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Abstract. Obstacles like forests, ridges and hills can strongly affect the velocity profile in front 

of a wind turbine rotor. The present work aims at quantifying the influence of nearby located 

obstacles on the performance and wake characteristics of a downstream located wind turbine. 

Here the influence of an obstacle in the form of a cylindrical disk was investigated 

experimentally in a water flume. A model of a three-bladed rotor, designed using Glauert’s 

optimum theory at a tip speed ratio λ = 5, was placed in the wake of a disk with a diameter 

close to the one of the rotor. The distance from the disk to the rotor was changed from 4 to 8 

rotor diameters, with the vertical distance from the rotor axis varied 0.5 and 1 rotor diameters. 

The associated turbulent intensity of the incoming flow to the rotor changed 3 to 16% due to 

the influence of the disk wake. In the experiment, thrust characteristics and associated 

pulsations as a function of the incoming flow structures were measured by strain gauges. The 

flow condition in front of the rotor was measured with high temporal accuracy using LDA and 

power coefficients were determine as function of tip speed ratio for different obstacle positions. 

Furthermore, PIV measurements were carried out to study the development of the mean 

velocity deficit profiles of the wake behind the wind turbine model under the influence of the 

wake generated by the obstacle. By use of regression techniques to fit the velocity profiles it 

was possible to determine velocity deficits and estimate length scales of the wake attenuation. 

1.  Introduction 

 

Wind turbines are often sited near obstacles such as forests, ridges, hills and cliffs [1]. These 

obstacles can strongly disturb the wind velocity profile [2]. Some of them can be very favorable for 

producing wind power, whereas others should be avoided, as they may generate considerable flow 

stagnation (“wind shadow”) in the rotor area (fig. 1). It is critical to identify both positive and negative 

effects to be able to predict the overall performance of a wind turbine. The effects of the different 

obstacles on the energy production and turbine loading are not fully understood and the development 

of the wake of a wind turbine operating behind obstacles is still not well understood [3]. The aim of 

the present investigation is to elucidate these effects. 

An obvious negative factor decreasing the turbine efficiency is the generation of a velocity deficit 

or “wind shadow” in front of the rotor. Thus, a selection of the turbine location relative to the obstacle 

is an important issue. The factors affecting “wind shadows” are wind turbine hub height, separation 

distance, roughness length, roughness class, obstacle height, etc. An ideal place is a smooth hilltop 
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with the absolutely flat open area around it. But such locations are rarely found. In most cases it is 

required to install wind turbines at relatively large distances from obstacles or to place the wind 

turbine rotor above obstacles.  

Another issue is that the obstacles appearing in front of wind turbine rotors increase the turbulence 

level. The turbine efficiency depends on the nature of the turbulence. Increasing the level of free-

stream turbulence may lead to an earlier breakdown of the vortex wake behind the wind turbine, which 

may be of importance for the design of wind farms [4]. The impact on wind turbine efficiency due to 

large-scale coherent turbulent structures formed by an obstacle in front of a wind turbine was studied 

in [5]. In their laboratory experiment, a model of a hydrokinetic turbine was examined to study the 

influence of coherent structures on power pulsations and wake development. The turbine model was 

placed in a channel with an open-flow and operated under subcritical conditions. The incoming flow 

was perturbed by vertically oriented cylinders of various diameters. It cylinder array was established 

such that the coherent structures generated by the cylinders most effectively broke the helical tip 

vortices. Among other things, it was found that the velocity deficit in the wake 10 diameters 

downstream of the rotor became lower than it is in the flow without the cylindrical obstacles.  

 

 

Figure 1. Sketch of the problem. 

  
The purpose of the present work is to study the influence of large-scale obstacles on rotor 

performance and turbulence levels. As a first case, which also has been investigated by others, we 

have chosen the simple case of a circular disk. It should be mentioned that recent results for a rotor 

model in a free flow have shown two interesting properties of the wake behavior: a decreasing velocity 

deficit following a power law of -2/3 in the wake [6] and strong oscillations with a frequency 

corresponding to the Strouhal number [7]. In the present paper, we use a disk of diameter 0.9D as a 

simplification of a real obstacle and to be in accordance with earlier studies on disk wakes [8]. The 

disk was axially placed at different positions Lx = 4D, 6D and 8D in front of the rotor (fig.2). In the 

some tests,  the disk was placed at a fixed distance of 6 diameters upstream of the rotor, with the disk 

axis placed at an vertical offset from the rotor axis of Ly =  0.5D and 1D, respectively, (fig.2). The 

experiment took place in the same water flume as used in previous experiments [5-8] to provide a 

correct comparison and to have the capability of performing additional visualizations. It should be 

emphasized that for the present setup with Reynolds numbers in the range 140.000 < Re < 240.000, 

there are no fundamental differences between performing the experiments in water or in air [8]. 

At first, employing Laser Doppler Anemometry (LDA), we examined the structure and oscillations 

of the flow disturbances emanating from the disk to the rotor. Next, the influence of the disk wake on 

the rotor performance and thrust characteristics were studied at the different disk positions (Lx and 

Ly). Finally, Particle Image Velocimetry (PIV) experiments were carried out to study the development 

of the wake behind the rotor, with the rotor placed at the different positions in the disk wake. Non-

axisymmetric disturbances by a disk on the semi-similarity of the rotor wake were previously studied 

[6] at different cross-sections downstream of the rotor and for different tip speed ratios. For 

comparison, some of these results will also be shown in the following. 
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2.  Experimental Method and Results 

The experiments were carried out in a water flume (fig. 2). The length of the flume is 35m, the 

width is 3m, and the height is 1.0 m, with 3 m transparent walls in the test section. A detailed 

description of the water flume can be found in [6, 7]. The initial flow in the flume was subject to a 

very low turbulence level with a uniform velocity profile limiting the influence of external 

disturbances in the experiments. As mentioned above, a disk with a diameter close to the one of the 

rotor was used as obstacle. The properties of the wake behind a single disk are well described from 

previous experiments [8]. A three-bladed model rotor was positioned downstream of the disk. The 

rotor has a diameter D = 2R= 0.376m, and the blades, consisting of SD7003 airfoil sections, were 

specially designed for optimum operating conditions at a tip speed ratio λ = 5 [6, 7], where λ = ΩR/U, 

and Ω is the angular speed of the rotor. The distance from the disk to the rotor changed from Lx=4D to 

8D with vertical offsets form the rotor axis of Ly = 0, 0.5D and 1D, respectively. The Reynolds 

number, which is based on rotor diameter and the initial flow in the flume, varies in the range 

140.000 < Re < 240.000. There is a weak sensitivity on the behavior of the helical vortices in the wake 

for these Reynolds numbers. The study of Chamorro et al. [9] suggest that main flow statistics become 

independent when Re ≥ 93.000, which are lower than the value used in the current experiments. 

 

 

Figure 2. A sketch of the experimental setup. 

 

At first, the incoming flow velocity to the rotor was measured with high temporal accuracy using 

LDA. The initial free flow in the setup area of the flume has a uniform velocity profile with velocity 

U0 = 0.54 m/s and turbulence level 3 % [7]. The current measurements were carried out to determine 

the velocity profile upstream of the rotor subject to the influence of the wake from the disk. The local 

history of the axial velocity in each point was obtained using a Dantec 2-D Fiber flow LDA, based on 

a 1W Argon laser with a differential optical configuration and a frequency shift of 40 MHz. The 

diameter of the optical gauge is 112 mm and the focal length is 600 mm, with a beam diameter of 1.35 

mm. The wavelength of the laser beam is 514.5 nm (green light). The size of the probing optical field 

was 0.12×0.12×1.52 mm3.   

These LDA measurements of both velocity deficit and velocity oscillations (RMS) are shown in 

figs. 3a and 3b, respectively. The velocity profiles were measured at distance of 0.5D upstream of the 

rotor. The velocity profile reduces with 20 % and the velocity oscillations increases with up to 14% 

when the disk and rotor placed on a common axis (Ly=0). Increasing Ly, the velocity deficit in the 

rotor axis decreases only 0.87 % when Ly=0.5D, and at Ly=1D the velocity deficit almost disappears 
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in the rotor area (fig. 3a). The LDA measurements show that the level of RMS varies in range from 3 

to 16 % and becomes close to the turbulence intensity of the free flow when Ly=1D (fig. 3b). 

  

  

Figure 3a. LDA velocity profiles at Lx=6D. Figure 3b. LDA velocity pulsation at Lx=6D. 

 

As a second step, the influence of the obstacle on rotor performance and thrust was examined. The 

power and thrust coefficients,  CP and CT, were measured for different tip speed ratios (fig. 4 a, b) by 

strain gauges, which were mounted in the rotor. The electric signal from the strain gauge sensors was 

recorded with a frequency of 100 Hz in an interval of 60 s. In total 6000 counts were performed. A 

FFT plot of one of the samples is shown in fig. 4 c. The existence of a strong peak for all spectra of the 

CT signal reveals the existence of a strong frequency of 0.27 Hz in the disk wake, corresponding to the 

Strouhal [7]. Fig. 4.d shows that the RMS values of CT decrease when increasing Ly. A similar 

behavior of these characteristics was also found at distances Lx=4D and Lx=8D.  

  

  

Figure 4a. Power coefficients CP at Lx=6D. Figure 4b. Thrust coefficients CT at Lx=6D. 

  

Figure 4c. Spectra of CT signal at Lx=6 D, λ=5. Figure 4d. RMS values of CT signal at Lx=6D. 

 

The more detailed dependences on the power coefficients for different values of Lx and Ly are 

shown in figure 5.The experimental data for a single rotor without the disk-obstacle is in the figure 

shown by the solid line.  
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Figure 5. Power coefficients Cp for different values of Lx and Ly. 
 

These dependences show that the wake behind the disk has a strong influence on the rotor 

performance when the rotor axis coincides with the disk axis (Ly = 0). In general, the impact of the 

disk wake decreases when decreasing Lx. As seen on the plot, the disk wake has nearly no influence 

on the rotor performance when Ly = 1D. The power coefficients in the last case nearly equalled the 

one of a single rotor without disk-obstacle (solid curve).  
 

3.  Development of the rotor wake  

The maximum velocity deficit of the wake behind the rotor operating at λ = 5 was measured for 

different values of Lx and Ly. PIV experiments were carried out to study the development of mean 

velocity profiles in the wake downstream of the wind turbine model. In the PIV experiments the 

Dantec stereo PIV system was used to determine two velocity components in a light sheet vertically 

crossing through the rotor axis. The light source was a Nd:YAG laser producing 120mJ of energy in a 

single pulse at a wavelength of 532 nm and an operating frequency of 15Hz. The images were 

recorded by two Dantec HiSense II cameras with 1344x1024 pixels resolution. Based on the recorded 

images, the 3-D velocity field was calculated using Dantec Dynamic Studio 2.21 software. The PIV 

measuring area was 0.22 x 0.35m. Both cameras were placed perpendicularly to each other on the 

different sides of the flume at angle of 45° to the walls (figure 2). Water-filled optical prisms were 

installed between the cameras and the walls of the test section to reduce the distortions of the camera 

inclination to the walls. The focus plane was adjusted using Scheimpflug adapters because the cameras 

were placed at different angles to the light sheet (see fig. 2).  

Various empirical approaches have been applied to describe wind turbine wakes. Recently, a 

suitable general model for the rotor wakes was determined by analysing the far wake development 

behind axisymmetric bluff bodies [6, 10-11]. Indeed the common axisymmetric solution to fit the 

wake behaviour behind a bluff body at high Reynolds was thoroughly tested by a comparison with 

experimental data for the wake behind a streamline disk in a wind tunnel [12-13]. This theory for the 

circular disk was also confirmed in the water flume [8]. The maximum deficit of the streamwise 

velocity in the rotor wake for high-Reynolds-number can be described by the same formula, 

 

2

3
0

0

( )
( ) ( )

U x
G x a x x

U


    (1) 

where U0 is the incoming free velocity, ∆U(x) is the maximal velocity deficit at location x on the wake 

axis, and the parameters a  and 0x  depend on the type of bluff body or rotor generating the wake. It 
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should be emphasized, however, that the power -2/3 is general and valid for all kinds of bodies and 

rotors generating a wake. It was found in [6] that the constants a=0.85 and x0=3.2 gives an excellent fit 

of the velocity deficit in the wake downstream of a single rotor. 

We also tried to use the formula (1) for the rotor wake disturbed by the disk-obstacle. Figures 6.a 

and 6.b show the maximum velocity deficit in the wake of the rotor operating at an optimal tip speed 

ratio as function of different positions (Lx and Ly) of the disk-obstacle. Here, the symbols shows the 

experimental data obtained from PIV-averaged velocity fields and lines present approximate 

curves (1).  
 

 a 
 

b 

Figure 6. Velocity deficit variation at λ=5: a - different Lx for Ly=0, b - different Ly for Lx=6. 
 

All experimental data monotonically and smoothly decrease by a rate of -2/3 in accordance with (1) 

for the different positions between the disk-obstacle and the rotor. The empirical coefficients, 

however, still need to be determined. For the common axis (Ly=0) at the different distances (Lx = 4D, 

6D or 8D) the experimental data in figure 6.a look very similar and close to each other. From a simple 

curve fit, they were approximately found to be a = 0.51 and x0 = 2.1. The coefficients in (1) for the 

disk and rotor arrangement at Lx =6D, Ly=0.5D in figure 6.b are found to be a= 0.55, x0= 2.55. For 

the case of Lx =6D, Ly = 1D the values increase slightly to a= 0.6 and x0= 3.0, tending to the values of 

the wake development for a single rotor without a disk-obstacle. The last curve (without the disk) is 

higher as those of a rotor operating in the wake behind an obstacle. This is the case even when Ly = 

1D or when the disk-obstacle is placed outside the rotor area (figure 2). Here Сp attains approximately 

the same value as for a single rotor (figure 5). In this case the turbulent oscillations from the obstacle 

can reduce the velocity deficit of the rotor wake, whereas both the high turbulence level and the “wind 

shadow” dominate when Ly = 0 or 0.5D.  
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4.  Conclusions 

The interaction between a wind turbine rotor and an upstream located obstacle was experimentally 

studied to estimate the influence of “wind shadow” and flow turbulence on the behaviour of the rotor 

and resulting wake. The experiments were performed in a water flume subject to a very low turbulence 

level and a uniform velocity profile, limiting the influence of external disturbances on the disk-rotor 

flow. LDA measurements showed that the velocity deficit under the influence of the disk may increase 

with up to 20 % and that the turbulence intensity (RMS value) may increase in the range from 8 to 15 

% in a cross-section located in front of the rotor. The dependency on power and thrust coefficients 

resulting from operating the turbine at different tip speed ratios and disk positions were investigated, 

and the performance was found to depend strongly on the position of the upstream located disk. 

Another issue concerned the wake development. Here it was found the power law previously 

determined for wakes behind single rotors and single disks in general is valid also for interacting 

wakes behind disks and rotors.  
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