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Calculating the sensitivity of wind turbine loads to

wind inputs using response surfaces

Jennifer M. Rinker1

1 Technical University of Denmark, Department of Wind Energy, Frederiksborgvej 399,
Building 114 Room S01, 4000 Roskilde

E-mail: rink@dtu.dk

Abstract. This paper presents a methodology to calculate wind turbine load sensitivities
to turbulence parameters through the use of response surfaces. A response surface is a high-
dimensional polynomial surface that can be calibrated to any set of input/output data and
then used to generate synthetic data at a low computational cost. Sobol sensitivity indices
(SIs) can then be calculated with relative ease using the calibrated response surface. The
proposed methodology is demonstrated by calculating the total sensitivity of the maximum
blade root bending moment of the WindPACT 5 MW reference model to four turbulence input
parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length
scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The
input/output data used to calibrate the response surface were generated for a previous project.
The fit of the calibrated response surface is evaluated in terms of error between the model and
the training data and in terms of the convergence. The Sobol SIs are calculated using the
calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the
four turbulence parameters examined in this paper, the variance caused by the Kaimal length
scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the
first systematic evidence that stochastic wind turbine load response statistics can be modeled
purely by mean wind wind speed and turbulence intensity.

1. Introduction
As the state of the art of wind energy has progressed, the size of the average commercial wind
turbine has increased drastically. This increase in wind turbine size is primarily driven by
the increased power production that large rotors yield. The increase in wind turbine size has
increased complications in terms of transportation, construction, and design. Additionally, the
cost of larger components has increased, which means that the consequences of failure are more
severe. Thus, as the wind turbine size has increased, the importance of adequately designing the
system has also increased. To ensure proper wind turbine design, the turbulence and turbine
must both be characterized with a sufficient degree of accuracy, and the connection between the
two dynamical systems must be understood.

Despite the importance of characterizing turbulence-turbine interactions, there are only a
select number of papers in the literature that examine the effects of atmospheric parameters
on the loads and generated power in a wind turbine. Of the existing literature, some focus on
atmospheric stability or related phenomena (e.g., [1, 2, 3, 4]), some focus on specific atmospheric
parameters (e.g., [5, 6, 7], and still others focus on statistical properties (e.g., [8]). The
approaches in the referenced literature are varied, but there is lacking a systematic analysis
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to determine which atmospheric parameters have the most significant effects on wind turbine
loads and which can be set to nominal values.

This paper seeks to fill this gap in the state of the art by utilizing response surfaces to
calculate the sensitivity of wind turbine load response statistics to a set of common turbulence
parameters. The sensitivities can be used to quantify which turbulence parameters have the
largest effect on wind turbine loads and which are negligible. The load sensitivity can be
quantified through a global sensitivity metric such as the Sobol sensitivity indices (SIs) [9]. A
Sobol sensitivity analysis is a variance-based sensitivity analyses that calculates the sensitivity
of an output quantity (e.g., a wind turbine load response statistic) to a specific subset of input
parameters (e.g., select turbulence parameters). The calculated SIs provide information on
which input parameters have the largest effect on the output parameters, and if a calculated
SI is sufficiently low, then the corresponding input parameters can be deemed “not important”
and set to nominal values [10]. Thus, Sobol SIs can be used not only to quantify the relative
importance of input parameters but also for model reduction.

The main drawback of the Sobol SIs is that many model evaluations are required to calculate
the integrals in the SI equation [11]. One method to mitigate this issue is to use a surrogate
model that can easily generate synthetic model data, such as a reponse surface. Response
surfaces are a surrogate modeling technique in which a multi-dimensional polynomial is used to
map a set of model inputs x = [x1, x2, . . . , xn] to a scalar output y [12]:

y = β0 + β1x1 + β2x2 · · · . (1)

Response surfaces are extremely easy to calibrate and can generate synthetic data at very
little computational expense, as the model is purely arithmetic once the coefficients have been
calibrated. Thus, a properly calibrated response surface can be used to calculate Sobol SIs with
ease. While this technique has been used in the literature to calculate SIs in fields outside of wind
energy [13, 14], to the author’s knowledge it has never been utilized in wind energy applications.
The objective of this paper is therefore to demonstrate the ability of response surfaces and Sobol
SIs to determine which turbulence parameters are important to consider in load analyses. A
single wind turbine model and load response statistic (viz. the maximum blade root bending
moment of the WindPACT 5 MW reference model [15]) is examined here for brevity, but the
proposed methodology is applicable to any wind turbine model or response statistic.

The remainder of the paper is laid out as follows. First, a description of the training data
that was used to calibrate the response surfaces is provided in Sec. 2. The training data
were generated as part of a previous project, and the section details the wind turbine and
turbulence models that were used to generate the input/output data. Next, Sec. 3 demonstrates
the proposed fitting methodology on the 10-minute maximum blade-root bending moment for
the WindPACT 5 MW reference model. An evaluation of the model fit and response surface
convergence is also presented, along with the procedure to sample stochastic load response
statistics from the calibrated response surface. The calibrated response surface is used in Sec. 4
to calculate Sobol sensitivity indices to determine which turbulence parameters are important
to model and which can be set to nominal values. Lastly, the conclusions of this paper are
presented in Sec. 5.

2. Background
The wind turbine models and training data used in this paper were available from a previous
project. This section provides a detailed description of the models and the methodology that
were used to generate the training data to which the response surfaces were calibrated.
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Figure 1. Procedure to generate input/output data to calibrate response surface

2.1. Wind turbine model
The wind turbine model used in this paper is the WindPACT 5 MW reference model. The
model was originally developed as part of the WindPACT rotor scaling study in the early 2000s
[15], and it is one of a set of four identical models that were scaled to different sizes (750 kW,
1.5 MW, 3 MW, and 5 MW). The model is a three-bladed, upwind configuration with a hub
height of 154 m and a blade length of 60 m. The blades were designed in a separate WindPACT
project [16] and consist of triaxial fiberglass laminate with a balsa wood core. The airfoils are the
National Renewable Energy Laboratory (NREL) S-series airfoils [17] that were scaled and given
finite trailing-edge thickness. The controller is a variable-speed, pitch-to-feather configuration
with a simple quadratic controller below rated and a gain-scheduled PID controller above rated
[15, Appendix E]. Detailed descriptions of the wind turbine model can be found in [15].

2.2. Training data
The training data used to calibrate the response surface in this paper were generated for a
previous project. The project used NREL’s high-performance computing (HPC) resources
to simulate thousands of nonstationary turbulent fields, to use those fields as input to the
WindPACT reference models, then to calculate and save selected statistics from the wind
turbines’ responses. An overview of the procedure used to generate the training data is shown
in Fig. 1. The details of the training data generation procedure, including the atmospheric and
turbine modeling, are discussed below.

2.2.1. Simulation of nonstationary turbulence The objective of the previous project was to
quantify the importance of inflow nonstationarity on wind turbine loads. This nonstationarity
was modeled through a novel methodology called temporal coherence, which can produce
stochastic turbulent fields with coherent packets of energy. For brevity, only an overview of
temporal coherence is provided here; the interested reader is referred to [18] for more detail.

Temporal coherence is a correlation between Fourier phases at different frequencies for the
same spatial location, and it is easily implemented in simulation through the use of “phase
difference distributions” (PDDs). A PDD is a prescribed probability distribution on the
difference in phase between adjacent Fourier frequencies fi and fi+1 for any given location in the
spatial grid. Prescribing a PDD that is non-uniform (i.e., that has some degree of concentration)
results in a correlation between the Fourier phases at different frequencies for that point in space.
The more concentrated the probability distribution—where the concentration is measured by
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Figure 2. Demonstration of the effect of the phase difference distribution (right column) on
the simulated time history (left column). The top, middle, and bottom rows have concentration
parameters parameters equal to 0, 0.4, and 0.7, respectively. All spectra generated using a
Kaimal spectrum with Uref = 10 m s−1, σu = 1.4 m s−1, and Lu = 340.2 m.

the “concentration parameter” ρ—the more temporal coherence and the more nonstationary
the simulated time history. This effect is demonstrated in Fig. 2, which has PDDs of varying
concentration in the right column and the corresponding simulated turbulent time series in the
left column. Higher degrees of concentration in the PDD produce more energy concentration
in the time domain, though all simulations utilize the same Kaimal power spectrum. Thus,
the concentration parameter ρ is a direct controller of the nonstationarity in the atmospheric
simulations.

The full-field nonstationary turbulence was generated in the previous project using a
customized version of TurbSim v2.0, NREL’s open-source stochastic turbulence simulator. The
source code was modified to allow the specification of temporal coherence in all three turbulent
components (u, v, and w), but the remaining model options were assumed to be the same as the
Kaimal Spectrum with Exponential Coherence (KSEC) model from wind turbine design standard
IEC 61400-1, Annex B [19]. The KSEC model has eight turbulence parameters: a reference 10-
minute mean wind speed (Uref ), the turbulence standard deviation for the three turbulence
components (σu, σv, and σw), the Kaimal length sale for the three turbulence components (Lu,
Lv, and Lw), and a coherence length scale (Lc). However, the design standard recommends the
following relationships for hub heights greater than 60 m [19]:

σv = 0.8σu Lv = 0.33Lu Lc = 340.2 m
σw = 0.5σu Lw = 0.08Lu

(2)

Thus, there are only three unique turbulence parameters for the KSEC model: Uref , σu, and
Lu. To add temporal coherence, it can be assumed that ρu = ρv = ρw because previous work
has determined that the temporal coherence in the different components is extremely highly
correlated [18]; thus, only one extra turbulence parameter, ρu, must be prescribed for a model
with temporal coherence. Assuming the spatial grid and time step are known a priori, the set of
turbulence parameters that therefore define a KSEC model with temporal coherence are Uref ,
σu, Lu, and ρu. An alternative but equivalent formulation is to define the reference turbulence
intensity Iu,ref = σu/Uref in place of the turbulence standard deviation.

The previous project sought to create a dataset that could be used to map these four
turbulence parameters (Uref , Iu,ref , Lu, and ρu) to wind turbine response statistics. To this end,
the input parameter space was discretized into a four-dimensional hypergrid with the following
edge vectors:

Uref = [5, 7, 9, 10, 10.5, 11, 11.5, 12, 13, 16, 19, 22]
Iu,ref = [0.1, 0.2, 0.3, 0.4, 0.5]

log10(Lu) = [1.5, 2, 2.5, 3]
ρu = [0.0, 0.1, 0.2, 0.3, 0.4]

(3)
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The values for Uref were chosen with respect to a reference height of 90 m and to be within the
cut-in/cut-out wind speed ranges for all four WindPACT turbines. Extra points were simulated
near the rated wind speed (approximately 11.5 m s−1) to capture interesting phenomena that
might occur due to the transition between controller regions. The turbulence intensity values
were chosen to encompass the majority of values that were calculated from an atmospheric
dataset recorded at meteorological tower M4 at NREL near Boulder, Colorado, USA [20, 21].
The logarithm of Lu was used instead of Lu to better regularize the input data for subsequent
analyses, and the values were also chosen to encompass the majority of values calculated from
the M4 dataset. Lastly, the values of ρu were chosen to include ρu = 0 (equivalent to the
standard KSEC model) and to also encompass the majority of values calculated from the M4
dataset.

For each point in the turbulence parameter hypergrid, five nonstationary stochastic
turbulence realizations were generated with different random seeds. The motivation for
generating these “redundant realizations” in the previous project was to be able to investigate
the variance of a specified wind turbine response statistic as a function of wind parameter inputs.
The number of redundant realizations at each hypergrid point was limited by the available HPC
hours; five was the largest number of redundant realizations that could be simulated with the
desired hypergrid edge vectors. The turbulence spatial grid parameters for the WindPACT
5 MW mode was a 140×140 square grid centered at 154 m with 15 points along each edge. The
turbulent fields were simulated with time step of 0.05 s for 630 s so that the first 30 seconds of
each simulation could be used to eliminate transient behavior in the wind turbine simulations.

2.2.2. Wind turbine simulation Once the 6,000 stochastic nonstationary turbulent fields were
generated, the next step in the previous project was to use them as wind input for the four
WindPACT reference models. The WindPACT models were implemented in version 7.02 of
FAST (Fatigue, Aerodynamics, Structures, and Turbulence), NREL’s open-source wind turbine
simulator, with the aerodynamic calculations being performed by v13.00 of AeroDyn. The
majority of the FAST structural parameters were taken from the Excel design worksheets from
the original WindPACT project that were made available to the author. The control parameters
were taken from the “WP 1.5 MW” certification test model that is distributed with the FAST
software, which is based on the WindPACT 1.5 MW reference model. The aerodynamic model
used a Beddoes-Leishman dynamic stall model, assumed an equilibrium induction model, and
featured standard Prandtl loss models at both the hub and tip. The equilibrium induction
model was used instead of the generalized dynamic wake model because the latter model was
found to be numerically unstable for wind ranges between 6 and 9 m s−1. The turbine response
was simulated for 630 s (the duration of the turbulence simulation), and then the first 30 s were
discarded to remove transience.

2.2.3. Response statistic calculation From each 10-minute wind turbine simulation, a multitude
of reponse statistics were calculated and saved. These response statistics included but were not
limited to quantities such as the mean, variance, skewness, kurtosis, maximum, and minimum of
many output loads and deflections. Additionally, the damage-equivalent loads (DELs) for many
forces/moments were also calculated and stored. The DEL is defined as the load amplitude
that would create the same fatigue damage as a particular load history [22]. By extracting
these response statistics, the training data thus consisted of thousands of input points (i.e., the
turbulence parameters) with corresponding output points (i.e., the response statistics). These
data generated in the previous project could then be used for any analysis technique involving
predefined input/output data.
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3. Wind Turbine Response Surfaces
In this paper, the training data generated in the previous project is used to calibrate a response
surface to be used as a surrogate model in Sobol SI calculations. Response surfaces are a
well-established technique for calibrating a surrogate model to mimic input/output data with
low computational cost (e.g., [12]). In this paper, the input vector x consists of the four
turbulence parameters—Uref , Iu,ref , log10(Lu), and ρu—and the scalar output y can be any
response statistic for any wind turbine. For brevity, this paper will only consider a single
response statistic for a single turbine model, viz. the maximum blade root bending moment of
the WindPACT 5 MW reference model. However, it is important to note that the proposed
analysis methodology can be utilized with any turbine model or response statistic.

3.1. Fitting methodology
There are many sophisticated methods for fitting response surfaces to data (see, e.g., [12]), but
the authors have found the following simple technique to produce very good results with the
available wind turbine training data:

(i) First, determine the parametric form for the response surface. High-order response surfaces
can have any order of individual polynomial terms and cross-terms. The authors found that
individual polynomial orders above 5 for Uref and 3 for Iu,ref , log10(Lu), and ρu resulted
in overfitting, whereas individual orders that were smaller did not accurately capture the
trends in the data. The cross terms in the parameteric form were determined by taking a full
polynomial factorization—which consisted of 6 × 4 × 4 × 4 = 384 terms—and eliminating
cross-terms whose total power exceeded the maximum individual polynomial order of 5.
This resulted in a total number of 111 polynomial terms in the parametric form.

(ii) Second, with the parametric form of the response surface determined, the optimal response
surface coefficients were determined using ordinary least squares [12]:

β =
(
[X]T [X]

)−1
[X]y. (4)

Here, y is the vector of output data and the matrix [X] is constructed from the input data.
Each row of [X] corresponds to a given training data point, and each column corresponds
to a polynomial term in the parametric form (e.g., x1x2x

2
3x4). Once the optimal coefficients

β are calculated, the response surface is completely determined.

3.2. Evaluation of fit
Before proceeding with the sensitivity analysis, it is important to verify that the calibrated
response surface matches the training data. If there are significant errors between the response
surface and training data, any conclusions drawn from the calculated load sensitivities will be
invalid. Additionally, although the training data were generated in a previous project, it is of
interest to investigate whether the selected number of redundant realizations was sufficient or
whether more should have been used. This section contains an error analysis for the response
surface of interest in this paper: the maximum blade root moment of the WindPACT 5 MW
reference model.

The quality of the response surface fit can be examined visually by plotting a subset of the
training data and comparing it to the response surface curve. This is demonstrated in the top
subplot in Fig. 3 for the WindPACT 5 MW maximum blade root bending moment. The training
data and response surface are filtered such that Iu,ref = 0.1, log10(Lu) = 2.5, and ρu = 0.1.
Note that the multiple points for a single wind speed shown in the figure are the five redundant
realizations. The response surface curve passes through the training data points, demonstrating
that the surface accurately models the trends in the training data. This is highlighted by the
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Figure 3. Comparison of response surface with training data for the 10-minute maximum of
the flapwise root moment (Iu,ref = 0.1, log10(Lu) = 2.5, and ρu = 0.1): (a) model versus data,
(b) percent error.

low percent errors between the training data and response surface that are plotted in the bottom
subplot. For the entire dataset, 78% of the percent errors are less than 10% and 97% are less
than 20%. Because the percent errors are acceptably small, we conclude that the response
surface can serve as an accurate surrogate model for in sensitivity calculations.

In addition to an evaluation of the fit, it is also of interest to determine the convergence of the
response surface as a function of the number of redundant realizations Nrr. This can be done
by fitting response surfaces to subselected data and evaluating the error between the response
surface and the entire set of training data. This error can be quantified via the normalized
sum-of-squared error (NSSE):

NSSE =
1

Nuniq

Nuniq∑
i=1

[ŷNrr(xi)− y(xi)]
2 . (5)

Here, Nuniq is the number of unique points in the wind parameter hypergrid (1200 for this
paper), xi is the ith turbulence parameter coordinate in the hypergrid, ŷNrr is the response
surface calibrated to the subselected data, and y is the “true” model, calculated by averaging
the five redundant realizations in the training data. The Nrr training data points subselected
at each unique xi are chosen randomly for each NSSE calculation.

The results for the calculated NSSE as a function of Nrr are shown in Fig. 4. The NSSE was
calculated ten times for Nrr = 1, 2, 3, and 4; there is only one point for Nrr = 5 because all
the data are used to fit the response surface. As expected, the values for the NSSE show the
largest magnitudes and variations for Nrr = 1, and the magnitudes and variation both decrease
with more redundant realizations. At Nrr = 4, the ten NSSE calculations lie almost on top of
one another and a take a value that is almost identical to the NSSE for Nrr = 5. Because the
NSSE variation is so small at Nrr = 4 and the magnitude is extremely similar to the value at
Nrr = 5, we can reasonably conclude that simulating more redundant points would not result
in a significant decrease in error between the response surface and the training data. Thus,
the response surface can be said to have converged with respect to the number of redundant
realizations.

3.3. Sampling from a response surface
Having calibrated the response surface and verified its convergence, the last step in this section
is to describe how to use the response surface to sample synthetic load response statistics. One
drawback of the response surface is that it is a deterministic model, not a stochastic model.
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Figure 4. Convergence of error for the maximum flapwise root bending moment for the
WindPACT 5 MW model with respect to the number of redundant realizations at each hypergrid
point

In other words, for a given set of turbulent parameters x, the response surface returns an
approximation of the average of the response statistic at that hypergrid coordinate. In many
applications, this deterministic characterization is not realistic. To account for this issue, the
authors add in Gaussian noise with a 10% coefficient of variation (COV) to the mean loads that
are modeled with the response surface. This value of the COV was determined by plotting the
empirical COV values from the training data and choosing an upper bound that encompassed
the majority of the data. With this added noise, the method to sample stochastic response load
statistics from the response surface can be expressed as

Y (x) = ŷ(x)(1 + 0.1N), (6)

where Y is the stochastic load response statistic, ŷ is the response surface evaluated at the
selected turbulence parameters, and N is a normally distributed random variable.

4. Sobol Sensitivity Indices
The calibrated response surface can be used to easily calculate Sobol SIs with little computational
effort. Sobol SIs are based on the decomposition of variance of a model represented by a square
integrable function f(x) defined on the unit hypercube Hn. This function can be expanded
using the analysis-of-variance decomposition [23]

f(x) = f0 +
n∑
s=1

s∑
i1<···<is

fi1···is(xi, . . . , xis). (7)

As noted in [10], this decomposition is both unique and orthogonal if∫
Hn

fi1...is(xi1 , . . . , xis)dxik = 0, 1 ≤ k ≤ s. (8)

The variances of the decomposition terms sum to the total model variance according to

σ2 =
n∑
s=1

s∑
i1<···<is

σ2i1...is , (9)

where σ2i1...is =
∫
Hn f

2
i1...is

(xi1 , . . . , xis)dxi1 . . . dxis . The global Sobol SIs are then defined as

Si1...is =
σ2i1...is
σ2

, (10)
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and they sum to unity [10].
It is impractical to calculate the global Sobol SIs for each term in the decomposition, so

instead the Sobol SIs for subsets of input variables are utilized. Assume that the input variables
have been partitioned into two subsets x = (y, z). Let K denote the set of input variable indices
for which xi ∈ y if i ∈ K. The variance associated with subset y is then defined as [10]

σ2y =
m∑
s=1

∑
(i1<···<is)∈K

σ2i1...is , (11)

where m is the number of input variables in subset y. This quantity accounts for all of the
variance associated with the decomposition terms that only depend on input variables in y.
The variance σ2z is defined similarly for the input variables in z. A complementary concept to
these variance definitions is the total variance:

(σtoty )2 = σ2 − σ2z . (12)

The total variance for subset y is the variance associated with all decomposition terms that have
at least one subterm in y. The SIs are analogously defined [10]:

Sy =
σ2y
σ2

(13)

Stoty =
(σtoty )2

σ2
= 1− σ2z

σ2
= 1− Sz. (14)

The global SI for subset y can be calculated using Monte Carlo integration [10]:

Sy ≈
1
N

∑N
i=1 f(y, z)f(y, z′)−

[
1
N

∑N
i=1 f(y, z)

]2
1
N

∑N
i=1 f

2(y, z)−
[

1
N

∑N
i=1 f(y, z)

]2 , (15)

where x′ = (y′, z′) is a second set of samples of the input parameters that is independent from
x and N is the number of Monte Carlo samples.

The Sobol SIs can be used to eliminate unimportant inputs in a model by considering the
effective dimension of f in the truncation sense, dT . This effective dimension is the smallest
integer dT such that some threshold percentage of the total variance p is maintained [10]:∑

0<y⊆{1,2,...,dT }

Sy ≥ p. (16)

If the complementary SI Stotz is much less than unity, the set of variables z can be deemed not
important and set to nominal values z0 (see Sec. 5 in [10]). This concept can be applied to wind
turbine response statistics to determine which, if any, turbulence parameters have little to no
effect on a wind turbine load response statistic.

For this paper, the four turbulence parameters of interest are subgrouped such that y =
{Uref , Iu,ref} and z = {log10(Lu), ρu}. This grouping was chosen based on preliminary first-order
Sobol SI calculations for the maximum blade root bending moment of the WindPACT 5 MW
reference model, which indicated that the Kaimal length scale and concentration parameter had
lower SIs than the mean wind speed and turbulence intensity. The values for Sy and Sz were
then calculated using the following procedure:
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Figure 5. Convergence of S{U,σu} and S{log10(Lu),ρu}

(i) Draw two sets of N × 4 uniform, independent samples u and u′ (one to generate x and one
to generate x′).

(ii) Generate x and x′ by mapping u and u′ to a correlated probability space with realistic
distribution functions using the empirical inverse distributions and correlations provided in
[18] for a measurement height of 76 m.

(iii) Use x and x′ with the response surface calibrated in Sec. 3 to generate f(y, z), f(y′, z), and
f(y, z′).

(iv) Calculate Sy according to Eq. (15) and Sz with the complement (i.e., replace f(y, z′) with
f(y′, z)).

This procedure was repeated for a number of Monte Carlo samples ranging from 100,000 to
5,000,000, and the resulting SIs are plotted in Fig. 5. The variation of the SIs is generally quite
small, within 0.01 even for the smallest sample size, and the values converge within 2 million
samples to Sy ≈ 0.933 and Sz ≈ 0.064. Note that millions of samples can be calculated very
easily using response surfaces with sample times on the order of minutes for a basic laptop.
From these values for Sy and Sz we can use Eq. (14) to calculate the total SIs for the maximum
blade root bending moment for the WindPACT 5 MW reference model:

Stoty ≈ 0.936 and Stotz ≈ 0.067. (17)

Because Stotz � 1, we can conclude that, for this wind turbine model and response statistic,
the Kaimal length scale and concentration parameter do not significantly impact the variation
of the wind turbine load and can therefore be set to nominal values. This is an extremely
important finding, because it is the first systematic evidence to support modeling wind turbine
load response statistics purely by mean wind speed and turbulence standard deviation. It
should be cautioned, however, that this does not imply that Uref and Iu,ref are the only two
turbulence parameters that need to be considered when modeling wind turbine load variation.
The findings here simply state that, of the variance caused by the set of turbulence parameters
{Uref , Iu,ref , log10(Lu), ρu}, the majority can be attributed to {Uref , Iu,ref}. It is possible that
the wind turbine response statistic is highly affected by a turbulence parameter or effect not
considered in this study. Additionally, extreme caution should be used when extrapolating
these findings to other wind turbine models. Changing the wind turbine model in any way,
either structurally or aerodynamically, could result in changed load sensitivities. However, the
advantage of the methodology presented in this paper is that it is entirely general and may
therefore be applied to any wind turbine model/response statistic of interest.
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5. Conclusions
This paper presents a methodology to calibrate response surfaces to wind turbine response
statistics data. This response surface can then be used for model-evaluation-heavy calculations
such as the calculation of Sobol SIs. Response surfaces are characterized by a high-dimensional
polynomial surface that can be calibrated to any set of input/output data and then used to
generate synthetic data at a low computational cost. The proposed methodology is demonstrated
using training data of the maximum blade root bending moment of the WindPACT 5 MW
reference model that was generated for a previous project. The previous project simulated
thousands of nonstationary turbulent fields with varying Uref , Iu,ref , log10(Lu), and ρu and
used them as inflow to simulate the responses of the four WindPACT reference models. In this
paper, a response surface was calibrated to the maximum blade root bending moment of the
WindPACT 5 MW reference model, and the quality of the fit and convergence of the response
surface was determined to be satisfactory. The response surface was then used to calculate total
Sobol SIs for y = {Uref , Iu,ref} and z = {log10(Lu), ρu}. The sensitivity indices were found
to converge within two million Monte Carlo samples to Stoty ≈ 0.936 and Stotz ≈ 0.067. The

small value of Stotz means that the output variance due to variation in z = {log10(Lu), ρu} is
negligible, and so these two input parameters may be set to nominal values. Thus, the findings
in this paper represent the first systematic evidence that supports modeling stochastic wind
turbine load response statistics purely by mean wind wind speed and turbulence intensity.
[1] Sathe A, Mann J, Barlas T, Bierbooms W and Bussel G 2013 Wind Energy 16 1013–1032
[2] Sutherland H J 2002 Journal of solar energy engineering 124 432–445
[3] Nelson L D, Manuel L, Sutherland H J and Veers P S 2003 Journal of solar energy engineering 125 541–550
[4] Kelley N 2011 Turbulence-turbine interaction: The basis for the development of the Turbsim stochastic

simulator Tech. Rep. NREL/TP-5000-52353 National Renewable Energy Laboratory Golden, CO
[5] Downey R P 2006 Uncertainty in wind turbine life equivalent load due to variation of site conditions Master’s

thesis Technical University of Denmark
[6] Saranyasoontorn K and Manuel L 2008 Journal of Wind Engineering and Industrial Aerodynamics 96 503–

523
[7] Dimitrov N, Natarajan A and Kelly M 2015 Wind Energy 18 1917–1931
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