medium the
vector components of the electric field are uncoupled, and in this case the Helmholtz
equation can be solved for the individual field components. Assuming further that
the transverse mode is slowly varying in the propagation direction, such that the
paraxial approximation can be assumed, stable solutions for the mode function are
e.g. the common Gaussian beam families, Hermite-Gaussian and Laguerre-Gaussian
modes [75]. Throughout the experimental work conducted during this thesis, free-
space modes were always prepared in the fundamental TEM00 mode.
Things are more involved in the case of guided wave propagation in optical

fibers and waveguides, where guidance is provided by spatial inhomogeneity of the
medium, and particularly so in the case of strong guidance. The guiding property
of fibers and waveguides can be understood in terms of total internal reflection at
the interface between two dielectric materials with different refractive indices. From
a simplistic ray-optics point of view, Snell’s law and the Law of reflection,

n1 sin θi = n2 sin θe, θi = θr, (1.19)

cf. Fig. 1.1(a), directly provides a condition for total internal reflection of a ray
propagating in the high-index core medium (n1) incident on the interface to the
low-index cladding medium (n2): setting the exit angle to θe = 90◦ yields

θci = sin−1
(
n2

n1

)
. (1.20)
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1.2 Classical description of light

For angles of incidence θi larger than the critical angle θci total internal reflection of
the ray will occur, and the ray will be reflected off the interface at an angle θr = θi,
relative to the interface normal. Real solutions to (1.20) only exist for n1 > n2,
meaning that the ray should be incident on the interface from the high-index side.
This suggests a visualization of the guided field as a ray repeatedly undergoing
total internal reflections as it propagates down the guiding structure, as illustrated
in Fig. 1.1(b). Similarly, the whispering gallery modes of optical microresonators
can be understood in terms of total internal reflection under a gracing angle at the
dielectric-air interface, resulting in a highly localized optical field at the interface,
Fig. 1.1(c).

a) b)

c)

Figure 1.1: (a) For a ray incident on a dielectric interface from the high-index side
(n1 > n2) under an angle of incidence θi, part of the ray will be refracted into the
low-index medium at an angle θe, while another part is reflected back into the high-
index medium at an angle θr = θi. (b) The guiding property of an inhomogeneous
dielectric medium can be understood in terms of repeated total internal reflections
of rays inside the high-index region, for which the angle of incidence is larger than
the critical angle for the particular interface. (c) In microresonators, total internal
reflection at the dielectric-air interface, under a gracing angle of incidence, leads to
formation of whispering gallery modes that are highly localized at the interface.

Though providing an intuitive understanding this picture is, however, an over-
simplified description of the guiding mechanism. As an illustration of it’s inadequacy
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we note that according to the above reasoning a continuum of modes should be
supported by the waveguide, corresponding to all rays with θi > θci . Experience from
the lab immediately tells us that this is incorrect. The actual discrete spectrum of
supported modes is a consequence of self-consistency, requiring that the total phase
shift experienced by the reflected field as it zig-zigs down that guide exactly equals
a multiple of 2π for a full reflection cycle [74]. This results in a transverse resonance
condition, and in the two-dimensional case of a rectangular waveguide, finding the
allowed modes amounts to solving the eigenvalue problem given by the Helmholtz
equation. The sought-for eigenvalues are the propagation constants β = k0neff of
the guided modes, where neff is the effective mode index, and the possible values are
bounded by the refractive indices of the guiding structure, k0n2 < k0neff < k0n1.
Finding the eigenmodes is in general a non-trivial task, and in order to do so we
will resort to numerics as described in Section 11.1.

1.2.3 Nonlinear optics
In the previous sections we considered, for clarity, only light propagation in linear
media. However, the nonlinear optical response exhibited by certain materials is of
uttermost importance to the work presented in this thesis, as it is the mechanism
by which the quantum noise properties of light can be manipulated experimentally.
In general the j’th component of the polarization vector P is given by a Taylor

expansion in the electric field amplitude:

Pj = ε0

∑
k

χ
(1)
jk Ek +D(2)∑

k,l

χ
(2)
jklEkEl +D(3) ∑

k,l,m

χ
(3)
jklmEkElEm + ...

 , (1.21)

where the three first terms included here describe linear response, second order
nonlinearity, and third order nonlinearity. The expansion coefficients χ(n) are the
susceptibility tensors of rank n+ 1 describing mixing of n fields, in general oscillat-
ing at different frequencies. A common notation, explicitly showing the frequency
dependence of the susceptibility is (for the third-order term) χ(3)

jklm(−ω4;ω1, ω2, ω3),
describing generation of a polarization component oscillating at ω4 = ω1 + ω2 + ω3
due to mixing of fields E(ω1), E(ω2), and E(ω3). The factor D(n) accounts for
possible degeneracies among the interacting fields, taking the values:

D(2) =

1 for indistinguishable fields
2 for distinguishable fields

(1.22)

D(3) =


1 all fields indistinguishable
3 two fields indistinguishable
6 all fields distinguishable

(1.23)

Observation of nonlinear optical response from a media generally requires a very
strong driving electromagnetic field and thus the effects are not observable in every-
day life. But in an experimental setting the combination of specifically selected
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materials and the high optical intensity available by laser sources can indeed lead
to significant effects. When driven sufficiently hard, the perturbation of the electron
cloud in the material, constituting the induced polarization, is so large that it causes
the electrons to oscillate at frequencies other than the driving one and the polari-
zation becomes a source for new frequency components. For non-centrosymmetric
crystals exhibiting a second order nonlinearity (second term in (1.21)) one possible
consequence is parametric down-conversion in which a photon from the driving field
at frequency ωp is converted into two photons at ωp/2. This process is the underlying
one for most common sources of squeezed light, including the one exploited for the
experiments described in Part II. For centrosymmetric materials the lowest non-
vanishing nonlinearity is of third order (third term in (1.21)) and such materials are
generally known as Kerr media.

Kerr media

As mentioned, the underlying mechanism for nonlinear optical effects in Kerr media
is the third order tensor susceptibility χ(3)

ijkl, supporting a great variety of four-photon
mixing processes, collectively termed four-wave mixing (FWM). In general, FWM
processes involve conversion of two pump photons at ωp into a pair of photons
at signal and idler frequencies ωs and ωi, respectively, with the convention that
ωs > ωi. The interacting field frequencies are related by 2ωp = ωs + ωi, required
by energy conservation, and in order for the process to occur efficiently the phase
matching condition ∆β = 2βp − βs − βi ≈ 0 must be fulfilled; here expressed in
terms of the guided mode propagation constants βi = neff (ωi)k0,i where neff is the
effective mode index. For this reason, the dominant interaction is the intrinsically
phase matched self-phase modulation (SPM) process2 corresponding to the case of
complete degeneracy of the partaking fields and resulting in an intensity dependent
refractive index n(I) = n0 + n2I. In this case the pump field experiences a self-
induced phase shift φnl = 2πn2IL/λ = γnlLPp over a propagation length L, where
γnl = ωn2/cAeff is the nonlinear parameter, Aeff the effective mode area, and Pp
the pump power. It is well-known that this type of FWM is capable of generating
self-induced single-mode squeezing [10, 118] and it is also the interaction of interest
in Part III of this thesis, covering recent work on developing integrated resonant
systems for squeezed-light generation. However, in the context of nonlinear optics in
integrated resonators a more commonly discussed interaction is non-degenerate four-
wave mixing (NDFWM) where an intense pump field interacts with two or a multiple
of weaker non-degenerate signal and idler fields, each of the fields being resonant on
separate longitudinal resonator modes. Parametric oscillators [83, 103] and Kerr-
frequency combs [55] have previously been demonstrated using this interaction, and
generation of squeezing, both below and above threshold, is discussed in [63].

2Unfortunately, there is a large ambiguity in the nomenclature of third order processes in the lit-
erature, e.g. terms optical Kerr effect, degenerate four-wave mixing, and self-phase modulation
are used synonymously. Here the latter is adopted to highlight the single mode nature of the
interaction.
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1.3 Modulation and sidebands
An ideal monochromatic continuous wave laser beam is just a sinusoidal signal with
constant amplitude and a cyclic phase, but as soon as modulations are introduced on
the beam, information can be encoded and carried optically. The ability to encode
an decode information on light via modulation and demodulation is the backbone
of continuous variable optical communication – both classical and quantum – and
it is central to the experimental work presented in Parts II and III of this thesis.
Modulating a signal in general means that a particular time dependence f(t)

is deliberately imposed on the signal amplitude or phase, or both, resulting in
the information contained in f being copied over to the signal. In the following
we will study, how exactly information is encoded through amplitude and phase
modulations.

1.3.1 Amplitude and phase modulation
Consider a classical monochromatic optical laser beam represented by E(t)eiωct

where ωc is the carrier frequency and E a slowly-varying envelope. Amplitude mod-
ulation (AM) of the beam introduces a sinusoidal time dependence to the amplitude
E which can be expressed as

EAM(t) = E(t)(1 + ξ sin(Ωt))eiωct

= E(t)
(
eiωct + ξ

2ie
i(ωc+Ω)t − ξ

2ie
i(ωc−Ω)t

)
, (1.24)

where Ω and ξ are the modulation frequency and depth, respectively. We observe,
that as a consequence of the modulation, new frequency components oscillating at
ωc±Ω are generated. Those are the modulation induced upper and lower sidebands.
In an analogous way, phase modulation introduces a time dependence of the form

ξ sin(Ωt) to the optical phase,

EPM(t) = E(t)ei(ωct+ξ sin(Ωt))

≈ E(t)eiωct(1 + iξ sin(Ωt))

= E(t)
(
eiωct + ξ

2e
i(ωc+Ω)t − ξ

2e
i(ωc−Ω)t

)
, (1.25)

where in the second step we have used that the modulation depth is usually very
small, ξ � 1. Again, we observe that the modulation leads to creation of sidebands
at the modulation frequency, relative to the carrier, but this time the relative phase
between carrier and upper (lower) sideband is shifted by π/2 (−π/2), compared to
amplitude modulation. A representation of the modulated field that will be helpful
in later parts of the thesis, is to visualize the field components in a spectrally resolved
phase space (see Fig. 1.2) where each frequency component is resolved into its time
dependent amplitude and phase quadratures. In doing so, we assume that the field
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1.4 Quantum description of light

Figure 1.2: Phase space representation of amplitude and phase modulation side-
bands in a frame rotating at the carrier frequency. The temporal evolution of the
individual components are indicated with dashed arrows. In the case of amplitude
modulation (left) the relative phase of the sideband components is such that their
vector sum has a harmonically varying component along the amplitude quadrature
while the phase quadrature component is always zero. Due to the ±π/2 phase shift
the result is exactly the opposite for phase modulation (right).

dynamics is transformed into a frame rotating at the optical carrier frequency. This
eliminates the free evolution of the carrier, while the upper (lower) sideband rotates
in counter-clockwise (clockwise) direction.

1.4 Quantum description of light
As outlined in Section 1.1.2, the quantum mechanical counterpart of a classical
representation can be derived via the canonical quantization procedure. In the pre-
vious treatment of the classical electromagnetic field we have seen that the field
mode amplitudes αk(t) satisfy the harmonic oscillator equation of motion, suggest-
ing that individual field modes should be quantized in terms of quantum mechanical
harmonic oscillators [110]. However, as a cautious remark, simply substituting the
complex amplitudes with operators would be against the canonical quantization
procedure since the classical mode amplitudes – being complex quantities – do not
represent physical observables. Furthermore, the canonical quantization procedure
builds on the Hamiltonian formulation of classical mechanics in which the system
dynamics is governed by the Hamiltonian, representing the total energy of the sys-
tem. A quantum mechanical representation of the electromagnetic field should
therefore be deduced from the quantized field energy rather than head-over-heals
replacing the mode amplitudes by operators. We will not spend more time on the
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details of quantization but without further ado simply state the quantized analog of
the classical electric field vector (1.17), which can be found in most quantum optics
textbooks, e.g. [90, 44]:

Ê(r, t) = i
∑

k

2∑
s=1

√
~ωk

2ε0n2(ωk)V
pk,s

[
âk,se

i(k·r−ωkt) − â†k,se−i(k·r−ωkt)
]
. (1.26)

Here âk,s and â†k,s are the non-Hermitian annihilation and creation operators for the
k’th mode, satisfying the bosonic commutation relations [26]

[âk,s, â
†
k′,s′ ] = δkk′δss′ , (1.27)

[âk,s, âk′,s′ ] = 0, (1.28)
[â†k,s, â

†
k′,s′ ] = 0. (1.29)

The total field energy is given by the Hamiltonian operator

Ĥ =
∑

k

2∑
s=1

~ωk
[
â†k,sâk,s + 1

2

]
, (1.30)

where n̂ks = â†k,sâk,s is the number operator, counting the number of photons in the
{ks}-mode. The constant term accounts for the energy of the vacuum fluctuations
which are a direct consequence of (1.27).

1.4.1 Field quadratures
Being non-Hermitian, the annihilation and creation operators are not measurable
themselves, but their real and imaginary parts are. This leads to the definition of
amplitude X̂1 and phase X̂2 quadrature operators for each individual field mode

X̂1 = â+ â†, (1.31)
X̂2 = −i(â− â†), (1.32)

which are obviously Hermitian. Furthermore, it is useful to define a generalized
quadrature as an arbitrary linear combination of the above two

X̂θ = âe−iθ + â†eiθ = X̂1 cos θ + X̂2 sin θ. (1.33)

The commutator for the amplitude and phase quadratures has the canonical form

[X̂1, X̂2] = 2i, (1.34)

and for this reason they are commonly considered as the electric field equivalents to
the canonical position and momentum operators of the quantum harmonic oscillator.
From (1.7) the uncertainty relation between the quadratures is given by

Var(X̂1) · Var(X̂2) ≥ 1, (1.35)

with the equality corresponding to minimum uncertainty states.
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1.4 Quantum description of light

1.4.2 Operator linearization
In describing quantum mechanically the fluctuations of a bright field, we will find
it convenient to separate the field operator into a mean value component 〈â〉 = α,
given by the classical field mode amplitude, and a noise operator δâ with 〈δâ〉 = 0,
such that [56, 11]

â(t) = α + δâ(t). (1.36)
The assumption of a bright state means that the carrier amplitude α is much larger
than any fluctuations or modulations represented by the noise operator. Thus it
is justified to neglect any terms of second order and higher in the fluctuations in
calculating operator products, resulting in a linearized description of quantum noise.
For example:

n̂ = â†(t)â(t)
=
(
α + δâ†(t)

)
(α + δâ(t))

= α2 + α
(
δâ†(t) + δâ(t)

)
+ δâ†(t)δâ(t)

= α2 + αδX̂1(t), (1.37)

where we have arbitrarily assumed α to be real and defined the amplitude fluctuation
quadrature as in Section 1.4.1.
The above separation of the field oparator leads to a convenient phase space visu-

alization of quantum states, often termed the ball-on-stick picture, where the mean
value is represented by a vector in phase space and the fluctuations are included as
a ball with diameter corresponding to the state fluctuations, positioned at the tip
of the vector.

1.4.3 Sideband representation
As described in details in [79], the above linearization allows for establishing a
Fourier space correspondence between the quantum mechanical annihilation and
creation operators and the classical upper and lower sidebands, respectively. In
Section 1.3 we have seen that classical modulation of a carrier results in creation
of upper and lower sidebands, and in general any modulation can be decomposed
into amplitude and phase modulation. Justified by the established correspondence
we transfer this picture to the quantum regime describing quantum noise in terms
of a continuum of uncorrelated fluctuating sidebands. Thus, we represent the lin-
earized field operator (1.36) as the sum of a carrier component at frequency ωc and
fluctuating sideband modes at frequencies ±Ω relative to the carrier:

â(t) = αeiωct + 1√
2
(
δâ−e

i(ωc−Ω)t + δâ+e
i(ωc+Ω)t

)
. (1.38)

The individual sideband fluctuation operators obey the canonical boson commuta-
tion relations [δâ±, δâ†±] = 1, and the introduced factor of 1/

√
2 ensures that it is
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also maintained for â(t). Using (1.38) the number operator takes the form
n̂(t) = â†(t)â(t) (1.39)

= α2 + α√
2
(
δâ+e

iΩt + δâ−e
−iΩt + δâ†+e

−iΩt + δâ†−e
iΩt
)

(1.40)

= α2 + α√
2
(
δâ+e

iΩt + δâ†+e
−iΩt

)
+ α√

2
(
δâ−e

−iΩt + δâ†−e
iΩt
)

(1.41)

= α2 + α√
2
(
δX̂+

1 cos(Ωt)− δX̂+
2 sin(Ωt)

)
+ α√

2
(
δX̂−1 cos(Ωt) + δX̂−2 sin(Ωt)

)
(1.42)

= α2 + α√
2
[ (
δX̂+

1 + δX̂−1
)

cos(Ωt) +
(
δX̂−2 − δX̂+

2

)
sin(Ωt)

]
, (1.43)

from which we observe that fluctuations in the photon number at frequency Ω
appears as a consequence of simultaneous beating of the carrier with each of the
upper and lower sidebands at the particular frequency. Comparing with (1.37) we
see that this is exactly equal to the amplitude quadrature fluctuations:

δX̂1(t) =

(
δX̂+

1 + δX̂−1
)

√
2

cos(Ωt) +

(
δX̂−2 − δX̂+

2

)
√

2
sin(Ωt) (1.44)

In general, any arbitrary quadrature fluctuations can be found by considering the
case where the carrier is phase shifted by θ relative to the sidebands, yielding

δX̂θ(t) =

(
δX̂+

θ + δX̂−θ
)

√
2

cos(Ωt) +

(
δX̂+

θ−π/2 + δX̂−θ+π/2

)
√

2
sin(Ωt). (1.45)

From the usual definition of the spectral variance Var(O(Ω)) =
〈
|O(Ω)|2

〉
T
we find

Var(δX̂θ(Ω)) = 1
4
[
Var

(
δX̂+

θ + δX̂−θ
)

+ Var
(
δX̂+

θ−π/2 + δX̂−θ+π/2

) ]
. (1.46)

If the upper and lower sidebands are uncorrelated, e.g. for a coherent state, the
normalized quadrature variance is recovered, Var(δX̂θ(Ω)) = 1.

1.4.4 Quantum states of light
Having quantized the electromagnetic field we now turn to a brief introduction of a
number of quantum optical states that are essential to the work presented in later
chapters. A phase space illustration of the states is given in Fig. 1.3.

Fock states

A primary example is the energy eigenstates of the field Hamiltonian, which are
equivalently eigenstates of the individual single mode number operators. The defin-
ing relations are

n̂|n〉 = n|n〉, 〈n′|n〉 = δn′n,
∑
n

|n〉〈n| = 1, (1.47)
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1.4 Quantum description of light

where the eigenvalue n is the number of excitations (photons) in the mode. This
class of states is known as number states or Fock states. The action of the annihi-
lation and creation operators on the number states is,

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉, |n〉 = (â†)n√

n!
|0〉, (1.48)

where the important vacuum state |0〉 is defined by

â|0〉 = 0. (1.49)

The fluctuations of the quantum vacuum state – which does not contain any photons
– pose a fundamental limit to the precision of any classical field measurement.
Evaluating the mean and variance of the amplitude and phase quadratures we find

〈X̂1〉 = 〈X̂2〉 = 0, Var(X̂1) = Var(X̂2) = 1. (1.50)

This is a very important result as it identifies the standard quantum limit for field
quadrature measurements, also known as the the shot noise limit. Also, the vanish-
ing mean values show that the phase of the vacuum state – as well as any number
state – is completely undefined.

Coherent states

Secondly, we consider the coherent states which are defined as the eigenstates of
the annihilation operator

â|α〉 = α|α〉, 〈α|â† = α∗〈α|. (1.51)

An interpretation of the generally complex eigenvalue α = |α|eiθ is provided by
evaluating the expectation value of the number operator

〈n̂〉 = 〈α|n̂|α〉 = 〈α|â†â|α〉 = α∗α = |α|2. (1.52)

For a propagating field the power is proportional to the photon number flux, and
by analogy with the classical case we can thus associate α with the field amplitude.
For the photon number variance we find similarly

Var(n̂) = 〈α|â†ââ†â− â†â|α〉 = |α|2. (1.53)

Expanded on the set of number states, the coherent states are given by

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉, (1.54)

and calculating the photon number probability distribution we find, in accordance
with (1.53) and (1.53), a Poissonian distribution

p(n) = |〈n|α〉|2 = |α|
2n

n! e−|α|
2
. (1.55)
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The quadrature moments for coherent states are

〈X̂1〉 = α + α∗ = 2 Re(α), 〈X̂2〉 = −i(α− α∗) = 2 Im(α), (1.56)
Var(X̂1) = Var(X̂2) = 1 (1.57)

revealing that the coherent states are minimum uncertainty states with shot noise
variance. Since the coherent states have well defined phase and amplitude for large
photon numbers and yield an expectation value for the eletric field operator (1.26)
equals the classical expression, they are by the correspondence principle, quantum
analogues of the classical electric field emitted by a laser.
A coherent state is generated from the vacuum state by application of the dis-

placement operator |α〉 = D̂(α)|0〉, defined as [47]

D̂(α) = eαâ
†−α∗â, (1.58)

with properties

D̂−1(α) = D̂(−α), D̂†(α)âD̂(α) = â+ α. (1.59)

Combining the results from Section 1.3.1 with the sideband representation (1.38)
we see that the action of amplitude and phase modulation is exactly to perform
displacement operations in phase space. We can therefore represent amplitude and
phase modulation at frequency Ω by sideband displacement operators D̂AM

ωc±Ω(ξα/
√

2)
and D̂PM

ωc±Ω(iξα/
√

2), respectively.

Thermal states

A thermal state is characteristic of a harmonic oscillator in thermal equilibrium
with a heat bath at temperature T . According to statistical mechanics such a state
is described by the density operator

ρ̂Th = exp(−Ĥ/kBT )
Tr[exp(−Ĥ/kBT )]

, (1.60)

where Ĥ is the single mode harmonic oscillator Hamiltonian, cf. (1.30), and kB is
the Boltzmann constant. In order to relate the thermal state to the occupancy of
the harmonic oscillator, we can expand the density operator on the Fock states as:

ρ̂Th =
∞∑
n′=0

∞∑
n=0
|n′〉〈n′|ρ̂Th|n〉〈n| (1.61)

= 1
1 + 〈n〉

∞∑
n=0

(
〈n〉

1 + 〈n〉

)n
|n〉〈n| (1.62)

The mean and variance of the excitation number can be found to be [44]:

〈n̂〉 = 1
exp(~ω/kBT )− 1 , Var(n̂) = 〈n̂〉+ 〈n̂〉2, (1.63)
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1.4 Quantum description of light

where ω is the harmonic oscillator frequency.
We will also be interested in knowing the thermal state first and second moments

of the quadrature operators. Using the property of the density operator that mean
values of system observables can be calculated as 〈Ô〉 = Tr(ρ̂Ô), it is straightforward
to show that the first and second moments of the quadratures for a thermal state
are given by,

〈X̂1〉 = 〈X̂2〉 = 0, (1.64)
Var(X̂1) = Var(X̂2) = 1 + 2〈n̂〉. (1.65)

Squeezed states

As dictated by Heisenberg’s uncertainty relation, any optical quantum state must
possess a certain amount of noise in the field quadratures. However, the uncertainty
relation only bounds the product of the noises, leaving open the possibility of an
asymmetric distribution among the two with the noise in one quadrature dropping
below the shot noise level. In any case, the associated excess noise in the conjugate
quadrature must always be such that the uncertainty relation remains fulfilled.
Single-mode squeezed states are generated from the vacuum by the unitary squeezing
operator [90, 116, 44]

Ŝ(ζ) = e
1
2 (ζ∗â2−ζâ†2), (1.66)

where ζ = rei2θs . The amplitude r is known as the squeezing parameter and θs is
the squeezing phase. The appearance of squared field operators in the exponent
indicates the nonlinearity of the process.
The action of the squeezing operator on the generalized quadrature operator

(1.33) is given by

Ŝ†(ζ)X̂θŜ(ζ) = X̂θ cosh(r)− X̂2θs−θ sinh(r), (1.67)

and considering the particular phase angle θ′ = θs and θs + π/2 for the conjugate
quadrature we find,

Ŝ†(ζ)X̂θsŜ(ζ) = X̂θs(cosh(r)− sinh(r)) = X̂θs e
−r (1.68)

Ŝ†(ζ)X̂θs+π/2Ŝ(ζ) = X̂θs+π/2(cosh(r) + sinh(r)) = X̂θs+π/2 e
r. (1.69)

Finally, taking the variances of the transformed quadratures we get,

Var
(
Ŝ†(ζ)X̂θsŜ(ζ)

)
= e−2r Var(X̂θs), (1.70)

Var
(
Ŝ†(ζ)X̂θs+π/2Ŝ(ζ)

)
= e2r Var(X̂θs+π/2). (1.71)

Thus, the action of the squeezing operator on the quadratures is to decrease the
variance at the angle θs while increasing it for the conjugate angle θs + π/2.
Bright squeezed states for which the field amplitude α is non-zero are generated

by concatenating the squeezing operator with the previously defined displacement
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operation, and a general bright squeezed state, alternatively squeezed coherent state,
may be defined as,

|α, ζ〉 = D̂(α)Ŝ(ζ)|0〉. (1.72)

Figure 1.3: Phase space representation of basic quantum states. (a) vacuum state,
(b) coherent state, (c) thermal state, and (d) bright squeezed state.
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Experimental concepts 2
This chapter serves as an introduction to selected concepts and methods essential
for the experiments presented in later parts of the thesis. Particular attention is
devoted to the employed field detection schemes as they are techniques of paramount
importance for interrogating optical quantum noise. It should be emphasized that
the discussed concepts are common to the field of experimental quantum optics and
does not represent novel developments particular to this work. The purpose of the
chapter is thus solely to familiarize the reader with the framework of concepts in
terms of which later discussions of experimental work will be phrased.

2.1 Interference and mode matching

The defining properties of a laser – a quasi-monochromatic spectrum and strong
directionality – are consequences of a high degree of temporal and spatial coherence
in the field. In an experimental configuration, the laser thus provides a global phase
reference, provided that the characteristic length scale of the setup is smaller than
the coherence length of the laser, Lcoh = c · τcoh = c/∆ω, where c is the vacuum
speed of light, τcoh the coherence time, and ∆ω the laser linewidth. For narrowband
cw lasers the coherence length is on the order of kilometers.
As a consequence of the coherence, beams derived from the same laser can inter-

fere. From an experimental point of view, this is an extremely important property as
it allows for the implementation of a large number of manipulations and operations
on the optical field. Furthermore, interference is crucial in providing the required
phase reference for phase sensitive measurements of optical quantum states, as de-
scribed in the following sections. Conditions for observing interference between
two fields are that they have non-orthogonal polarizations and that they are mode
matched, meaning that they occupy the same spatial mode. Any deviation from a
perfect overlap will result in only partial interference and thereby loss.
Experimentally, it is important to quantify the efficiency of an interference process

in order to account for the associated loss. Consider the interference of two classical
modes α1 and α2 on a beamsplitter with intensity transmittivity T and spatial mode
matching η. We can arbitrarily define the spatial mode of α1 as the reference mode
and expand the two interfering modes into a part residing in the reference mode
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and a part orthogonal to the reference:

(α1,ref , α1,orth) = (α1, 0) (2.1)
(α2,ref , α2,orth) =

(√
ηα2,
√

1− ηα2
)
. (2.2)

The resulting amplitude of any of the beamsplitter outputs is

(α3,ref , α3,orth) =
(√

Tα1 + eiθ
√
η(1− T )α2, e

iθ
√

(1− η)(1− T )α2

)
, (2.3)

where a relative phase between the interfering beams has been included. From this
expression we can calculate the corresponding intensities residing in the reference
and orthogonal mode, respectively.

Iref = α∗3,refα3,ref = TI1 + η(1− T )I2 + 2
√
ηT (1− T )

√
I1I2 cos θ (2.4)

Iorth = α∗3,orthα3,orth = (1− η)(1− T )I2 (2.5)

The total measured intensity is

Itotal = Iref + Iorth (2.6)

= TI1 + (1− T )I2 + 2
√
ηT (1− T )

√
I1I2 cos θ. (2.7)

Assuming a balanced beamsplitter with T = 1/2 and equal beam intensities, the
maximum and minimum output intensity is

Imax = I(1 +√η) (2.8)
Imin = I(1−√η), (2.9)

from which we can construct the measurable interference fringe visibility

V = Imax − Imin
Imax + Imin

= √η. (2.10)

2.2 Detection of light
Reliable and efficient detection of light is obviously of uttermost importance in any
quantum optics experiment, since light is the carrier of information about the system
being investigated, whether that be the light itself, an atomic ensemble, a solid
state medium, or ... Depending on the nature of the light field and how information
is encoded onto it, different detection strategies should be utilized to extract the
information most efficiently. In continuous variable experiments we are generally
concerned with the quantized electromagnetic field, meaning that broadband phase-
sensitive detection is required; on the other hand photonics experiments are usually
focused on the quantized electromagnetic energy requiring efficient detection of
single photons and the photon statistics of the light field.
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2.2 Detection of light

In this thesis work only the field properties of light have been investigated, but
a range of different detection schemes has been utilized. In this section we review,
from a theoretical point of view, the basics of the involved detection processes and
their abilities in terms of detecting quantum properties of light. The actual imple-
mentation of the schemes will be discussed in later sections covering the correspond-
ing experimental work. Common to all the schemes are that they are destructive
in the sense that optical energy is absorbed and converted into an electrical signal
proportional to the light intensity, and in all cases this photon-to-electron conver-
sion is accomplished via the photo-electric effect in reverse-biased semiconductor
PIN photodiodes. For such “square-law detectors” the generated photocurrent is
proportional to the norm-square of the incident field strength or equivalently the
optical power, i(t) ∝ |E(t)|2 ∝ Popt.
In performing field sensitive measurements, we will most often be interested in

the spectral photocurrent revealing quantum properties of optical sidebands at fre-
quencies ±Ω, relative to the optical carrier frequency ω. At optical wavelengths,
say, λ = 850 nm, the corresponding carrier frequency is ω/2π = c/λ = 3.5 · 1014 Hz,
which is obvisouly not resolvable by any electronic detector. However, due to the
square-law detection process, the bright carrier Ee−iωt will simultaneously beat with
field sidebands δEe−i(ω±Ω)t on the photodiode and as a result the sideband compo-
nent is down-mixed to an ac component of the photocurrent at rf frequency Ω. The
measured ac component is due to the interference of the two sideband beat signals,
while the dc signal is proportional to the carrier power. For this reason it is common
– though maybe slightly confusing – to refer to the optical carrier as the dc com-
ponent of the field and the sidebands as the ac components. In the case of a phase
modulated beam, the sideband beat signals always interfere destructively in the
amplitude quadrature (cf. Fig 1.2, the projections of the sideband phasors onto the
carrier are always equal and opposite) meaning that no Ω-component is observed in
the photocurrent. In order to observe a pure phase modulation, a phase sensitive
measurement scheme, such as homodyne detection, is required. For an amplitude
modulated beam, however, the modulation is directly observable. Monitoring the
photocurrent spectrum, e. g. using an electronic spectrum analyzer (ESA), will thus
yield direct information about the state of the optical sidebands.

2.2.1 Optical loss and quantum efficiency

In order for a photodetection process to provide a faithful measure of the input
quantum state, all incoming photons must be detected and converted into photo-
electrons. Many photon loss-channels are present in the process, such as reflection
from diode cover, reflection from diode surface, over-filling of the active diode area,
recombination of electron-hole pairs, intrinsic diode efficiency etc., all of which can
in principle be shifted in front of the diode and modeled as a lumped beamsplitter
loss. Classically, the loss can be represented as an amplification process with gain
η < 1. But quantum mechanically we cannot simply say that the corresponding
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input-output relation is given by âout = √ηâin since

[âout, â†out] = [√ηâin,
√
ηâ†in] = η[âin, â†in] = η 6= 1, (2.11)

meaning that the transformation is non-unitary. Salvation of the canonical commu-
tation relation requires that we also account for the initial vacuum fluctuations in
the loss mode b̂, which is achieved by extending the above transformation to that
of a beamsplitter with intensity transmittance η, such that

âout = √ηâin +
√

1− ηb̂in, (2.12)
b̂out = √ηb̂in −

√
1− ηâin. (2.13)

In this case [âout, â†out] = η + (1 − η) = 1 and equivalently for b̂out. This is the
standard beamsplitter model of loss in quantum optics which will also be employed
in this thesis. For squeezed states the effect of loss is detrimental and from (2.12) it
is clear why: the state is not only attenuated (first term), a portion of the vacuum
field equal to the loss is additionally admixed (second term), meaning that any
reduction of quantum noise in the input field will quickly be masked by vacuum
fluctuations in the presence of loss. For an arbitrary quadrature of the input field
the variance is modified by loss according to:

Var(X̂out
θ ) = ηVar(X̂ in

θ ) + (1− η). (2.14)

Losses pertaining to the intrinsic efficiency of the photodiode are characterized by
the quantum efficiency, quantifying the probability that a photon which is absorbed
in the PIN depletion region also leads to a viable electron-hole pair. Commonly,
the quantum efficiency of a diode is stated in terms of the spectral responsivity Rλ

[A/W] which is the proportionality constant between the generated photocurrent
and the absorbed optical power, i = RλPopt. In order to evaluate the total detection
efficiency, it more convenient to know the percentage quantum efficiency of a diode.
A simple conversion relation is derived in the following.
The rate of photon absoptions is

nph = Popt
E

= Poptλ

hc
, (2.15)

where E is the photon energy, and the corresponding rate of generated photoelec-
trons is

nel = i

q
= PoptRλ

q
, (2.16)

with q being the electron charge. Forming the ratio of the two quantities yields a
relation between responsivity and quantum efficiency.

ηQE = nel
nph

= hc

qλ
Rλ = 1236 (nm ·W)A−1Rλ

λ
. (2.17)
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2.2.2 Direct detection
The most straightforward means of field detection is simply to focus the light onto a
single photodiode, in which case the generated photocurrent is proportional to the
number of photons in the field i(t) ∝ n̂(t) = â†(t)â(t). For a coherent state input
the linearized temporal and spectral photocurrents are,

i(t) = gD(α∗ + δ̂a†)(α + δ̂a) ≈ gD
(
|α|2 + αδX̂1(t)

)
(2.18)

i(Ω) = gD
(
|α|2δ(Ω) + αδX̂1(Ω)

)
. (2.19)

The proportionality constant gD includes detection effciency and detector gain. The
first spectral term is a dc component, proportional to the power in the optical
carrier, while the second ac term provides a scaled measure of the field amplitude
fluctuations at sideband frequencies.

2.2.3 Balanced homodyne detection
Completely characterizing the quantum fluctuation properties of an optical signal
entails a complete shot noise normalized tomography of the sideband quadratures,
which requires an optical phase reference. This is conveniently achieved by balanced
homodyne detection in which a weak input signal field is mixed with a bright local
oscillator (LO) on a balanced (50/50) beamsplitter. The two emerging output fields
are directly detected by separate photodiodes and the final measurement output is
given by the difference of the photocurrents.

-



Figure 2.1: Schematic illustration of the experimental setup for homodyne detec-
tion.

Consider two optical beams interfering on a 50/50 beamsplitter, presented by
field operators â(t) = α(t) + δâ(t) and b̂(t) = (β(t) + δb̂(t))eiφ, respectively, with a
relative phase φ. The resulting output fields will then be given by

d̂1(t) = 1√
2
(
(α(t) + δâ(t))− (β(t) + δb̂(t))eiφ

)
(2.20)

d̂2(t) = 1√
2
(
(α(t) + δâ(t)) + (β(t) + δb̂(t))eiφ

)
(2.21)
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Assuming that the gain of the two direct detection processes are identical, the
corresponding linearized photocurrents are

i1(t) = gDd̂
†
1(t)d̂1(t)

≈ gD
2

[
α(t)2 + β(t)2 − 2α(t)β(t) cosφ

+α(t)
(
δX̂a

1 (t)− δX̂b
−φ(t)

)
+ β(t)

(
δX̂b

1(t)− δX̂a
φ(t)

)]
(2.22)

i2(t) = gDd̂
†
2(t)d̂2(t)

≈ gD
2

[
α(t)2 + β(t)2 + 2α(t)β(t) cosφ

+α(t)
(
δX̂a

1 (t) + δX̂b
−φ(t)

)
+ β(t)

(
δX̂b

1(t) + δX̂a
φ(t)

)]
. (2.23)

The differential photocurrent is then found to be

i−(t) = i2(t)− i1(t)
≈ gD

(
2α(t)β(t) cosφ+ α(t)δX̂b

−φ(t) + β(t)δX̂a
φ(t)

)
. (2.24)

Thus, in general the carrier amplitude of each beam probes the fluctuations of the
other, though in orthogonal quadratures. To achieve a phase sensitive measurement
of the signal quadrature noise alone we must require that one field – the local
oscillator – is much brighter than the signal, β � α, such that terms not containing
β can be neglected. This is the usual homodyne condition. In this case the spectral
variance of the differential signal is

Var(i−(Ω)) ≈ g2
Dβ(t)2Var(δX̂a

φ(Ω)) (2.25)

The prefactor can be easily measured by blocking the signal input. Doing so, the ho-
modyne detector simply measures the variance of the vacuum field Var(δX̂a

vac(Ω)) =
1, providing shot noise normalization for subsequent measurements of the signal
field.

2.2.4 Self homodyne detection
Above, we discussed the case where the signal input to the homodyne detector is
replaced by vacuum, but we only considered the differential photocurrent. Using
(2.22) and (2.22) we can also form the linearized sum signal

i+ = i2(t) + i1(t) ≈ gD(β(t)2 + β(t)δX̂b
1), (2.26)

with spectral variance

Var(i+(Ω)) ≈ g2
Dβ(t)2Var(δX̂b

1). (2.27)
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2.2 Detection of light

This together with (2.25), for vacuum at the signal input, provides a shot noise
calibrated measurement of the amplitude noise in the bright input mode, simply as
the ratio of the sum and difference signal variances,

Var(i+(Ω))
Var(i−(Ω)) = g2

Dβ(t)2Var(δX̂b
1)

g2
Dβ(t)2Var(δX̂a

vac(Ω))
= Var(δX̂b

1). (2.28)

Self homodyning thus provides a convenient means for measuring the quantum noise
properties of bright fields, in the sense that the field has a strong coherently excited
carrier. Performing standard homodyne detection of such states can be technically
challenging, since the detector must be able to withstand high optical powers with-
out inflicting damage to the diodes or causing saturation in the circuit. In it’s
simplest form, as described above, the feasibility of the self homodyne scheme for
squeezed light characterization is clearly limited by the fact that the local oscilla-
tor, provided by the carrier, is locked in-phase with the sidebands. This allows only
for measurements of the amplitude quadrature. If, however, by some means, the
relative phase between carrier and sidebands can be controlled, then the carrier can
provide the necessary phase reference for projecting out any quadrature, enabling
a full noise tomography of the sidebands. In the following we briefly mention two
extended self homodyne schemes for which this can be achieved.

Cavity-assisted self homodyne detection

Introducing a cavity in the signal beam is one way of adding the dispersion required
for self homodyne tomography, exploiting that the phase response of a cavity de-
pends on frequency detuning with respect to the cavity resonance. Thus, by de-
tuning the impinging signal field, an arbitrary relative phase between carrier and
sidebands can be induced. In this way, complete conversion between amplitude and
phase fluctuations can be achieved, as described in [130].

Displacement-assisted self homodyne detection

Alternatively, full state tomography is also achievable by interfering the signal beam
with an auxiliary coherent beam βeiθ prior to self homodyne detection. Since inter-
ference is conditioned on both spectral and spatial overlap of the partaking fields,
the auxiliary will only interfere with the signal carrier at frequency ω while the
sidebands are unaffected. Consequently, this entirely classical interference imple-
ments a displacement operation D̂(βeiθ)ω+Ω acting on the signal sidebands, and as
the phase of the auxiliary is scanned the displaced state describes a circle in phase
space. In this process, the absolute phase of the signal sidebands are unchanged
while their relative phase with respect to the carrier is changing. Thus, self homo-
dyne detection of the signal field will project out all fluctuation quadratures as the
phase θ is scanned through.
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2 Experimental concepts

Sampling of time-domain fluctuations via demodulation

One complication of the self homodyne scheme is that the signal quadrature variance
is not easily measured by just recording the power spectrum of the photocurrent on
a spectrum analyzer, as is the case for standard homodyne detection. The individual
sum and difference current spectral variances are of course directly measurable, but
recording them simultaneously and with the same overall detection gain, in order
to faithfully derive the shot noise normalized variance in (2.28), is not straightfor-
ward. An alternative approach is to demodulate the individual ac photocurrents
at a detection frequency Ω = Ω′, and sample the time-domain fluctuations of that
particular spectral component, rather than measuring the total fluctuation power
spectrum. Demodulation is achieved by mixing the photocurrent with an electrical
local oscillator at frequency Ω′ and low pass filtering the resulting signal, as illus-
trated in Fig. 2.2. In time-domain, the mixer output is given by multiplying the

D
A
Q~

Figure 2.2: Schematic illustration of the experimental setup for self homodyne
detection. Time-domain sampling of the individual photocurrents is achieved by
down-mixing, low pass filtering, and subsequent recording using a digital data ac-
quisition card (DAQ).

input signal with the local oscillator and the low pass filter is equivalent to temporal
averaging over a time T inversely proportional to the filter bandwidth. For T →∞
the low pass filter transfer function approaches a δ-function and the demodulation
output becomes a time-dependent dc-signal proportional to the fluctuating Fourier
amplitude at frequency Ω of the photocurrent, denoted iΩ(t). In reality, the demod-
ulated signal will have a bandwidth determined by the bandwidth of the low pass
filter. Sampling simultaneously the demodulated signals from both detectors, iΩ1 (t)
and iΩ2 (t), provides full information about the statistical properties of the individual
current fluctuations as well as for the sum and difference currents.

2.2.5 Heterodyne detection
As a final field detection scheme we discuss heterodyne detection. This scheme
distinguishes itself from homodyne and selfhomodyne detection mainly by the fact
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2.2 Detection of light

that it provides simultaneous measurements of two orthogonal quadratures of the
signal field. The experimental implementation (Fig. 2.3) is very similar to that of
homodyne detection but with the important distinctions that signal and local os-
cillator should be equally bright, α(t) = β(t), and that their relative phase must
be stabilized to a value of φ = π/2. As a result, the signal state is displaced by
equal amounts along both amplitude and phase quadrature, and direct detection of
the two beamsplitter outputs probes fluctuations of this displaced state along the
orthogonal ±π/4 quadratures. Unlike the case of homodyne detection, the contri-
bution from the signal carrier probing vacuum fluctuations of the local oscillator
cannot be neglected, since the fields are equally bright. And due to the indistin-
guishability of photons from the two fields and the absence of correlations in the
vacuum fluctuations there are no means by which the two contributions can be sepa-
rated, meaning that they will simply add up in quadrature in the final measurement
outcome. Though not strictly necessary, it is convenient to consider again the sum
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Figure 2.3: Schematic illustration of the experimental setup for heterodyne detec-
tion.

and difference of the detector photocurrents since that refers the measurement out-
come back to the quadrature basis of the input signal, simplifying the expressions
somewhat. From (2.22) and (2.23) we find the spectral variances of the linearized
sum and difference photocurrents to be

Var(i+(Ω)) ≈ g2
Dβ(t)2

(
Var(δX̂a

1 (Ω)) + 1
)
, (2.29)

Var(i−(Ω)) ≈ g2
Dβ(t)2

(
Var(δX̂a

2 (Ω)) + 1
)
, (2.30)

where we have assumed a coherent state for the local oscillator. Indeed the hetero-
dyne detection provides simultaneous knowledge about orthogonal quadratures of
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the state, but as expected at the expense of an additional shot noise penalty – an
inevitable price ensuring that the simultaneous measurement of conjugate variables
is in accordance with Heisenberg’s uncertainty relation.
Simply measuring the above spectral variances is, however, not enough to obtain

full tomographic knowledge about the signal state, since we are only projecting the
noise onto one particular set of orthogonal quadratures, neglecting any potential
correlations between them. Measuring a squeezed state would thus only give a
rightful characterization in the specific cases of amplitude or phase squeezing. In
the other extreme, a state squeezed along the (X̂1± X̂2)/

√
2 quadrature would only

reveal excess noise in both measured quadratures.
The situation is quite different if instead the temporal fluctuations of the pho-

tocurrents are sampled and the sums and differences are formed subsequently, as
discussed in the previous section. Then the total data set {(iΩ+(ti), iΩ−(ti))}, where

iΩ+(ti) = gDβ(ti)
(
δXa

1 (Ω) + δXb
1(Ω)

)
, (2.31)

iΩ−(ti) = gDβ(ti)
(
δXa

2 (Ω)− δXb
2(Ω)

)
, (2.32)

represents the outcomes of an ensemble of independent simultaneous projections of
the signal state fluctuations onto quadratures X̂1 and X̂2, each sampled at time
ti. The temporal data gives us not only knowledge about the variances of the sum
and difference photocurrents but also their correlations. This is all contained in the
covariance matrix, which in shot noise normalized form, is given by

γ(iΩ+, iΩ−) = 1
2g2

Dβ
2

(
Var(iΩ+) Cov(iΩ+, iΩ−)

Cov(iΩ−, iΩ+) Var(iΩ−)

)

= 1
2

(
1 + Var(δXa

1 ) Cov(δXa
1 , δX

a
2 )

Cov(δXa
2 , δX

a
1 ) 1 + Var(δXa

2 )

)
Ω
. (2.33)

Since the covariance matrix is normal per construction (γ = γT), it is diagonalizable
by an orthogonal matrix A such that A−1γA = diag(Var(X̂P

1 ),Var(X̂P
2 )), where

the eigenvalues represent the principal variances of the state. Coming back to the
issue of measuring squeezing in an arbitrary quadrature, mentioned in the previous
paragraph, we see that time-domain heterodyne detection conveniently solves the
problem. If a state squeezed in the X̂θ quadrature is measured in (X̂1, X̂2)-basis, we
can always find a diagonalizing rotation matrix R(θ) that recovers the squeezed and
anti-squeezed quadrature variances, R(θ)−1γR(θ) = diag(Var(δX̂θ),Var(δX̂θ+π/2)).
In the context of squeezed state characterization, it is important to note that the

heterodyne scheme imposes an upper limit to the measurable degree of squeezing.
Assuming a pure squeezed state with principal quadrature variances e±2r we see
that the corresponding measured variances, given by the diagonal elements of the
covariance matrix, are (1 + e±2r)/2. In the limit of infinite squeezing strength we
find

lim
r→∞

1
2(1 + e±2r) =

{
+∞

1
2

, (2.34)
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meaning that we can never hope to observe more than 3 dB of squeezing. Forming
the quadrature variance product we see that

Var(δX̂θ)Var(δX̂θ+π/2) = 1
4(1 + e−2r)(1 + e2r) = 1

2(1 + cosh(2r)) ≥ 1, (2.35)

signifying that the additional shot noise unit introduced to each quadrature mea-
surement indeed ensures that Heisenberg’s uncertainty relation is fulfilled.
Finally, it is of practical importance to note that the difference of the dc pho-

tocurrents, cf. (2.24), is given by

idc− = 2gDα(t)β(t) cosφ. (2.36)

This signal has zero-crossings at phase values φ = m·π/2, providing a convenient er-
ror signal for stabilizing the relative phase between signal carrier and local oscillator
to the required value φ = π/2.
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Part II

Quantum sensing with cavity
optomechanics
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Introduction 3
Quantum mechanics is considered a generally valid theory in the sense that it is
applicable to physical systems pertaining to the microscopic subatomic universe
as well as macroscopic phenomena well-described by classical Newtonian physics.
However, from a practical point of view, it is certainly not feasible to describe
classical dynamics, say, the collision of billiard balls, using quantum mechanics – and
it would be a blatant example of shooting sparrows with cannons. But fundamentally
it is possible, and consistency of the classical and quantum predictions is enforced
by the heuristic correspondence principle of Niels Bohr:

“The aim of regarding the quantum theory as a rational generalization
of the classical theories led to the formulation of the so-called correspon-
dence principle.” [18]

“[...] which originated in the search for the closest possible connection
between the statistical account of atomic processes and the consequences
to be expected from classical theory, which should be valid in the limit
where the actions involved in all stages of the analysis of the phenomena
are large compared with the universal quantum.” [19]

It dictates that the quantum mechanical description should converge to that of
classical physics in the limit of large quantum numbers, thus acting as a boundary
condition on quantum mechanics towards the classical regime. The transition be-
tween the quantum and classical regimes, commonly termed the quantum-classical
boundary, is a bit of a grey-zone about which very little knowledge exist. And as
such it is an area of immense fundamental interest. Since the advent of quantum
mechanics, the quantum-classical transition has been a heavily debated topic, and
it is at the heart of the so-called measurement problem. Numerous proposals exist
for the mechanism by which a system transits from one regime to the other, but
the number of appropriate systems admitting experimental scrutiny are sparse.
Quantum behaviour of a macroscopic system was observed as early as in 1937,

when P. Kapitza [68] discovered the superfluidity of liquid helium, simultaneously
with J. F. Allen and A. D. Misener [1]. The related Bose-Einstein condensation
phenomenon was only demonstrated much later in 1995 with the first condensates
in dilute atomic gases of rubidium[2] and sodium [34]. Also, distinct quantum
effects such as matterwave interference and decoherence have been observed for
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macroscopic buckyball molecules [24, 50] and macrocyclic compounds [66]. Other
prominent demonstrations of macroscopic quantum systems are entanglement of
Josephson-junction qubits [16] and atomic ensembles [67].
Within the last decades a class of conceptually much simpler macroscopic sys-

tems, collectively known as micromechanical resonators, have attracted much at-
tention as potential candidates for displaying quantum behaviour and serving as
testbed-systems for probing the quantum-classical transition[13, 45, 95]. Such sys-
tems are particularly compelling since they are bulk and truly classical objects that
can be fabricated with tailored properties within the existing and mature nanofab-
rication platform. And they are just about the simplest possible systems one can
hope to show quantum behaviour – mechanical harmonic oscillators! The diver-
sity of demonstrated micromechanical resonators is by now vast, with some of the
most investigated systems being microwave nanomechanical cavities [125, 126], can-
tilevers [73], beam oscillators [49, 124], membranes [129, 12], microtoroids [7, 60, 3],
photonic crystals [108, 107], and optically levitated microparticles [70].
In probing mechanical displacements optically, the attainable sensitivity is fun-

damentally limited by noise contributions from two sources [28]: imprecision noise
in the form of photon shot noise and quantum back-action noise due to a stochastic
radiation pressure force imparted on the mechanical oscillator by vacuum fluctua-
tions. The optimal sensitivity is given by the so-called Standard Quantum Limit
(SQL), in which case the two above contributions are exactly equal. Hitherto, opto-
mechanical experiments have exclusively been carried out using classical coherent
probe light for which the imprecision noise contribution scales ∝1/N , with N being
the deployed number of photons. This suggests that an arbitrarily high sensitiv-
ity can be achieved simply by increasing the optical probe power. However, the
quantum back-action noise scales as ∝N , and as N is increased this contribution
will eventually dominate the imprecision noise, attaining the limiting SQL sensi-
tivity at the particular turning point probe power PSQL. Reaching the SQL for
mechanical displacement sensing has been a long standing goal that still remains
unachieved. Imprecision noise surpassing that at the SQL has however been demon-
strated [125, 4, 5], but so far only at power levels well above that corresponding to
the SQL. The ability to access this regime experimentally has also enabled obser-
vation of the quantum back-action noise [93, 100] that enforces the SQL and which
is a direct consequence of Heisenberg’s uncertain principle.
The potentials of cavity optomechanical systems [71] as probes for foundational

quantum physics are intriguing and fascinating, and a path we might consider in the
future. However, in the work covered in this part of the thesis the approach has been
somewhat different. Rather than actually striving to reveal quantum properties of
a mechanical oscillator, our focus has been on facilitating such observations through
quantum-enhanced probing strategies. It has been long known that squeezed states
enable operation of interferometers below the shot noise limit [27] and thereby
quantum-enhanced interferometric displacement sensing, as first demonstrated by
Xiao et al. [134] and more recently also applied in the context of Sagnac interferom-
eters [39] and gravitational wave detection [127, 128]. However, this technique has
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not before been applied in the context of micromechanical resonator displacement
sensing. The primary objective of this project has thus been to interface such a mi-
crostructured oscillator with squeezed light at room temperature and demonstrate
a quantum-enhanced transduction of the classical thermally induced resonator mo-
tion, thereby marrying the fields of cavity optomechanics and quantum sensing. It
is important to stress that a quantum enhanced transduction sensitivity in itself by
no means is equivalent to surpassing, or even approaching, the SQL for displace-
ment sensitivity. But it is one potential way of achieving the required measurement
imprecision noise that has not been explored previously.
The work presented in this part constitutes the first endeavours of our group into

the field of optomechanics, and was carried out in collaboration with the group
of Warwick Bowen at University of Queensland, in particular Glen I. Harris, who
visited DTU for about 3 months in late 2011 and brought with him the micro-
toroidal resonators and tapered optical fibres that were used in the experiments.
The optomechanical setup was constructed entirely during the time frame of the
project, while the employed squeezed light source was already constructed in the
lab some years back. Here the squeezed light source will simply be considered as an
available resource and a detailed account for its construction and performance will
not be provided. For further details, we refer the reader to the PhD thesis of Jiri
Janousek [65].
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Cavity optomechanics 4
In this chapter we introduce the generic cavity optomechanical system and asso-
ciated interaction Hamiltonian describing the coupling of optical and mechanical
degrees of freedom. We will then set up a detailed quantum mechanical model for
the system dynamics describing the transduction of mechanical vibrations onto the
light field, taking inspiration from the linear amplifier model presented by Botter
et al. [21]. Furthermore, we discuss a phase space representation of the optome-
chanical transduction process providing a bridge to the standard quantum optical
formalism.

Figure 4.1: Artistic illustration of a generic cavity optomechanical system, com-
prised of a semi-transparent coupling mirror and a vibrating end mirror.
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4 Cavity optomechanics

4.1 Generic system and interaction Hamiltonian
The generic cavity optomechanical system consists of an optical Fabry-Perot cavity
with a fixed coupling mirror and a perfectly reflecting end mirror that is free to
oscillate along the cavity axies, as simplistically illustrated in Fig. 4.1. A driving
laser field is injected into the cavity through the coupling mirror, and the momentum
imparted upon reflection exerts a radiation pressure force on the movable mirror,
thereby driving its motion. At the same time, the mechanical motion acts back on
the light through the oscillating boundary condition which results in a time-varying
cavity resonance condition. In the simplest case, the light-mechanics interaction
is given by the mutual coupling of single mode optical and mechanical harmonic
oscillators. The interaction strength depends on the optical power, proportional to
the intra-cavity photon number, and the displacement of the mechanical oscillator
from its unperturbed position.
In order to quantify the interaction we investigate the dependence of the optical

resonance on a mechanical displacement x. The optical resonance condition is
N · λN = nL,N ∈ N, where L is the round trip length and n the refractive index in
which the cavity mode propagates. The corresponding resonance frequencies are

ωN = 2π c

nλN
= N · 2π c

nL
. (4.1)

A mechanical displacement of the cavity end mirror by an amount x, such that
L→ L+ x, results in a position dependent perturbed resonance frequency

ωN(x) = N · 2π c

n(L+ x) = N · 2π c

nL

L

L+ x
' ωN

(
1− x

L

)
, (4.2)

for x � L. Thus, to first order in the mechanical displacement we have for any
optical resonance that

ω(x) = ω0 + gx, (4.3)
where ω0 is the unperturbed resonance and g = −ω0/L is the optomechanical
coupling constant.
We now quantize the optical intracavity field and mechanical harmonic oscillator

in terms of annihilation and creation operators â, â† and b̂, b̂†, respectively, each
satisfying canonical commutation relations

[â, â†] = 1, [b̂, b̂†] = 1. (4.4)

Using the above simple arguments we can express the standard optomechanical
Hamiltonian governing the dynamics of the system as

Ĥ = ~ω0â
†â+ ~ωmb̂†b̂+ ~g0

(
b̂+ b̂†

)
â†â, (4.5)

where ω0 and ωm are the respective optical and mechanical resonance frequencies.
The first and third terms result from inserting (4.3) into the usual free cavity field
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4.2 Phase space visualization

Hamiltonian and the second term describes the free evolution of the mechanical
oscillator. The important third term accounts for the optomechanical interaction,
coupling the mechanical oscillator position x̂ = xzpf (b̂+b̂†) to the intracavity photon
number â†â. The interaction strength is characterized by vacuum optomechanical
coupling rate g0 = xzpfω0/L. The pre-factor xzpf =

√
~/2Mωm is the amplitude of

the mechanical zero-point fluctuations, withM the effective mass of the mechanical
oscillator.

4.2 Phase space visualization
In the limit of a highly excited mechanical oscillator, e.g. for the system being in
thermal equilibrium with a heat bath at room temperature, the mechanical dis-
placement can be considered as a classical harmonic oscillation x(t) = δx sin(ωmt)
with the particular mode frequency ωm and an amplitude δx. Correspondingly, the
optical resonance frequency will vary in time as ω(t) = ω0 +g0δx sin(ωmt), resulting
in a frequency modulated intracavity field,

α(t) = α0e
−i
∫ t

0 ω(τ)dτ (4.6)

= α0e
−iω0te−ig0δx

∫ t

0 sin(ωmτ)dτ (4.7)
= α0e

−iω0te−iβ(1−cos(ωmt)) (4.8)

≈ α0e
−iβ

(
e−iω0t + i

β

2 e
−i(ω0−ωm)t + i

β

2 e
−i(ω0+ωm)t

)
. (4.9)

Here we have assumed the modulation index β = g0δx/ωm to be small. Thus
for a resonant coherent drive field the optomechanical interaction is a mere phase
modulation of the carrier, and as a result photons from the carrier are scattered
into symmetrically spaced Stokes and anti-Stokes sidebands at frequencies ±ωm
relative to the carrier frequency. In the frequency resolved phase space picture
(Fig. 4.2) we can thus think of the optomechanical interaction as the simultaneous
action of displacement operations D̂ωc±ωm [iβα/

√
2] creating weak coherent states

at the sidebands with an amplitude proportional to the mechanical displacement
δx. In this way information about the frequency and amplitude of the mechanical
resonator is transduced onto the optical field which can subsequently be read out
by homodyne detection of the phase quadrature.

4.3 Quantum dynamics
Having introduced the general optomechanical system and provided a classical un-
derstanding of the interaction, we now turn to a detailed modeling of the quan-
tum mechanical dynamics governed by the optomechanical interaction Hamiltonian
(4.5). We will do so, using the quantum Langevin equation formalism.
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4 Cavity optomechanics

Figure 4.2: Phase space representation of optomechanical transduction. Through
the optomechanically mediated phase modulation, photons are scattered from the
probe carrier into weak sideband coherent states carrying information about the
mechanical oscillation frequency and amplitude. The generated sideband states
are associated with vacuum fluctuations which ultimately limit the measurement
sensitivity.

4.3.1 Quantum Langevin equations of motion
We represent the coupling efficiency of the cavity input mirror and intracavity loss
by amplitude coupling rates κc and κ0, respectively, resulting in a total cavity decay
rate (HWHM) of κ = κc + κ0. The admixed vacuum mode associated with loss
is represented by an annihilation operator ĉ. Similarly, the mechanical system is
characterized by a linear momentum damping rate γm and a Langevin noise operator
ξ̂th representing the stochastic momentum kicks that drive the mechanical motion
due to coupling with the thermal environment. Driven by an input field âine−iωdt

the intracavity field and mechanical mode dynamics is described by the quantum
Langevin equations of motion

dâ

dt
= − i

~
[
â, Ĥ

]
− κâ+

√
2κcâine−iωdt +

√
2κ0ĉ, (4.10)

db̂

dt
= − i

~
[
b̂, Ĥ

]
− γmb̂+

√
2γmξ̂th, (4.11)

and a corresponding set for the conjugate operators. For the sake of notational
clarity, we have omitted the explicit time dependence of operators, as will also
be the case in the remainder of this section. It is convenient to transform the
intracavity field into a frame rotating at the driving laser frequency ωd. Using the
results of Appendix A this is achieved by making the substitution â → e−iωdtâ.
After expanding the commutators using (4.5) we get the following rotating frame
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equations of motion

dâ

dt
= −(κ− i∆)â− ig0

(
b̂+ b̂†

)
â+
√

2κcâin +
√

2κ0ĉ, (4.12)

db̂

dt
= −iωmb̂− ig0â

†â− γmb̂+
√

2γmξ̂th, (4.13)

where we have introduced the drive field detuning ∆ = ωd − ω0. The boundary
conditon for the cavity field is given by the input-output relation

âout = âin −
√

2κcâ, (4.14)

which will be used to project the intracavity field onto the measurable output field.
From (4.12) and (4.14) we can derive an equation for the mean value of the cavity
mode α = 〈â〉, and in steady state, dα/dt = 0, the relation between the intracavity
and driving field is found to be

α =
√

2κc
κ− i∆αin. (4.15)

An important parameter characterizing the optical response of the system is the
coupling coefficient ηc = κc/κ, describing the balance between the rate at which
photons are coupled into the cavity and the total rate at which they are lost. The
coupling coefficient is obviously bounded by 0 ≤ ηc ≤ 1, and it characterizes the
coupling regime in which the cavity is operated: If the input and loss rates are
exactly balanced, κc = κ then ηc = 1/2 and the cavity is said to be critically
coupled. In case of a net photon loss (ηc < 1/2) or gain (ηc > 1/2) the cavity is
under-coupled and over-coupled, respectively.

4.3.2 Linearized dynamics
Since we are interested only in the optical and mechanical fluctuations, we will
linearize the equations of motion about the mean amplitude as outlined in Sec-
tion 1.4.2. Substituting â = α+ δâ, and similarly for all operators, into (4.12-4.13)
and retaining only terms of first order in the fluctuations we find the following set
of linearized equations of motion for the fluctuations:

d

dt
δâ = −(κ− i∆)δâ− ig0α(δb̂+ δb̂†) +

√
2κcδâin +

√
2κ0δĉ, (4.16)

d

dt
δb̂ = −iωmδb̂− ig0α(δâ+ δâ†)− γmδb̂+

√
2γmδξ̂th. (4.17)

By taking the sum and differences of (4.16) and (4.17) and their conjugates,
we can construct a new set of equations of motion for the optical and mechanical
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fluctuation quadratures, cf. definitions in Section 1.4.1:

d

dt
δX̂a

1 = −κδX̂a
1 −∆δX̂a

2 +
√

2κcδX̂a,in
1 +

√
2κ0δX̂

c
1, (4.18)

d

dt
δX̂a

2 = −κδX̂a
2 + ∆δX̂a

1 − 2g0αδX̂
b
1 +
√

2κcδX̂a,in
2 +

√
2κ0δX̂

c
2, (4.19)

d

dt
δX̂b

1 = ωmδX̂
b
2 − γmδX̂b

1 +
√

2γmδX̂ξ
1 , (4.20)

d

dt
δX̂b

2 = −ωmδX̂b
1 − 2g0αδX̂

a
1 − γmδX̂b

2 +
√

2γmδX̂ξ
2 . (4.21)

Here (δX̂a
1 , δX̂

a
2 ) are the intracavity field fluctuation quadratures, (δX̂a,in

1 , δX̂a,in
2 ) the

driving field fluctuations, (δX̂c
1, δX̂

c
2) the admixed vacuum fluctuations, (δX̂b

1, δX̂
b
2)

the mechanical fluctuations, and (δX̂ξ
1 , δX̂

ξ
2) the thermal fluctuations driving the

mechanics.
The above differential equation system for the fluctuation quadratures can be

reformulated as a single matrix equation

dδq

dt
= M.δq +

√
2κcδqa,in +

√
2κ0δqc,in +

√
2γmδqb,in, (4.22)

where we have introduced the vectors δq = (δX̂a
1 , δX̂

a
2 , δX̂

b
1, δX̂

b
2)T , δqa,in = (δX̂a,in

1 , δX̂a,in
2 , 0, 0)T ,

δqc,in = (δX̂c
1, δX̂

c
2, 0, 0)T , and δqb,in = (0, 0, δX̂ξ

1 , δX̂
ξ
2)T . The system matrix has the

block form

M =
(

Ma T
T Mb

)
=


−κ −∆ 0 0
∆ −κ −2g0α 0
0 0 −γm ωm

−2g0α 0 −ωm −γm

 , (4.23)

where submatrices Ma and Mb account for the individual evolution of the optical
and mechanical systems while the interaction is covered by the transduction matrix
T.

4.3.3 Frequency-domain solution
In order to solve the equation system (4.22) we move into frequency space, using
the Fourier transform relations

â(Ω) = 1√
2π

∫
dt eiΩtâ(t) � â(t) = 1√

2π

∫
dΩ e−iΩtâ(Ω), (4.24)

and the equation system now takes the form

MΩ.δq(Ω) =
√

2κcδqa,in(Ω) +
√

2κ0δqc,in(Ω) +
√

2γmδqb,in(Ω). (4.25)
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The frequency space system matrix is

MΩ =
(

MΩ,a −T
−T MΩ,b

)
=


κ− iΩ ∆ 0 0
−∆ κ− iΩ 2g0α 0

0 0 γm − iΩ −ωm
2g0α 0 ωm γm − iΩ

 . (4.26)

We are interested in deriving an expression for the optical output quadratures as
function of the various fluctuation inputs to the system. To this end it is convenient
to split (4.25) into separate 2-dimensional systems for the optical (o) and mechanical
(m) quadratures

δqo(Ω) = M−1
Ω,a

(
T.δqm(Ω) +

√
2κcδqoa,in(Ω) +

√
2κ0δq

o
c,in(Ω)

)
, (4.27)

δqm(Ω) = M−1
Ω,b

(
T.δqo(Ω) +

√
2γmδqmb,in(Ω)

)
. (4.28)

The superscript notation δqi signifies that only the i-part of the full four-dimensional
vector is considered, e.g. δqo = (δX̂a

1 , δX̂
a
2 ). Now, inserting (4.28) into (4.27) and

solving for the optical intra-cavity quadratures we find

δqo(Ω) = A−1.
(√

2γmB.δqmb,in(Ω)

+ M−1
Ω,a.[
√

2κcδqoa,in(Ω) +
√

2κ0δq
o
c,in(Ω)]

)
. (4.29)

In order to simplify the notation somewhat, we have introduced new matrices

A = I2 −M−1
Ω,a.T.M−1

Ω,b.T , (4.30)
B = M−1

Ω,a.T.M−1
Ω,b , (4.31)

where I2 is the unit matrix of dimension 2, and the other constituent matrices are
given by

T =
(

0 0
−2g0α 0

)
(4.32)

M−1
Ω,a = 1

(κ− iΩ)2 + ∆2

(
κ− iΩ −∆

∆ κ− iΩ

)
(4.33)

M−1
Ω,b = 1

(γm − iΩ)2 + ω2
m

(
γm − iΩ ωm
−ωm γm − iΩ

)
. (4.34)

Finally, we can invoke the input-output relation for the optical fluctuation quadra-
tures

δqoout(Ω) = δqoa,in(Ω)−
√

2κcδqo(Ω) (4.35)
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4 Cavity optomechanics

to map the intracavity field onto the measurable output field. This results in the
expression

δqoout(Ω) = Ja.δqoa,in(Ω) + Jb.δqmb,in(Ω) + Jc.δqoc,in(Ω), (4.36)
describing the mapping of input fluctuations to the system onto the output field
through corresponding transfer matrices

Ja = I2 − 2κc(A−1.M−1
Ω,a) , (4.37)

Jb = −2√κcγm(A−1.B) , (4.38)
Jc = −2√κcκ0(A−1.M−1

Ω,a). (4.39)

As expected – and not least required of any sensible model of the system – no
information about the mechanical oscillator is transferred to the optical output
in the absence of coupling to the optomechanical cavity, κc = 0. In this case
the fluctuations of the optical input field are directly transferred to the output,
δqoout(Ω) = δqoa,in(Ω). Most importantly, we observe that the input fluctuations
determine the noise floor for measurements of transduced mechanical motion, κc 6=
0. This means that when probing the mechanical motion with a coherent input
state of a given amplitude, the signal-to-noise ratio of the transduction signal will
always be limited by the vacuum fluctuations of the input.

4.3.4 Homodyne detection of the output field
In the preceding, we have not made any particular choice of phase reference. But
since we will be interested in measuring the output field quadrature fluctuations
using homodyne detection with a local oscillator derived from the input field, the
obvious choice is to assume the input field to be real. Rewriting (4.15) and using
the input-output relation (4.14) we find

α = αin|F1(∆)|eiφ1 , φ1 = arctan (∆/κ) , (4.40)

αout = αin|F2(∆)|eiφ2 , φ2 = arctan
(

−2ηc∆/κ
1− 2ηc − (∆/κ)2

)
, (4.41)

where |F1(∆)| and |F2(∆)| are amplitude transfer functions, and the expressions
for φ1 and φ2 provide the necessary relations between the input, intracavity, and
output phases. Thus, the output field can always be transformed into the desired
basis by introducing appropriate rotation matrices in (4.36). From (4.32) we see
that the transduction gain is proportional to the intracavity mean field amplitude,
and in order to maximize the signal-to-noise ratio we will therefore only consider
resonant driving (∆ = 0) of the optomechanical system. In this case the relative
phases (4.40)-(4.41) both vanish, eliminating the need for basis transformations.
As described in Section 2.2.3, homodyne detection projects out a particular

quadrature Q̂θ of the signal field determined by the local oscillator phase θ:

Q̂θ(Ω) = (cos(θ) , sin(θ)) .δqoout(Ω) = cos(θ)δX̂a,out
1 + sin(θ)δX̂a,out

2 . (4.42)
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4.3 Quantum dynamics

Assuming that all input fluctuations are uncorrelated, we can use (4.36) and (4.42)
to express the measured quadrature variance as

Var(Q̂θ) = ηmmηQE
∑

k={a,b,c}
Var

(
(cos(θ) , sin(θ)).Jk.δqk,in(Ω)

)
+ (1− ηmmηQE). (4.43)

Here we have also accounted for measurement imperfection through mode matching
efficiency ηmm and detector quantum efficiency ηQE and the resulting admixed vac-
uum noise contribution. The quadrature variances of the three fluctuation inputs
are given by:

δqa,in :
{

Var(δXa
1 ) = Var(δXa

2 ) = 1
Var(δXa

1 ) = e2r; Var(δXa
2 ) = e−2r , (4.44)

δqb,in : Var(δXb
1) = Var(δXb

2) = 1 + 〈n〉, 〈n〉 = 1
e~ωm/kbT − 1 , (4.45)

δqc,in : Var(δXc
1) = Var(δXc

2) = 1, (4.46)

The two cases for the optical driving field correspond to a coherent state and a
phase squeezed state, respectively. We have assumed that the system is in ther-
mal equilibrium with the environment at temperature T resulting in thermal state
fluctuations of the mechanical oscillator (cf. Section 1.4.4).
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Squeezing-enhanced transduction 5
“It [quantum efficiency] determines our signal to shot noise ratio, which
sets an upper bound on the SNR of the measurement. There are very
special situations (“squeezed states”) in which this has to be qualified,
but they aren’t of much practical use.”

– P. C. D. Hobbs
in “Building electro-optical systems: making it all work.” [57]

In this chapter we discuss how the optomechanical transduction sensitivity can
be enhanced by employing squeezed probe states. Using the model developed in
Section 4.3 we investigate numerically the enhancement efficiency in different cavity
coupling regimes and as function of the mechanical frequency to optical linewidth
ratio. The aim is to identify the operation regime for which this particular quantum
sensing scheme yields the largest possible improvement compared to coherent state
probing.
An elaboration of the work presented in this chapter has been published in the

journal article:

• H. Kerdoncuff, U. B. Hoff, G. I. Harris, W. P. Bowen, and U. L. Andersen.
Squeezing-enhanced measurement sensitivity in a cavity optomechanical sys-
tem, Annalen der Physik, 527:107-114, 2015. Special issue: Quantum and
Hybrid Mechanical Systems.

5.1 How does squeezing improve the transduction
sensitivity?

As mentioned in Section 4.3 the optomechanical transduction signal rides on a
noise floor set by optical input fluctuations, which in the case of a quantum noise
limited probe amounts to one unit of shot noise. This noise imposes a limit on the
transduction sensitivity achievable using classical probe fields of a fixed amplitude.
We have already seen that the manifestation of quantum noise can be understood in
terms of randomly fluctuating sidebands that beat with the carrier in the detection
process, and from (1.46) we find that the noise contributions from upper and lower
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5 Squeezing-enhanced transduction

sidebands to the total spectral variance of a phase quadrature measurement (θ =
π/2) are given by:

Var(δX̂2(Ω)) = 1
4
[
Var(δX̂+

2 ) + Var(δX̂−2 ) + 2Cov(δX̂+
2 , δX̂

−
2 )

+ Var(δX̂+
1 ) + Var(δX̂−1 )− 2Cov(δX̂+

1 , δX̂
−
1 )
]
. (5.1)

The key to understanding how squeezing can help improving the transduction signal
lies in the two covariance terms. If the upper and lower sidebands are completely
uncorrelated, which is the case for a coherent probe, then both these terms evaluate
to zero and the total variance is one. However, if correlations are introduced in such
a way that both terms subtract from the total sum then the net variance will be less
than one and thereby reduced below the shot noise level. A bright phase squeezed
probe state – that is a bright carrier surrounded by phase squeezed vaccuum fluc-
tuations at sideband frequencies – has exactly the desired properties: as illustrated
in Fig. 5.1 the optomechanical phase modulation of the carrier generates weak co-
herent sideband states constituting the actual transduction signal. But in contrast
to the coherent state probing scheme (Fig. 4.2) the upper and lower sideband am-
plitude and phase quadrature fluctuations are now correlated Cov(δX̂+

1 , δX̂
−
1 ) > 0

and anti-correlated Cov(δX̂+
2 , δX̂

−
2 ) < 0, respectively, as a result of phase squeezing.

In a subsequent homodyne phase quadrature measurement, a signal component at
ωm is generated in the photocurrent spectrum due to beating of the optical trans-
duction signal sidebands (ω0 ± ωm) with the local oscillator at frequency ω0. The
noise floor is (apart from electronic noise in the detection circuit) determined by the
simultaneous beating of the local oscillator with fluctuating sidebands surrounding
the upper and lower signal components. But thanks to the induced correlations
these beat signals will interfere destructively, resulting in a measurement noise floor
reduced below the shot noise level. We now see that the total measured transduc-
tion signal spectrum consists of contributions from two separate parts: a classical
measurement of the optomechanically induced phase modulation amplitude which
dominates the spectrum in the vicinity of the mechanical resonance frequency and
determines the signal level, and a quantum part which determines the noise floor at
frequencies away from the mechanical resonance. Thus, comparing coherent state
and squeezing-enhanced measurements conducted using identical probe powers we
expect an improved sensitivity in the latter case, solely due to a lowering of the
noise floor.

5.2 Numerical results
In order to make predictions from the theoretical model it has to be linked to an
actual cavity optomechanical system via a set of physical parameters. In this work
we have focused on implementing the squeezing-enhanced transduction scheme in
the particular type of system known as a microtoroid, as will be discussed in detail
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5.2 Numerical results

Figure 5.1: Phase space representation of squeezing-enhanced optomechanical
transduction. For a phase squeezed state the individual sidebands show thermal
state fluctuations exceeding the vacuum fluctuations. The squeezing-effect lies in
the inter-sideband correlations and it only manifests itself upon detection.

in Chapter 6. The obvious choice is therefore to pick parameters reminiscent of
this type of system. In this case the relevant form of the vacuum optomechanical
coupling rate is g0 = xzpfω0/R, with R being the major radius of the microtoroid.
The assumed system parameter values are listed in Table 5.1. Furthermore, we will
assume a total optical probe power of P = 10µW at λ = 1064 nm, and 6 dB of
phase squeezing (r = 0.69) in the quantum-enhanced case. Detection losses are
neglected.

Physical parameter Symbol Value
Micro toroid major radius R 30µm
Effective mass Meff 0.3µg [52]
Mechanical resonance frequency ωm/2π 10MHz / 50MHz
Mechanical linewidth (FWHM) 2γm/2π 15 kHz
Optical cavity linewidth (FWHM) 2κ0/2π 200MHz / 5MHz
Environment temperature T 300K

Table 5.1: Physical parameters used in simulation of the optomechanical trans-
duction sensitivity using a micro toroidal resonator.

An important characterization parameter for cavity optomechanical systems is the
ratio of mechanical resonance frequency over optical linewidth, ωm/2κ, distinguish-
ing the resolved-sideband systems ωm/2κ > 1 from the unresolved ones ωm/2κ < 1.
The ability to enter the resolved sideband regime of cavity optomechanical systems
has been of absolute importance for demonstrating ground-state cooling of mechani-
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5 Squeezing-enhanced transduction

cal oscillators [126, 30], as it enables implementation of sideband laser cooling [113]
techniques in analogy to that employed in ion-trap experiments [35]. In the follow-
ing we will investigate the effect of squeezing-enhanced transduction in both regimes
using the two corresponding parameter sets in Table 5.1, and we will do so as func-
tion of the optical cavity coupling coefficient ηc. It is important to note that for a
given physical system with a fixed intrinsic optical loss rate κ0, varying ηc will also
affect the sideband resolvedness parameter since the coupling perturbs the intrinsic
quality factor of the cavity resulting in the effective total linewidth κ = κ0 + κc:

ωm
2κ = ωm

2(κ0 + κc)
= ωm

2κ0
(1− ηc). (5.2)

As already mentioned, we are in this work not concerned about the absolute
achievable transduction sensitivity, commonly quoted in units of m/

√
Hz. The

quantity of interest is rather the relative improvement in the signal-to-noise ratio
(SNR), measured as the level difference in the homodyne power spectrum of the
transduction signal between the peak value at the mechanical resonance frequency
and the noise floor, which in the classical probing scheme is given by the shot noise
level.

5.2.1 Case I: Unresolved sideband regime

In this regime the transduced signal sidebands are deeply buried inside the optical
cavity resonance and so is the relevant part of the squeezing spectrum. Because
of that the effective degree of squeezing is progressively degraded due to loss as
coupling to the cavity (ηc) is increased. Classically, the best sensitivity is achieved
at critical coupling since that maximizes the intracavity field and thereby the trans-
duction signal amplitude. However, at critical coupling destructive interference
occurs between the field that is reflected directly off the cavity input boundary and
that part leaking out the cavity, which in the ideal case results in a dark output
from the cavity exactly at resonance. Since the transduction signal is comparatively
close to the cavity resonance the corresponding part of the squeezing will be heavily
suppressed resulting in a vanishingly small quantum-enhancement effect.
The simulated transduction spectrum for a system operated in the under coupled

regime with ηc = 0.025 is shown in Fig. 5.2. As expected the coherent and quantum-
enhanced signals overlap at the mechanical resonance and an improvement in SNR
results by a lowering of the noise floor as discussed in Section 5.1. A simulation of
the SNR values as function of ηc is shown in Fig. 5.3. Calculating the difference in
achievable SNR for coherent and bright squeezed probing, we find that a significant
quantum enhancement over the classically achievable level only occurs in the lim-
iting regimes where ηc ' 0 and ηc ' 1. However, it is important to note that an
absolute enhancement is not achievable in the sense that the squeezed probe SNR
value is always smaller than that of the coherent probe at critical coupling.
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Figure 5.2: Simulated transduction spectrum for a non-resolved sideband optome-
chanical system, using coherent (black) and bright squeezed (red) probe light, op-
erated in the under-coupled regime with ηc = 0.025.

5.2.2 Case II: Resolved sideband regime

We now turn to the resolved sideband case where the transduced signal sideband lies
outside the optical cavity linewidth. Following the reasoning in the previous para-
graph we expect a better performance of the quantum-enhanced probing scheme in
this regime since the squeezing is no longer subject to large intracavity losses. A
crucial requirement is, however, that the bandwidth of the employed squeezed light
source is sufficiently large that strong squeezing is generated at frequencies exceed-
ing the transduced signal sideband (in this case 50 MHz). For typical microtoroidal
resonators where the dominant mechanical radial breathing modes have frequen-
cies below 100 MHz this requirement can be met since squeezed-light sources with
bandwidths exceeding 150 MHz has been demonstrated in several cases [92, 135].
The situation is quite different for photonic-crystal optomechanical systems where
the mechanical oscillation frequencies are in the GHz range [30]. So far only weakly
squeezed continuous-wave states with such a large bandwidth has been demon-
strated [8], though progress is being made in that direction, cf. Part III of this
thesis.
Figure 5.4 shows the simulated transduction spectrum for operation close to the

critical coupling point. The cavity induced degradation of the input squeezing is
observed at low frequencies but the full initial quantum noise reduction is recovered
in the high end of the spectrum resulting in a corresponding enhancement of the
transduction SNR. Achievable SNR values for coherent and squeezed light probing
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Figure 5.3: Simulated signal-to-noise ratio for optomechanical interaction in the
non-sideband resolved regime as function of coupling coefficient ηc, using coherent
(black) and bright squeezed (red) probe light. The achievable increase in signal-to-
noise ratio by quantum-enhanced probing is plotted in blue. The inset shows the
corresponding change in sideband-resolvedness as the cavity coupling is increased.
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as function of ηc are plotted in Fig. 5.5. An enhancement corresponding to the input
degree of squeezing is observed for basically all coupling values. Most importantly,
and in contrast to the unresolved sideband system, an absolute enhancement is ac-
tually achieved in this case illustrating the full potential of implementing quantum-
sensing strategies in cavity optomechanical applications. For coupling coefficients
larger than ηc ≈ 0.8 a small drop in SNR enhancement is observed. The inset
graph shows that this happens because the system inevitably drops out of the re-
solved sideband regime when the coupled-cavity linewidth gets sufficiently large to
encompass the transduction signal sideband. By increasing the coupling further the
enhancement is recovered in accordance with the unresolved sideband simulations.
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Figure 5.4: Simulated transduction spectrum for a resolved sideband optomechan-
ical system, using coherent (black) and bright squeezed (red) probe light, operated
close to critical coupling ηc ≈ 0.5.
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Figure 5.5: Simulated signal-to-noise ratio for optomechanical interaction in the
sideband resolved regime as function of coupling coefficient ηc, using coherent (black)
and bright squeezed (red) probe light. The achievable increase in signal-to-noise
ratio by quantum-enhanced probing is plotted in blue. The inset shows the corre-
sponding change in sideband-resolvedness as the cavity coupling is increased.
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Experimental demonstration of
squeezing-enhanced transduction 6

In this chapter we present – to the best of our knowledge – the first experimental
work on interfacing a micromechanical system with squeezed states of light. The
reported results constitute a proof-of-principle demonstration of squeezing-enhanced
micromechanical displacement sensing, which could be a valuable resource for future
scrutiny of quantum-behavior in macro-physical systems. Furthermore, the offered
improvement of the transduction signal-to-noise ratio can be directly exploited for
boosting the cooling efficiency of electro-static feedback cooling techniques [82].
Part of the work presented in this chapter has been published in the journal

article:

• U. B. Hoff, G. I Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen,
W. P. Bowen, and U. L. Andesen. Quantum-enhanced micromechanical dis-
placement sensitivity, Optics Letters, 38(9):1413-1415, 2013.

6.1 Micro-toroidal resonators
Out of the existing multitude of optomechanical microcavities the particular vari-
ant chosen for implementation of squeezing-enhanced transduction sensitivity in this
work, has been the silica microtoroidal resonator (Fig. 6.1), first demonstrated in
2003 by the group of Kerry Vahala at the California Institute of Technology [7, 6].
Due to their integration of high-Q optical whispering gallery modes1 with mechan-
ical vibrational modes, microtoroidal resonators have been proven to be well-suited
on-chip systems for high-sensitivity displacement sensing [112]. On the mechanical
side, engineering of dissipation properties has enabled demonstration of mechan-
ical Q-values of up to 80000 [3], measured in a cryogenic environment. For the
present application, state-of-the-art optical and mechanical properties has not been
a requirement. The optical quality should just be sufficiently good that a signif-
icant degree of squeezing is preserved after the optomechanical interaction. And
mechanically, the main requirement is the existence of a strong resonance within

1A detailed description of whispering gallery modes in microcavities can be found in the thesis
of T. J. Kippenberg [72].
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6 Experimental demonstration of squeezing-enhanced transduction

the bandwidth of the available squeezed-light source. Characteristic properties of
our microtoroidal resonators, provided by the group of Warwick Bowen, University
of Queensland, are listed in Table 6.1.
As briefly touched upon in Section 1.2.2, the optical guiding principle of whisper-

ing gallery mode resonators is gracing-incidence total internal reflection, resulting
in a highly localized mode at the silica-air interface of the resonator and with an
evanescent tail extending into the surrounding air. This is an essential property of
the system as it allows efficient optical coupling via overlapping the evanescent field
with that of a tapered optical fiber. For further details on the underlying theory for
this coupling mechanism we refer the reader to the existing literature on the topic,
e.g. [120]. In this work, bare SMF-28 fibers tapered down to a diameter of ap-
proximately 1µm over a length of 20 mm, subject to the constraint of single-mode
operation, were used for coupling to the microtoroids. Details on the particular
flame-brushing procedure used for fabrication of the tapered fibers are provided in
the thesis of M. McGovern [91].

Figure 6.1: SEM micrograph of a microtoroid fabricated at University of Queens-
land, similar to the ones employed in the reported experiments. Image courtesy of
Glen I. Harris.
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6.1 Micro-toroidal resonators

Property Value
Chip layer stack SiO2/Si
Major radius ' 30µm
Minor radius ' 3µm
Pedestal height 30µm
Optical FSR at 1064 nm ' 1 THz
Optical linewidth (FWHM) 180MHz [69]
Optical Q ' 1.5 · 106

Primary mechanical resonance frequency ' 5.2 MHz
Mechanical linewidth (FWHM) ' 15 kHz
Mechanical Q ' 350
Effective mass <100µg

Table 6.1: Characteristic physical properties of the employed microtoroidal res-
onator. The estimated upper bound on the effective mass of the relevant mechanical
mode was derived on the basis of FEM simulations conducted by G. I. Harris.
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6 Experimental demonstration of squeezing-enhanced transduction

6.2 Experimental setup

The experimental setup conceived for implementation of squeezed-light interfacing
of microtoroidal resonators is simplistically illustrated in Fig. 6.2. It was constructed
as a sub-setup in a pre-existing experimental quantum optics framework, hosting a
number of other experimental activities in our group [89, 88, 76, 81]. Common to all
is that they run off an Innolight Diabolo Nd:YAG laser with a nominal fundamental
(signal) output of 450 mW at 1064 nm and a second harmonic (SHG) output of 800
mW at 532 nm. For further details on the laser system, the reader is referred
to the thesis of M. Lassen [80]. After spectral and spatial filtering using a mode
cleaning cavity, actively stabilized using a Pound-Drever-Hall locking technique [17]
employing phase modulation sidebands at 22.03 MHz, the signal beam was quantum
noise limited from a sideband frequency of around 3 MHz and up. Using an optical
parametric oscillator, based on the χ(2) nonlinearity of PPKTP, squeezed states of
the signal field were generated and subsequently distributed to the client setups via
free-space channels. Optimal squeezing was generated at a sideband frequency of 4.9
MHz, and at the time when this work was conducted, the routinely generated degree
of single mode vacuum squeezing, as measured in the proximity of the OPA, was
about 4.5 dB. In what follows, the squeezed light source will simply be considered
as an available resource and we refrain from dwelling upon further details but refer
the interested reader to the theses of J. Janousek [65] and L. S. Madsen [87].
As elaborated on in the preceding chapters, a resonant optomechanical interac-

tion results in frequency dependent phase modulation of the probe field, rendering
balanced homodyne detection an appropriate interrogation strategy. And even more
so, when probing of the optomechanical system with a bright phase-squeezed state
is targeted, and quantum noise limited detection of the field quadratures is required.
To this end, the signal was split into a strong local oscillator beam (LO) and a weaker
probe beam. For the latter, two distinct optical paths were established, cf. Fig. 6.2:
(1.) bypassing the OPA for coherent probing of the optomechanical system, and
(2.) seeding the OPA for probing with a bright phase squeezed state2. Squeezing
in the phase quadrature was achieved by appropriate locking of the relative phase
between the signal field and the SHG pump for the OPA. In either case, the probe
was coupled into the bare tapered fiber by means of a mode matching telescope and
an antireflection V-coated aspheric singlet lens3. Polarization control, important for
optimizing coupling to the microtoroid, was implemented by a combination of zero-
order λ/2 and λ/4 wave plates immediately before the aspheric singlet. The chip
containing the microtoroidal resonators was held on piezo-controlled tree-axis trans-
lation stage4 next to the tapered fiber. In this way we were able to precisely control
the taper-toroid distance, and thereby the optical coupling strength, by moving the

2To preserve squeezing in the probe field, all mirrors following the OPA were high-reflectors:
Layertec GmbH, #100362, HRr(45◦, 1064 nm)>99.9%.

3Thorlabs C240TME-1064, f = 8.07 mm
4Thorlabs, model NanoMax MAX311D/M, closed loop.
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Figure 6.2: Simplified schematic representation of experimental setup devised for
squeezed-light interfacing of microtoroidal resonators. MC, mode cleaning cavity;
PZT, piezoelectric transducer; PI, proportional-integral servo controller; PBS, po-
larizing beamsplitter; MMT, mode matching telescope; LO, local oscillator beam for
balanced homodyne detection; AL, aspherical lens. The figure is adapted from [59].
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6 Experimental demonstration of squeezing-enhanced transduction

microtoroids with respect to the spatially fixed tapered fiber. On the output side of
the fiber, the probe was coupled back to free-space using the exact same aspheric
singlet, and then spatially overlapped with the orthogonally polarized local oscil-
lator on a polarizing beamsplitter (PBS). The combined field was directed to the
balanced homodyne detection setup, and the polarization components were made
to interfere using a λ/2-plate, set for 45 degree polarization rotation, and a polar-
izing beamsplitter. The two equally intense outputs were directed on to separate
photodetectors5 and the ac photocurrents were subtracted6, amplified7, high-pass
filtered8, and finally measured on an electronic spectrum analyzer9. The dc pho-
tocurrents were used as feedback signal for stabilizing the local oscillator phase by
means of a servo and a piezo-actuated turning mirror. In this way the homodyne
detector was locked for phase quadrature measurement.

6.2.1 Balancing the homodyne detector

The ability of the balanced homodyne detector to perform shot noise limited quadra-
ture measurements stems from the strong suppression of correlated classical noise
in the input signal (common-mode rejection) resulting from measuring a differential
signal. And the suppression strength in turn relies on careful balancing of the two
individual signals. Using an optical power meter the two impinging beams can only
be balanced in power to within approximately ±5%. And comparing the dc-outputs
from the detectors on an oscilloscope does not in general provide information on
balancing of the spectral components as the detectors are likely to have different
ac-gains. However, a neat way of balancing the homodyne detector is to consider
only the local oscillator input, i.e. blocking the probe, and apply to it a broadband
white noise amplitude modulation10. Monitoring the spectrum of the homodyne
output, the individual modulated spectra can then be measured by blocking one
and the other input (Fig. 6.3 green and red traces) as well as the differential signal
(blue), providing a direct measure of the suppression strength to optimize on. The
relative phase of the two signals being subtracted is particularly important and can
be optimized by iteratively changing the length of the cables from the detectors to
the subtraction box. Through this procedure, we achieved a noise suppression in
excess of 25 dB.

5The employed photodetectors were made by M. Lassen and fitted with Epitaxx ETX-500 InGaAs
photodiodes, ηQE = 87± 2%.

6Mini-Circuits, model ZSCJ-2-1. Power splitter/combiner, 1-200 MHz.
7Mini-Circuits, model ZFL-500LN-BNC. Low noise amplifier, 0.1-500 MHz.
8Dunestar, model 400-HPF. 7-pole high-pass filter with a cut-off frequency at 1.8 MHz.
9Agilent, model N9000A-503, 9 kHz - 3 GHz

10Here implemented by an electro-optical modulator (New Focus, model 4004. Broadband phase
modulator, DC-100 MHz) driven by a white-noise input signal (Stanford DS345).
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Figure 6.3: Common-mode noise suppression of the balanced homodyne detector.
The shaded area indicates the suppression band of the high-pass filter. Data was
recorded with RBW = 300 kHz and VBW = 300Hz.

6.3 Quantum sensing of micro-mechanical
displacements

The experimental configuration outlined in the previous section was built with the
primary purpose of interfacing the microtoroidal resonators with squeezed light.
However, an important prerequisite for doing so is to demonstrate the ability to
address the system using coherent light and with firm control of the taper-toroid
coupling efficiency. In this section we first document that we indeed have this
level of control over the system, and we then characterize the effect of optical loss
suffered by the squeezed state as it is propagated through the setup. Finally, we
turn to a discussion of the primary results obtained from this project, constitut-
ing a proof-of-principle demonstrating of squeezed-light enhanced transduction of
micromechanical motion.

6.3.1 Coupling to the micro-toroidal resonator
As mentioned, the setup was accommodated in an existing framework, and it was
quickly realized that the Innolight Diabolo is not the optimal laser for experiment-
ing with microcavities. With a course thermal tuning range of 60 GHz and a fine
piezo tuning range of ±200 MHz [62] it is actually very unlikely to find a resonance
of a cavity with a free spectral range in excess of 1THz! To overcome this over-
looked detail in planning the setup, a Peltier element11 was installed underneath
11Marlow Industries, model DT3-2.5
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6 Experimental demonstration of squeezing-enhanced transduction

the microtoroid chip providing temperature tuning of the microcavity resonances.
Active stabilization of the temperature was implemented by connecting the Peltier
element to a temperature controller12. In this way we were able to steer and main-
tain a cavity resonance in the range of the laser, always keeping it at a temperature
above the ambient level to avoid condensation issues.
With optical coupling to the microcavities established, the ability to control the

actual coupling efficiency was explored. Figure 6.4 shows exemplary data of the
relative transmission through the tapered fiber as the taper-toroid separation was
decreased (right to left). The measurements clearly confirm our ability to address
both the under- and over-coupled regime. The particular system could not achieve
critical coupling as the transmission does not go to zero in the intermediate region.
On this point, slightly different behavior was observed depending on the particular
combination of microtoroidal resonator and tapered fiber.
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Figure 6.4: Transmission through tapered fiber as function of taper-toroid separa-
tion. The absolute separation was not calibrated, and the indicated distance values
are stage positions relative to an arbitrary reference point. Data was obtained by
direct detection of the transmitted light using a photodiode. The measured trans-
mission levels are normalized to that in the absence of coupling.

Employing instead phase stabilized homodyne detection of the transmitted field
we can measure the actual spectral transduction signal in the phase quadrature as
function of coupling to the microcavity, as shown in Fig. 6.5, for operation in the
under coupled regime. In qualitative agreement with Fig. 5.2 we observe that the
signal noise power increases with coupling to the toroid. Here, as in Fig. 6.4, the
coupling efficiency is stated in terms of the experimental quantity

T = Pout(κc 6= 0)
P 0
out(κc = 0) . (6.1)

For a fixed power launched into the tapered fiber, the transmitted power is measured
in the absence of coupling to the microtoroid, P 0

out (κc = 0). The chip is then shifted
12Wavelength, model LFI-3751.
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Figure 6.5: Homodyne measurement of the classical transduction signal as function
of optical coupling efficiency to the microcavity, for a probe power of 18.3µW. The
homodyne photocurrent was measured on a spectrum analyzer with RBW=10 kHz
and VBW=1 kHz.

into the evanescent field from the taper until the desired coupling is reached, and
the transmitted power is measured again, Pout (κc 6= 0). In order to relate T to the
relevant theoretical quantity ηc, we first note that the following relation between
steady state input and output power of the mirocavity,

Pout =
(

1− 4ηc(1− ηc)
1 + ∆2/κ2

)
Pin, (6.2)

can be easily derived from (4.15) and (4.14). Assuming resonant probing and that
the combined transmission loss through the fiber, not related to cavity coupling, can
be represented by a lumped parameter α, (6.2) takes the form Pout = α(1− 4ηc(1− ηc))Pin.
In the absence of coupling the expression reduces to P 0

out = αPin. Now, taking the
ratio of the two expressions we find,

Pout
P 0
out

= 1− 4ηc(1− ηc) = T, (6.3)

with solutions

ηc =
{

1
2(1−

√
T ) , under-coupling

1
2(1 +

√
T ) , over-coupling. (6.4)

The correspondence between T and ηc is plotted in Fig. 6.6, and the values used in
Fig. 6.5 are indicated in corresponding colors.
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Figure 6.6: Correspondence between the experimentally measured coupling effi-
ciency T and the theoretical coupling parameter ηc.
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6.3 Quantum sensing of micro-mechanical displacements

6.3.2 Loss-induced degradation of squeezed light
The vulnerability of squeezed states to optical loss is a major challenge in any prac-
tical application. Obtaining an observable degree of quantum-enhancement in a
sensing application is not per se guaranteed by the mere injection of squeezed light
into the system, but strongly relies on optical losses being kept at a minimal level.
A number of significant loss channels are immediately identifiable in the setup con-
sidered here, and the corresponding loss budget is given in Table 6.2. Here, we have
included only fixed losses, not accounting the loss associated with coupling to the
microcavity. The tapered fiber is clearly a bottleneck for the experiment. Com-
pared to commonly achieved coupling efficiencies through single mode fiber, the
observed transmission of only 75% is rather low. This can partly be explained by
the taper itself, which might not always be adiabatic, and the bare fiber end facets
also contribute: firstly, they are not AR coated resulting in about 4% Fresnel loss
at either end, and secondly the cleaving does not always result in a perfectly flat
facet (Fig. 6.7(a)). Last but not least, we have during the everyday work with the
experiment observed that after installing a new tapered fiber, the transmission de-
grades steadily over time. The quoted maximal value of 75% was measured straight
after installing a new fiber. Similar observations were reported by Fujiwara et al.
in [42] where they, based on a systematical investigation of the surrounding dust-
particle density, conclude that the degradation can be attributed to accumulation
of dust on the fiber. Imaging the tapered region from above, we indeed observe a
significant amount of scattering centers (Fig. 6.7(b)), consistent with dust particles
stuck on the fiber surface. This indicates that the plexiglas enclosure containing
the taper-toroid coupling region only provides an insufficient shielding of the setup.
The accumulated dust can to some extent be cleaned off13, partially recovering the
initial transmittance of the fiber.

Loss channel Efficiency
Fiber transmission < 0.75
Optical components (e.g. 0.25% loss per waveplate) 0.987
Homodyne visibility, V = 0.98 0.96
Photodiode quantum efficiency 0.87
Total loss < 0.62

Table 6.2: Loss budget for the squeezed beam, not accounting for loss induced by
coupling to the microcavity.

In order to verify that squeezing is preserved in the probe field, despite the large
losses, homodyne tomography was performed of the field transmitted through the
13This was done by a delicate process where a droplet of solvent on the chip carrier platform

was gently lifted through the fiber and swept across the tapered region. The force required
to overcome the surface tension of the droplet, to actually get the fiber inside it, sometimes
caused the fiber to break.
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6 Experimental demonstration of squeezing-enhanced transduction

(a) (b)
Figure 6.7: (a) End facet of a stripped cleaved fiber. The diameter is 250µm. (b)
Optical scattering observed from tapered region of the fiber.

taper in absence of coupling to the microcavity. As shown in Fig. 6.8, slightly more
than 1 dB of quantum noise reduction is indeed observed.
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Figure 6.8: Homodyne tomography of squeezed light transmitted through the ta-
pered fiber. The homodyne photocurrent noise power was measured at 4.9 MHz
with RBW= 100 kHz and VBW = 100 Hz. Probe power, 20µW , LO power, 1.2
mW. Electronic noise is not subtracted.

6.3.3 So, why not send the squeezed light down the free-space
path?

Facing the challenge of minimizing losses in the optical setup, it is tempting to
consider whether simply swapping the probe and local oscillator paths would be
an efficient way of mitigating loss-degradation of the squeezed state. In this way
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6.3 Quantum sensing of micro-mechanical displacements

the fiber-related loss would be inflicted on the coherent loss-tolerant beam while the
squeezed light propagates in free-space, suffering only negligible loss. Unfortunately,
the idea is deceiving – for a number of reasons. One practical issue is that the power
required in the local oscillator in order to perform a proper homodyne measurement
is far too much to be coupled to the high-Q microcavity. But more importantly,
and independent of the system being probed, it is not even theoretically possible to
achieve a quantum enhanced signal-to-noise ratio if the signal is not encoded on the
squeezed beam. Three variations of the “squeezing in free-space” configuration exist
(Fig. 6.9): (I) a squeezed vacuum state propagates in the free-space channel and
the system is probed by the bright coherent local oscillator transmitted through the
fiber, and (II) a bright squeezed local oscillator propagates in the free space channel
and the system is probed by a weak coherent field, both employing homodyne
detection. Case (III) uses two equally bright beams where the free-space one is
squeezed and read out via heterodyne detection. Keeping in mind the homodyne
assumption – that only terms multiplied by the local oscillator carrier contribute
to the measured signal – it is clear that (I) is just a homodyne measurement of
the squeezed vacuum, while (II) is a homodyne measurement of the classical signal
field, at best resulting in a shot noise limited spectrum of the transduction signal.
In case (III), the fact that the noise in the two interferometer arms is uncorrelated
entails that the phase quadrature measurement (sum-signal) yields just a shot noise
limited transduction spectrum riding on top of the squeezed noise in mode a. Thus,
none of the three alternatives offer any quantum enhanced signal-to-noise ratio on
the measured transduction signal.

6.3.4 Proof-of-principle results with squeezed light
Having justified the chosen experimental configuration and verified, unambiguously,
that squeezing is preserved in transmission of the setup, we now turn to a discussion
of the main results achieved so far.
Using power levels and a coupling strength to the microcavity identical to the

coherent-state measurements in Fig. 6.5, that is T = 90% or ηc = 0.025, we have
performed quantum-enhanced sensing of the thermally excited mechanical vibra-
tions of a microtoroidal resonator, using a bright phase squeezed probe beam. As
shown in Fig. 6.10 a reduction of the noise floor by 0.72 dB was observed, resulting
in a quantum-enhanced signal-to-noise ratio. The system was brought on to reso-
nance by a combination of temperature tuning of both laser and toroid, ending up
at values Ttor = 22.65 ◦C and Tl = 24.04 ◦C. The coupling strength was set by mon-
itoring the transmitted light power on a photodiode, decoupling completely from
the toroid, and then bringing the toroid closer and closer to the tapered fiber until
the transmitted power had dropped to 90% of the uncoupled level.
According to the theoretical simulations in Chapter 5, the noise power at the

mechanical resonance peak should be the same for coherent and bright squeezed
probing as it is entirely determined by the carrier amplitude. But in Fig. 6.10
the quantum enhanced signal is actually somewhat larger than the classical one.
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Figure 6.9: Three alternative experimental configurations for squeezing enhanced
transduction, where squeezing is not coupled through the lossy tapered fiber. But
are they useful?
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Figure 6.10: Squeezing-enhanced mechanical transduction spectrum. RBW= 100
kHz, VBW = 100 Hz. Probe 20µW, LO 1.2 mW. The reduction of the noise
floor is evaluated by fitting (solid lines) the noise level in between the transduced
mechanical resonances, for both coherent and bright squeezed probe light. Figure
adapted from [59].

We attribute this difference to a small change in the non-stabilized taper-toroid
separation which might have taken place in between the two measurements. In
the experiment the classical measurement was recorded first and the input power
before the tapered fiber and the coupled transmission power were noted. After
switching on the phase squeezing, the input power on the fiber was regulated to
the appropriate value, and the homodyne measurement of the phase quadrature
spectrum was recorded. The taper toroid distance was not adjusted. It is thus very
likely that the separation could have changed a little, resulting in a slightly stronger
coupling to the microcavity in the second measurement.
In a future experiment we can imagine exploiting the quantum enhancement of

the transduction SNR for e.g. efficient cooling of the mechanical vibrations via
application of electro-static feedback gradient forces. In that case it is important
that the coupling is stabilized, which could be achieved in a straightforward manner
by implementation of a PDH-like locking scheme. However, in the present case,
where a proof-of-principle demonstration of the quantum sensing technique has been
the objective, we are primarily interested in the spectral behavior at frequencies
away from the mechanical resonances since this is where the sideband-correlations
of squeezed states play a role.
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Conclusion and outlook 7
In the previous chapters we have investigated theoretically and experimentally the
feasibility of exploiting squeezed states for increasing the transduction sensitivity of
micromechanical motion in a cavity optomechanical system. It has been known for
long that the application of squeezed states can improve the sensitivity of interfer-
ometric measurements by effectively reducing the shot noise level, but the principle
has hitherto not been implemented in the context of micromechanical oscillators.
Through the conducted theoretical work we have shown that for systems per-

taining to the non-sideband resolved regime the use of squeezed light only provides
an increase in the achievable transduction signal-to-noise ratio for operation in the
highly under-coupled or highly over-coupled regimes. Moreover, the technique does
not provide an absolute improvement as the quantum-enhanced transduction signal
is always below that achievable by a coherent state at critical coupling. The situa-
tion is different for systems operating in the sideband resolved regime where we find
that squeezing-enhanced transduction always provides an absolute improvement.
We have successfully implemented the technique for the particular system of a

tapered fiber coupled microtoroidal resonator at room temperature. Specifically, we
observe that by probing the optomechanical system with a bright squeezed state
the thermally excited micromechanical motion is transduced with a signal-to-noise
ratio improved by 0.72 dB compared to a coherent probe of the same power. In the
experiments, the achievable enhancement was predominantly limited by the optical
loss associated with fiber coupling of the squeezed state and the evanescent coupling
to the microtoroidal resonator.
The experimental work reported here constitutes the first demonstration of inter-

facing micromechanical systems with squeezed light. However, we anticipate that
the application of quantum correlated states of light will become more and more
frequent in the optomechanics community as the strive for higher and higher sen-
sitivities continues. In particular, the improved sensitivity offered by employing
squeezed probe states might become instrumental for finally attaining the standard
quantum limit in an optomechanical systems. With the ability to cool microme-
chanical systems to their motional ground state, the application of more excotic
quantum states might also open up for the possibility of preparing macroscopic
superposition states of micromechanical oscillators. This would be a major sci-
entific achievement, and potentially a way to study the elusive quantum-classical
boundary. Another application of the technique which is currently being pursued
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in our group is to exploit the quantum-enhanced signal-to-noise ratio for improved
efficiency of electro-static feedback cooling of the mechanical vibrations. For this
particular cooling technique the efficiency and thereby the lowest attainable mode
temperature is directly related to the transduction signal-to-noise ratio.
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Integrated source of single-mode
quadrature squeezed light
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Introduction 8
The first pioneering demonstrations of squeezed states of light were reported in
1985 by R. Slusher et al. [119] in the context of four-wave mixing in atomic vapors,
and somewhat later by Shelby et al. [117] also by four-wave mixing, but in cooled
single-mode optical fiber. The immense progress in control and manipulation of
quantum states of light and matter and their mutual interaction, witnessed during
the last decades, has by now facilitated generation of squeezed states of light in
a broad selection of physical systems, with the most recent member of the family
being ponderomotive squeezing through optomechanical interactions [25, 101, 109].
However, the most common sources are optical parametric amplifiers, based on
spontaneous parametric down-conversion in χ(2)-materials, and the to date strongest
suppression of quantum noise by 12.7 dB, demonstrated by T. Eberle et al. [39], was
also achieved in such a system.
In the emergent field of optical quantum technologies, squeezed quantum states

of light have become an essential resource for many continuous variable quantum
information and communication protocols [89]. And the feasibility of exploiting
such quantum-correlated states for ultra-sensitive measurements has been demon-
strated in numerous implementations of quantum-enhanced sensing, pioneered in
the context of Mech-Zehnder interferometry [28, 134], and by now applied both
at macroscopic scale [127] and in microscopic systems as demonstrated in Part II
of this thesis [59]. However, the size and operational complexity of quantum light
sources remains a limitation for practical and industrial applications of optical quan-
tum technologies and integration with electronics. Efficient pulsed Kerr-squeezing
in standard polarization maintaining fibers [15, 53] requires fiber lengths on the or-
der of tens of meters and in so-called monolithic squeezed light sources [77, 23, 39]
the employed bulk nonlinear crystals are in themselves orders of magnitude larger
than lithographically defined electronic integrated circuits. An important step to-
wards source miniaturization is the recent demonstration of twin beam squeezing in
resonant on-chip structures [38], bringing the development of fully integrated opto-
electronic quantum sensing devices one step closer. But so far, an integrated source
of quantum correlated continuous variable states remains to be demonstrated.
The development of integrated quantum light sources is faced by one major ob-

stacle: optical loss. Whereas free-space sources mainly suffer from Fresnel losses at
optical interfaces, which can be mitigated by tailored anti-reflection coatings, inte-
grated waveguide circuits are also subject to material losses and scattering losses.
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The former contribution is governed by intrinsic band structure properties of the ma-
terial and cannot be compensated for. Bulk crystalline silicon has an indirect band
gap of 1.1 eV leading to significant two-photon absorption (TPA) at wavelengths be-
low roughly 2000 nm, and this is the reason why so much attention is currently drawn
towards identification of CMOS-compatible alternatives to the otherwise appealing
silicon-on-insulator (SOI) platform for nonlinear optics. Scattering losses, primarily
originating from the roughness of the lithographically defined sidewalls and increas-
ing quadratically with the refractive index contrast ∆n = ncore − ncladding [32], can
be compensated for by optimization of fabrication procedures and engineering of
waveguide dimensions.
Yet another severe loss-related challenge for high-index contrast waveguides is the

inevitable mode conversion and effective index step associated with chip interfacing.
The former leads to loss through coupling to radiation modes and the latter to
Fresnel loss and low collection efficiency because of the large numerical aperture
of high-index contrast waveguides. The most common approach to overcome these
complications is to employ inverse tapers (spot size converters) at the waveguide
ends allowing near-adiabatic conversion between the tightly confined waveguide
mode and that of a single mode tapered fiber or fiber pigtail. Using such coupling
strategies approximately 1.5 dB/facet coupling loss has been reported for pigtailed
high-index contrast Hydex waveguides [40].
In this part, we address the problem of scalability of available squeezed-light

sources, by targeting the development of a novel integrated source of quadrature
squeezed states based on SPM (cf. Section 1.2.3) mediated by the χ(3)-nonlinearity
in resonant silicon nitride waveguide structures. Such systems have previously been
proven viable sources of photon pairs with controllable degree of correlation [54], and
they have formed the basis for demonstration of on-chip classical optical parametric
oscillations [83] and frequency combs [96] at telecom wavelengths. But so far, the
cv quantum noise properties of the parametrically generated sideband fields have
remained unexplored experimentally. The aforementioned applications in general
require careful engineering of the device dispersion properties in order to achieve a
broad phase matching bandwidth spanning several free spectral ranges. But in the
particular case discussed here, this condition is greatly relaxed since the quantum
correlated fields of interest are constituted by symmetrically distributed rf-sidebands
of the pump, co-resonant on the same cavity mode, rather than distinctly colored
signal and idler modes. On the other hand, this causes considerable technical com-
plications at the state interrogation stage because the bright pump carrier prevents
direct characterization of the sideband state by balanced homodyne tomography.
Either the sidebands must somehow be separated from the carrier or the state to-
mography should be implemented by other means.
The contents of this Part is structured as follows: In Chapter 9 we present the ba-

sic considerations underlying this development project and motivate the particular
choice of host material. Next, in Chapter 10 we develop a full quantum-dynamics
model for analyzing squeezed-light generation in the considered system, and in the
following Chapter 11 we summarize extensive work performed on identification of a
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feasible device design through numerical simulations of optical and nonlinear prop-
erties. Combining the simulation results with the theoretical model we derive a set
of promising estimates for the device performance. Turning to the experimental
aspects of the project, we present in Chapter 12 details on the actual integrated
devices that have been fabricated, and we finally discuss the experimental work
conducted on the devices so far, covering optical characterization and attempted
squeezed-light generation. Particular attention is paid to the exploration of differ-
ent detection strategies for overcoming the difficulties in characterizing quantum
noise properties of bright states.
The material presented in Chapters 9, 10, and 11 is based on the conducted

theoretical feasibility study discussed in the submitted manuscript:

• U. B. Hoff, B. M. Nielsen, and U. L. Andersen. An integrated source of
broadband quadrature squeezed light. arXiv:quant-ph/1504.01054. Submitted
to Optics Express, March 2015

83



8 Introduction

84



Basic considerations 9
Before turning to in-depth discussions of the various aspects of the project we will
first set the stage by motivating some of the directions followed during the work,
such as the choice of silicon nitride as host material for squeezed-light generation and
the target device design. We also provide a preliminary discussion of squeezing via
third-order optical nonlinearity, with the intention of giving the unfamiliar reader
an intuitive understanding of the process.

9.1 Why silicon nitride?

Integration of quantum optical processes requires the host material to possess both
a strong nonlinearity, essential for implementing high-efficiency parametric interac-
tions, and low material and structural loss in order to preserve the generally fragile
quantum states. These requirements are met by low-pressure chemical vapor de-
position (LPCVD) amorphous stoichiometric silicon nitride (Si3N4). With a linear
refractive index of n ≈ 2 and a reasonably high third order Kerr nonlinearity of
n2 = 2.5 × 10−15cm2/W [61], it is a suitable core material for high-index contrast
waveguides in applications where tight field confinement and small waveguide bend-
ing radii are required. For comparison, the nonlinearity of silicon nitride is roughly
10 times the nonlinearity of silica, 2 times that of Hydex, and 0.1 times that of
silicon. On the loss side, 200 nm thick channel waveguides with ≤ 0.2 dB/cm prop-
agation loss at 780 nm have been demonstrated [32]. Using temperature-cycling to
overcome the tensile-stress limited film thickness of around 250 nm [33, 86], propa-
gation losses of 0.12 dB/cm at 1540 nm have been measured in channel waveguides
of more than 700 nm thickness [48]. And by employing a large-aspect ratio waveg-
uide geometry the dominating scattering loss contribution can be shifted from the
sidewalls to the waveguide top and bottom surfaces, which for LPCVD Si3N4 have
roughnesses in the sub-nanometer regime, resulting in ultra-low waveguide prop-
agation losses below 0.1 dB/m at 1580 nm [14]. Unfortunately, this comes at the
price of low field confinement, which is essential for efficient nonlinear processes.
Furthermore, the band gap of silicon nitride is approximately 5 eV [46], placing the
absorption edge just below 300 nm. This provides low material loss in the visi-
ble and infrared, and negligible TPA above 600 nm even at high power levels, as
opposed to silicon. Thus motivated, the device will be designed for an operation
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9 Basic considerations

wavelength around 850 nm, conveniently centered in the Ti:sapphire tuning range
and with readily available low-loss optics and high quantum efficiency photodiodes.

9.2 Integrated resonator

The specific integrated system that we wish to explore in this project is a buried
channel waveguide circuit consisting of a racetrack resonator (RTR) with radius
of curvature R, laterally coupled to a straight bus waveguide, as illustrated in
Fig. 9.1 (a). Similar to the microtoroidal resonators discussed in Part II, coupling to

��� ���

Figure 9.1: (a) Top view of the racetrack resonator geometry. (b) Cross sectional
view at the bus-resonator coupling region. The thickness is t = 250 nm and the
width w is chosen such that the waveguide only supports a single transversal mode.
The gap size g is fixed, and limited from below by the resolution of the lithographic
method chosen, and the coupling rate γc is determined by the length of the coupling
region Lc. Figure adapted from [58].

the RTR is achieved by a finite overlap of the evanescent fields of the two waveguide
modes in the coupling region, and the efficiency is modelled by the field amplitude
coupling rate1 γc ≈ κ2

c/2τ , where τ = 2neff (Lc + πR)/c is the resonator round-trip
time. The coupling rate is controlled through the gap size and coupling length
parameters g and Lc, respectively. Intracavity losses, primarily due to scattering
from the waveguide sidewalls, are represented by an intrinsic loss rate γ0 ≈ κ2

0/2τ =
αc/2neff , where α is the waveguide per meter loss parameter, c is the vacuum
speed of light, and neff the effective mode index. The total loss rate is given by
γ = γ0 + γc (HWHM) determining the loaded quality factor of the resonator. An
important parameter for controlling the squeezed light generation efficiency of the
system is the escape efficiency ηesc = γc/γ, characterizing the collection efficiency

1The integrated resonator can be modelled by an equivalent one-sided bulk-optics cavity with in-
ternal loss, for which κ2

c is the intensity transmittivity of the coupling mirror. The approximate
expression is valid for κ2

c � 1.
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9.3 Squeezing via the χ(3) Kerr nonlinearity

of the intracavity field2. For the application of squeezed light generation, operation
in the over-coupled regime (ηesc > 1/2) is required. But since coupling inevitably
reduces the quality factor, obviously a suitable trade-off between efficient collection
from the cavity (large ηesc) and resonant enhancement of the nonlinear process
(small γ) has to be identified.
As depicted in Fig. 9.1(b), we opt for a rectangular low-aspect ratio cross sectional

geometry of the waveguides. For the sake of minimizing fabricational complexity,
we restrict the thickness t to a value of 250 nm, yielding the largest possible mode
confinement while at the same time eliminating the need for stress-releasing tem-
perature cycling in the deposition process. This in turn puts an upper bound on
the width w, due to the requirement of single mode operation.

9.3 Squeezing via the χ(3) Kerr nonlinearity
A simple and intuitive understanding of the generation of bright quadrature squeezed
states by SPM is provided in [10]: Consider an input pump field α = α0+δX in

1 +δX in
2

consisting of a coherent carrier amplitude and vacuum fluctuations in the side-
band quadratures. Both the coherent amplitude α0 and the noise δX in

1 drives the
intensity dependent SPM process, resulting in a phase shift of the carrier pro-
portional to α0 and induced phase fluctuations at sideband frequencies given by
δφnl = 4πn2Lα0δX

in
1 /λ. For small angles the corresponding change in the phase

quadrature fluctuations is ∆(δX2) ≈ α0δφnl ≡ 2rδX in
1 , yielding the following input-

output relations for the quadrature fluctuations under influence of SPM:
δXout

1 = δX in
1 , (9.1)

δXout
2 = δX in

2 + 2rδX in
1 . (9.2)

While the amplitude quadrature is unaffected by the interaction, the phase quadra-
ture is admixed an amount proportional to the amplitude fluctuations and the car-
rier intensity, correlating the two quadratures. The correlations are strongest at a
quadrature phase of θmin(r) = 1

2 arctan(−1/r) for which the variance is Var(δXout
θmin) =

1− 2r
√

1 + r2 + 2r2. Thus, for any r > 0 the noise is, in principle, squeezed below
the vacuum level at the optimal phase angle which in the limit of weak interaction
strength is limr→0 θmin(r) = −π/4. The SPM squeezing process is illustrated in
Fig. 9.2. Due to the intensity-dependence of the process, the state is progressively
rotated in phase space for increasing squeezing strengths, and at the same time
the squeezing angle θmin approaches the amplitude quadrature of the driving field.
In the limit of strong squeezing, theory predicts a crescent shape deformation of
the noise ellipse. This limit is, however, far beyond the experimentally realizable –
as pointed out by Sizmann and Leuchs [118], entering this regime requires a suffi-
ciently strong nonlinearity that even a few-photon driving field would be enough to
generate significant squeezing.

2The escape efficiency is identical to the coupling parameter ηc introduced in Section 4.3, and
the different names just reflect common terminology used in the different contexts.
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Figure 9.2: Phase space illustration of SPM squeezing. The amplitude quadrature
fluctuations are unaffected by the interaction, cf. (9.1), and the resulting output
state is given by a transformation of the input comprised of a carrier-phase rotation
of the amplitude about the origin and a shearing of the fluctuations, orthogonal to
the amplitude. As a result, the output state is bounded by the dashed circles repre-
senting the input state amplitude fluctuations. (a) input coherent state. (b) Weak
squeezing resulting in minimum uncertainty at θmin = −π/4 relative to the drive
field. (c) The stronger the interaction, the more the squeezing angle approaches the
amplitude quadrature of the driving field.
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Quantum-model of SPM squeezing 10
Though providing an intuitive understanding of how squeezing can be generated
via SPM through coupling of amplitude and phase quadrature fluctuations by the
intensity dependent refractive index, the simplistic description presented in the
previous chapter only captures part of the dynamics of the system we are concerned
with. In this chapter, we present a full quantum analysis of the effects of SPM on the
dynamics and noise properties of a cavity field interacting with a Kerr nonlinearity.
We will do so by taking the particular SPM Hamiltonian as onset for derivation
of the quantum Langevin equations governing the intracavity field dynamics. As
we will see, the presence of a Kerr medium in the cavity can significantly alter
the cavity response. Not only does it enable manipulation of the optical quantum
noise properties and generation of squeezed states, on a classical level it can also
lead to optical bistability of the intracavity field in certain pumping and detuning
regimes. The primary purpose of the analysis is to derive an analytical expression
for the quadrature noise spectrum of the output field which will form the basis for
a subsequent estimation of the device performance.

10.1 Interaction Hamiltonian
As already mentioned in Section 1.2.3, the third order Kerr nonlinearity supports
a number of processes, and for a derivation of the full corresponding interaction
Hamiltonian we refer the reader to the appendix of [58]. However, for the present
analysis we will only be concerned with the part describing the fully degenerate
SPM sub-process. Quantum mechanically, this process is governed by a quartic
Hamiltonian of the form

ĤSPM = ~ξ
2 â
† 2
p â

2
p, (10.1)

where the interaction strength is given by

ξ = ~ωpc2γnl
2n2

effL
. (10.2)

Here, L is the round-trip length of the resonator and neff is the effective mode
index of the pumped guided mode with resonance frequency ωp.
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10 Quantum-model of SPM squeezing

10.2 Quantum dynamics
In close analogy to the analysis in Section 4.3, we follow the standard quantum
Langevin equation approach [31, 43] for analyzing the noise properties of the cavity
output field. Using the Fourier space solution to the dynamical equations, we derive
the single mode squeezing spectrum for the output field.

10.2.1 Langevin equation of motion
Considering a single pumped resonator mode âp interacting with a Kerr nonlinearity
the general Langevin equation of motion is given by

dâp
dt

= − i
~
[
âp, Ĥ

]
− γâp +

√
2γcâp,ine−iωLt +

√
2γ0b̂p, (10.3)

where
Ĥ = ~ωpâ†pâp + ĤSPM . (10.4)

Operators âp,in and b̂p represent driving and input vacuum fields, respectively.
Transforming all mode operators to a frame rotating at the driving laser frequency
ωL, by means of the substitution âp → e−iωLtâp (cf. Appendix A), leads to the
rotating frame equation of motion:

dâp
dt

= −(γ − i∆p)âp − iξâ†pâ2
p +
√

2γcâp,in +
√

2γ0b̂p, (10.5)

with detuning ∆p = ωL−ωp relative to the empty cavity mode frequency. Adopting
the standard coupled-mode theory normalization convention, the steady-state value
|αp|2 represents the total photon number stored in the resonator mode and |αp,in|2
the incoming traveling mode photon flux in the bus waveguide.

10.2.2 Linearized dynamics
In order to solve the system dynamics we linearize the rotating frame quantum
Langevin equation (10.5) about the solution αp to the steady-state equation

|αp|2(γ2 + (∆p − ξ|αp|2)2) = 2γc|αp,in|2. (10.6)

We do so by making the substitution âp → αp + δâp and retaining only terms of
first order in the quantum fluctuation operator δâp. Defining vectors of fluctuation
operators, e.g. δai = (δâi, δâ†i )T , the linearized system of differential equations can
be stated as a matrix equation

dδap
dt

= [M− γI2] δap +
√

2γcδain +
√

2γ0δb, (10.7)
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10.3 Squeezing spectrum

where I2 is the two-dimensional identity matrix. The dynamics of the pumped mode
is fully characterized by the system matrix

M− γI2 =
(
−γ − i(2|ε| −∆p) −iε

iε∗ −γ + i(2|ε| −∆p)

)
(10.8)

and its eigenvalues
λ± = −γ ±

√
|ε|2 − (∆p − 2|ε|)2. (10.9)

For brevity we have introduced the pump parameter ε = ξ|αp|2ei2φ, where φ is
the phase of the pump field. From (10.8) we observe that SPM induces phase-
dependent correlations in the fluctuations of the intracavity field (anti-diagonal
elements), increasing with pump power, and a power-dependent nonlinear shift of
the cold-cavity resonances (diagonal elements), responsible for optical bistability [37,
105] of the system.
Stability of the pumped mode requires that Re(λ) < 0 for all eigenvalues [63].

This is trivially fulfilled for λ−, and for λ+ the condition can be equivalently for-
mulated as: 3|ε|2 − 4∆p|ε| + ∆2

p + γ2 > 0. The real part of λ+ is plotted in
Fig. 10.1. Solving the equation for |ε| we find solutions |ε|± = 1

3(2∆p±
√

∆2
p − 3γ2);

for |ε|− ≤ |ε| ≤ |ε|+ the system is unstable and outside it is always stable. Fur-
thermore, for ∆p <

√
3γ no real positive solution for |ε| exists and the stability

criterion is always fulfilled; for ∆p >
√

3γ two solutions exist, marking the onset
of optical bistability. We observe from (10.9) that for the particular choice of de-
tuning ∆p = ξ|αp|2 = |ε| the eigenvalues collapse to a degenerate pair λ± = −γ.
Thus, the system is always stable, independent of the pump power. In this case the
SPM induced nonlinear shift of the cavity resonances is exactly compensated for by
the pump laser detuning, restoring the usual proportionality between input pump
power and stored intracavity energy, |αp|2 = 2γc/γ2 · |αp,in|2 for a resonantly driven
cavity.

10.3 Squeezing spectrum
In order to derive the fluctuation spectrum which is the important quantity for
characterizing the noise properties of the field, we transform (10.7) into frequency
space. Fourier transformation conveniently turns the differential equation system
into a set of algebraic equations for the intracavity fluctuations, and the solution is
readily found to be

δap(Ω) = − [M− (γ − iΩ)I2]−1
(√

2γcδain(Ω) +
√

2γ0δb(Ω)
)
. (10.10)

The intracavity field fluctuations can in turn be projected onto the output mode
through the boundary condition,

δaout(Ω) = δain(Ω)−
√

2γcδap(Ω). (10.11)
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10 Quantum-model of SPM squeezing

Figure 10.1: Real part of the pumped mode eigenvalue λ+ as a function of pump
parameter and detuning. The λ+ = 0 contour (black dashed line) divides the
parameter space into a stable (λ+ < 0) and an unstable (λ+ > 0) region. For
detunings above the bistability condition (white dashed line) two stable regions exist
and the system can be tuned between the two by changing the intracavity power.
The intermediate unstable region is not accessible. By progressively detuning the
drive field from the empty cavity resonance as the pump power is increased it is
possible to maintain stability of the system and maximize the intracavity power (red
dashed line). Furthermore, we observe that in terms of power the instability region
is bounded from below by the condition that |ε| > γ indicating that the nonlinear
scattering rate from the pumped mode should exceed the cavity dissipation rate in
order for instability to occur. Figure adapted from [58].
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10.3 Squeezing spectrum

Inserting (10.10) into (10.11) we find for the output field fluctuations,

δaout(Ω) = [M− (γ − iΩ)I2]−1

×
(

[M + (γc − γ0 + iΩ)I2] δain(Ω) + 2√γ0γcδb(Ω)
)
. (10.12)

Experimentally, the cavity output will be characterized by balanced homodyne
detection of the field fluctuation quadratures

δX̂θ(Ω) = δâout(Ω)e−iθ + δâ†out(−Ω)eiθ, (10.13)

for which the quantum noise properties are fully characterized by the normal ordered
second order moment

〈:δX̂θ(Ω)δX̂θ(Ω′) :〉 =
[
e−2iθ〈δâout(Ω)δâout(Ω′)〉+ e2iθ〈δâ†out(−Ω)δâ†out(−Ω′)〉

+〈δâ†out(−Ω)δâout(Ω′)〉
]
δ(Ω + Ω′). (10.14)

The normal ordered spectrum of δX̂θ(Ω) is given by the integral of (10.14) over
Ω′ [131]

:Sθ(Ω) :=
∫
dΩ′〈:δX̂θ(Ω)δX̂θ(Ω′) :〉, (10.15)

and finally the squeezing spectrum of the output field quadrature is given by

Sθ(Ω) = 1 + :Sθ(Ω) : (10.16)

which can be directly measured as the power spectral density of the homodyne
photocurrent. The additional constant term accounts for the vacuum variance con-
tribution from anti-normal ordered terms of the second order moment, which for
the particular field quadrature definition in (10.13) is equal to one.
Using the system matrix (10.8) the contributing second order moments in (10.14)

can be evaluated, and through a bit of algebraic manipulation we can derive the
following expression for the output squeezing spectrum of the pump (see Appendix B
for a fully detailed derivation):

SSPMθ (Ω) = 1 + :SSPMθ (Ω) :

= 1 +G ·
[
2γ|ε| − 2γ

[
2|ε| −∆p

]
cos 2(θ − φ)

−
[
γ2 + Ω2 −∆2

p + 4∆p|ε| − 3|ε|2
]

sin 2(θ − φ)
]

(10.17)

where
G = 4γc|ε|[

∆2
p + γ2 − Ω2 − 4∆p|ε|+ 3|ε|2

]2
+ 4γ2Ω2

. (10.18)

Using the beamsplitter loss model described in Section 2.2.1, we can account for
finite detection efficiency, primarily resulting from fiber-chip coupling (ηc), imperfect
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10 Quantum-model of SPM squeezing

mode overlap on the homodyne detector (ηmm), and photodiode quantum efficiency
(ηqe). The resulting reduced measurable squeezing spectrum is given by

Smeasθ (Ω) = (1− η) + η Sθ(Ω) = 1 + η :Sθ(Ω) :, (10.19)

where η = ηc · ηmm · ηqe is the total detection efficiency.
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Numerical investigation 11
Developing a novel squeezed-light source inevitably entails careful consideration of
all parts of the design, in order for the system to meet the strict performance re-
quirements, prerequisite for manipulating light at the quantum level. High source
efficiency is generally desired, both in terms of required pump power and attainable
quantum noise suppression, placing strong demands on the design in terms of nonlin-
ear interaction strength and optical loss, respectively. And if in addition particular
source characteristics are targeted, which is usually the case, e.g. small footprint,
operation wavelength(s), resonant enhancement or not, broad/narrow bandwidth,
etc., then further requirements obviously apply.
Whereas bulk optics systems to a certain degree allow tweaking and post opti-

mization in case of sub-optimal performance or parasitic effects, integrated devices
are less forgiving as the structures are hard coded into the host material, requir-
ing a new fabrication run to accommodate modifications. On the other hand, the
compactness and ability of batch production of integrated devices allows multiple
parameter ranges to be explored in a single fabrication run with no or only limited
additional cost. However, in either case it is important to identify the relevant
tuning range or tolerance of central design parameters within which optimal system
operation is expected.
As presented in Section 11.1 below, we have addressed this point by undertak-

ing a thorough numerical investigation of crucial optical propagation and nonlinear
properties of the envisioned waveguide racetrack resonator. Table 11.1 summarizes
the parameters that were held fixed throughout the simulations, and we further-
more constrained the minimum lateral feature size to 400 nm to make the design
compatible with standard UV stepper lithography. On the basis of our findings
we have identified a target device design, and the feasibility of it has subsequently
been evaluated by using the simulation results as input to the theoretical model
developed in Chapter 10. These results are discussed in Section 11.2.

11.1 Device design via numerical simulation of
optical properties

As described in Section 1.2.2, determination of the supported modes of a waveguide
structure can be reduced to solving a two-dimensional eigenvalue problem on the
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11 Numerical investigation

Parameter Symbol Value
Operation wavelength λ 850 nm
Waveguide thickness t 250 nm
Refractive index of silicon dioxide @ 850 nm nSiO2 , nclad 1.45
Refractive index of silicon nitride @ 850 nm nSi3N4 , ncore 2.00

Table 11.1: Parameter values held fixed in simulations.

transverse cross section. Though providing a considerable simplification compared
to solving the full 3D vectorial Helmholtz equation it is still, in general, a difficult
problem for which one has to resort to numerics. A number of different methods
exist for numerically solving the eigenmode problem for arbitrary waveguide de-
signs, e.g. the finite element method (FEM) and the finite difference method (FD),
where in the latter case the frequency domain formulation (FDFD) is particularly
well-suited for mode solving. Both methods rely on breaking up the continuous an-
alytical problem on a fine-meshed discretization grid and in both cases the accuracy
of the solution depends on the grid finesse, resulting in exceedingly long computa-
tion times when finer and finer details need to be resolved. In the early stage of
this project both methods were explored; FEM via the commercial software COM-
SOL, and FDFD using a self-implemented solver. However, for the work presented
in the following, we have exclusively used the full vectorial mode solver software
FieldDesigner, commercially available from PhoeniX Software, which employs the
Film Mode Matching (FMM) method [123] for mode solving. Unlike FEM and FD,
FMM is a semi-analytic method not requiring discretization. Rather it slices the
structure up into thin films and finds the TE and TM of each film. The total mode
is then constructed by matching up the field distributions of each individual film
mode. Due to its working principle, FMM is particularly well-suited for analysis of
rectangular dielectric waveguides.

11.1.1 Supported modes
A very basic requirement that has to be imposed is that the waveguides be single
mode. That is, the transversal waveguide geometry should be designed in such a way
that only a single guided mode is supported. This is important in order to optimize
power confinement in the core and to facilitate mode matching of the output field
to a free space local oscillator field as required for homodyne interrogation.
In the weak-guidance approximation, where the relative index difference ∆ =

(n2
core − n2

clad)/(2n2
core) is small, ∆ � 1, an analog of the V-number or normalized

frequency for optical fibers [111], can be defined for waveguides [78]:

V = 2π
λ
ρncore

√
2∆, (11.1)

and the condition V = 2.131 then provides an approximate single-mode criteria [78].
The characteristic dimension is defined as ρ = √ρxρy where ρx = w/2 and ρy = t/2
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11.1 Device design via numerical simulation of optical properties

are the half widths of the waveguide. Using (11.1) and the fixed value for t we
find that the cut-off for the first higher-order TE1 mode appears at wco = 700 nm.
However, since the waveguides considered here have a rather large index difference
(∆ = 0.237) the weak-guidance approximation is not entirely justified, and we
should not have too much faith in the predicted cut-off value. In Fig. 11.1 we plot
the numerically calculated effective mode indices for the first three guided modes as
function of waveguide width w. Starting from the square cross section and increasing
the w : t aspect ratio the effective indices of the fundamental TE and TM modes
separate with nTEeff > nTMeff , indicating that the horizontally polarized TE mode
is more confined to the silicon nitride core. This geometry-induced birefringence
improves the polarization maintaining property of the waveguide and it is thus
beneficial to maximize the aspect ratio. As the width is further increased the first
higher-order TE mode starts to break through with the single-mode cutoff width
being wco ' 600 nm. The large discrepancy between this and the first predicted
value highlights the need for numerical analysis in order to make reliable predictions.
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Figure 11.1: Simulated (λ = 850 nm, t = 250 nm) effective mode indices for the
first three guided modes as function of waveguide width. Insets: Simulated mode
profiles corresponding to each of the five encircled points. Solid black lines outline
the waveguide core cross section. Figure adapted from [58].

1Strictly speaking the field inside a rectangular buried channel waveguide is neither purely TE or
TM, since the two-dimensional confinement generally yields a skew in the mode. But so-called
quasi-TE and quasi-TM modes exist, for which the dominant part of the electric field is along
the x- or y-axis, respectively. That said, we will however simply refer to these modes as TE or
TM throughout the rest of this thesis.
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11.1.2 Optimizing the nonlinear interaction strength
An equally important property related to the waveguide cross section is the effec-
tive mode area Aeff introduced in Section 1.2.3. Since the Hamiltonian coupling
constant (10.2) is inversely proportional to Aeff , minimization of this parameter
will have a direct impact on the device efficiency. Different definitions of Aeff exist
in the litterature, but here we adopt the form introduced by Rukhlenko et al. [106]
given by

Aeff = aNL

∫ ∞∫
−∞

Szdxdy

/∫∫
NL

Szdxdy , (11.2)

where aNL is the cross sectional area of the nonlinear waveguide core and Sz is the
time-averaged z component of the Poynting vector2. The effective mode area is thus
simply defined as the core area scaled by the ratio of total mode power to power
transmitted through the core. Simulated effective TE0 mode areas as function of
waveguide width are shown in Fig. 11.2 for a range of different thicknesses.
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Figure 11.2: Simulated (λ = 850 nm) effective mode area as function of waveguide
width for different waveguide thicknesses. Dashed lines show the nonlinear core
area aNL which, according to the definition in (11.2), is the minimal effective mode
area for a given cross section. Figure adapted from [58].

According to the simulated effective indices in Fig. 11.1 the waveguide width
should be kept below 600 nm to maintain single mode operation. But to benefit
from the geometry-induced polarization maintaining property the ratio of width to
thickness should be maximized. On the other hand the simulated effective mode

2The z-axis is defined to be along the propagation direction of the bus waveguide.
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11.1 Device design via numerical simulation of optical properties

areas in Fig. 11.2 point in the direction of a reduced w : t aspect ratio for in-
creasing the nonlinear interaction strength. From this we anticipate that a cross
sectional waveguide geometry with t = 250 nm and w = 500 nm would be a suitable
compromise, and the following simulations will assume these values.

11.1.3 RTR coupling
Having identified a suitable cross sectional design we now turn to a discussion
of how the RTR coupling efficiency can be tailored to meet the requirements for
squeezed light generation. Most importantly, the escape efficiency ηesc = γc/γ of
the resonator is required to be large, as otherwise the squeezed intracavity field will
predominantly decay via internal loss sources rather than being collected through
the bus. Meeting this requirement means that the coupling efficiency should over-
compensate the resonator round-trip loss due to linear propagation loss and bending
loss. But on the other hand we also want to preserve a certain field enhancement
factor of the resonator in order to boost the nonlinear interaction.

Figure 11.3: Directional coupler formed at the RTR-bus waveguide “junction”.
The couping efficiency κ2

c is controllable through the bus-to-RTR separation g and
length of the coupling region Lc.

Physically, coupling to the RTR is achieved by means of a four-port directional
coupler-like waveguide architecture (Fig. 11.3) formed by placing the bus waveguide
in the vicinity of the RTR. If the separation is sufficiently small then the overlap
of the two waveguide mode functions

∫
core 2 u1(x, y)u2(x, y)dA, integrated over the

second core, will take a nonvanishing value, enabling transfer of power from mode
1 to mode 2.3 The directional coupler is the integrated analogue of a free-space
beamsplitter and its classical action is, in terms of the coupled mode intensities,

3From a quantum mechanical perspective, the individual modes of the bus and RTR waveg-
uides can be seen as eigenstates of the trapping potential formed by the respective dielectric
structures. The corresponding wavefunctions have exponentially decaying tails outside the po-
tential wells and if the structures are sufficiently close that the tails overlap significantly then
tunneling between the wells becomes possible.
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described in a way similar to the beamsplitter transformation in Section 2.2.1:(
I3
I4

)
= (1− Γl)

(
1− κ2

c κ2
c

κ2
c 1− κ2

c

)(
I1
I2

)
, (11.3)

where κ2
c is the power coupling efficiency and Γl is a power loss coefficient, relevant

since the directional coupler does not necessarily provide adiabatic transfer between
the coupled modes. The total coupling efficiency κ2

c is given by the integral over
the entire resonant interaction between the bus and RTR waveguide modes along
the z-direction, with a predominant contribution from the coupling region of length
Lc. Accounting for the spatial variation of the coupling strength, dependent on the
instantaneous waveguide separation g(z), the total field coupling efficiency is given
by [84]

κc =
∞∫
−∞

κc(g(z))ei(β1−β2)zdz, (11.4)

where β1,2 are the propagation constants of the individual modes. If the bus is
initially excited (port 1), then after an interaction length L0, which depends on the
actual coupler architecture and the optical wavelength, the optical intensity will
be transferred to the RTR waveguide (port 4). In general, the intensity splitting
between output ports 3 and 4 is a sinusoidally varying function of z [102]:

I3(z) = I1 cos2
(
π

2L0
z
)
, I4(z) = I1 sin2

(
π

2L0
z
)
, (11.5)

where we have assumed a lossless coupler.
Figure 11.4 shows simulations of the coupling between bus waveguide and RTR

as function of the coupling region length Lc and separation gap g.4 For the linear
propagation loss we have assumed a conservative value of α = 2 dB/cm, and via
separate simulations we have ascertained that for RTR radii of curvatureR ≥ 50µm,
the bending loss is reduced to . 0.003 dB/360◦ [58]. The resulting total round-trip
loss L is on the order of a few percent. From the simulation results we observe
that for large gaps the mode overlap is too small to achieve efficient coupling to the
resonator whereas for very small gaps the energy oscillates back and forth between
bus waveguide and RTR as function of the coupling length, cf. (11.5). Furthermore,
we observe that for Lc = 0µm (ring resonator) the coupling efficiency drops off
exponentially with gap size. Relevant simulation runs complying with the constraint
on lateral feature sizes are plotted in the right-hand panel. It appears that for
g = 500 nm the coupling efficiency can be conveniently tuned across and above the
full range of expected intracavity loss values (gray dashed line), rendering this gap
size a favourable choice for fabrication of over-coupled resonators. Reducing the gap
by another 100 nm leads to a strong perturbation of the intrinsic RTR properties

4For these simulations we used the FieldDesigner RingResonator module which combines a 2D
vectorial mode solver with coupled mode theory to effectively handle 3D problems like curved
waveguides and coupling between waveguides.
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Figure 11.4: Simulated (λ = 850 nm, t = 250 nm, w = 500 nm) efficiency of TE0
coupling between RTR and bus waveguide as function of coupling length Lc. (left)
Simulation runs with gap sizes in the range 100−800 nm. (right) Selected simulation
runs plotted on linear scale. The gray dashed line indicates the total intracavity loss
for an RTR with R = 50µm in case of 2 dB/cm propagation loss. Figure adapted
from [58].

and the associated increase in ηesc comes at a price of a much reduced finesse. The
RTR finesse and escape efficiency are given by the approximate expressions

F ≈ 2π
κ2
c + L , ηesc ≈

κ2
c

κ2
c + L , (11.6)

valid for κ2
c , L � 1. Table 11.2 summarizes the evaluation of (11.6) using simulation

data from Fig. 11.4. For comparison we have also carried through the simulations
in case of α = 1 dB/cm. We observe that for g = 500 nm it is indeed possible to
achieve escape efficiencies above 80% and maintain F > 100, provided that the
waveguide propagation loss can be reduced to about 1 dB/cm.

α = 1 dB/cm
Lc g = 400 nm g = 500 nm
[µm] ηesc F ηesc F
4 0.88 96 0.73 207
6 0.91 70 0.79 163
10 0.94 42 0.84 124
14 0.96 28 0.88 90

α = 2 dB/cm
Lc g = 400 nm g = 500 nm
[µm] ηesc F ηesc F
4 0.79 86 0.59 167
6 0.84 65 0.66 137
10 0.90 40 0.73 108
14 0.93 27 0.79 81

Table 11.2: Evaluation of RTR (R = 50µm) escape efficiency and finesse in case
of 1 dB/cm (left) and 2 dB/cm (right) propagation loss. Italicized values indicate
that the approximations used in (11.6) are only partially justified.
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11 Numerical investigation

11.1.4 Chip interfacing
One of the most severe limitations for generation and application of squeezed light
in integrated structures is the notoriously large coupling loss associated with inter-
facing integrated waveguides. Using an external squeezed-light source for on-chip
sensing purposes the effective degree of squeezing will be greatly reduced by in-
and out-coupling losses5 and for an integrated source – as targeted here – inefficient
collection of the squeezed light on the output side will prevent generation of high-
purity states with significantly reduced quantum noise, thereby limiting the source
feasibility.
One way of mitigating this problem is to adiabatically match the highly confined

waveguide mode to that of, say a single mode fiber, by means of optimized waveguide
structures – known as spot size converters – at the chip facet. In [58] we proposed
one such waveguide design, based on the TriPleXTM waveguide technology developed
by LioniX, and we investigated numerically its feasibility. Here, we will just discuss
the underlying idea of the proposed design and summarize the previously obtained
results. Implementation of non-standard designs will inevitably increase fabrication
costs and difficulties considerably but it is paramount that the coupling loss issue is
addressed thoroughly in order for integrated quantum optical devices to be of any
practical relevance.

Figure 11.5: Longitudinal cross section of the proposed silicon nitride double layer
stack and inverse taper for robust chip coupling. On the left-hand side the lower thin
film extends all the way to the chip-air interface and acts as a weakly guiding struc-
ture for the incident light. The light is then transferred into the high-confinement
upper waveguide by means of the adiabatic inverse taper. The performance of the
design depends on optimization of thin film thickness ttf , intermediate oxide layer
thickness tox, and tapering length Lt. Figure adapted from [58].

The design in question is sketched in Fig. 11.5 and consists of an asymmetric
silicon nitride double layer stack with inverse vertical tapering of the upper layer.
The lower film extends to the chip facet and acts as a weakly guiding structure

5Similar to what was observed in the cavity optomechanics experiments in Part II of this thesis.

102



11.1 Device design via numerical simulation of optical properties

for the incident light field and serves two purposes: (i) it reduces interface Fresnel
losses to ∼4% (ηFresnel = 96%), which can in principle be further reduced by anti-
reflection coating, and (ii) the mode field diameter of the guided thin film mode can
be easily tailored to match that of an incoming mode, e.g. delivered by a lensed
fiber, by controlling the film thickness. Light is then transferred to the main high-
confinement waveguide by means of the inverse vertical taper. The efficiency of
this process relies on optimization of the intermediate oxide layer thickness and the
tapering angle Ω being sufficiently shallow for the mode conversion to take place
adiabatically. The mode conversion along the structure is illustrated in Fig. 11.7.
An optimal thin film thickness was identified by numerically evaluating the mode

overlap between an incident Gaussian mode with a waist of 1µm (consistent with
the use of a lensed fiber) and the fundamental TE mode guided by the film as
function of the thickness ttf (Fig. 11.6). As the thickness is thinned down the
mode field diameter expands exponentially, reaching an optimal overlap of ηoverlap ∼
98% at a thickness of 60 nm. The exponential mode expansion requires a firm
handle on the film thickness during the fabrication process in order to optimize
coupling to a specific lensed fiber. To this end the double layer stack design offers a
great simplification fabrication-wise. The thin film can be directly deposited with
nanometer-control of the thickness using LPCVD and with the protective oxide
layer on top, acting as an etch-stop, the nitride etch used to define the inverse taper
can be performed without risk of damaging the thin film.
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Figure 11.6: Numerical simulations of the fundamental mode guided by the lower
thin film as function of thickness. (left) Effective index of the fundamental mode
and overlap with a target mode of waist 1µm. As the film thickness is reduced the
effective index approaches that of the cladding, and the mode expands to reach an
overlap of about 98% with the target mode at a thickness of 60 nm. (right) Fitted
x- and y-waists of the fundamental mode showing an exponential expansion for a
decreasing film thickness. Figure adapted from [58].

We have studied the requirements for adiabatic performance of the taper in the
context of the theory for delineation of adiabaticity criteria for tapered optical
fibers, developed by Love et al. [85, 78]. In combination with numerical calculations
of the optical mode properties as function of the instantaneous taper height, we have
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11 Numerical investigation

Figure 11.7: Illustration of mode conversion along the inverse taper. At the be-
ginning of the taper (right) the mode is highly confined to the 250 nm thick silicon
nitride core. As it propagates towards the chip facet (left) the light is gradually
coupled over to the lower thin film while the mode expands more and more into the
cladding. The shown modes were calculated numerically for a 500 nm wide double
layer stack with a constant lower film thickness of 60 nm, an intermediate oxide
thickness of 100 nm, and an upper layer thickness t varied between 0 nm and 250
nm. The cross sectional dimensions of the indicated waveguide structure is to-scale
with the the plotted mode profiles but the axial dimension has been compressed in
order to accommodate the whole large-aspect ratio structure in the figure.
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11.2 Estimation of device performance

found that for tapering lengths Lt & 500µm the loss is less than 10%. To consolidate
this estimate we have performed 2D Beam Propagation Method simulations of the
coupling across the taper as function of the intermediate oxide layer thickness. At
a thickness of tox = 100nm the simulations yield a coupling efficiency similar to the
above estimate. We will therefore take ηtaper = 90% as our best estimate for the
taper efficiency.
In summary, the numerical analysis of the double layer stack has resulted in a

set of efficiencies which can be combined in an estimate for the over-all fiber-to-
waveguide coupling efficiency:

ηc = ηFresnel · ηoverlap · ηtaper ≥ 0.96 · 0.98 · 0.90 ≈ 84%, (11.7)

corresponding to a coupling loss of only 0.75 dB/facet. Experimental confirmation
of this value would be an important step towards feasible integrated high-index
contrast structures for quadrature squeezed light generation.

11.1.5 Summary
The numerical investigations suggest that it is indeed possible to design an in-
tegrated resonator with characteristics in accordance with the requirements for
squeezed-light generation. That said, it is clear from Section 11.1.4 that despite our
efforts to devise an efficient and robust chip interfacing mechanism, out-coupling
loss from the chip remains a bottleneck for the device performance. Also, the ini-
tially assumed propagation loss of 2 dB/cm has turned out to be somewhat on the
high side of what is acceptable. The results of Section 11.1.3 indicate that a more
tractable trade-off between escape efficiency and intracavity field enhancement is
possible if the propagation loss can be reduced to about 1 dB/cm.
To provide a clear and concise overview of the outcomes of the numerical simu-

lations, we list in Table 11.3 all the identified target design values and the derived
values which will characterize the performance of the device as a source of squeezed-
light. These target values are the exact ones used for the integrated devices which
have been fabricated and experimentally investigated during the course of this thesis
(see Chapter 12).

11.2 Estimation of device performance
In the preceding chapter we developed a theoretical model of the output squeezing
spectrum from an integrated RTR device, showing a third order optical nonlinearity,
and in the above section we have discussed numerical simulations leading to an
optimized design for such a device. We will now use those results to piece together
estimates of the projected device feasibility as a source of squeezed light. This will
be done on the basis of a device design as specified by Table 11.3 with the only
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11 Numerical investigation

Parameter Sym. Target Derived values
Wavelength λ 850 nm  TE0:

neff = 1.66
Aeff = 0.18µm2Waveguide thick. t 250 nm

Waveguide width w 500 nm
RTR radius R 50 µm  @ 1dB/cm: ηesc = 84%, F = 124

@ 2dB/cm: ηesc = 73%, F = 108Bus-to-RTR gap g 500 nm
Coupling length Lc 10 µm
Thin film thick. ttf 60 nm  ηc = 84%Oxide layer thick. tox 100 nm
Taper length Lt > 500 µm

Table 11.3: Summary of numerically optimized target parameter values for RTR
design.

variable parameter being the RTR power coupling efficiency κ2
c , bound to the range

2-8%.6
Stimulated by the conclusions of Section 11.1 we will assume an uprated linear

propagation loss of 1 dB/cm. This is a reasonable assumption as 300 nm thick
silicon nitride waveguides have been demonstrated with a loss of only 0.1 dB/cm
in the visible [121] and at a wavelength of 900 nm PECVD-fabricated waveguides
of 180 nm thickness and 500 nm width with propagation loss < 0.8 dB/cm were
recently demonstrated by Subramanian et al. [122]. In order to make realistic es-
timates for the measurable degree of squeezing the state detection efficiency must
also be accounted for. To this end, an out-coupling efficiency of 84% will be used
(cf. Table 11.3) and we will take the homodyne mode overlap and detector quan-
tum efficiency to be ηmm = ηqe = 98%, resulting in a total detection efficiency of
η = 80.6%.
Ultimately, the figure of merit is the maximum achievable quantum noise reduc-

tion, but other characteristics such as output state bandwidth and purity are also
important for the practical applicability of the source. All aspects are treated in [58]
but here we will only discuss the results obtained for the former two.

11.2.1 Achievable degree of squeezing
Using the derived expression for the squeezing spectrum in (10.17)-(10.19) and the
design values in Table 11.3 we calculate the quantum noise characteristics of the
output field from the integrated device as function of escape efficiency, input pump
power, and quadrature phase. The corresponding relative noise power tomographies,
normalized to the shot noise level, are plotted in Fig. 11.8. We have furthermore

6In practice this is realized by variation of the coupling length Lc. Since the associated modifica-
tion to the nonlinear interaction strength ξ and intra-cavity loss L, through the Lc dependence
of the RTR round-trip length, is only on the few-percent level, we will neglect this and assume
constant values for these quantities corresponding to Lc = 12µm (κ2

c = 5%).
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11.2 Estimation of device performance

assumed the measurements to be performed at a particular sideband frequency of
30 MHz. Most significantly a quantum noise reduction of about 4.5 dB is observable,
confirming the feasibility of the designed device as a source of bright squeezing.
Throughout this part of the thesis we have regularly returned to the issue of

determining an optimal trade-off between escape efficiency and cavity enhancement.
The importance of it for the system in question stems from the self-driven squeezing
interaction and power dependence of the Kerr nonlinearity: it is generally of interest
to increase ηesc in order to preserve squeezing in the output field, but that inevitably
reduces the cavity finesse and thereby the intracavity power driving the squeezing
process. And indeed we observe from Fig. 11.8 that for a given pump parameter
|ε| (bottom axes) larger squeezing is achievable as the escape efficiency is increased.
But the required pump power in the bus waveguide (top axes) also increases, rapidly
approaching experimentally intractable levels. For ηesc ≥ 90% we find that reaching
3 dB of squeezing already requires about 200 mW input pump power.
Taking cross sectional views for a particular pump power of the individual panels

in Fig. 11.8 provides the more familiar representation of the output field quantum
noise shown in Fig. 11.9. This is how homodyne measurements of the noise would
look like as the local oscillator scans through the quadrature phases. From the ten-
dency of the noise minima as function of escape efficiency we infer that an optimum
of the sought-for compromise between escape efficiency and cavity enhancement is
achieved for ηesc = 85%. Furthermore, the figure clearly illustrates the admixing of
vacuum fluctuations for low escape efficiencies by a rapidly increasing noise in the
anti-squeezed quadrature, resulting in output states of low purity [97].

11.2.2 Squeezing bandwidth
As mentioned, another important characteristic of a squeezed-light source is its
bandwidth. Most often, cw OPOs based on parametric down-conversion employ
cavities with bandwidths of a few tens of MHz, limiting the output bandwidth
to a similar value. One exception is monolithic cavity systems [92, 135] where the
internal loss is sufficiently low to reach bandwidths up to 170MHz. In such a system,
designed for strong resonant enhancement of the pump field only, weak squeezing
at 1550 nm with a bandwidth of more than 2GHz has been demonstrated [8], and
in a later work about 2 dB of squeezing was observed with a bandwidth exceeding
1GHz [9].
Squeezed light is a widely used resource in quantum communication applications,

e.g. for establishing the essential two-partite entanglement for quantum key distri-
bution [29, 89]. In this particular case the key rate is directly linked to the squeezing
bandwidth and demonstration of efficient GHz-bandwidth sources is thus an impor-
tant prerequisite for high-speed protocols. Large-bandwidth squeezed states are also
essential for extending the applicability of cv quantum sensing techniques. As an
example, state of the art optomechanical photonic crystal devices have mechanical
resonance frequencies in the GHz range [108], rendering conventional squeezed light
sources insufficient for enhancing the transduction sensitivity.
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11 Numerical investigation

Figure 11.8: (λ = 850 nm, α = 1 dB/cm, η = 80.6%, Ω/2π = 30 MHz) Relative
noise power in the output field of a resonantly pumped RTR (∆p = |ε|) as function
of pump parameter |ε|. Panels (a)-(d) correspond to RTR escape efficiencies of 75%,
80%, 85%, and 90% respectively. The shot noise level is indicated by the dashed
contour and the solid black contour corresponds to 3 dB quantum noise reduction.
Figure adapted from [58].
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Figure 11.9: (λ = 850 nm, α = 1 dB/cm, η = 80.6%, Ω/2π = 30 MHz) Cross
sectional views of panels (a)-(d) in Fig. 11.8 for an input pump power of 200 mW.
Figure adapted from [58].

The squeezing spectrum of the discussed integrated device is plotted in Fig. 11.10
and evidently it has potential to fulfill the above requirements for a broadband
source. The shown squeezing and anti-squeezing spectra correspond to |ε|/γ = 0.5
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Figure 11.10: (λ = 850 nm, α = 1 dB/cm, |ε|/γ = 0.5) Spectrum of the squeezed
and anti-squeezed quadratures assuming 80.6% (thick), 91.2% (thin), and unity
(dashed) detection efficiency. Panels (a)-(d) correspond to RTR escape efficiencies
of 75%, 80%, 85%, and 90% respectively. Figure adapted from [58].

for the same escape efficiencies as in Fig. 11.8. With a total detection efficiency of
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80.6% (ηc = 84%) the output field shows more than 2 dB quantum noise reduction
over a bandwidth larger than 1GHz across all four ηesc-values. With the ability to
increase the detection efficiency to 91.2% (ηc = 95%) more than 3 dB squeezing is
expected over a bandwidth of 1.5GHz for ηesc ≥ 85%.
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Experimental work 12
“We have a habit in writing articles published in scientific journals to
make the work as finished as possible, to cover all the tracks, to not
worry about the blind alleys or to describe how you had the wrong
idea first, and so on. So there isn’t any place to publish, in a dignified
manner, what you actually did in order to get to do the work.”

– R. P. Feynman
opening line of Nobel Lecture 1965 [41].

–Well, maybe a thesis is the perfect place?

In this chapter we discuss the experimental efforts made towards demonstrating
the feasibility of integrated silicon nitride racetrack resonators as sources of bright
squeezed optical fields. As will become evident, this work has not followed a straight
road to success, but rather explored a bumpy trail up and down the technical pitfalls
of developing a novel on-chip quantum light source. In particular, the challenges as-
sociated with interrogating the quantum noise of bright fields has been more severe
than anticipated, and so far they have only been partially tackled.

12.1 Realization of integrated silicon nitride devices
An imperative prerequisite for the work discussed in this chapter was the material-
ization of integrated silicon nitride resonators fabricated as per the design devised in
Chapter 11. It was initially planned that the microfabrication should be undertaken
at the in-house cleanroom facility Danchip, which would in principle allow for an
iterative optimization procedure with feedback from the optical experiments. And
a lot of time was spent in the cleanroom trying to do so – both by the author and
by Ying-Wei Lu who was a postdoc in the group at the time – but it was relatively
soon realized that the lack of previous experience in the group with fabrication of
low-loss silicon nitride waveguide structures would make it exceedingly difficult to
achieve the set goals within the time frame of the project.
From the research literature on silicon nitride waveguide devices we were aware

that the foundry LioniX based in Enschede, The Netherlands, had previously been
involved in fabrication of silicon nitride waveguide devices achieving state-of-the-art
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propagation loss figures. Motivated by the unsuccessful in-house fabrication efforts
we initiated a correspondence with the company in April 2013, and five months
later an order was placed with LioniX. Finally on April 25th 2014 we received the
first batch of silicon nitride devices. Figures 12.1 and 12.2 below show top view and
cross sectional SEM micrographs of exemplary devices from the batch. Details on
the mask used for the microfabrication process are provided in Appendix C.

Figure 12.1: SEM micrograph of a silicon nitride RTR side-coupled to a bus waveg-
uide prior to deposition of the upper oxide cladding layer. The particular device
has a 25µm radius of curvature. Image courtesy of E. Schreuder (LioniX BV).

Figure 12.2: SEM micrograph of the cross sectional waveguide structure showing
the double layer stack architecture. The width of the particular waveguide is slightly
smaller than the target value of 500 nm. Image courtesy of E. Schreuder (LioniX
BV).
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12.2 Titanium sapphire laser

With the aim of exploring a range of RTR configurations, and to account for
possible deviations from the expected loss figures provided by vendor, a number of
different device configurations were accommodated in the first batch. More spefici-
cally, the fabricated devices include side-coupled RTRs with radii of curvature R of
25µm, 50µm, and 75µm, and for each RTR size the coupling lengths Lc is varied
across values of 2, 5, 8, 9, and 10µm. Also, straight waveguides without RTRs were
included on each chip, intended for spatial mode shaping of the local oscillator field.
Finally, a large number of propagation loss calibration chips were included, consist-
ing of spiral delay line waveguides for cut-back measurements, covering 8 different
lengths between 0.5 cm and 8 cm (cf. Section 12.4.1).

12.2 Titanium sapphire laser
As mentioned in Chapter 6, working with optical microresonators requires a widely
tunable laser source, simply because the free spectral range scales inversely with the
resonator round-trip length, e.g. the target RTR design in Table 11.3 has a circum-
ference of 334µm resulting in a free spectral range of 540 GHz. For an over-coupled
RTR, resonance linewidths (FWHM) of about 4-5 GHz are expected, and for char-
acterization purposes a suitable laser should be capable of scanning continuously
across a frequency range larger than that. Last, but not least, the application of
squeezed light generation requires the laser to be shot noise limited. Considering
these requirements a cw Ti:sapphire (Ti3+:Al2O3) laser system is an adequate choice
for the experiment. The operational principle of the Ti:sapphire laser is determined
by the state of the outer 3d electron of the Ti3+ ion, and the large wavelength tuning
range, approximately covering the range 650 - 1100 nm, is a result of state broad-
ening because of coupling to lattice vibrations of the bulk crystal (see Fig. 12.3).

12.2.1 SolsTiS-SRX operation in brief
Thus motivated, the SolsTiS-SRX laser produced by M-Squared was selected as light
source for the experiment. It is a cw Ti:sapphire laser, which in our configuration is
pumped by a 532 nm 10W Finesse laser from Laser Quantum. Using the full 10W
pump power the maximum output of the SolsTiS is 2.6W at 780 nm. However,
the system was usually operated at reduced pump power levels of 9W or 7W with
a corresponding SolsTiS output at 850 nm of 1.96W or 1.35W, respectively. This
is already more than plenty for the application and thus the power was generally
reduced significantly, using external high-power polarization optics. As shown in
Fig. 12.4 the SolsTiS has a traveling wave bow-tie laser cavity layout. Coarse tuning
of the output wavelength is accomplished by rotating the birefringent filter (BRF)
and fine tuning by electronically adjusting the étalon spacing (FSR ∼ 0.5 nm). For
long-term single mode operation the étalon can be locked by means of a servo
using a dither technique. In the SRX model, a small fraction of the laser output
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Splitting due to
crystal field

Level-broadening due to
lattice vibrations

Figure 12.3: The Ti:sapphire laser operation is determined by the outer electron
of the Ti3+ ion. In the presence of the crystal field the inital 3d state splits into
a 3-fold degenerate ground state and a 2-fold degenerate excited state, separated
by approximately 3 eV. Due to coupling to the large number of lattice vibrations
of the bulk crystal the discrete levels are turned into continuous distributions of
ground and excited states. This leads to the formation of an effective 4-level laser
scheme: the pump excites the electron from its ground state (level 0) to the excited
state (level 3), followed by a fast relaxation to the lowest excited-state (level 2). An
optical transition then occurs to a vibronic level of the ground state (level 1), and
another fast relaxation process takes the Ti3+ ion back to its ground state [104].
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Figure 12.4: Schematic illustration of the M-Squared SolsTiS-SRX intracavity
layout including reference cavity and pump optics module (POM) for pump beam
alignment.
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12.2 Titanium sapphire laser

is directed to a temperature stabilized reference cavity (F = 47, FSR = 3GHz)
for linewidth narrowing (<50 kHz relative to reference cavity) and to ensure single
mode operation during frequency scanning. With the system locked (both étalon
and reference cavity) the laser cavity is slaved to the reference cavity through servo
feedback to the fast part of a dual stack piezo actuator on one of the intracavity
mirrors. In this configuration the laser output frequency is scanned by scanning the
length of the reference cavity.

12.2.2 Laser noise properties
An essential prerequisite for measuring squeezing is to assure that the laser – serving
both as pump for the squeezing process and as local oscillator for the detection – is
in fact shot noise limited from a certain frequency on. For the χ(3)-based squeezing
process investigated here, shot noise limitation of the pump is absolutely necessary
as the Kerr effect is intrinsically sensitive to fluctuations in both amplitude and
phase quadrature of the pump field [133]. In the following we present the results of
two types of measurements that have been performed in order to characterize the
noise properties of the laser.

Relative intensity noise measurement

First, we have characterized the noise in the power emitted from the laser, com-
monly termed intensity noise. The total time-dependent power can be considered
composed of two parts:

P (t) = 〈P 〉+ δP (t), (12.1)
where 〈P 〉 is the time-averaged mean power and δP (t) a noise term with 〈δP (t)〉 = 0.
The most common quantitative measure of the noise is the relative intensity noise
(RIN) , defined as the power noise normalized to the total average power [98],

RIN = 〈δP (t)2〉
〈P 〉2

. (12.2)

Using that the noise power measured over a bandwidth ∆f is related to the noise
spectral density by 〈δP (t)2

∆f〉 = 2∆fSP (Ω), where the factor of 2 accounts for both
positive and negative frequencies, we can express the RIN spectral density as

RIN = 2SP (Ω)
〈P 〉2

, (12.3)

which is ultimately the quantity of interest.
Experimentally, the RIN is measured by converting the optical signal to an elec-

trical signal by means of a fast photodetector (Thorlabs PDA-10A, 150MHz band-
width). Exploiting that the electrical power is proportional to the optical power
squared, PE = k〈P 〉2, the RIN can be evaluated as the corresponding ratio of elec-
trical power fluctuations to total electrical power [99]. Both quantities are readily
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measured using an oscilloscope and a spectrum analyzer, respectively (Fig. 12.5).
The total photocurrent noise power ∆PE(Ω) is the sum of laser noise NL(Ω) and
technical noiseNT (Ω) from the detector and the spectrum analyzer, and the relevant
spectral density of the laser noise can be deduced as

2SP (Ω) = ∆PE(Ω)−NT (Ω)
∆f , (12.4)

where ∆f is given by the resolution bandwidth (RBW) used for the measurement.
The average electrical power is determined from the dc photocurrent as PE = gT I

2
dc,

where gT is the transimpedance gain of the detector. The actually measured value
is the output voltage from the detector, given by Uout = RoutIdc, where Rout is the
detector output impedance. Combining the expressions we find

PE = U2
out

gT
R2
out

. (12.5)

Combining (12.4) and (12.5) we can express the RIN in terms of experimentally
measurable quantities,

RIN = R2
out

U2
out

∆PE(Ω)−NT (Ω)
gT∆f . (12.6)

Since the purpose of the measurement is to verify that the laser is shot noise limited
from a certain frequency on, the theoretically expected shot noise level must be
evaluated as well as function of the mean total optical power. Following [99] the
shot noise is given by

Nsn = 2qgT Idc = 2qUout
gT
Rout

, (12.7)

where q is the elementary charge. Normalization to the total power yields the
corresponding RIN level

RINsn = 2qRout

Uout
. (12.8)

Using the setup sketched in Fig. 12.5 we have measured the RIN of the SolsTiS
laser output. The corresponding data is plotted in Fig. 12.6. At frequencies around
1MHz strong intensity fluctuations are observed due to relaxation oscillations of the
laser, but for higher frequencies shot noise limited performance is achieved. For a
power of 2.78mW the laser is shot noise limited from 3MHz and up. Extrapolating
the tendency of the data to higher power levels we find that the laser is shot noise
limited at a power of 200mW from a frequency of about 7MHz and up.

Homodyne measurement

To fully characterize the laser noise properties a second set of measurements were
performed using balanced homodyne detection (cf. Sec. 2.2.3) to acquire full tomo-
graphic information about the field fluctuations as function of detection frequency.
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Figure 12.5: RIN measurement setup. The generated photocurrent is split using
an ac/dc splitter. The ac signal is directed to an electronic spectrum analyzer
for measuring the noise power spectrum and the dc part is monitored on a digital
oscilloscope for measuring the total electrical power. The optical power level is
controlled using a λ/2-plate and a polarizing beamsplitter cube.
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Figure 12.6: Relative intensity noise measurement of SolsTiS laser output at four
different power levels. The optical power was detected using a Thorlabs PDA10A
photodetector with gT = 10 kV/A and Rout = 50 Ω. The data was recorded with
RBW = 91 kHz. Dashed lines indicate the theoretical shot noise levels for the
used optical powers calculated from (12.8). Accounted for in the analysis is also
a measured 6 dB attenuation of the ac photocurrent by the ac/dc splitter and the
50 Ω input impedance of the spectrum analyzer.
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The high-pass filtered differential homodyne photocurrent has directed to a spec-
trum analyzer and measured in zero-span mode for different detection frequencies,
while slowly sweeping through the noise quadratures by a low-frequency scan of the
LO phase. Figure 12.7 shows the result of such measurements for detection frequen-
cies Ω = 1, 1.5, and 2MHz. From the previous RIN measurements we know that
the laser exhibits large excess amplitude noise at low frequencies and that enables
us to identify the upper turning points of the quadrature noise trace as amplitude
quadrature measurements. In between maxima the noise drops to the shot noise
level meaning that excess phase noise is not present in the light field. Also we
observe that that the excess amplitude noise vanishes for increasing frequencies. A
characterization of the homodyne detector performance is provided in Appendix E.
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Figure 12.7: Homodyne measurement of laser output noise. Black: shot noise,
Red: quadrature noise. Signal power, 24µW; local oscillator power 6.1mW; mode
matching visibility 96.9%. Zero-span, RBW=200 kHz and VBW=82Hz.
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12.3 Experimental setup
We are now finally in a position to present the devised setup for optical experimen-
tation with the acquired integrated silicon nitride resonators and discuss the efforts
made so-far towards demonstration of on-chip quadrature squeezing. As is always
the case, this experimental system has also been an ever-evolving organism and the
setup outlined in Fig. 12.8 is just the latest iteration. In particular, the state inter-
rogation stage has been a perpetual construction site, as discussed in later sections.
For the characterization measurements presented in Section 12.4 only the “signal”
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Electro-optic modulator

Faraday isolator

Piezo actuated mirror

High-reflector

Quarter-wave plate

Beam dump

On-chip RTR

Lensed fiber

Half-wave plate

Polarizing beamsplitter

Figure 12.8: Schematic illustration of the experimental setup (lenses have been
omitted for the sake of clarity). Aspherical lenses are used for fiber in- and out-
coupling - on the input side a Thorlabs C560-TME (f = 13.86 mm) and on the
output side a New Focus 5724-H-B (f=8.0 mm); EOM - New Focus 4002; Faraday
isolator - Linos FI-850-5SV; High reflectors in signal beam - Layertec #109770;
PBSs - B. Halle PTW 1.10 or CVI PBS-830-040; Half-wave plates - B. Halle RZQ
2.10 (zero order) or Eksma d20 ZO l/2@852 nm (zero order); Quarter-wave plate
- B. Halle RZQ 4.10 (zero order); Lensed fiber - OZ Optics TSMJ-3A-780-5/125-
0.25-5-2-10-1-AR (single mode at 780 nm, AR coated for 720-860 nm).
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beam path was used and in this case the chip output was just detected with a simple
photodetector. The more involved state interrogation techniques implemented for
quantum noise measurements of the output field from the chip will be presented in
Section 12.5.

12.4 Chip characterization measurements
Prior to any attempts of generating on-chip squeezed states, the integrated devices
were subjected to a series of optical characterization measurements in order to asses
the optical loss properties of the waveguides and loaded quality factors of the RTRs
as function of coupling efficiency. We were especially curious to evaluate the chip-
fiber coupling loss to see if the tapered double layer stack design would actually
perform according to the promising numerical estimates.

12.4.1 Characterization I: Coupling and linear propagation loss
We have previously seen that the integrated device is associated with two types
of loss – coupling loss and propagation loss – and together they constitute the
total insertion loss of the device. In the theoretical analysis above we have learned
the importance of knowing the individual contributions of the two loss sources
as they affect different aspects of the device performance. The cut-back method
enables an experimental evaluation and separation of these losses. The underlying
assumption of the method is that the coupling loss into each waveguide is the same,
and that propagation losses depend linearly on the waveguide length. In this case
a series of measurements of the total insertion loss for step wise reductions (cut
backs) of the length enables fitting of the loss suffered per unit length. And by
extrapolation the total coupling loss can be determined as the inflicted loss at zero
length. The method has its origin in the fiber optics community where reduction
of the propagation length can easily be done by cleaving the fiber. For integrated
waveguides this is more tricky, and for the particular ones considered here it is not
even possible because of the inverse waveguide tapers. A common implementation
of the method is instead to use a series of spiral delay-line waveguides with different
lengths (Fig. 12.9).
Figure 12.10 (a) shows exemplary data for such measurements. These measure-

ments were taken using a lensed fiber for in-coupling and collecting the output
with a high-NA objective1. The waveguide insertion loss is calculated relative to
the transmission measured with the fiber output coupled directly to the objective.
The corresponding fitting results are summarized in Table 12.1, and we see that
the measured propagation loss is consistent with the values assumed in Chapter 11.
For comparison a second cut-back measurement was performed on W2315-2/0D but
using lensed fibers for both in- and out-coupling. The two measurement are plotted

1Spindler & Hoyer, x63/0.85.
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Figure 12.9: Photo of an optically excited spiral delay-line waveguide with a total
length of 3 cm.

together in Fig. 12.10 (b). The two measurements yield very similar propagation loss
values but the coupling loss is 1.69 dB larger for the dual-fiber configuration. Conse-
quently, we find a coupling loss of 2.66 dB/facet using lensed tapered fibers. This is
a somewhat disappointing result compared to the theoretical value of 0.75 dB/facet
anticipated in Section 11.1.4, and we wish to investigate this issue further in the
future. Also relevant would be to extend the above characterization by quantifying
the separate contributions to the total measured loss due to scattering and linear
absorption. A convenient technique for doing so has been presented by Borselli et.
al. [20].
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Figure 12.10: (a) Exemplary cut-back measurements of propagation loss for three
different characterization chips from wafers W2269 and W2315. Some of the char-
acterized waveguides exhibited abnormally large loss due to presence of strong scat-
tering centers in the guide. The corresponding measurement points have been omit-
ted. (b) Comparison of cut-back measurements performed using high-NA objective
(green) and lensed fiber (blue) for chip out-coupling.

12.4.2 Characterization II: RTR resonances
To map out the RTR resonances and evaluate the corresponding Q values, the laser
is first tuned on resonance by tuning the BRF and étalon. The chip is simulta-
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Chip ID# Propagation loss Coupling loss
[dB/cm] [dB]

W2269-2/0D 2.21± 0.10 4.15± 0.47
W2269-3/0D 1.68± 0.13 3.81± 0.54
W2315-2/0D 1.29± 0.08 3.63± 0.40
*W2315-2/0D 1.31± 0.06 5.32± 0.25

Table 12.1: Fitted propagation and coupling loss from the cut-back measurements
shown in Fig. 12.10 (a) and (b). Dual-fiber measurement result is marked with *.

neously monitored using an imaging system positioned vertically above2, and the
laser frequency is tuned into the resonance until a maximum intensity of the ob-
served scattered light is reached. As shown in Fig. 12.11 the scattered light intensity
largely depends on resonator Q value due to the different intracavity field enhance-
ment factors. Fast sweeps of the laser frequency across the resonance are then made
by scanning the reference cavity length using an external symmetric triangular ramp
signal. We have found that the SolsTiS comfortably performs frequency sweeps over
a range of 25GHz around 850 nm.

(a) (b)
Figure 12.11: Observed scattering from two resonantly excited RTRs. (a) High-Q
resonator with Lc = 2µm. (b) Low-Q resonator with Lc = 10µm.

Exemplary transmission measurements for a series of adjacent RTRs in a group
of 5 waveguides, for which the coupling length is gradually increased, are shown
in Fig. 12.12. As expected, the fitted linewidths are in the few-GHz range, and
increase for larger coupling lengths – only the last one deviates somewhat in that
respect. The measured quality factors are generally in the range of about Q = 6·104

to Q = 105.

2Navitar 12X Zoom mounted with a CCD camera.
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Figure 12.12: Transmission measurements of RTR resonances for waveguides
W2315-2/4B-21 to W2315-2/4B-25.
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12.5 Interrogation of the chip output noise
The primary goal of this project has been to demonstrate generation of squeezed
light from the integrated resonant circuits discussed at length in the preceding, and
to that end a quantum noise limited tomography of the output state quadrature
noise is required. Performing state tomography of the quantum noise properties of
a weak field is generally straightforward to do by implementation of a homodyne
detection scheme, as already shown previously in this chapter and for squeezed light
in the context of cavity optomechanics in Part II. Unfortunately, it is not as easily
done for the chip output field because of the high optical powers needed to pump
the weak third order nonlinearity, and because the (potentially) generated squeezing
resides at rf sideband frequencies around the intense pump, making it difficult to
separate the two parts.
In the following sections we discuss, in chronological order of implementation,

the strategies by which detection of squeezing in the chip output field (henceforth
simply referred to as the signal) has been attempted. Sadly, none of them has proven
successful yet, and the work is still on-going. For that reason we will predominantly
keep the presentation at a discussion-level and focus on identifying the crux for why
the individual schemes did not work out.

12.5.1 Take I: Homodyne measurement
With the hope of performing a standard balanced homodyne characterization of
the signal we first attempted to separate the rf sidebands from the bright pump
by means of a “high” finesse cavity, which on resonance would transmit the pump
and reflect off sidebands with frequency larger than the cavity linewidth. For the
scheme to work optimally, the cavity should be impedance matched, as otherwise a
portion of the bright pump will be back-reflected as well, and the linewidth should be
sufficiently narrow that far-of-resonance sidebands are still within the bandwidth
of the detector. Finally, a robust servo lock for stabilizing the cavity resonance
to the pump frequency should be implemented. The actually implemented setup
is illustrated in Fig. 12.13. For a number of reasons that seemed good at the
time, a linear Fabry-Perot cavity with a finesse of F = 1300 and a linewidth of
∆ν = 1 MHz was opted for. In retrospect a ring cavity geometry would probably
have been preferable as that facilitates separation of the reflected light from the
bright incident signal, avoiding the need of an optical isolator for the purpose. For
frequency stabilization of the cavity a servo controller was built and tailored for
the particular application through iterative optimization of the circuit based on
measurements of the feedback loop transfer function and notching of resonances.
As a first obstacle it was realized that the cavity impedance matching was only

96%. As shown in Appendix E, shot noise limited operation of our homodyne
detector was limited to a total power of 10mW, and to safely meet the homodyne
approximation the reflected signal power should thus be reduced to below at least
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200µW. Given the high signal power – with 150mW incident on the in-coupling fiber
several tens of milliwatts were collected on the output, the exact value depending
on the selected RTR – and the 4% residual pump reflection from the cavity, this
requirement could not be met. As a patch solution, a subsequent displacement
of the reflected signal was implemented by means of an asymmetric beamsplitter.
An interference visibility of 97% was achieved between the reflected signal and
the strong displacement beam, but a sufficiently stable operation of the combined
system was never realized. Eventually, the SolstiS laser was identified as the culprit.
As mentioned in Section 12.2.1 the intracavity étalon of the laser is stabilized by a
dither lock, phase modulating the light at a factory-set frequency of 21 kHz. Despite
our efforts to notch out resonances in the locking signal for the cavity a strong
component from the dither remained and caused an insufficient stabilization of the
cavity resonance which in turn prohibited locking of the displacement phase.
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Figure 12.13: Schematic illustration of the experimental setup for cavity and dis-
placement assisted homodyne detection. The displacement operation was imple-
mented by means of an asymmetric beamsplitter - Layertec #107243 (PRp(45◦,
710-940 nm)=7 ± 1.5%. Two resonant photodetectors with on-board down-mixing
were used to generate error signals for stabilization of the cavity resonance (PDH
lock) and the displacement phase (ac lock to top of interference fringe.)
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12.5.2 Take II: Heterodyne measurement
Abandoning the cavity-assisted scheme, we next implemented a heterodyne detec-
tion setup as illustrated in Fig. 12.14. This was motivated by the relaxed constraint

from chip

LO

Disp.

to disp. servo

Signal

~

ac 1

ac 2

dc 2

dc 1

Figure 12.14: Schematic illustration of the experimental setup for heterodyne
detection.

on reduction of the signal power as the scheme requires equal powers in signal and
LO. The implementation only required minor adjustments of the optical layout, but
on the electronics and data acquisition/analysis side things were complicated a bit.
As described in the general presentation of heterodyne detection in Section 2.2.5,
access to the individual temporal photocurrents is required in order to form the sum
and difference signals. Serving that purpose two new single-diode detectors were
built, also featuring on-board down-mixing of the high-pass filtered ac photocur-
rent. Acquisition of the temporal date was done using a digitization card3 card and
subsequent analysis and storage on a PC. To keep the total power of the equally
bright signal and LO fields within the linear response regime of the detectors a
displacement of the signal was still required, and with the cavity out of the setup,
stabilization of the interference phase worked smoothly. A second servo was intro-
duced for mid-fringe stabilization of the signal-LO interference. A suitable error

3GaGe Octopus CompuScope 8344 128 M, 50MS/s, 4 channels.
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signal was conveniently provided by the dc outputs from the heterodyne detectors.
Through a software implementation of the analysis procedure outlined in Sec-

tion 2.2.5, the covariance matrix of the signal field fluctuations was evaluated on
basis of the measurements, and at first glance the results were actually promissing.
As an example: pumping the RTR with 150mW, as measured immediately before
the in-coupling fiber, and subsequent displacement of the output signal to a level
of 5mW the covariance matrix for the field quadrature fluctuations at a detection
frequency of Ω = 21MHz was found to be:

γ =
(

1.0702 −0.1983
−0.1983 0.8431

)
. (12.9)

Anti-correlations between the quadratures are evident – alluding the presence of
squeezing. However, diagonalizing γ in order to retrieve the actual quadrature
variances, we find

γdiag =
(

1.1904 0
0 0.7430

)
, (12.10)

which can only make one feel a bit uneasy since

Var(δX̂1) · Var(δX̂2) = 0.884 < 1. (12.11)

Not having the courage to challenge Heisenberg, we rather conclude that the appar-
ent sub-minimum uncertainty state is a consequence of an insufficient determination
of the shot noise level in the experiment. The heterodyne scheme does not directly
provide a shot noise normalized quadrature noise measurement. Instead the shot
noise level pertaining to a given performed measurement has to be evaluated af-
terwards – using the exact same power levels as for the actual measurement. In
our case this was done by first far-detuning the signal from the RTR to eliminate
any nonlinear modification of the noise properties. LO and signal powers were then
balanced to a total power equal to the previously used, and the measurement was
performed. The resulting covariance matrix was used for normalization. This pro-
cedure does not provide a very robust and reliable determination of the shot noise
level and that precludes an unambiguous demonstration of squeezing unless a very
strong reduction of the noise is achieved. On that basis the heterodyne setup was
decommissioned.

12.5.3 Take III: Self homodyne measurement
The so-far last attempt to realize a suitable state interrogation method is a scheme
combining self homodyne detection with a scanning-phase displacement operation,
as illustrated in Fig. 12.15. By choosing the displacement beam to be only slightly
larger in amplitude than the signal the resulting state, as the phase φdisp is scanned
through, will in a certain region of phase space have a largely reduced amplitude,
given by the classical phasor sum of the interfering carrier components. The side-
band fluctuation state of the signal is unaffected by the operation an maintain a
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constant phase relative to the phase space frame. Assuming a weak Kerr-squeezed
input signal, self homodyne measurement of the displaced signal will within the
low-power region project out both the amplitude and phase quadratures, corre-
sponding to positions (3.) and (4.), respectively, in Fig. 12.15. Our experimental
implementation of the scheme is illustrated in Fig. 12.16.

Figure 12.15: The principle of displacement assisted self homodyne detection.
The initial signal (1.; red) is interfered with a displacement beam (green) of slightly
larger amplitude, resulting in a displacement of the signal fluctuation state by an
amount given by the phasor sum of the interfering field amplitudes (2.; grey). As the
displacement phase φdisp is scanned the resulting state describes an off-center circle
in phase space, and in a small region the amplitude is largely reduced compared to
the initial signal. Assuming a weakly Kerr-squeezed signal input with a squeezing
phase θs = −π/4, self homodyne detection of the phase-scanned displaced state
will for certain phases project out the the squeezed (3.) and anti-squeezed (4.)
quadratures.

The main difficulty about the scheme is the large high-power part of the scan cycle
(1. and 4. quadrant of the phase space in Fig. 12.15). In this region the resulting sig-
nal power is much larger than what the detectors can withstand, causing saturation
or even permanent damage. The problem was resolved by inserting a home-built
protection shutter4 following the displacement beamsplitter, that would block the
signal beam conditioned on reaching a set threshold power in the other output of
the displacement beamsplitter. Data acquisition was done by time-domain sampling

4The device was built from an old laptop hard disk drive exploiting the fast motion of the
actuator arm. Information about this type of shutter can be found on the homepage of the
Atom Optics group at The University of Melbourne http://optics.ph.unimelb.edu.au/
atomopt/shutter/shutter.html or in [115].
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Figure 12.16: Schematic illustration of the experimental setup for self homodyne
detection. The setup largely resembles that used for heterodyne detection but now
without need for an external local oscillator. A protection shutter was added after
the displacement beamsplitter blocking the signal during the high-power parts of
the scan. Data acquisition was performed by time-domain sampling of both the ac
and dc photocurrents from both detectors.

.
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of the two individual photocurrents, as in the heterodyne case, but now with the
important improvement that the shot noise level is simultaneously determined, cf.
Section 2.2.4.
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Figure 12.17: Displacement-assisted self homodyne measurement of the chip out-
put signal at Ω = 29MHz. The signal output power from the chip was was 7.75mW
and the displacement power 9mW. The full data set consists of 3000000 samples,
which in the post processing have been analyzed in bins of 5000. The four panels
show: (a) Total optical power, (b) Shot noise normalized quadrature variance, (c)
Scaling of the measured shot noise with power, and (c) Diagnostics FFT of the indi-
vidual ac photocurrents revealing the 100 kHz low pass filters used in both channels
before the digitization card.

.

As a basis for discussing the performance of the detection scheme, an exemplary
data set is shown in Fig. 12.17. Panel (a) shows the sum of the measured dc pho-
tocurrents proportional to the total power. For the particular power levels used for
this measurement (7.75mW in the signal and 9mW in the displacement beam) only
the top part of the interference fringe was bright enough to require shutter action.
We observe that the shutter indeed takes out that part as required, but a delay in
the shutter response causes the closing window to the asymmetrically placed with
respect to the fringe. Forming the sum and difference ac photocurrents we plot
in panel (b) the quantity of primary interest, namely the shot noise normalized
quadrature variance. In accordance with our expectation, the variance drops to-
wards the shot noise level at the bottom of the scan (phase in between (3.) and (4.)
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12.5 Interrogation of the chip output noise

in Fig. 12.15), however the strong excess noise observed for neighboring quadrature
phases has so-far not been explained. As a means of diagnosing the system, we plot
in panel (c) the shot noise scaling as function of total power, confirming that the
measurements are shot noise limited. Likewise, an FFT of the raw ac photocurrents
(panel (d)) shows no indication of excess technical noise in the setup.

An untimely exit Despite the large unexplained excess noise observed in the above
data we are convinced that our search has converged towards a suitable detection
scheme for interrogation of the quantum noise properties of the chip output field.
The fact that the diagnostics plots do not reveal any technical causes for the noise
indicates that it is a consequence of interaction with the nonlinear RTR. That
is a spark of hope for eventually demonstrating generation of squeezing from an
integrated source.
Sadly, pathological behavior of the pump laser started to occur in the beginning

of February 2015, and it was soon realized that the system had to be shipped off
for repair at the production facility where it remains situated. This unfortunate
development has obviously precluded any further investigation and experimental
progress on the project.
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12 Experimental work
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Conclusion and outlook 13
In this Part of the thesis we have been concerned with the development of a novel
on-chip source of squeezed light. Achieving this goal is an important prerequisite
for technological implementations of quantum enhanced optical methods, as present
sources are based on bulk optics components and unfitted for integration with cur-
rent electro-optical technology. But the road is rugged, and one is faced with a
number of challenges in transforming state-of-the-art macroscopic systems into a
micro-sized chip-based architecture.
A key objective for the work presented has been to identify a feasible device de-

sign, both in terms of performance and fabricational complexity. As presented in
Chapters 10 and 11 we have addressed this task by combining a theoretical quan-
tum noise model with extensive numerical simulations, and on that basis we have
concluded that a laterally coupled silicon nitride racetrack resonator is a promising
candidate for efficient integrated generation of broadband single mode quadrature
squeezed light. An optimized device design has been specified in full detail, and as
expected, optical loss associated with propagation in the device and interfacing are
found to be the primary limiting factors to the performance of the device. We have
addressed the later issue by proposing an asymmetric double layer stack waveguide
geometry with inverse tapers at the chip facets as a means of robust and efficient
interfacing. Numerical simulations of the structure yields a promising coupling loss
of only 0.75 dB/facet. Evaluating the achievable degree of squeezing from the device
we find that 4.5 dB of quantum noise reduction is within reach, assuming a linear
propagation loss of 1 dB/cm.
Based on the devised design a batch of integrated silicon nitride resonators has

been ordered and delivered from the foundry LioniX, and these structures have
formed the basis for a subsequent experimental pursuit with the objective of demon-
strating generation of squeezed light from integrated structures. This work has been
the topic of Chapter 12. The linear propagation loss of the devices has been mea-
sured to be at best 1.3 dB/cm, but what is more critical is that the coupling loss
was found to be 2-3 dB/facet, posing a major limitation to the device feasibility.
As discussed at length, interrogation of the chip output field noise properties

has been a challenging affair, and so far squeezing has not been observed. The
main source of the challenge lies in the process by which squeezing is generated in
the device. Silicon nitride is a Kerr media, and the nonlinear process responsible
for generation of single mode squeezing is degenerate self-phase modulation of the
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13 Conclusion and outlook

pump field. The resulting squeezing resides as correlated sidebands at rf frequencies
around the bright pump, and efficient separation of the two parts has turned out
not to be straightforward. A number of detection strategies have been investigated
and we have finally concluded that the best suited solution for our present setup is a
self homodyne scheme assisted by a displacement operation on the signal field. This
circumvents the need for separating pump and sidebands, and allows – in principle –
for a full tomography of the signal quadrature noise.
Despite not having reached the set goal for the project, much valuable know-

ledge on the challenges of integrating continuous variable quantum light sources
has been gained, and that will hopefully serve as a stepping stone for future contin-
uation of the research. So far, only one nonlinear host material out many has been
explored, and it is likely that silicon nitride is not the optimal choice. An interest-
ing alternative to explore would be Hydex glass showing a propagation loss below
0.06 dB/cm. The nonlinearity is about a factor of 10 lower than for silicon nitride,
but strong nonlinear interactions in resonant Hydex structures similar to the ones
considered here has already been demonstrated in the telecom range [103]. Being a
Kerr media as well, going to Hydex does not resolve the state interrogation prob-
lem. To this end one might consider exploring the feasibility of microresonators
fabricated from second order nonlinear materials as used in ordinary parametric
down-conversion squeezed light sources. In this way one would benefit both from
the much stronger nonlinearities and the large frequency separation between pump
and converted fields. Worth mentioning in this context is, that second harmonic
generation has recently been demonstrated in high Q lithium niobate microdisk
resonators [132].
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Rotating frame transformation A
It is often convenient to transform a Hamiltonian operator Ĥ into a frame rotating
at a particular frequency. In this appendix we derive the general unitary trans-
formation that accomplishes this and its transformation of the annihilation and
creation operators.
To do so, we consider the Schrödinger equation

i~
d

dt
|Ψ〉 = Ĥ|Ψ〉. (A.1)

Transforming the Hamiltonian into a frame rotating at frequency ω′ is equivalent
to a transformation into the interaction picture where the interaction Hamiltonian
is that of the free field at the rotating frame frequency, i.e. Ĥ ′ = ~ω′â†â. The
corresponding unitary transformation operator is

Û = eiĤ
′t/~ = eiω

′tâ†â. (A.2)

We now apply this transformation to the Schrödinger equation, through the action
of Û on the wavefunction: |Ψ̃〉 = Û |Ψ〉.

i~
d

dt
|Ψ〉 = Ĥ|Ψ〉 Û−→ i~

d

dt

(
Û †|Ψ̃〉

)
= ĤÛ †|Ψ̃〉 (A.3)

⇔ i~
((

d

dt
Û †
)
|Ψ̃〉+ Û †

d

dt
|Ψ̃〉

)
= ĤÛ †|Ψ̃〉 (A.4)

Rearranging terms and multiplying by Û from the left we get

i~
d

dt
|Ψ̃〉 = ÛĤÛ †|Ψ̃〉 − i~Û

(
d

dt
Û †
)
|Ψ̃〉 (A.5)

= Û

(
Ĥ − i~ d

dt

)
Û †|Ψ̃〉 (A.6)

= H̃|Ψ̃〉. (A.7)

Thus, the rotating frame Hamiltonian is given by

H̃ = Û

(
Ĥ − i~ d

dt

)
Û †. (A.8)
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A Rotating frame transformation

We can now derive the effect of the rotating frame transformation on the annihi-
lation and creation operators, using the general Baker-Hausdorf operator lemma:

eiλÂB̂e−iλÂ = B̂ + iλ[Â, B̂] + (iλ)2

2! [Â, [Â, B̂]] + ... (A.9)

For the annihilation operator we get

Û âÛ † = eiω
′tâ†ââe−iω

′tâ†â (A.10)

= â+ (−iω′t)â+ 1
2!(−iω

′t)â+ ... (A.11)

= e−iω
′tâ, (A.12)

and similarly for the creation operator

Û â†Û † =
(
Û âÛ †

)†
= eiω

′tâ†. (A.13)

Using the above results and the unitarity property of the transformation operator
we find that the number operator is unaffected by the transformation:

Û n̂Û † = Û â†âÛ † = Û â†Û †Û âÛ † = n̂. (A.14)

This is of course expected as the rotating frame transformation is just a shift of the
energy zero point, which only affects the phases and not the number of excitations.
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Derivation of the output squeezing
spectrum B

This Appendix is intended as a supplement to Chapter 10 providing a fully detailed
derivation of the output fluctuation quadrature spectrum (10.17), formally defined
by

Sθ(Ω) = 1 + :Sθ(Ω) : (B.1)

= 1 +
∫
dΩ′〈:δX̂θ(Ω)δX̂θ(Ω′) :〉, (B.2)

where the generalized output field fluctuation quadrature is

δX̂θ(Ω) = δâout(Ω)e−iθ + δâ†out(−Ω)eiθ. (B.3)

As onset for the derivation we will take the expression in (10.12) for the output
field fluctuations

δaout(Ω) = [M− (γ − iΩ)I2]−1

×
(

[M + (γc − γ0 + iΩ)I2] δain(Ω) + 2√γ0γcδb(Ω)
)
. (B.4)

with the system matrix given by

M = −i
(

2|ε| −∆p ε
−ε∗ −2|ε|+ ∆p

)
(B.5)

Output mode Carrying out the matrix multiplications in (10.12) we find for the
output mode fluctuations

δâout(Ω) = 1
D(Ω)

[
N1(Ω)δâin(Ω) + C1δâ

†
in(−Ω) +N2(Ω)δb̂in(Ω) + C2δb̂

†
in(−Ω)

]
,

(B.6)
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B Derivation of the output squeezing spectrum

where we have introduced the abbreviated quantities

N1(Ω) = − (γ + i(∆p − Ω)) (γc − γ0 + i(∆p + Ω))
+2i|ε|(γ + γc − γ0 + 2i∆p) + 3|ε|2 (B.7)

N2(Ω) = −2√γ0γc (γ + i(∆p − Ω)− 2i|ε|) (B.8)
C1 = i(γ + γc − γ0)ε (B.9)
C2 = 2iε√γ0γc (B.10)

D(Ω) = ∆2 + (γ − iΩ)2 − 4∆p|ε|+ 3|ε|2 (B.11)

Second-order moments The quantity of interest for deriving the squeezing spec-
trum (B.2) is the normal-ordered second-order moment

〈: δX̂θ(Ω)δX̂θ(Ω′) :〉 = 〈: δâout(Ω)δâout(Ω′)e−2iθ + δâout(Ω)δâ†out(−Ω′)
+δâ†out(−Ω)δâout(Ω′) + δâ†out(−Ω)δâ†out(−Ω′)e2iθ :〉

= e−2iθ〈δâout(Ω)δâout(Ω′)〉+ e2iθ〈δâ†out(−Ω)δâ†out(−Ω′)〉
+2〈δâ†out(−Ω)δâout(Ω′)〉, (B.12)

and in particular the three second-order moments of the output fields in (B.12) have
to be evaluated to determine the quadrature noise spectrum. In the following we
will identify the non-zero contributions to each of the three second-order moments,
assuming vacuum fluctuation inputs. In this case the frequency space fluctuation
correlation functions are

〈âin(Ω)â†in(±Ω′)〉 = δ(Ω± Ω′), (B.13)
〈b̂in(Ω)b̂†in(±Ω′)〉 = δ(Ω± Ω′). (B.14)

To simplify the notation we leave out the “in” subscripts in the following, and for
the same reason we also suppress the “δ” identifying fluctuation operators.

〈âout(Ω)âout(Ω′)〉

=
〈 1
D(Ω)

(
N1(Ω)â(Ω) + C1â

†(−Ω) +N2(Ω)b̂(Ω) + C2b̂
†(−Ω)

)
× 1
D(Ω′)

(
N1(Ω′)â(Ω′) + C1â

†(−Ω′) +N2(Ω′)b̂(Ω′) + C2b̂
†(−Ω′)

)〉
= 1
D(Ω)D(Ω′)

{
N1(Ω)C1

〈
â(Ω)â†(−Ω′)

〉
+N2(Ω)C2

〈
b̂(Ω)b̂†(−Ω′)

〉}

= 1
D(Ω)D(Ω′)

{
N1(Ω)C1 +N2(Ω)C2

}
δ(Ω + Ω′) (B.15)
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〈âout†(−Ω)â†out(−Ω′)〉

=
〈 1
D(Ω)

(
N∗1 (−Ω)â†(−Ω) + C∗1 â(Ω) +N∗2 (−Ω)b̂†(−Ω) + C∗2 b̂(Ω)

)
× 1
D(Ω′)

(
N∗1 (−Ω′)â†(−Ω′) + C∗1 â(Ω′) +N∗2 (−Ω′)b̂†(−Ω′) + C∗2 b̂(Ω′)

)〉
= 1
D(Ω)D(Ω′)

{
C∗1N

∗
1 (−Ω′)

〈
â(Ω)â†(−Ω′)

〉
+N∗2 (−Ω′)C∗2

〈
b̂(Ω)b̂†(−Ω′)

〉}

= 1
D(Ω)D(Ω′)

{
C∗1N

∗
1 (−Ω′) +N∗2 (−Ω′)C∗2

}
δ(Ω + Ω′) (B.16)

〈âout†(−Ω)âout(Ω′)〉

=
〈 1
D(Ω)

(
N∗1 (−Ω)â†(−Ω) + C∗1 â(Ω) +N∗2 (−Ω)b̂†(−Ω) + C∗2 b̂(Ω)

)
× 1
D(Ω′)

(
N1(Ω′)â(Ω′) + C1â

†(−Ω′) +N2(Ω′)b̂(Ω′) + C2b̂
†(−Ω′)

)〉
= 1
D(Ω)D(Ω′)

{
C∗1C1

〈
â(Ω)â†(−Ω′)

〉
+ C∗2C2

〈
b̂(Ω)b̂†(−Ω′)

〉}

= 1
D(Ω)D(Ω′)

{
C∗1C1 + C∗2C2

}
δ(Ω + Ω′) (B.17)

Denominator Since D(−Ω) = D(Ω)∗ the common denominator for the three mo-
ments is given by

|D(Ω)|2 =
[
∆2
p + γ2 − Ω2 − 4∆p|ε|+ 3|ε|2

]2
+ 4γ2Ω2 (B.18)

Numerators We now evaluate the numerators, implicitly integrating over Ω and
setting Ω = −Ω′ due to the δ-functions. From eqn. (B.17) we get

M1 = |C1|2 + |C2|2 = (γ + γc − γ0)2|ε|2 + 4|ε|2γ0γc = 4γcγ|ε|2 (B.19)

For the two remaining moments (B.15) and (B.16) we observe that

〈âout(Ω)âout(Ω′)〉 = 〈â†out(−Ω)â†out(−Ω′)〉∗ (B.20)

Exploiting this we can write the two moments’ composite contribution to the normal
ordered quadrature moment as (numerator only)

M2(Ω) = e−2iθ{C1N1(Ω) + C2N2(Ω)}+ e2iθ{C∗1N∗1 (Ω) + C∗2N
∗
2 (Ω)} (B.21)
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B Derivation of the output squeezing spectrum

With the redefinitions C1 = iC̄1e
2iφ and C2 = iC̄2e

2iφ, where {C̄1, C̄2} ∈ R, (using
the definition of the pump parameter) we can write

M2(Ω) = iC̄1
{
e−2i(θ−φ)N1(Ω)− e2i(θ−φ)N∗1 (Ω)

}
+ iC̄2

{
e−2i(θ−φ)N2(Ω)− e2i(θ−φ)N∗2 (Ω)

}
(B.22)

= iC̄1
{

cos Ψ(N1(Ω)−N∗1 (Ω))− i sin Ψ(N1(Ω) +N∗1 (Ω))
}

+ iC̄2
{

cos Ψ(N2(Ω)−N∗2 (Ω))− i sin Ψ(N2(Ω) +N∗2 (Ω))
}

(B.23)

where Ψ = 2(θ − φ). Re-grouping the expression into real and imaginary parts we
get

M2(Ω) = 2 sin Ψ
[
C̄1Re{N1(Ω)}+ C̄2Re{N2(Ω)}

]

− 2 cos Ψ
[
C̄1Im{N1(Ω)}+ C̄2Im{N2(Ω)}

]
(B.24)

From (B.7)-(B.11) we get

C̄1Re{N1(Ω)}+ C̄2Re{N2(Ω)} = −2γc|ε|
[
γ2 + Ω2 −∆2

p + 4∆p|ε| − 3|ε|2
]

(B.25)

C̄1Im{N1(Ω)}+ C̄2Im{N2(Ω)} = −2γc|ε|
[
2γ(2|ε| −∆p)

]
(B.26)

Spectrum Finally, we can insert (B.18), (B.19), (B.24), (B.25), and (B.26) into
(B.12) to get the normal ordered spectral density

:SSPMθ (Ω) : = G ·
[
2γ|ε| − 2γ

[
2|ε| −∆p

]
cos 2(θ − φ)

−
[
γ2 + Ω2 −∆2

p + 4∆p|ε| − 3|ε|2
]

sin 2(θ − φ)
]

(B.27)

where
G = 4γc|ε|[

∆2
p + γ2 − Ω2 − 4∆p|ε|+ 3|ε|2

]2
+ 4γ2Ω2

. (B.28)

In applying the normal ordering operator in (B.12) the operator products are
directly turned into normal ordered form without accounting for the commutation
relation. As a result, a vacuum variance term has been neglected in the above
normal ordered spectral density. In order to get the full measurable fluctuation
spectrum this term has to be reintroduced, as done in (B.2).
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Fabrication mask and chip labeling C
This Appendix contains details on the mask layout used for fabrication of the first
batch of silicon nitride devices discussed in Part III. The mask layout was designed
and described by U. Hoff, and the mask file was programmed by LioniX BV.
As a reference for future work, an explanation of the devised labeling convention,

by which each of the 4995 individual structures resulting from the first fabrication
run is uniquely identifiable, is also provided. The delivered batch included 3 full
4-inch wafers (W2269, W2315, and W2316).

C.1 Chip content and labeling convention
In the fabrication process the devices were defined by UV stepper lithography in
which the target circuit design is transfered to the wafer by means of a hardmask
or reticle that defines a “unit cell” for the design. This reticle is simply reproduced
as many times as possible across the wafer area. A number of different reticles can
of course be combined, but to keep the expenses down only a single one was use
for this first fabrication run. The used reticle layout is illustrated in Fig. C.1 and
covers a final area of 20-by-20 mm on the wafer. As visible from the full fabrication
mask in Fig. C.2, the reticle was reproduced 3-by-3 times within the safe processing
region of the 4-inch wafer. Each reticle reproduction is labeled [0-8] (red numbers
in Fig. C.2). The reticle contains 8 chips labeled [0-7], each 5-by-10 mm in size, and
the specific circuit content is identified by a second label [A-D], with the translation
given in Tabel C.1. Chips 2-7 containing RTRs each host a total of 25 waveguides

Chip # Circuit on chip
0D, 1D Spiral delay-lines (0D) and straight guides only (1D)
2C, 3C Side-coupled RTR with radius R = 75µm
4B, 5B Side-coupled RTR with radius R = 50µm
6A, 7A Side-coupled RTR with radius R = 25µm

Table C.1: Translation of chip circuit content labels.

organized in groups of 5. Each guide is identified by a number [1-25] counting from
the chip label. The first group of five are straight waveguides only and for the next
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C Fabrication mask and chip labeling

4 groups of five waveguides containing RTRs the coupling length Lc is increased
with increasing waveguide number through the values 2, 5, 8, 9, and 10µm.
In order to store and retrieve data from performed characterization measure-

ments in a reliable way, a labeling convention was introduced, enabling unambigu-
ous identification of individual waveguides structures and their original position on
the wafer. Thus, each waveguide is referred to by an ID of the form:

WAFER - RETICLE REP#/CHIP#-WAVEGUIDE#

As an example, the ID W2269-1/4B-16 refers to the 16th waveguide on chip 4B in
first reticle reproduction on wafer W2269.

C.2 Reticle mask

Figure C.1: Layout of the 20-by-20 mm reticle used for UV stepper lithography.

144



C.3 Complete wafer mask

C.3 Complete wafer mask

Figure C.2: Complete mask for fabrication of integrated silicon nitride structures
on 4-inch wafers, containing a final total of 72 chips. Silicon nitride waveguide
structures are indicated in blue, and regions where inverse tapering is applied are
indicated in green.
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Electronics D
This appendix contains the schematics of electronics components that have been
developed for the experimental work presented in this thesis, including

• homodyne detector

• resonant detectors for error signal generation time-domain selfhomodyne and
heterodyne detection

• servo controller for cavity and displacement phase stabilization

• driver for protective HDD shutter

147



D Electronics

D.1 Homodyne detector

Figure D.1: Schematic of the homodynedetector electronics used for the integrated
squeezer project. The circuit was developed by Tobias Gehring.
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D.2 Resonant detector

D.2 Resonant detector

Figure D.2: Schematic of resonant photodetector. The circuit was developed by
Tobias Gehring.
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D Electronics

D.3 Servo controller

Figure D.3: Schematic of servo controller. The circuit was developed by Tobias
Gehring.

150



D.4 Driver for HDD shutter

D.4 Driver for HDD shutter

Figure D.4: Schematic for HDD shutter. The circuit was developed by Ruben
Grigoryan.

151



D Electronics

152



Detector characterization
measurements E

In this Appendix we present characterization measurements of the homodyne de-
tector used in Part III.

E.1 Homodyne detector (#tg-v1-1)
Summary of detector properties:

• Constructed according to the circuit schematics in Section D.1.

• The differential photocurrent is formed directly on the board and the photo-
diodes are mounted back-to-back in order to minimize the differential phase
shifts between the photocurrents.

• Fitted with two Hamamatsu S5971 Si PIN photodiodes with a responsivity at
λ = 850 nm of Rλ = 0.62 A/W [51], corresponding to a quantum efficiency of
ηqe = 90.1%.

To determine the power and frequency range in which the detector shows quantum
noise limited performance, a series of shot noise measurements (vacuum at the
signal input port of the homodyne detector) was made for increasing local oscillator
powers in the range 160µW to 19.9mW. The amplified and high-pass filtered ac
output from the detector was recorded on a spectrum analyzer. A set of sample
traces are plotted in Fig. E.1. The noise power approximately increase by 3 dB
for a doubling of the total power, consistent with a proper shot noise scaling. To
examine this matter further, we extract the variance in a 1MHz bandwidth for a
set of detection frequencies and as function of the total optical power. In a log− log
plot of the variance versus the optical power shot noise scaling is characterized by
a linear trend with slope 1. The corresponding plots in Fig. E.2 show that this is
indeed the case for frequencies up to Ω = 25 MHz and a total optical power below
10mW.
Finally, the signal clearance from electronic noise has been evaluated, and from

Fig. E.3 we observe that the best performance is achieved at rather low frequencies
of 5-10MHz.
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Figure E.1: Homodyne photocurrent spectra for shot noise measurements with
different total powers. Data was acquired with RBW = 200 kHz and VBW =
200 kHz. Electronic noise is subtracted.
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Figure E.2: Shot noise scaling as function of total optical power for different
detection frequencies. The linear fit included data points up to a total power of
10mW.
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Figure E.3: Signal clearance from electronic noise as function of total optical power
and detection frequency.
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