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Finding equidistant nondominated points

for biobjective mixed integer programs

Martin Philip Kidd, Richard Lusby & Jesper Larsen

December 7, 2016

Abstract

The nondominated frontier of a multiobjective optimization problem can be overwhelm-
ing to a decision maker, as it is often either exponential or infinite in size. Instead, a
representation of this set in the form of a small sample of points is often preferred. In this
paper we present a new biobjective criterion space search method for generating a small set
of equidistant points based on the space division idea behind Voronoi diagrams. The motiva-
tion for this method stems from the finding that there exists a dual relationship between the
well-established quality measures of coverage and uniformity, and that a set of equidistant
points closes the gap. The method is easy to implement, and relies only on the availability of
a black-box solver. We show on a benchmark set of biobjective mixed integer programming
instances that the method outperforms the state of the art with respect to both coverage
and uniformity.

1 Introduction

Multiobjective optimization is concerned with the problem of presenting a Decision Maker (DM)
with a set of alternative feasible solutions to an optimization problem that represents a tradeoff
between multiple objectives. It is natural to restrict the search to efficient solutions, i.e. finding a
feasible solution that cannot be improved upon with respect to any objective without degrading
its value with respect to another objective, and the problem of finding all possible efficient
solutions has received much attention in the literature (Stidsen et al., 2014; Boland et al.,
2015a,b, 2016a,b; Ehrgott et al., 2016). However, for practical problems the entire efficient set
can easily become too large for a DM to manage, and so a more practical goal is to find a
suitable representation (in the form of a subset) of the efficient set to present to the DM instead.
This problem is not new, and has been considered at least as early as 1980, for example by
Steuer and Harris (1980). Since then it has received considerable attention in various areas of
multiobjective optimization, including nonlinear optimization (Faulkenberg and Wiecek, 2012;
Hancock and Mattson, 2013), linear programming (Shao and Ehrgott, 2016), (mixed) integer
(non)linear programming (Sylva and Crema, 2007; Masin and Bukchin, 2008; Eusébio et al.,
2014), and discrete optimization in general (Hamacher et al., 2007; Vaz et al., 2015).

In this paper we consider the representation problem within the context of mixed integer
programming. Mixed integer programming has become a successful and much accepted method-
ology for the modelling and solution of challenging combinatorial optimization problems in many
different application areas. Its ease of implementation, along with the ever-growing power of
modern MIP solver technology (see Achterberg and Wunderling (2013), for example), makes it
an effective tool for optimization. These characteristics of mixed integer programming can be
exploited in so-called criterion space search, which impose only the minimal requirement that
a black-box MIP solver be available. Recently a case was made for the effectiveness of using
criterion space search over decision space search for the problem of generating the entire efficient
set of MIPs with two and three objectives by Boland et al. (2015a,b, 2016a,b).
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When it comes to biobjective mixed integer programming, existing methods for generating
representations pose one of two drawbacks. First of all, filtering methods that require the entire
efficient set as input (Vaz et al. (2015), for example) can be extremely inefficient due to the
fact that the efficient set is in many cases exponential in size and generating it is in general
an NP-hard problem (Ehrgott et al., 2016). The alternative is generating efficient solutions
until a stopping criterion is met, which is usually a certain quality level according to a specified
measure of how good a representation is (Hamacher et al., 2007; Sylva and Crema, 2007; Masin
and Bukchin, 2008; Eusébio et al., 2014). The drawback in this case is that this quality level
(usually a real value) has to be specified a priori by the DM, and it might not be intuitive to a
DM what value to choose. It is, on the other hand, a much simpler task for the DM to only have
to specify a desired number of solutions that they are willing to consider, and then to generate a
high quality representation of the specified cardinality. As we shall show in this paper, existing
methods do not always produce satisfactory results when specifying a fixed cardinality instead
of a desired quality level.

In this paper we present an effective method to generate representations consisting of uni-
formly spaced nondominated points for biobjective discrete optimization problems given a fixed
cardinality of the representation. The method borrows ideas from Voronoi diagrams in an at-
tempt to find points that are equidistant in the criterion space. We show on a set of benchmark
biobjective MIP instances from the literature that, subject to a fixed cardinality of the repre-
sentation, our method outperforms existing methods with respect to two standard and accepted
quality measures from the literature, namely coverage and uniformity. Morever, we prove that a
dual relationship exists between the problems of minimizing the coverage error and maximizing
the uniformity level, which provides us with an optimality gap. We show that our method is
capable of finding solutions that exhibit relatively small optimality gaps, and that in many cases
it is able to find the optimal solution.

The rest of the paper is organized as follows. In Section 2 we discuss how to measure the
quality of a representation and which quality measures we adopt in this paper, in light of which
a formal definition of the problem considered in this paper is given in Section 3. This is followed
in Section 4 by a brief survey of existing methods for generating representations. We present a
new method in Section 6 and in Section 7 we present a computational study where we illustrate
the dominance of the new method in comparison to existing methods. The paper closes with a
summary and ideas for future work in Section 8.

2 Quality measures for representations

Apart from simply providing the DM with an arbitrary set of alternatives to choose from, a
representation can also, if chosen wisely, provide the DM with an accurate impression of the
nature of the tradeoffs that exist among the different objectives. This begs the question of
how to measure the quality, i.e. the representative power, of a set of efficient solutions. For
the biobjective case, visualizing a representation gives an intuitive idea of what a high quality
representation might look like. Figure 1 (left) shows the nondominated set of an instance1

from a class of biobjective mixed integer programming problems introduced by Mavrotas and
Diakoulaki (1998) (where the objectives are to be minimized), while Figure 1 (right) shows a
representation consisting of five points from this set. Visually an argument can be made for
it being a good representation, since the points look roughly equally spaced and they roughly
follow the shape of the nondominated frontier. The important question is how to quantify these
qualities.

Many different measures have been put forward to measure the quality of representations.
Faulkenberg and Wiecek (2010) present a comprehensive survey of more than twenty different

1This is the first instance in the class “First Problem/C20” of biobjective mixed integer programming instances
available at http://ogma.newcastle.edu.au:8080/vital/access/manager/Repository/uon:13218.
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Figure 1: The nondominated frontier (left) and a representation of it (right) for a biobjective
MIP, where both objectives are to be minimized. The axes have been scaled in such a way that
the left most point is the point (0, 1), while the right most point is the point (1, 0), in order for
the objective function values to be of the same order of magnitude.

ones. However, the approach originally proposed by Sayın (2000) is in our opinion the most
intuitive, and has become a standard way of evaluating representations (Eusébio et al., 2014;
Vaz et al., 2015; Kuhn and Ruzika, 2016; Shao and Ehrgott, 2016). We adopt this approach
in this paper as well. Sayın (2000) proposed three criteria of importance when evaluating
representations, namely coverage, uniformity and cardinality. Informally speaking, coverage
relates to how well regions of nondominated points in the criterion space are represented, and
a representation with good coverage would imply that any nondominated point outside the
representation is close enough to (i.e. covered by) a point inside the representation. Uniformity
relates to the spread of points in the criterion space, and a representation with good uniformity
would not contain points that are clustered (and thereby redundant). Finally, cardinality simply
relates to the fact that a representation should contain as few points as possible while providing
the DM with an adequate impression of the tradeoffs that exist between the different objectives.
Note that coverage and uniformity requires a distance metric as a function of pairs of points in
the criterion space, which is usually taken to be a p-norm distance metric with either p = 1, 2
or ∞ (the Manhattan, Euclidean, and Chebyshev distance metrics, respectively (Sayın, 2000)).
The formal definitions of the coverage and uniformity of a representation will be presented in
the following section.

3 Formal problem definition

We consider a biobjective mixed integer program (BOMIP), where we minimize over the set of
objective function values

YC,A,b,I = {y = Cx : Ax ≥ b, x ≥ 0, xi integer ∀i ∈ I} ⊂ R2, (1)

corresponding to feasible solutions to the problem, where x is a vector of decision variables of
length n, C is a 2 × n matrix, A is an m × n matrix, b is a vector of length m, and I is the
index set of the integer variables. If the values of C,A, b and I are clear from the context, the
shorthand Y will be used instead of YC,A,b,I . We will assume without loss of generality that
Cx ≥ 0 for all x, and we will refer to R2 as the criterion space.

Since each element y = (y1, y2) ∈ Y is a point in R2, minimizing over Y is defined as finding
all nondominated points in Y, where a point y ∈ Y dominates another point y′ ∈ Y\{y}, if
y1 ≤ y′1 and y2 ≤ y′2. A point y ∈ Y is nondominated if there exists no point y′ ∈ Y\{y} that
dominates y, and weakly nondominated if there exists no point y′ ∈ Y\{y} such that y′1 < y1 and
y′2 < y2. The set of all nondominated points in Y, known as the nondominated set, is denoted
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by N(Y), or N if Y is clear from the context. For a more complete overview of the formal
definitions of these and other concepts in multiobjective optimization, we refer the reader to
Ehrgott (2005).

An example of the nondominated set of a BOMIP is given in Figure 2. It has been shown
that Y is the union of a collection of closed and convex polyhedra if the feasible region of x is
closed, and so the (possibly nonconvex) nondominated set may contain isolated points, as well
as open, half-open and closed line segments (Boland et al., 2015b).

y1

y2

Figure 2: Example of the nondominated set of a BOMIP.

Within the scope of this paper we consider criterion space search methods (Boland et al.,
2015a), also known as scalarization methods (Ehrgott, 2006), and we generate points in the
criterion space by solving the problem

Y(λ, Y ) = min {λy : y ∈ Y ∩ Y} (2)

where λ is a positive vector of length 2 and Y ⊆ R2 is a restricted search region in the criterion
space. This corresponds to the solution of a single objective minimization problem obtained
by scalarizing the two objective functions using weights, while also restricting the values of the
objective functions to the region Y in the criterion space. Since y, λ ≥ 0 it is easy to see that
the point Y(λ, Y ) cannot be dominated by any other point y ∈ Y within the restricted region.

For mixed integer programs, Problem (2) can be solved as a (single objective) MIP if Y =
{y ∈ R2 : Dy ≥ e}, where D is a l × 2 matrix, and e is a vector of length l. Figure 3 shows an
example with six points in the nondominated set and the point Y(λ, Y ) found using criterion
space search, where λ1 = λ2 = 1 and Y = {y ∈ Y : y2 ≤ y1, y1 ≤ ε}. As the example in
Figure 3 shows, a point Y(λ, Y ) generated during criterion space search is by definition locally
nondominated within the restricted region Y , but not necessarily globally nondominated.

For each pair (λ, Y ) a single point Y(λ, Y ) ∈ Y is thus generated in the criterion space, and
many well-known criterion space search methods (e.g. ε-constraint methods, the weighted sum
method, the balanced box method, etc.) generate points iteratively by varying the values of λ
and Y using different strategies, while taking care in making sure that all points generated are
(globally) nondominated. Ehrgott (2006) may be consulted for an overview of these and more
general criterion space search methods.

An important way in which Problem (2) will be utilized in the methods presented in this
paper is to generate a nondominated point within a restricted region in the criterion space that
attains a minimal value for at least one of the objectives among all other points in the same
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y1

y2

ǫ

y1 ≤ ǫ

y2 ≤ y1

min y1 + y2

Figure 3: Example of generating a locally nondominated point Y(λ, Y ) using criterion space
search, where λ1 = λ2 = 1 and Y = {y ∈ Y : y2 ≤ y1, y1 ≤ ε}.

region. The points within the region Y that minimize the first and second objectives respectively
are given by

Y1(Y ) = min {y2 : y1 ≤ Y([1 0], Y ), y ∈ Y ∩ Y}
and

Y2(Y ) = min {y1 : y2 ≤ Y([0 1], Y ), y ∈ Y ∩ Y} .
In other words each one is obtained by solving a lexicographical minimization problem, where,
in obtaining Y1(Y ) for example, the first objective is first minimized without taking the second
objective into account at all, followed by minimizing the second objective subject to the con-
straint that the value of the first objective may not be degraded. In this paper we will refer to
Y1(Y ) as the left-most point in the region Y , and Y2(Y ) as the right-most point in the region
(i.e. in line with the standard visual representation of the criterion space used in this paper).
Figure 4 illustrates a lexicographical minimization problem using criterion space search, where
the point Y1(R2) is generated.

y1

y2

y1

y2

min y1

min y2

y∗1

y1 ≤ y∗1

y∗

ŷ1

Figure 4: Illustration of how the point ŷ1 = Y1(R2) may be obtained. In a first step y1 is
minimized, where the resulting point y∗ is a weakly nondominated point. In order to ensure
that a nondominated point is obtained, a second step is necessary.

Two points in N that are essential to the methods proposed in this paper are the two
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nondominated points that each globally minimizes one of the objectives, i.e. the points ŷ1 =
Y1(R2) and ŷ2 = Y2(R2). Most criterion space search methods are initialized with these two
points (Boland et al., 2015a), as are the methods presented in this paper.

Since coverage and uniformity are defined with respect to the distances between points, the
measures for these criteria are functions of a distance metric d : Y2 7→ R, which usually takes
the form of the p-norm

dp(y, y
′) =

{
p
√
|y1 − y′1|p + |y2 − y′2|p for p = 1, 2, . . .

max(|y1 − y′1|, |y2 − y′2|) for p =∞,

the most common values chosen for p being 1, 2 and ∞ (the Manhattan, Euclidean and Cheby-
shev distance metrics, respectively). Note that in order to use the p-norm distance metric it
is important that the values of both objective functions are of the same order of magnitude,
and so we assume that the objective functions have been normalized such that ŷ1 = [0, 1] and
ŷ2 = [1, 0]. Normalization may be done after obtaining the left-most and right-most points ŷ1

and ŷ2, and replacing y = Cx in (1) with

y1 =
c1x− ŷ11
ŷ21 − ŷ11

and y2 =
c2x− ŷ22
ŷ12 − ŷ22

,

where c1 and c2 are the rows of C.
Coverage is normally measured with respect to points inside the representation as well as

points outside it, and so for evaluating coverage the nondominated set N is required to be
available. For a set S ⊆ R2 and a choice of distance metric dp, the coverage error of the set is
defined as

γp(S) = max
y∈N

min
y′∈S

dp(y, y
′),

i.e. γp(S) is the largest value such that each point in the nondominated set is within a distance
of γp(S) from a point in the set S. This measure is to be minimized, and so the coverage problem
is the optimization problem

min γp(R)
s.t. R ⊂ N
|R| = ψ

(3)

for a specified distance metric and cardinality ψ.
The uniformity level, on the other hand, does not rely on the nondominated set being avail-

able, and is defined as
δp(S) = min

y,y′∈S,y 6=y′
dp(y, y

′),

i.e. the distance between the two closest points in the set. This measure is to be maximized,
and so the uniformity problem is the optimization problem

max δp(R)
s.t. R ⊂ N
|R| = ψ

(4)

for a specified distance metric and cardinality ψ.
Throughout this paper the points in a representation will always be sorted and indexed

according to the value of the first objective function, i.e. R = {y1, y2, . . . , y|R|} ⊂ N where yj1 <

yj+1
1 for all j = 1, . . . , |R| − 1. When measuring uniformity, we are essentially interested in the

distances between consecutive points in R, namely the set of distances Dp(R) = {dp(yj , yj+1) :
j = 1, . . . , |R| − 1}.

We conclude this section with three useful results. The first, which will prove useful a number
of times throughout this paper, shows that δp(R) = min Dp(R).
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Lemma 1 Let y, y′, y′′ ∈ Y be three points that are mutually weakly nondominated and sorted
such that y1 ≤ y′1 ≤ y′′1 . Then dp(y, y

′) ≤ dp(y, y′′).

A proof of this result may be found in Vaz et al. (2015). By this lemma it is easy to see that
if R = {y1, y2, . . . , y|R|} is a solution to Problem (3) and if y1 = ŷ1, then a representation with
the same or smaller coverage error can be obtained by replacing ŷ1 with any point inbetween it
and y2. Similarly, if R is a solution to Problem (4) and y1 /∈ R, then a representation with the
same or larger uniformity level can be obtained by replacing y1 by ŷ1. These observations give
rise to the following two results.

Lemma 2 There exists an optimal solution to Problem (3) that contains neither ŷ1 nor ŷ2.

Lemma 3 There exists an optimal solution to Problem (4) that contains both ŷ1 and ŷ2.

4 Review of existing methods

Since there is a large amount of literature on generating representations in multiobjective op-
timization, we review only those methods that are applicable to the specific case we consider,
namely criterion space search methods that rely on a black-box MIP solver to generate nondom-
inated points for a BOMIP iteratively without prior knowledge of the nondominated set. We
refer to such methods as insertion methods, i.e. methods that build the representation point by
point, as opposed to filtering methods, i.e. methods that start with the entire nondominated set
and reduce the set point by point until a suitable representation remains. So we do not review
here filtering methods, nor methods for the case where the entire nondominated set is connected
(i.e. continuous from ŷ1 to ŷ2). For more on methods not applicable to our case we refer the
reader to the extensive survey by Faulkenberg and Wiecek (2010), and to some papers that have
appeared since then, e.g. Faulkenberg and Wiecek (2012); Hancock and Mattson (2013); Shao
and Ehrgott (2016) for problems with connected nondominated sets and Vaz et al. (2015) for
filtering methods for problems with discrete nondominated sets.

As far as we are aware, only four papers propose insertion methods specifically designed for
the representation problem in BOMIPs, namely the works by Hamacher et al. (2007), Sylva and
Crema (2007), Masin and Bukchin (2008) and Eusébio et al. (2014).

Hamacher et al. (2007) propose two methods based on the so-called ε-constraint method. One
is a box-method, where during each iteration a collection of non-overlapping rectangular regions
(boxes) are maintained such that no nondominated point falls outside any of these boxes. A new
point is generated by selecting the box with the largest area and using an ε-constraint on one of
the objectives to cut the box in half (vertically) and finding the right-most point in the region
defined by the left half of the box. This point is then added to the current representation, and it
is used to create two new smaller boxes as subsets of the original box in such a way that regions
of the original box that cannot contain any nondominated points are cut away. The second
method is initialized by imposing a series of equidistant ε-constraints on one of the objectives,
after which the right-most point in each region specified by such a constraint is obtained. The
authors define the quality measure of a representation to be the area of the largest box, and the
algorithm continues iteratively in this way until the area of the largest box is below a specified
threshold. The former of these two methods was later extended by Boland et al. (2015a) to the
balanced box method, where, when a box is cut in half, a point was not only generated in one
half of the box, but also in the other half. This was done in order to create tighter boxes in each
step for the purpose of developing an efficient method for generating the entire nondominated
set instead of a representation. The box-method was also recently extended to the problem of
generating representations for problems with three objectives by Kuhn and Ruzika (2016).

Sylva and Crema (2007) and Masin and Bukchin (2008) independently propose essentially
identical methods for MIPs with two (or more) objectives, where during each iteration the point
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that maximizes the ∞-norm distance to the current dominated region (defined by the current
representation) is generated and added to the representation. The method requires two phases,
where in the first phase a point is found that maximizes this distance, while the second phase
ensures that a nondominated point is found within the same distance (since the first phase
cannot guarantee this). The algorithm continues in this way until the distance of the point that
is furthest away is within a specified threshold. The two methods only differ in the way that the
distance measure is modelled within the MIP, and even though the methods therefore produce
the same representation, they might not have the same performance in terms of computation
time required. As far as the authors know a direct comparison has not yet been made.

Finally, Eusébio et al. (2014) consider the representation problem in biobjective integer
network flow problems. They propose two methods, one for the coverage problem using the
Euclidean distance and one for the uniformity problem using vertical distance (where distance is
measured as the difference in value of only one objective). In each iteration of the former method
the two points in the current representation that are furthest away from each other are selected,
and then the rectangle of which they form the corner points is split (horizontally) in half by
an ε-constraint, and the left-most point in the bottom half of the rectangle is generated. In
each iteration of the latter, an ε-constraint is imposed a (vertical) distance of some prespecified
uniformity below the point in the current representation with lowest (vertical) objective function
value. The methods terminate after a desired level of coverage and uniformity, respectively, is
attained.

Insertion methods, such as the ones reviewed above and the one to be introduced in the
next section, are somewhat limited (greedy approaches as they essentially are) when it comes
to generating high quality representations with respect to coverage and uniformity. To see this,
note that given a representation R = {y1, y2, . . . , y|R|} where |R| ≥ 2, y1 = ŷ1 and y|R| = ŷ2,
any nondominated point y∗ added to this set will fall in the region

Y (yj , yj+1) = {y ∈ R : yj1 ≤ y1 ≤ yj+1
1 , yj+1

2 ≤ y2 ≤ yj2}

for some j ∈ {1, 2, . . . , |R| − 1}. In other words, y∗ will be inserted inbetween two points yj

and yj+1, and if done in a way that is supposed to increase coverage or uniformity, it should lie
roughly halfway between yj and yj+1 (this is true for all the methods reviewed above). However,
this leads to two shorter distances dp(y

j , y∗) and dp(y
∗, yj+1), while the distances dp(y

k, yk+1)
for all k 6= j remain roughly twice as large. This results in a set of points that is not uniformly
spaced, and it is highly likely that there are much better representations of the same cardinality
with respect to coverage and uniformity. In order to maintain a good level of coverage and
uniformity, a point should not only be added in the region between one pair of points in R,
but in the region between all pairs of points. In other words, in each iteration of an insertion
method, |R|− 1 points should be inserted to a representation R in order to maintain a balanced
set of points. By mathematical induction it is easy to show that |R| = 2q + 1 for some q ∈ N0 if
built up in this way, given that the insertion method is initialized with {ŷ1, ŷ2}.

Insertion methods with a quality threshold as a stopping criterion therefore risk terminating
the search with large gaps between some points, and the result would be that much better
representations of the same cardinality likely exist. On the other hand, insertion methods that
take a fixed cardinality as input can overcome this risk by ensuring that the fixed cardinality
ψ of the representation is of the form ψ = 2q + 1 for some q ∈ N0. The drawback in this case
is that the DM is restricted to ψ ∈ {2, 3, 5, 9, 17, . . .} in their choice of the desired cardinality
of the representation. However, in Section 7.1 we will discuss a number of ways in which this
drawback can be overcome.
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5 Bounds for coverage and uniformity

Before presenting a new method in the next section, we first derive some duality results. More
specifically, we show that the coverage and uniformity problems can be seen as duals of one
another. This is shown by considering what we call equidistant representations, a concept which
also forms the basis for the method presented in the next section. We call a representation
R equidistant if any two consecutive points is some fixed distance apart, in other words if
dp(y

j , yj+1) = dp(y
k, yk+1) for all 1 ≤ j, k ≤ |R| − 1. Moroever, if ŷ1 ∈ R and ŷ2 ∈ R for an

equidistant representation R, we call R a complete equidistant representation. For an equidistant
representation R, we denote by dR the fixed distance between consecutive points.

The following result provides a useful sufficient condition for optimal uniformity, the proof
of which can be found in Appendix 8.

Theorem 1 If R is a complete equidistant representation for a biobjective optimization problem,
then R is an optimal solution to the uniformity problem (4), and the optimal uniformity level is
dR.

Figure 5 illustrates for a small example why this is true. Given a representation R ⊃ {ŷ1, ŷ2},
the points of another representation R̃ can only lie in the regions inbetween the points in R
since R̃ only contains nondominated points. If R is equidistant, then at least one pair of points
in R̃ will be within a distance of dR of one another.

y2

y1

︸ ︷︷ ︸
δp(R̃) ≤ δp(R)

R̃

R

Figure 5: A complete equidistant representation R is optimal in terms of uniformity among all
representations of the same cardinality.

It is easy to verify that a complete equidistant representation of a given cardinality always
exists if the nondominated set is connected. The implication of the Theorem 1 is therefore that,
for problems with connected nondominated sets, finding a representation of cardinality ψ that
maximizes uniformity is equivalent to finding an equidistant representation of cardinality ψ.

A similar result can be proved for coverage as follows.

Theorem 2 If R′ = {y′1, . . . , y′|R|} is a complete equidistant representation of odd cardinality,
then

R =
⋃

j=1,...,
|R′|−1

2

{y′2j}

is an optimal optimal solution to the coverage problem (3), and the optimal coverage error is
dR′.
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Figure 6 illustrates for a small example why this is true. Given a representation R, the points
of another representation R̃ can only lie in the regions inbetween the points in R∩{ŷ1, ŷ2} since
R̃ only contains nondominated points. If R is constructed as in Theorem 2, then at least one
nondominated point outside the set R̃ will lie beyond a distance of γp(R) from the closest point
in the set R̃.

y2

y1

R̃

R

R′\R

︸ ︷︷ ︸
γp(R̃) ≥ γp(R)

Figure 6: A complete equidistant representation R′ contains a representation R ⊂ R′ that is
optimal in terms of uniformity among all representations of the same cardinality.

The implication of this theorem is that, for problems with connected nondominated sets,
finding a representation of cardinality ψ that minimizes the coverage error is equivalent to
finding an equidistant representation of cardinality 2ψ + 1. We thus have the following duality
result.

Corollary 1 If N is connected and R ⊂ N is a complete equidistant representation with |R| =
2ψ + 1, then

max
R′∈N,|R′|=2ψ+1

δp(R
′) = dR = min

R′∈N,|R′|=ψ
γp(R

′).

For problems with disconnected nondominated sets a similar result can be derived. Let N
be disconnected and let W ⊇ N be the set of all weakly nondominated points, and note that
W does not contain any open line segments. The connected relaxation of N is, as illustrated by
Figure 7, the connected set

Ñ = W
⋂

(y′,y′′)∈B

[y′, y′′]

where [y, y′] denotes the set of all points on the straight line segment between the points y, y′ ∈ R2

and where
B =

{
(y, y′) ∈ W × W : Y (y, y′) ∩ W = {y, y′}

}
.

Since N ⊆ Ñ , solving the coverage and uniformity problems on Ñ provides dual bounds for
the same problems on N . Since Ñ is connected, we therefore have the following result by
Corollary 1.

Corollary 2 For a biobjective optimization problem with a disconnected nondominated set N

max
R⊂N,|R|=2ψ+1

δp(R) ≤ min
R⊂N,|R|=ψ

γp(R).
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y2
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Figure 7: Constructing the connected relaxation of the nondominated set of a BOMIP.

6 A new method

In this section we present the Voronoi cut method, which is based on the concept of a Voronoi
diagram from computational geometry (de Berg et al., 2000). Applications of Voronoi diagrams
in operations research are often found in location problems (Okabe and Suzuki, 1997), recent
examples of which include location districting (Novaes et al., 2009) and problems related to
location density (Cachon, 2014). There are indeed strong similarities between the representation
problem in multiobjective optimization and location problems, as noted by Vaz et al. (2015). In
fact, the coverage problem corresponds to the so-called k-center problem, while the uniformity
problem corresponds to the k-dispersion problem (see Vaz et al. (2015) for further details).

Given two nondominated points y′ and y′′ such that y′1 ≤ y′′1 , consider the problem of finding
a nondominated point y in the region

Y (y′, y′′) = {y ∈ R : y′1 ≤ y1 ≤ y′′1 , y′′2 ≤ y2 ≤ y′2}

such that the representation R = {y} is optimal in terms of coverage for this region. By
Lemma 1, the point that is furthest away from y will be either y′ and y′′ regardless of where
y lies in this region. The point y is therefore the point the minimizes max(dp(y, y

′), dp(y, y′′)),
which is equivalent to stating that it is the point that maximizes min(dp(y, y

′), dp(y, y′′)). The
representation R′ = {y′, y, y′′} is therefore also optimal in terms of uniformity for this region.

It therefore follows that we have the “local” duality result

max
R⊂Y (y′,y′′),|R|=3

δp(R) = min
R⊂Y (y′,y′′),|R|=1

γp(R) = min
y∈Y (y′,y′′)

max(dp(y, y
′), dp(y, y′′)).

Using this result, we propose employing an iterative greedy method that adds a point to an
existing representation R by selecting two consecutive points y′, y′′ ∈ R and solving this local
problem. The question remains how to find the point y the minimizes max(dp(y, y

′), dp(y, y′′)).
Towards this end we utilize the main idea behind the construction of a Voronoi diagram,

namely to divide the search region Y (y′, y′′) into two distinct cells of points that share the same
nearest neighbour among the two points y′ and y′′, i.e.

V ≤p
(
y′, y′′

)
= {y ∈ Y (y′, y′′) : dp(y, y

′) ≤ dp(y, y′′)}

and
V ≥p

(
y′, y′′

)
= {y ∈ Y (y′, y′′) : dp(y, y

′) ≥ dp(y, y′′)}.
The nondominated point y that maximizes min(dp(y, y

′), dp(y, y′′)) is therefore either the non-
dominated point in V ≤p (y′, y′′) that is furthest away from y′, or the nondominated point in
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V ≥p (y′, y′′) that is furthest away from y′′. Once these two points have been obtained, it can be
determined by inspection which one maximizes min(dp(y, y

′), dp(y, y′′)).
Figure 8 illustrates this concept for the Euclidean distance metric, for which it is known

(and not difficult to verify) that the Voronoi cells are divided by a straight line that is the
perpendicular bisector of the line segment between y′ and y′′ (de Berg et al., 2000). Note that
if the nondominated set is continuous across the two Voronoi cells, i.e. if the nondominated set
is continuous from a point in V ≤p (y′, y′′) to a point in V ≥p (y′, y′′), then there exists a single
nondominated point in the intersection V ≤p (y′, y′′)∩V ≥p (y′, y′′), i.e. an equidistant point y such
that dp(y, y

′) = dp(y, y
′′).

y1

y2

y′

y′′

y1

y2

y′

y′′

y1

y2

y′

y′′

(y′
2+y′′

2 )

2

y1

y2

y′

y′′

(y′′
1 +y′

1)

2

Figure 8: Constructing the Voronoi cells for two points y′ and y′′ for p = 2. The nondominated
points between y′ and y′′ are shown, and in case the cut does not intersect with a continuous
part of the nondominated set, one of two points maximizes min(dp(y, y

′), dp(y, y′′)) (top-right).
If the cut intersect a continuous part of the nondominated set, a single point (shaded) maximizes
min(dp(y, y

′), dp(y, y′′)) (bottom-left). Moreover, a second step is necessary, since the first step
does not guarantee a nondominated point (bottom-right).

In order to find the nondominated point in V ≤p (y′, y′′) that is furthest away from y′, it is
natural to want to consider (according to Lemma 1) the right-most point in the region V ≤p (y′, y′′),
i.e. Y2(V ≤p (y′, y′′)). However, the right-most point in a restricted region is only guaranteed to
be nondominated within the region, and not necessarily globally nondominated. The same holds
for the left-most point in V ≥p (y′, y′′). Figure 8 (top-right) illustrates how it can happen that,
for example, the left-most point in V ≥p (y′, y′′) can be dominated by a point outside this region.
The following result, however, guarantees that at least one of the two points is nondominated.
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Lemma 4 Let y′ and y′′, y′1 < y′′1 , be two nondominated points and let yL = Y2(V ≤p (y′, y′′))
and yR = Y1(V ≥p (y′, y′′)). Then (a) not both yL and yR are dominated, and (b) if one of them
is dominated, it is dominated by the other.

If, for instance, yL dominates yR, then, since only points in the region V ≤p (y′, y′′) can

dominate yR and since yL is the right-most point in V ≤p (y′, y′′), there is no point y such that

y2 < yL2 that dominates yR. Similary it can be shown that there is no point y such that y1 < yR1
that dominates yL. The next result therefore provides a means to remedy the situation where
one of these points is dominated, as illustrated by Figure 8 (bottom-right).

Corollary 3 Let y′ and y′′, y′1 < y′′1 , be two nondominated points and let yL = Y2(V ≤p (y′, y′′))
and yR = Y1(V ≥p (y′, y′′)). If yL dominates yR, then

Y1(V ≥p
(
y′, y′′

)
∩ {y : y2 ≤ yL2 − ε})

is nondominated for any ε > 0. If yR dominates yL, then

Y2(V ≤p
(
y′, y′′

)
∩ {y : y1 ≤ yR1 − ε})

is nondominated for any ε > 0.

During each iteration of the Voronoi cut method the largest gap (according to the distance
measure) between any two consecutive points in the current representation is determined, and a
nondominated point is inserted in accordance with the observations above. The algorithm stops
once a desired number ψ of points have been generated.

In order to apply criterion space search, the regions V ≤p (y′, y′′) and V ≥p (y′, y′′) need be
defined using linear constraints, and in order to facilitate this we focus on the intersection
between these two sets, namely

V ≤p
(
y′, y′′

)
∩ V ≥p

(
y′, y′′

)
= {y ∈ Y (y′, y′′) : dp(y, y

′) = dp(y, y
′′)},

which we will henceforth refer to the Voronoi cut between points y′ and y′′. In the following we
treat each of the three cases p = 1, 2,∞ separately.

6.1 Voronoi cut for p = 1

For p = 1 the Voronoi cut is given by points y ∈ Y (y′, y′′) satisfying

|y1 − y′1|+ |y2 − y′2| = |y1 − y′′1 |+ |y2 − y′′2 |

which may be simplified to the more convenient form

y1 −
y′1 + y′′1

2
= y2 −

y′2 + y′′2
2

using the fact that y ∈ Y (y′, y′′). In this case the Voronoi cut is a straight line with a 45◦ slope
bisecting the line segment between y′ and y′′. The Voronoi cells may be specified using linear
constraints as

V ≤1
(
y′, y′′

)
=

{
y ∈ Y (y′, y′′) : y1 −

y′1 + y′′1
2

≤ y2 −
y′2 + y′′2

2

}

and

V ≥1
(
y′, y′′

)
=

{
y ∈ Y (y′, y′′) : y1 −

y′1 + y′′1
2

≥ y2 −
y′2 + y′′2

2

}
.
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6.2 Voronoi cut for p = 2

We have already noted that for p = 2 the Voronoi cut is a straight line, given by

√
(y1 − y′1)2 + (y2 − y′2)2 =

√
(y1 − y′′1)2 + (y2 − y′′2)2

which may be simplified to the more convenient form

(
y1 −

y′1 + y′′1
2

)
(y′′1 − y′1) =

(
y2 −

y′2 + y′′2
2

)
(y′2 − y′′2).

The Voronoi cells may be specified using linear constraints as

V ≤2
(
y′, y′′

)
=

{
y ∈ Y (y′, y′′) :

(
y1 −

y′1 + y′′1
2

)
(y′′1 − y′1) ≤

(
y2 −

y′2 + y′′2
2

)
(y′2 − y′′2)

}

and

V ≥2
(
y′, y′′

)
=

{
y ∈ Y (y′, y′′) :

(
y1 −

y′1 + y′′1
2

)
(y′′1 − y′1) ≥

(
y2 −

y′2 + y′′2
2

)
(y′2 − y′′2)

}
.

6.3 Voronoi cut for p =∞
For p =∞ we present in this section a procedure to find the right most point in V ≤∞ (y′, y′′) and
the left-most point in V ≥∞ (y′, y′′) for the case where y′′1 − y′1 ≥ y′2− y′′2 . Visually this corresponds
to the case where Y (y′, y′′) is a rectangle that is wider than it is high. If y′′1 − y′1 ≤ y′2 − y′′2 , the
procedure is exactly the same, except with the roles of the objective functions (or from a visual
point of view, the axes) reversed.

For p =∞, the Voronoi cut is given by

max(y1 − y′1, y′2 − y2) = max(y′′1 − y1, y2 − y′′2)

which may, by considering all four possible outcomes of the two “max” operators, be simplified
to a more convenient piecewise linear form. To simplify notation, let

smin = y′1 + y′2

and
smax = y′′1 + y′′2 .

The Voronoi cut may be simplified to

y1 − y2 = y′′1 − y′2 if y1 + y2 ≤ smin,

y1 = 1
2(y′′1 + y′1) if smin ≤ y1 + y2 ≤ smax

y1 − y2 = y′1 − y′′2 if smax ≤ y1 + y2.

We can distinguish between three different cases:

(i) smax−smin = 0, in which case the Voronoi cut is a straight line given by y1−y2 = y′′1−y′2 =
y′1−y′′2 , i.e. a line with a 45◦ slope bisecting the line segment between y′ and y′′ (see Figure
9, top). In fact, in this case the Voronoi cut is the same for all three cases p = 1, 2,∞.

(ii) smax − smin ≤ y′1+y
′′
1

2 , in which case the Voronoi cut is piecewise linear, as seen in Figure 9
(bottom left). Moreover, the regions V ≤∞ (y′, y′′) and V ≥∞ (y′, y′′) are nonconvex and cannot
be described by a set of linear constraints Dy ≥ e.
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Figure 9: The Voronoi cut for p =∞.

(iii) smax − smin ≥ y′1+y
′′
1

2 , in which case the Voronoi cut is a vertical line exactly halfway
between y′1 and y′′1 , as shown in Figure 9 (bottom right).

Thus, for Case (i), V ≤∞ (y′, y′′) = V ≤1 (y′, y′′) and V ≥∞ (y′, y′′) = V ≥1 (y′, y′′), while for Case (iii)

V ≤∞
(
y′, y′′

)
=

{
y ∈ Y (y′, y′′) : y1 ≤

y′1 + y′′1
2

}
,

and

V ≥∞
(
y′, y′′

)
=

{
y ∈ Y (y′, y′′) : y1 ≥

y′1 + y′′1
2

}
.

For Case (ii), it is a little bit more complicated since the regions are nonconvex. However, note
that in this case V ≤∞ (y′, y′′) is the union of the convex regions

Y1 =

{
y ∈ Y (y′, y′′) : y1 − y2 ≤ y′′1 − y′2, y1 ≤

y′1 + y′′1
2

}
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and

Y2 =

{
y ∈ Y (y′, y′′) : y1 − y2 ≤ y′1 − y′′2 , y1 ≥

y′1 + y′′1
2

}
,

as shown in Figure 10. In order to find the right-most point in V ≤∞ (y′, y′′), we propose to first

find ỹ = Y2(Y1). If ỹ ≤ y′′2 +
y′′1−y′1

2 , then it dominates all points in Y2 (see Figure 10, left), and it
therefore is the right-most point in V ≤∞ (y′, y′′). Otherwise, there might be a point in the region
Y2 ∩ {y ∈ Y (y′, y′′) : y2 < ỹ2} (see Figure 10, right). However, if this region is not guaranteed
to contain any feasible points, and as has been noted by Boland et al. (2015a) as well, MIP
solvers tend to have a hard time proving infeasibility. In order to ensure that there is at least
one feasible point, the region

{y ∈ Y (y′, y′′) : y2 < ỹ2, y1 ≥ ỹ1, y1 − y2 ≤ y′1 − y′′2}

is considered instead, and the right-most point in this region will then be the right-most point
in V ≤∞ (y′, y′′). The same ideas can then also be applied to find the left-most point in V ≥∞ (y′, y′′).

y′′2 +
y′′
1 −y′

1

2

y′

y′′

y′

y′′

y1

y2

y1

y2

Figure 10: Two phase method for dealing with the nonconvexity of the Voronoit cut for p =∞.

6.4 Computational complexity

The computational complexity of these methods depends on the algorithms used by the solver
and the specific optimization problem under consideration, but an impression can be given
by considering the worst case number of different calls to the solver required. The Voronoi
cut method starts by determining ŷ1 and ŷ2 which requires two lexicographical optimization
problems, and thus 4 calls to the solver. For p = 1, 2 and for each Voronoi cut, once again
two lexicographical optimization problems are solved on either side of the cut, and in the worst
case one point can be dominated by another which requires a third lexicographical optimization
problem to be solved. For each point that is to be generated, apart from ŷ1 and ŷ2, 6 calls to
the solver are therefore required in the worst case. For generating a representation consisting of
ψ points, 4 + 6(ψ − 2) calls to the solver are required in the worst case for p = 1, 2. For p =∞,
finding a point on either side of the cut requires 4 calls in the worst case, plus an additional 2
if one point dominates another, and so 4 + 10(ψ − 2) calls to the solver is required in the worst
case.
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7 Computational results

In this section we compare the performance of the Voronoi cut method with existing meth-
ods from the literature, specifically the methods of Hamacher et al. (2007), Sylva and Crema
(2007), Masin and Bukchin (2008) and Eusébio et al. (2014). Hamacher et al. (2007) pro-
posed two algorithms, namely an a posteriori algorithm and an a priori algorithm, which we
henceforth abbreviate as HaPeRu2007(1) and HaPeRu2007(2), respectively. Similarly, Eusébio
et al. (2014) proposed a γ-representation algorithm and a δ-uniform representation algorithm,
which we henceforth abbreviate as EuFiEh2014(1), and EuFiEh2014(2), respectively. Finally,
the methods of Sylva and Crema (2007) and Masin and Bukchin (2008) are abbreviated as
SyCr2007 and MaBu2008, respectively. We also include the weighted sum method (Aneja and
Nair, 1979) due to its simplicity and the fact that it is, along with the ε-constraint method, one
of the most popular criterion search space methods typically utilized.

All of these methods necessarily generate representations that include the points ŷ1 and ŷ2,
and so by Lemmas 2 and 3 they are appropriate for the uniformity problem, but not for the
coverage problem. However, Theorem 2 provides a means of constructing from a representation
R ⊃ {ŷ1, ŷ2} a representation R′ of cardinality |R|−12 that is appropriate for the coverage problem.
In what follows, we define the sub-coverage error of R as the coverage error of R′.

In what follows we first discuss the choice of ψ. Thereafter we present computational results
for generating five points using the different methods, and we compare performance of the
methods with respect to coverage and uniformity for all three distance measures considered.

7.1 Choice of cardinality of the representation

As mentioned in Section 4, when using an insertion method, a fixed cardinality of the form
ψ = 2q + 1 for some q ∈ N0 is recommended if a representation is desired that is close to being
equidistant, since otherwise there might remain large gaps between some points in the final
output. However, this leaves cases where the DM desires a number of points that is not of this
form unresolved. We suggest here a number of ways to overcome this drawback.

Consider the case where the decision maker desires a number of points ψ = 2q + 1 + r for
some q, r ∈ N. One possible way of generating such a set is to initialize the search with {ŷ1, ŷ2}
and first generate r points, where the j-th point for all j = 1, . . . , r is a distance of j · d from
ŷ1, given some fixed distance d ∈ R+. If y∗ is the final point in this sequence, then an insertion
method can be used to generate the remaining 2q − 1 points between y∗ and ŷ2. This, however,
poses two difficulties. First of all, it is not clear what the fixed distance d between the first r
points should be. A rough guess could be dp(ŷ

1, ŷ2)/ψ, but this will only be close to the true
distance between a uniform set of ψ points if the nondominated set roughly follows a straight
line in the criterion space, which is usually not the case. Secondly, and most importantly, it is
not clear how to generate a point that is some fixed distance d away from a reference point given
some distance measure. Note that the Voronoi cut method never attempts to find points within
a specific distance, but instead attempts to find points that are equidistant from two reference
points, regardless of what this distance will be. One approach would be to consider weighted
Voronoi diagrams, where the Voronoi cut would be all points that are a distance away from one
reference point that is a constant multiple of the distance to the other reference point. However,
in this case the Voronoi cut is no longer a straight line.

Our recommendation is to instead use the Voronoi cut method in an interactive approach.
The Voronoi cut method can be used to generate, for example, five points, after which these
solutions are presented to the DM for consideration. If the DM can then identify a region
of interest between two specific points, the Voronoi cut method can be used to generate an
additional three points inbetween these two. In this case the interactive search can iteratively
reduce the region in the criterion space where the DM would prefer to find a solution, while
ensuring a managably sized and uniformly spaced set of points is presented to the DM each time.
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This process can be repeated until the DM has considered a satisfactory number of points.

7.2 Comparison of methods for ψ = 5 and ψ = 9

We use four classes of BOMIP instances that were also used in Boland et al. (2015b) and
which are available online at http://ogma.newcastle.edu.au:8080/vital/access/manager/
Repository/uon:13218. These consist of two classes of integer programming problems, namely
20 instances of biobjective assignment problem (AP) and 20 instances of the two-dimensional
knapsack problem (2DKP), and two classes of mixed integer programming problems, namely 12
instances of the biobjective uncapacitated facility location problem (BUFLP) and 25 instances of
a class of mixed integer programming problems introduced by Mavrotas and Diakoulaki (1998)
(MILP). Since we consider three different distance measures and two cardinalities, this amounts
to 462 instances in total. All methods were implemented in C++ using CPLEX 12.6 as the
black-box MIP solver on a 2.20GHz Intel(R) Core(TM) i3-2330M CPU with 4 GB RAM. The
default settings for CPLEX were used, except for the relative MIP gap tolerance, which was set
to 1× 107.

Figure 11 shows, for different values of ψ and p, the effectiveness of the Voronoi cut method
compared to other methods from the literature. Two points are plotted for each method and each
instance, one for the uniformity level and one for the sub-coverage error of the representation
generated by the method (note that by Corollary 2 the former point is always below the latter).
As can be seen, in most cases the Voronoi cut method outperforms all other methods with
respect to both the coverage and uniformity problems, and it attains relatively small optimality
gaps. In particular, the Voronoi cut method was able to close the gap in 57 out of 462 cases,
whereas among all the other methods only MaBu2008/SyCr2007 was able to close the gap, and
only for one instance (instance 1 from the class BUFLP).

In terms of computation times, the average time per call to the solver varies little across the
different methods, as can be seen from Table 1. An exception to this is the methods Sylva and
Crema (2007) and Masin and Bukchin (2008) when applied to instances of the class AP, where
the objective function used by this method slows the solver down considerably.

Avg time per CPLEX call
BUFLP MILP 2DKP AP

Weighted sum 0.06 0.05 0.94 1.28
HaPeRu2007(1) 0.20 0.27 1.25 2.43
HaPeRu2007(2) 0.19 0.24 1.18 2.18

ψ = 5 SyCr2007 0.23 0.26 1.96 59.20
MaBu2008 0.27 0.25 1.96 66.59

EuFiEh2014(1) 0.19 0.20 1.20 2.43
EuFiEh2014(2) 0.15 0.19 1.19 2.17

Voronoi Cut 0.40 0.19 1.71 4.02

Weighted sum 0.05 0.04 0.88 1.19
HaPeRu2007(1) 0.22 0.27 1.16 2.75
HaPeRu2007(2) 0.22 0.25 1.12 2.29

ψ = 9 SyCr2007 0.31 0.34 2.51 124.93
MaBu2008 0.34 0.32 2.70 88.93

EuFiEh2014(1) 0.23 0.24 1.12 2.79
EuFiEh2014(2) 0.19 0.21 1.13 2.24

Voronoi Cut 2.25 0.23 1.67 4.28

Table 1: For each method and each class of instances, the average computation time in seconds
per single call to CPLEX over all instance in the class.

What is more of interest is the number of times the solver is called by each method. All
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(a) p = 1, ψ = 5 (b) p = 1, ψ = 9
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Figure 11: For different methods and values of ψ and p, two points are plotted for each instance
showing the uniformity level and sub-coverage error, respectively.
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reviewed methods, except for the weighted sum method, require two calls for each point to be
generated, i.e. 2ψ calls in total. The weighted sum method requires two calls for the top-left and
bottom-right points, and then only one call for each remaining point, i.e. 4 +ψ−2 calls in total.
For the Voronoi cut method, the number of calls may vary. Table 2 shows the theoretical worst
case number of calls to the solver required by the Voronoi cut method, and for each class of
instances the maximum number of calls that was actually performed. As can be seen, the high
accuracy of the Voronoi cut method seen in the previous section comes at the cost of requiring
more calls to the solver — slightly more than twice as many calls for the considered instances
for ψ = 5, 9.

Worst case # of calls Max # of calls
for Voronoi cut method ψ = 5 ψ = 9

ψ = 5 ψ = 9 BUFLP MILP 2DKP AP BUFLP MILP 2DKP AP

p = 1 4 + 6(ψ − 2) 22 46 18 20 22 22 40 42 44 44
p = 2 4 + 6(ψ − 2) 22 46 20 20 22 22 40 44 44 44
p =∞ 4 + 10(ψ − 2) 34 74 22 20 24 24 44 46 46 48

Weighted sum 7 11
Other methods 10 18

Table 2: For each method the worst case number of calls to CPLEX necessary to generate ψ
points.

8 Conclusion

In this paper we consider the representation problem in biobjective mixed integer programming,
and we used a desired cardinality of the representation as a stopping criterion as opposed to
a desired quality level. We consider two measures that have become standard in the literature
on representations, namely the coverage error and the uniformity level, and we show that the
optimization problems of minimizing the coverage error and maximizing the uniformity level
can be seen as duals of one another. By solving both problems, an optimality gap is therefore
obtained, and in particular we show that this gap is closed if an equidistant representation can
be found. Inspired by this result, we develop a method that attempts to construct an equidis-
tant representation of a given cardinality by utilizing the space division technique of Voronoi
diagrams. We show on a set of BOMIP benchmark instances that this method significantly
outperforms methods from the literature both in terms of coverage and uniformity.
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Proof of Theorem 1

Suppose that a representation R̃ = {ỹ1, . . . , ỹ|R|} exists such that δp(R̃) ≥ δp(R). Since R is an
equidistant representation, dp(ỹ

k, ỹk+1) ≥ dp(yj , yj+1) for all k and j. From this and Lemma 1 it

follows that, if yj1 ≤ ỹj1, then yj+1
1 ≤ ỹj+1

1 for all j = 1, . . . , |R|−1. From Lemma 3, ŷ1 = y1 = ỹ1,

and therefore by mathematical induction y
|R|
1 ≤ ỹ

|R|
1 . However, by Lemma 3 ŷ2 = y|R| = ỹ|R|,

and so R̃ = R. �

Proof of Theorem 2

Since any nondominated point y such that yj1 ≤ y1 ≤ yj+1
1 for some j ∈ {1, . . . , |R|−1} is closest

to (i.e. covered by) either yj or yj+1 according to Lemma 1, it follows that

γp(R) = max
y∈N

min
y′∈R

dp(y, y
′)

= max
j∈{1,...,|R|−1}

max
y∈Y (yj ,yj+1)

min[dp(y
j , y′), dp(y′, yj+1)]

for any representation R. Given a representation R = {y1, . . . , y|R|}, let

ȳj = argmax
y∈Y (yj ,yj+1)

min[dp(y
j , y′), dp(y′, yj+1)]

for j ∈ {0, . . . , |R|}, where we follow the convention that dp(y
0, y′) = dp(y

′, y|R+1|) =∞.
Given a complete equidistant representation R′ = {y′1, . . . , y′|R′|}, let R = {y1, . . . , y|R|} be

a representation such that yj = y′2j for all j ∈ {1, . . . , |R|}. Since y′2j+1 is the same distance
from y′2j and y′2j+2, it follows that ȳj = y′2j+1 for all j = 1, . . . , |R|, while ȳ0 = y′1. Moreover,
γp(R) = dR′ .

Suppose that a representation R̃ = {ỹ1, . . . , ỹ|R|} exists such that γp(R̃) ≤ γp(R) = dR′ . We

first show that if ỹj1 ≤ yj1, then ỹj+1
1 ≤ yj+1

1 for any j ∈ {1, . . . , |R| − 1}. This is immediately

true if ȳj1 ≥ ỹj+1
1 , so we consider the case where ȳj1 ≤ ỹj+1

1 .

If ỹj1 ≤ yj1, then by Lemma 1

d(ỹj , ȳj) ≥ d(yj , ȳj) = dR′ ≥ γp(R̃),
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and so d(ȳj , ỹj+1) ≤ d(ỹj , ȳj) from the definition of γp(R̃). Since ȳj1 ≤ ỹj+1
1 , it follows that ȳj is

closest to the point ỹj+1 among all the points in R̃. Thus

d(ȳj , ỹj+1) ≤ γp(R̃) ≤ dR′ = d(ȳj , yj+1)

and the desired result ỹj+1
1 ≤ yj+1

1 follows.
Since R′ is a complete equidistant representation, y′1 = ŷ1, while by Lemma 2 ỹ1 6= ŷ1. The

point y′1 is therefore not in R̃ and is closest to ỹ1 among all the points in R̃. Since

d(y′1, ỹ1) ≤ γp(R̃) ≤ γp(R) = d(y′1, y1),

it follows that ỹ11 ≤ y11. Thus, by mathematical induction ỹ
|R|
1 ≤ y

|R|
1 . However, by Lemma 2

ŷ2 = y′|R
′|, and this point is therefore closest to ỹ|R| among all the points in R̃. By Lemma 1

and the fact that ỹ
|R|
1 ≤ y|R|1 , we have

γp(R̃) ≥ d(y′|R
′|, ỹ|R|) ≥ d(y′|R

′|, y|R|) = γp(R),

contradicting the fact that γp(R̃) ≤ γp(R). �

Proof of Lemma 4

(a) Assume, to the contrary, that both yL and yR are dominated. First of all, note that
they cannot be dominated by points outside Y (y′, y′′), since otherwise these points would also
dominate either y′ or y′′, or both. Therefore, they each respectively have to be dominated by
a point in the region of the other, i.e. yL is dominated by a point ȳL ∈ V ≥p (y′, y′′) and yR by

a point ȳR ∈ V ≤p (y′, y′′). Since yL is the right-most (locally) nondominated point in the region

V ≤p (y′, y′′), it follows that ȳR1 ≤ yL1 and therefore that yL2 ≤ ȳR2 ≤ yR2 . Similarly, since yR is the

left-most (locally) nondominated point in the region V ≥p (y′, y′′), it follows that yR1 ≤ ȳL1 ≤ yL1 .

We have therefore shown that yR2 ≥ yL2 and yR1 ≤ yL1 , but by Lemma 1 this implies that yR is
closer to y′ than yL, contradicting the definitions of yL and yR. The initial assumption therefore
has to be false, and at least one of yL and yR is nondominated.

(b) Let yL be (globally) nondominated and yR be dominated by some point ȳR ∈ V ≤p (y′, y′′).
Above we have shown that in this case yL2 ≤ ȳR2 ≤ yR2 . Now it should also follow that yL1 ≤ yR1
such that yL dominates yR, since otherwise yL would be closer to y′′ than yR. Similarly, it can
be shown that if yR is nondominated and yL not, then yR dominates yL. �
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