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Abstract. The interaction between the Coriolis force and a wind farm wake is investigated by
Reynolds-Averaged Navier-Stokes simulations, using two different wind farm representations: a
high roughness and 5×5 actuator disks. Surprisingly, the calculated wind farm wake deflection
is opposite in the two simulations. A momentum balance in the cross flow direction shows
that the interaction between the Coriolis force and the 5×5 actuator disks is complex due to
turbulent mixing of fresh momentum from above into the wind farm, which is not observed for
the interaction between the Coriolis force and a roughness change.

1. Introduction

In recent years, wind farms have grown in size and are more frequently placed in wind farm
clusters. This means that large scale effects are becoming more important for wind turbine
wake interaction in wind farms, and especially for the interaction between wind farms. One
large scale effect that is often neglected by wind farm modelers is the effect of the Coriolis force
on wind turbine/farm wakes. In previous work, we have shown that the Coriolis force should not
be neglected in Reynolds-Averaged Navier-Stokes simulations of a wind farm cluster consisting
of two wind farms[1]. The deflection of the upstream wind farm wake resulted in a lower power
production of the downstream wind farm, because the Coriolis force aligned the upstream wind
farm wake towards the curved rows of the downstream wind farm. Note that a constant latitude
was used, which means that the global turning of the Coriolis force was not modeled. In other
words, only the interaction between the Coriolis force and local disturbances in the velocity field
were investigated. In the present work, we will also use a constant latitude.

The literature does not agree on the turning direction of wind farm wakes caused by the
Coriolis force. Volker et al.[2] showed that different mesoscale models can show wind farm wake
deflection in opposite directions for the same test case. Mitraszewski[3] argued that a wind farm
can be seen as a roughness change, and therefore the Coriolis force should turn the wind farm
wake to the left (in the Northern Hemisphere), following Orr et al.[4]. On the contrary, we
have shown in previous work that the Coriolis force turns a wind farm wake to the right (in the
Northern Hemisphere), and we explained it as result of a stream-wise decreasing Coriolis force
in the wake recovery region[1]. However, the present work shows that this effect is not the main
reason for the wind farm wake to turn to the right. Our goal is to clarify why the Coriolis force
turns a wind farm wake to the right in the Northern Hemisphere.
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2. Methodology

In order to understand the interaction between the Coriolis force and a wind farm wake, two
RANS simulations of a simple rectangular wind farm of 5×5 NREL-5MW wind turbines[5] are
carried out, where the wind farm is represented in two different ways:

(i) 25 wind turbines represented by actuator disks (ADs) with variable forces, without wake
rotation[6, 7].

(ii) A high roughness of 1 m in the wind farm area.

The NREL-5MW wind turbine has a hub height and a rotor diameter (D) of 90 m and 126 m,
respectively. The wind turbines spacing is set to 8D in both horizontal directions.
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Figure 1. Rotated inlet profiles calculated by the precursor. Bottom plots are a zoomed view
of the top plots. Rotor area is shown as black dashed lines.

The numerical setup of the RANS simulations with ADs including the Coriolis force is fully
described in previous work[1], and we will briefly summarize it here. The simulations are carried
out with the in-house flow solver EllipSys3D[8, 9]. The turbulence is modeled with a modified k-
ε model that limits the boundary height through a global length scale limiter[10], and it includes
a local length scale limiter that is necessary to resolve the near wind turbine wake properly[11].
The inflow profiles of the wind farm simulations are determined from a neutrally stratified
precursor simulation, where the Coriolis force is balanced by a defined pressure gradient, both
terms are implemented as a momentum source term Sv:

Sv,x = ρfc (V − VG) , Sv,y = −ρfc (U − UG) , (1)

with ρ as the air density, fc as the Coriolis parameter set to 10−4 1/s, U and V are the stream-
wise and lateral velocity components, and the subscript G denotes the geostrophic wind, which
is set to 12 m/s. A uniform roughness length of 10−4 m is chosen. The precursor calculates a
velocity of 10.4 m/s and a turbulence intensity of 5% at hub height, which represents off-shore
conditions. The calculated profiles include wind veer, and are rotated to enforce a chosen row
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aligned wind direction of 270◦ at hub height in the wind farm simulations. The rotated inflow
profiles from the precursor simulation are shown in Figure 1. A wind veer of about 2.6◦ is
present in the rotor area, as shown in one of the bottom plots of Figure 1.

The same numerical grid is used in both wind farm simulations. The domain definition
including wind farm layout and boundary conditions (BC) is shown in Figure 2. The grid is
Cartesian and represents a box-shaped domain with dimensions 2000D×1000D×20D, in stream-
wise, lateral and vertical directions, respectively. The grid consist of 26 million cells, where the
spacing in and around the wind farm (blue area of Figure 2) is D/8. In the green area of Figure 2,
the grid cells are streched in the stream-wise direction towards a spacing of 1D, up to 396D ≈ 50
km downstream. The vertical resolution starts with a cell height of 0.5 m and it grows with
height using an expansion ratio of about 1.1. The profiles from the precursor simulation are
inserted at the at inlet BC, as shown in Figure 2. In addition, the top boundary of the domain
is also an inlet BC. The lateral boundaries are periodic to account for wind veer. At the outlet
BC, a fully developed flow is assumed. A rough wall BC [12] is placed at the bottom of the
domain.
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Figure 2. Domain definition and wind farm layout. Left: overview of domain, right: zoomed
view. Red dots represent ADs. Spacing in blue and green areas are set to D/8 and D, respectively.

3. Results and Discussion

Figure 3 shows two contours plots of the stream-wise velocity, taken at hub height, for the
two wind farm representations: 25 ADs and a high roughness. The x and y coordinates are
normalized by the length or width of the wind farm LWF = 32D. The simulation with 25 ADs
shows five distinct merged wakes, while the simulation of the roughness change shows one wind
farm wake structure. A contour line that represents 95% recovered velocity is shown in each
plot of Figure 3. The contour line reveals that the wake of the wind farm represented by ADs
is deflected towards the right, while the opposite is observed for the wind farm represented by a
high roughness. The wind farm wake deflection is also visible in Figure 4, where the stream-wise
velocity is plotted at five cross planes located at x/LWF = 0, 0.1, 1, 1.25, 2, for both simulations.

3.1. Momentum balance

In this section, the observed wind farm wake deflection from Figures 3 and 4, is explained using
a momentum balance.
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Figure 3. Stream-wise velocity at hub height, normalized by the free-stream. Top: Wind
farm modeled with 25 ADs. Bottom: Wind farm modeled as a high roughness. Contour line
represents 95% recovered velocity.
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Figure 4. Stream-wise velocity at several downstream cross planes. Left: wind farm is
represented by 25 ADs. Right: wind farm is represented by a high roughness. Wind farm
ends at x/LWF = 1.

The momentum equation can be written as:

DUi

Dt
= SAD,i +

1

ρ

�
Sv,i −

∂ �P
∂xi

�
−

∂u�iu
�

j

∂xj
(2)
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Here, we neglect the molecular viscosity since it is much smaller than the eddy viscosity. SAD,i

represents the AD forces in the wind farm simulation including ADs, and �P represents the
fluctuation around the static pressure that is solved by the SIMPLE algorithm [13]. The

pressure gradients are obtained as ∂P/∂x = ∂ �P/∂x + ρfcVG and ∂P/∂y = ∂ �P/∂y − ρfcUG.
We are interested in the momentum balance in the cross direction (y), which can be written as:

�
A

DV
Dt

dA = −fc
�
A
UdA −1

ρ

�
A

∂P
∂y

dA −
�
A

∂v�w�

∂z
dA

Change of V-momentum Coriolis Pressure Turbulence
(3)

The integrals are taken over square horizontal slices with an area of A = 40 × 40D2 at several
heights, in the wind farm (x = y = {−4D,LWF + 4D}) and in the near wind farm wake

(x = {LWF ,2LWF +8D}, y = {−4D,LWF +4D}). The integrals with
�
A

∂u�v�

∂x
dA and

�
A

∂v�v�

∂y
dA

can be neglected because they are 2-3 orders of magnitude smaller than the other integrals from
equation 3. In addition, SAD,y = 0 since only thrust forces are considered, and the ADs are fixed
normal to the flow direction. Each term of equation 3 is normalized by 1/(AfcG) and plotted
in Figure 5.
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Figure 5. V -Momentum balance. Top: wind farm represented by 25 ADs, where rotor area
is shown as black dashed lines. Bottom: wind farm represented by a high roughness. Left:
integral taken from wind farm area. Right: integral taken from near wind farm wake. Dashed
lines represent the results from an empty domain.

The top and bottom figures show results from the simulation where the wind farm is
represented by 25 ADs and a high roughness, respectively. In addition, the results from the
left figures are taken inside the wind farm, while the right figures are made in the near wind
farm wake. The results from the wind farm simulation (solid lines) are compared with the results
taken from a empty domain (colored dashed lines). When the wind farm is not present (colored
dashed lines from Figure 5), the turbulence is in balance with the Coriolis force and pressure
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gradient, as expected. At the wind farm area (left plots of Figure 5), there is more turbulence
developing when the wind farm is represented by ADs (left, top plot) compared to a wind farm
represented by a roughness change (left, bottom plot). In the near wind farm wake (right plots
of Figure 5), this difference in turbulence between the two wind farm simulations is even more
pronounced.

When the wind farm is represented by a high roughness (bottom plots of Figure 5), an
internal boundary layer (IBL) develops from the abrupt roughness change at x/LWF = 0. The
largest changes in turbulence are mainly occurring near the wall due to IBL, where also the
largest change of V -momentum in the near wind farm wake (right, bottom plot) is observed. In
addition, the near wake (right, bottom plot) shows that the combined change of Coriolis force
and pressure gradient is larger than the change of the turbulence. Hence, the local changes in
Coriolis force and pressure gradient deflect the wind farm wake towards to left, which is already
visible in the wind farm area, as shown by the right plots of Figure 4.

When the wind farm is represented by 25 ADs (top plots of Figure 5), the turbulence and
V -momentum change both near the wall and above the wind turbines. In both the wind farm
and the near wind farm wake, the change in turbulence is larger than the combined change of
Coriolis force and pressure gradient, especially above the wind farm, where also the change of
V -momentum in near wind farm wake is the largest. This indicates that the turbulence above
the wind farm is transporting flow with a wind direction towards to right, downwards, which
causes the wind farm wake to turn to the right. In other words, Figure 5 suggests that the
Coriolis force is indirectly causing the wind farm wake to deflect towards the right because of
the present wind veer, and not because of the local changes in the Coriolis force as motivated
in previous work[1]. It would be useful to confirm these findings by large eddy simulations.

Figure 5 shows that the flow in a simulation with 25 ADs including Coriolis is complex and
very different from a simulation modeling a roughness change with Coriolis force. This means
that the interaction between the Coriolis force and a wind farm wake cannot be simplified to
the interaction between the Coriolis force and a roughness change, when the wake deflection is
investigated, as suggested by Mitraszewski[3].

4. Conclusions

Two RANS simulations of a wind farm including the effect of the Coriolis force are carried out,
that differ in wind farm representation. When the wind farm is modeled as a roughness change,
the wind farm wake turns to the left due to an imbalance in the Coriolis force. When the wind
farm is represented by 25 actuator disks, the wind farm wake is deflected towards the right. An
investigation of the momentum balance in the cross flow direction suggests that in the simlation
with 25 actuator disks, the turbulence is mixing fresh momentum from above, that has a relative
wind direction towards the right, down into the wake region. Hence, the interaction between
the Coriolis force and a wind farm wake is a complex process that cannot be simplified to the
interaction between the Coriolis force and a roughness change, when the deflection of the wind
farm wake is investigated.
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